
GPU-Accelerated Decoding of Integer Lists

Antonio Mallia Michał Siedlaczek Torsten Suel Mohamed Zahran
New York University

{antonio.mallia,michal.siedlaczek,torsten.suel,mohamed.zahran}@nyu.edu

ABSTRACT

An inverted index is the basic data structure used in most current

large-scale information retrieval systems. It can be modeled as

a collection of sorted sequences of integers. Many compression

techniques for inverted indexes have been studied in the past, with

some of them reaching tremendous decompression speeds through

the use of SIMD instructions available on modern CPUs. While

there has been some work on query processing algorithms for

Graphics Processing Units (GPUs), little of it has focused on how

to efficiently access compressed index structures, and we see some

potential for significant improvements in decompression speed.

In this paper, we describe and implement two encoding schemes

for index decompression on GPU architectures. Their format and

decoding algorithm is adapted from existing CPU-based compres-

sion methods to exploit the execution model and memory hierarchy

offered by GPUs. We show that our solutions, GPU-BP and GPU-

VByte, achieve significant speedups over their already carefully

optimized CPU counterparts.

KEYWORDS

Compression; Inverted Indexes; Graphics Processing Units (GPUs);

ACM Reference Format:

Antonio Mallia Michał Siedlaczek Torsten Suel Mohamed

Zahran. 2019. GPU-Accelerated Decoding of Integer Lists. In The 28th

ACM International Conference on Information and Knowledge Management

(CIKM’19), November 3–7, 2019, Beijing, China. ACM, New York, NY, USA,

4 pages. https://doi.org/10.1145/3357384.3358067

1 INTRODUCTION

An inverted index is the key data structure used in most current

large-scale text search systems. It is composed of posting lists, one

for each distinct term in a collection. A posting list is a sequence

of the IDs of the documents containing the corresponding term,

usually along with respective in-document frequencies or other

information needed for ranking. Given the extremely large col-

lections indexed by current search engines, even a single node

of a large search cluster typically contains many billions of inte-

gers. Thus, both space efficiency and index access speed are crucial

to maintain acceptable query response times [9]. This motivates

the use of specialized index compression techniques that reduce

space while also supporting extremely fast decompression. Such

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM ’19, November 3–7, 2019, Beijing, China

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6976-3/19/11.
https://doi.org/10.1145/3357384.3358067

techniques have been extensively studied, and recently much atten-

tion has been directed towards improving decoding throughput by

taking advantage of SIMD instructions available on modern CPU

architectures [6, 7, 11, 13ś15].

While CPU manufacturers are constantly widening vector reg-

ister sizes, their degree of parallelism comes nowhere close to the

one offered by current GPUs. There is some amount of recent work

on techniques for processing search queries on GPUs [3ś5, 8, 16],

but most of it does not focus on how the index is compressed. Some-

times the inverted index is used in uncompressed form, while most

other papers focus on query processing and spend little effort on

speeding up decompression. Although graphics card memory is

increasing in size, such memory is still quite expensive, and thus

index compression is crucial when dealing with large corpora. Thus

we believe that there is still a potential for significant improvements

in decompression speed for GPU-based inverted index structures.
Our contributions. We list here our main contributions.

(1) We explore efficient ways of decoding the posting lists of

an inverted index on GPUs. Any improvements for index

decoding speed is likely to translate into faster query process-

ing. Furthermore, an efficient and well-assessed compression

solution is necessary to further improve GPU-accelerated

query processing algorithms.

(2) We design and implement two encoding schemes that are

able to perform index decompression on GPU architectures.

Their format and decoding algorithm is adapted from exist-

ing CPU-based compression methods to exploit the program-

ming model offered by GPUs.

(3) We conduct an extensive experimental analysis to demon-

strate the effectiveness of our approach. Compared to exist-

ing techniques implemented for standard CPUs, our GPU

counterparts are: (1) one to almost two orders of magnitude

faster, and (2) only marginally larger in size.

2 BACKGROUND AND RELATED WORK

We start by providing background on GPUs and index compression.

Graphics Processing Units. Modern GPUs, massively parallel ar-

chitectures consisting of thousands of cores and high memory

bandwidth, can achieve superior performance on many demand-

ing applications [10]. However, to fully exploit the functionality

of GPUs, data and algorithms need to be carefully adapted to its

programming model. In the context of GPUs, threads are grouped

into blocks of 32, known as warps. Every thread in a warp executes

the same instruction according to the SIMD paradigm. For this

reason, it is important to avoid branch divergence within warps.

GPUs come with their own, hierarchically structured, device

memory. The CPU transfers data to and from the GPU’s global

memory. Although this comes with a high overhead, recent GPUs

feature up to 32 GB of memory capacity, enough to store an inverted

index for tens of millions of documents. Despite global memory’s



high bandwidth, directly accessing it by GPU threads is inefficient

due to long latency response times. Thus, specific access patterns

utilizing L2 and L1 caches are required for efficient algorithms.

Delta encoding. Typically, document IDs in each posting list are

sorted and then represented by the differences between consecutive

numbers, called delta gaps. As a result, the values we encode are

smaller, which can significantly improve compression; this is espe-

cially true for dense lists. Once decoded, delta gaps are converted

to IDs by computing a prefix sum.

Binary packing. Binary Packing [1] groups numbers into fixed-sized

blocks. For each block, its selector b is the smallest number of bits

required to binary-encode the largest element of the group. The

selector is binary-encoded in one byte, followed by the values be-

longing to the group, each encoded inb bits. For better performance,

we can store four selectors at a time in one 32-bit word, followed by

their respective groups. In the experiments described in Section 4,

we use blocks of 32 elements, and we refer to this approach as BP32.

Lemire and Boytsov [6] proposed a Binary Packing method that ex-

ploits SIMD instructions. This method, called SIMD-BP, packs 128

consecutive integers into as few 128-bit words as possible. Selectors

are stored in groups of 16, to fully utilize 128-bit SIMD operations.

Variable Byte. The encodings in the Variable Byte family are known

for their high decoding speed. Arguably the simplest and best

known is VByte, which uses 7 bits per byte to store the binary rep-

resentation of a number and one remaining bit to indicate whether

the same binary code continues in the next byte. These continua-

tion bits, when put together, form unary-encoded byte-lengths of

encoded numbers. To improve decoding speed, Dean [2] proposed

VarintGB, which groups these lengths together and encodes them

in binary instead: one byte is used to store four 2-bit sizes of the

next four integers, followed by their binary representations.

StreamVByte [7] combines the benefits of VarintGB and SIMD

instructions. Like VarintGB, it stores four integers per block with a

1-byte binary descriptor. However, descriptors are stored sequen-

tially in a separate bit stream, which improves access speed.

3 PROPOSED SOLUTIONS

Our GPU-based methods are based on Binary Packing and Variable

Byte encodings that achieve very fast decoding speeds on CPUs

and are particularly suitable for GPU implementation.

3.1 GPU Binary Packing
32 bits

128 ints 128 ints 128 ints

…

…

32 bits 32 bits 32 bits

Figure 1: Representation of the GPU-BP128 schema

Format. Instead of block descriptors, as in BP32, we store an array

of 32-bit integers that point to block endpoints. For convenience, we

insert an additional endpoint element that points to the beginning,

as shown in Figure 1. Since each block contains the same number of

elements, the bit-length of each element in a block can be computed

by dividing the length of that block by the number of elements,

while the block length is given by the difference between two

consecutive endpoints.

Algorithm 1: Decoding algorithm of GPU-BP

1 Function Decode(out, endpoints, n)
In :The endpoints array endpoints, number of elements

to decompress n

Out :Decompressed array out

2 for each block j do

3 for each thread i do

4 begin← endpoints[j]

5 end← endpoints[j + 1]

6 b← Bits(begin, end)

7 offset← i × b

8 p← j × BLOCK_SIZE + i

9 out[p] ← Extract(begin, offset, b)

Decoding. In our algorithm, each thread block is responsible for

decoding one compressed block, while each thread decodes one

element of the block. The block boundaries and the element offsets

can be quickly determined by accessing the endpoints array and per-

forming several arithmetic operations as shown in Algorithm 1. In

Section 4, we report experiments for blocks of 128 and 256 elements,

referred to as GPU-BP128 and GPU-BP256, respectively.

3.2 GPU VByte

128 ints

…

128 x 2 bits 128 ints128 x 2 bits 128 ints128 x 2 bits

32 bits

…

32 bits 32 bits 32 bits

Figure 2: Representation of the GPU-VByte128 schema

Format. As with VarintGB, integers are grouped into fixed-sized

blocks, and each block is preceded by a fixed number of 2-bit se-

lectors. Similarly to GPU Binary Packing, we also store an array

of endpoints of the blocks, as illustrated in Figure 2. In our experi-

ments, we use blocks of 128 and 1024 elements, referring to these

methods as GPU-VByte128 and GPU-VByte1024.

Algorithm 2: Decoding algorithm of GPU-VByte

1 Function Decode(out, endpoints, n)
In :The endpoints array endpoints, number of elements

to decompress n

Out :Decompressed array out

2 for each block j do

3 for each thread i do

4 begin← endpoints[j]

5 b[i] ← 8 × (1+Extract(begin, i × 2, 2))

6 offsets[i] ← InclusiveSum(b)

7 data← begin + 2 × BLOCK_SIZE

8 p← j × BLOCK_SIZE + i

9 out[p] ← Extract(data, offset[i], b[i])

Decoding. As with GPU-BP, each thread decodes a single element

in a block. Since elements are encoded with different numbers of

bits, each thread must read its own size and store it to an array

shared by the thread block. Furthermore, to retrieve the offsets to



each binary representation, a cumulative sum over the array must

be computed. The pseudocode is provided in Algorithm 2.

4 EXPERIMENTAL RESULTS

Testing details. All algorithms are implemented in C++11 and com-

piled with GCC 4.8.5 with the highest optimization settings. The

tests are performed on a machine with an Intel Xeon E5-2690 v4,

with 28 cores, clocked at 3.50 GHz with 256GB RAM, running Linux

3.10.0. Only a single CPU core was used in each run. The server

also has an NVIDIA Tesla V100 GPU with 16GB memory. The GPU

programming platform is CUDA Toolkit 9. We also ran our GPU

codes on an NVIDIA GeForce GTX 1080, which is a lower-end GPU.

Algorithms running on the latter are marked with an asterisk (*).

Before timing, we ensure that the required integer lists are fully

loaded in memory. It is reasonable to believe that in a real-world

scenario the inverted index is transferred to the GPU only once,

and thus does not contribute to the query processing time. We use

the FastPFor1 library for the CPU-based implementations of BP32,

VarintGB, SIMD-BP and StreamVByte. Reported times do not in-

clude the cost of summing up the d-gaps to retrieve the document

IDs. Posting lists were not partitioned into blocks: although blocks

are important for document-at-a-time processing on CPUs, it is

questionable if they are useful on GPUs. Encoding blocks of posting

lists only for the CPU compression algorithms would have been

an unfair comparison, as it would have slowed these down even

further due to the additional indirection. Our source code is publicly

available 2 for readers interested in replicating the experiments.

Datasets. We first ran our experiments on synthetic datasets pre-

viously used by Anh and Moffat [1]. They adopted two different

distribution models to generate lists of distinct integers: the Uni-

formmodel, which produces lists of integers according to a uniform

distribution, and the Clustered model, where values are clustered

such that sub-segments of integers contain similar values.We gener-

ated datasets of random integers in the range [0, 229) with both the

Uniform and the Clustered model. Sparse lists contain 2
16 integers,

and dense lists contain 2
25 integers.

We also ran experiments on standard datasets, in particular:.

• Gov2: the TREC 2004 Terabyte Track test collection consist-

ing of 25 million .gov sites crawled in early 2004.

• ClueWeb09: the ClueWeb 2009 TREC Category B collection

consisting of 50 million English web pages crawled between

January and February 2009.

Documents were parsed using Apache Tika3. The words were

lowercased and stemmed using the Porter2 stemmer; no stopwords

were removed. Document IDs were assigned according to a lexico-

graphic order of URLs [12]. To evaluate how decoding speed would

improve realistic query processing settings, we randomly selected

1000 queries from the TREC 2005 and TREC 2006 Terabyte Track

Efficiency Task (500 from each query set) and measured decoding

times for all the posting lists in these queries.

Compressed size. Tables 1 and 2 summarize the compression (in

bits per integer) achieved under several setups. For all datasets, our

solutions show a fairly small difference in size with respect to their

1https://github.com/lemire/FastPFor
2https://github.com/amallia/gpu-integers-compression
3http://tika.apache.org

CPU counterparts, with the exception of BP32, which results in a

more compact representation on GPUs due to a smaller block size.

Method
Uniform Clustered

Sparse Dense Sparse Dense

BP32 15.71 6.67 13.91 5.40
SIMD-BP 16.04 6.99 14.26 5.60
GPU-BP128 16.22 7.18 14.45 5.79
GPU-BP256 16.20 7.18 14.58 5.86

VarintGB 17.76 10.00 16.27 10.02
StreamVByte 17.76 10.00 16.27 10.02
GPU-VByte128 18.16 10.50 16.68 10.52
GPU-VByte1024 17.78 10.06 16.27 10.08

Table 1: Compression (in bpi) achieved by the encoders on

Uniform and Clustered datasets for sparse and dense lists.

Method
Gov2 ClueWeb09

docids freqs docids freqs

BP32 5.06 3.44 7.07 3.62

SIMD-BP 6.56 4.56 8.92 5.03

GPU-BP128 6.66 4.27 8.80 4.63

GPU-BP256 7.15 4.50 9.34 5.01

VarintGB 10.86 10.37 11.13 10.34

StreamVByte 10.86 10.37 11.13 10.34

GPU-VByte128 11.67 10.92 11.93 10.92

GPU-VByte1024 11.39 10.34 11.69 10.36

Table 2: Compression (in bpi) achieved by the encoders on

Gov2 and ClueWeb09 datasets.

Decompression speed. Figure 3 plots the achieved decoding speed

in millions of integers per second, while varying the lengths of the

lists. Although the SIMD CPU version of the decoding algorithms is

always faster than the serial CPU one, it is interesting to notice how

the gap decreases as the lists become longer, turning into an almost

marginal difference. This behaviour is caused by the capacity of the

CPU cache, which results in limited SIMD advantages. Furthermore,

VarintGB, in the case of longer and thus denser lists, encodesmost of

the values using 8 bits, which becomes a naive case to be optimized

by the branch predictor of CPU and, thus, faster to execute.

On the other hand, our GPU solutions are positively affected

by increasing lists lengths, due to the increase in available data

parallelism. BP32 exhibits an almost flat trend, while VarintGB, for

very dense lists, reaches the same performance of StreamVByte.

This can be explained by the fact that, from a certain point, most

elements can be represented with a single byte, making the task

easier for the CPU and less appealing for vectorization.GPU-BP and

GPU-VByte attain similar decoding speeds, with the former being

slightly faster due to its simpler implementation. The overall fastest

speed is obtained by GPU-BP256, reaching over 100 billion integers

per second decoding speed for long list, way beyond anything

previously reported. We also see a significant gap between the top-

of-the-line Tesla V100 GPU and the lower-end GTX 1080, though

even the latter is still much faster than the CPU methods.

Table 4 summarizes results obtained on Gov2 and ClueWeb09

by decoding the posting lists of terms appearing in actual queries.

These posting lists turn out to be quite long, which indicates our

proposed solutions could be very competitive in real scenarios.

Speedup factors relative to the decompression speed shown in

Figure 3 of GPU algorithms against their CPU/SIMD counterparts




	Abstract
	1 Introduction
	2 Background and related work
	3 Proposed solutions
	3.1 GPU Binary Packing
	3.2 GPU VByte

	4 Experimental results
	5 Conclusions
	References

