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Abstract

Electromagnetic (EM) motion tracking systems are suitable for many research and clinical
applications, including in-vivo measurements of whole-arm movements. Unfortunately, the
methodology for in vivo measurements of whole-arm movements using EM sensors is not well
described in the literature, making it difficult to perform new measurements and all but impossible
to make meaningful comparisons between studies. The recommendations of the International
Society of Biomechanics (ISB) have provided a great service, but by necessity they do not provide
clear guidance or standardization on all required steps. The goal of this paper was to provide a
comprehensive methodology for using EM sensors to measure whole-arm movements in vivo. We
selected methodological details from past studies that were compatible with the ISB
recommendations and suitable for measuring whole-arm movements using EM sensors, filling in
gaps with recommendations from our own past experiments. The presented methodology includes
recommendations for defining coordinate systems and joint angles, placing sensors, performing
sensor-to-body calibration, calculating rotation matrices from sensor data, and extracting unique
joint angles from rotation matrices. We present this process, including all equations, for both the
right and left upper limbs, models with 9 or 7 degrees of freedom, and two different calibration
methods. Providing a detailed methodology for the entire process in one location promotes
replicability of studies by allowing researchers to clearly define their experimental methods. It is
hoped that this paper will simplify new investigations of whole-arm movement using EM sensors
and facilitate comparison between studies.

Keywords: inverse kinematics, electromagnetic sensors, in vivo measurements, whole arm, upper
limb, ISB, landmark, postural, sensor-to-segment, sensor-to-body



1. Introduction

For some applications, electromagnetic (EM) motion capture sensors’ are a practical
alternative to the more commonly used optoelectronic (OE) sensors. Although EM sensors have
some disadvantages [1], including a small sensing volume [2] (a sphere with radius on the order
of 4ft) and susceptibility to electromagnetic interference from ferromagnetic materials [2-8] and
electrical equipment [8], they have some advantages over optoelectronic sensors. EM sensors: do
not require a direct line of sight; output six degrees of freedom per sensor; sample at relatively
high frequencies (between 40 and 360 samples/s); and are relatively low-cost. In addition, they
have relatively high accuracy (1-5mm for translation, 0.5-5° for rotation) and resolution (on the
order of 0.05mm for translation 0.001° for rotation). These characteristics make them well-suited
for many short-range applications, including evaluation of upper-limb movement in research and
clinical settings [1, 9].

Unfortunately, the methodology for in-vivo measurements of whole-arm movements using
EM sensors is not well described in the literature. To clarify, the recommendations of the
International Society of Biomechanics (ISB) [10] have provided a great service in clearly defining
body coordinate systems (BCS) for individual bones and joint coordinate systems (JCS) between
bones. However, by necessity the ISB recommendations do not provide clear guidance or
standardization on all steps required to measure joint angles. In particular, for measuring whole-
arm movements in-vivo using EM sensors, the following steps are not well defined. First, although
the BCS and JCS are clearly defined for individual joints, they are not clearly defined for whole-
arm movements. Simply concatenating the various JCS is ambiguous because JCS definitions
sometimes differ for different limb regions.”> Similarly, although the ISB recommendations
includes guidelines for adapting the JCS, originally defined for the right upper limb, to the left
upper limb, the guidelines are not consistent among the joints of the upper limb.> Second, some
landmarks recommended for calibration are difficult or impossible to access in-vivo.* Third, the
ISB recommendations do not include guidelines for the placement of EM sensors. Fourth, the ISB
recommendations deliberately exclude the calibration process, leaving it “up to the individual
researcher to relate the marker or other (e.g. electromagnetic) coordinate systems to the defined
anatomic system through digitization, calibration movements, or population-based anatomical
relationships.” Fifth, the ISB recommendations do not include the inverse kinematics algorithms
required to extract joint angles from EM sensor data.

Although some of these gaps have been filled in by individual studies, the added
recommendations are usually specific to OE motion capture. Although similar, methods for
tracking motion using EM sensors differ significantly from those for OE sensors in several aspects,
including sensor placement and portions of the inverse kinematics process. Also, although motion
analysis software packages are commercially available, they are likewise usually made for OE
systems and do not recommend methodological details for EM sensors, nor do they provide the

1

! Commercially available systems include 3D Guidance trakSTAR™ and Aurora® (Northern Digital Inc., Waterloo,
ON, Canada) and FASTRAK® and LIBERTY™ (Polhemus., Colchester, VT).

2 For example, the ISB recommends one definition for the BCS of the radius and ulna for studying the elbow and
forearm joints (see sections 3.3.3 and 3.3.4 in [10]) but another definition of the same BCS for studying the wrist joint
(4.3.1 and 4.3.2).

3 For example, the guidelines for the shoulder (see 2.1 in [10]) differ from those for the wrist and hand (4.3).

4 For example, the landmarks needed to define the recommended BCS for the third metacarpal (needed to define global
wrist motion) include the centers of the base and head of the third metacarpal, which cannot be accessed in-vivo
without time-consuming and expensive imaging.



underlying equations necessary for customization (such as inclusion of soft-tissue artifact
compensation). In addition, the few studies involving EM sensors often lack sufficient details in
the description of their methods to enable replication. Finally, although a small number of these
gaps are easily overcome, for in-vivo measurements of whole-arm movements using EM sensors
these gaps are numerous, complex, and interrelated, making it difficult to choose the best course
of action and all but impossible to make meaningful comparisons between studies.

In this paper, we describe in detail the process for using EM sensors to measure whole-arm
movements in-vivo and obtain upper limb joint angles defined as much as possible according to
ISB recommendations. This process includes defining joint angles, placing sensors, calibrating the
sensor system, calculating rotation matrices from sensor data, and extracting unique joint angles
from rotation matrices. We present this process for both the right and left upper limbs using the
landmark and postural calibration methods. Models with 9 degrees of freedom (DOF) (3 each at
the shoulder, elbow/forearm, and wrist) and 7 DOF (3 at the shoulder, 2 at the elbow/forearm, and
2 at the wrist) are presented. All equations required to complete the entire process are included in
the appendices. Although this process is described for all major DOF of the upper limb, a subset
of these descriptions can be used for any combination of upper-limb DOF.

2. Methods

2.1. Definitions: Body-segment coordinate systems, joint coordinate systems, and joint

angles

The ISB recommendations [10] define joint angles through the use of BCS and JCS. Each body
segment is represented by a BCS that is fixed in, and rotates with, the body segment. Rotation of
one BCS relative to an adjacent BCS constitutes a joint, which is defined by its JCS. The definition
of a JCS includes both the axes of rotation and, because finite rotations do not commute, the
sequence of rotation (e.g., rotate first about the first JCS axis by a, then about the second JCS axis
by £, and finally about the third JCS axis by y). Angles a, [, and y, which are examples of
Euler/Cardan angles®, are the joint angles.

While the ISB recommendations focus mostly on describing rotation between two
articulating bones, they can also be used to describe global motion caused by the aggregate rotation
of multiple bones. This paper focuses on global limb motion and follows the ISB recommendations
on global motion when specified in [10]. Specifically, we defined four body segments (from
proximal to distal): thorax, upper arm, forearm, and hand (represented by the third metacarpal),
which are represented by BCS A, B, C, and D, respectively (Figure 1A and Table 1). These four
body segments are connected by three joints (Table 2): the thorax and humerus are connected by
the thoracohumeral joint, the humerus and distal forearm articulate via the elbow (humeroulnar)
joint and the forearm (radioulnar) joint, grouped as one joint in this paper, and the distal forearm
and hand segments are connected by the wrist joint. Here, the three joints are referred to as the

5 Technically, joint angles defined for JCS in which the first and third body-fixed axes are repeated (XZ'X", XY'X",
YX'Y', YZ'Y", ZX'Z", or ZY'Z'"") are called proper Euler angles, whereas joint angles defined for JCS in which all
three axes are different (XY'Z", ZX'Y", YZ'X", XZ'Y", YX'Z", or ZX'Y'"") are Cardan angles. A more detailed
discussion on Euler angles and sequence of rotation can be found in many mechanics texts, including [11-13].



shoulder, elbow-forearm, and wrist joints, all of which are examples of global motion. These JCS
(Table 2) were taken from among the options proposed in the ISB recommendations.

Some may be concerned that global definitions of joints may neglect the contributions of
some bones. It is important to understand that even though the proposed model does not explicitly
provide all of the information provided by more detailed models, the information it does provide
is nonetheless equally accurate. For example, even though the proposed model does not explicitly
parse rotation of the thoracohumeral joint into rotation at the sternoclavicular, acromioclavicular,
and glenohumeral joints, the proposed model does include scapular and clavicular contributions.
In fact, defining the thoracohumeral joint simply as the orientation of the humerus relative to the
thorax forces it to include all contributions of the scapula and clavicle to rotation of the humerus
relative to the thorax. Researchers interested in whole-arm movement often do not parse
thoracohumeral rotation into rotations at the sternoclavicular, acromioclavicular, and
glenohumeral joints, but instead group these joints into a single “shoulder joint.” Therefore, we
present here the thoracohumeral joint as the “shoulder joint” as recommended by the ISB (section
2.4 of [10]). In our opinion, use of this global definition of shoulder motion is the safest way to
promote accurate reports of shoulder motion during whole arm movements, albeit at the sacrifice
of detail. Furthermore, researchers who wish to parse rotation of the thoracohumeral joint into
rotation at the sternoclavicular, acromioclavicular, and glenohumeral joints can easily expand our
procedures by including sensors on the scapula and clavicle. Recommendations for the BCS of the
scapula and clavicle, and for the JCS of the sternoclavicular, acromioclavicular, and glenohumeral
joints are given by the ISB [10]. Prior studies using EM sensors to investigate the shoulder complex
include [7, 14-16].

In addition to the shoulder JCS recommended by the ISB (Table 2), we provide an
alternative shoulder JCS (Table 3) that does not suffer from gimbal lock in anatomical shoulder
position. To clarify, gimbal lock is a mathematical singularity; when a joint is in gimbal lock, it is
not possible to determine the first and third joint angles uniquely. In addition, close to gimbal lock,
small changes in the actual orientation (in this case the orientation of the upper arm) produce large
changes in the first and third joint angles. Gimbal lock is an unavoidable property of Euler/Cardan
angles—any JCS includes two orientations (180° apart) that suffer from gimbal lock. The only
remedy is to choose a JCS whose two gimbal-lock orientations are as far as possible from the
orientations of interest. The ISB recommends using a YX'Y"' rotation sequence for the shoulder,
which suffers from gimbal lock when the shoulder is in neutral abduction-adduction (and 180° of
abduction). This JCS definition is appropriate for studies that focus on movements with abduction
angles around 90°, such as overhead tasks and some athletic tasks. In contrast, studies that focus
on movements involving small abduction-adduction angles (i.e. when the upper arm is at the side
of the thorax), which include many of the activities of daily living, are better off using a ZX'Y"’
sequence (Table 3). This sequence places gimbal lock in 90° of abduction (and 90° of adduction,
which is beyond the range of motion). Note that gimbal lock is not a problem for the elbow-forearm
and wrist joints because gimbal lock would occur when the carrying angle and radial-ulnar
deviation are at 90°, which is far beyond the range of motion in these DOF.

2.2.Sensor Placement

Attached to each body segment is an EM motion capture sensor (a receiver) with its own
sensor coordinate system (SCS), labeled (proximal to distal) as E, F, G, and H, respectively (Figure



1B and Table 1). Theoretically, each sensor can be attached to its respective limb segment at any
location and in any orientation. However, judicious placement can minimize the effects of soft-
tissue artifact, especially for longitudinal rotations such as humeral internal-external rotation and
forearm pronation-supination [17]. Because humeral rotation causes the skin of the distal portion
of the upper arm to rotate more than the skin of the proximal portion, it is recommended that the
upper arm sensor be attached to the distal portion of the upper arm. Similarly, because the
calculation of forearm pronation-supination relies on the sensor attached to the forearm, and the
distal portion of the forearm rotates much more than the proximal portion, it is recommended that
the forearm sensor be attached to the distal portion of the forearm, just proximal to the wrist joint
[17]. Attaching the hand sensor to the dorsal aspect of the hand in such a way that it straddles the
third and fourth metacarpals makes it particularly stable. The thorax sensor is attached to the
sternum [14]. EM systems typically include a stationary transmitter, whose coordinate frame of
the transmitter, U, is fixed in space and serves as the universal frame for describing the orientation
of all other frames.

2.3. Calibration

Because the sensors can be affixed to the limb segment in any orientation and are therefore
not generally aligned with the BCS of the corresponding body segment, a calibration is required
to determine the orientation of each BCS relative to the corresponding SCS.¢ This calibration can
take one of three forms [18]: 1) using an instrumented stylus to define a number of anatomical
landmarks [7, 9], 2) placing the limb in a calibration posture in which all joint angles are known
[19], or 3) performing functional movements to define functional axes [20]. The first method is
the landmark calibration method and is recommended by ISB [10], but the second method, the
postural calibration method, is simpler and common, especially for in-vivo experiments.
Therefore, we present both the landmark and postural calibration methods below (with equations
in Appendix 2).

2.3.1. Landmark Calibration

The landmark calibration method determines the relationship between a BCS and its
corresponding SCS through the use of landmarks and therefore requires that the experimenter
determine the position of a number of landmarks on the subject (Table 4, Figure 2A). The
landmarks on the thorax, upper arm, and forearm included here are identical to those recommended
by ISB [10], but the landmarks on the hand were altered for in-vivo use. To clarify, the third
metacarpal was used to represent the orientation of the hand, as suggested in 4.3.4 of the ISB
recommendations. However, instead of using the centers of the head and base of the third
metacarpal to determine its long axis (yp), which are not easily accessed in living subjects, we
used the projections of those centers onto the dorsum of the hand, i.e. the dorsal-most point of the
head and base of the third metacarpal. The base of the third metacarpal can be palpated on the
dorsum of the hand by moving proximally along the length of the third metacarpal. Also, instead
of using the plane of symmetry of the bone to determine the other two axes (because it is difficult
to identify in vivo), we used the dorsal projections of the heads of the second and fourth
metacarpals. These two landmarks and y, form a plane that defines xp, from which z, can be

¢ In this paper we approximated the relative orientation between BCS and SCS as constant over time, even though in
reality it varies slightly because of movement of soft tissue relative to the underlying skeletal structures (see
Limitations section of Discussion for more detail).



calculated. We suggest that these landmarks on the hand be located when the fingers are in a
relaxed position (neither fully extended nor fully flexed).

With the exception of the center of rotation of the glenohumeral joint (see below), the
positions of these landmarks can be recorded with the help of a stylus, which is available in some
EM systems or is, alternatively, easily constructed by attaching an EM sensor to the end of a long
slender object [7]. The location of the tip of the stylus relative to the SCS of the EM sensor can be
determined experimentally by calculating the pivot point of the instantaneous helical axes,
analogous to determining the center of rotation of the glenohumeral joint (see below).

The center of rotation of the glenohumeral joint is one of the landmarks required for
landmark calibration (Table 4), but it cannot be palpated. The ISB recommendations suggest
estimating it by calculating the pivot point of the instantaneous helical axes following [21, 22] (see
also [23]), who implemented the method described in [24]. This method requires a sensor on the
scapula and a sensor on the upper arm. The sensor on the scapula is only needed to find the center
of rotation of the glenohumeral joint and may be removed immediately afterward since the center
of rotation will be recorded relative to the sensor on the upper arm. Subjects are asked to make a
number of shoulder rotations from which the center of rotation of the glenohumeral joint can be
estimated as described in Appendix 2.1.1.

Once the landmarks are localized, one can calculate the relationship between each SCS and
its associated BCS following the process outlined in Appendix 2.1.

2.3.2. Postural Calibration

The postural calibration method is meant to be a simple and quick approximation of the
landmark calibration method; it does not require the use of a stylus or determination of the center
of rotation of the glenohumeral joint (GH). According to this method, the subject assumes a posture
in which his/her BCS frames have a known orientation with respect to the transmitter frame U.
The orientation of each SCS is recorded in this posture, from which the relationships between the
BCS and SCS can be determined. This approach only requires a single posture, which is often the
posture shown in Figure 2, referred to as neutral position. This posture is preferred over anatomical
posture because anatomical posture places the elbow and forearm at or near the end of the range
of motion, which varies between subjects.

Aligning the BCS frames to the transmitter frame is accomplished with the use of
landmarks that are marked on the skin (e.g. with a pen) and aligned in the parasagittal, frontal, and
transverse planes, as shown in Figure 2. A variety of landmarks have been used in the literature.
We present here landmarks (Table 5) that are as close as possible to those suggested in the ISB
recommendations [10] but do not require the use of a stylus or determination of GH. The acromion
approximates the position of GH in the anteroposterior and mediolateral directions (the position
of GH in the superior-inferior direction is not required). Note that the forearm and hand are aligned
when the lateral epicondyle, wrist joint center, and head of the third metacarpal are collinear. To
allow easy alignment of all BCS frames at once, this suggested alignment differs from the ISB
standard, which defines the long axis of the forearm as passing through the ulnar styloid (as
opposed to the wrist joint center). Finally, the head of the second metacarpal is visible in the
parasagittal plane and approximates the position of the head of the third metacarpal in that plane.

Aligning this many landmarks at once can be accomplished with the use of three laser
levels that project lines onto the subject’s upper limb (Figure 2). If the laser level lines are parallel
to the axes of the transmitter frame, then aligning the landmarks to the laser levels will place the
BCS frames in a known orientation relative to the transmitter frame. Once the subject is in the



correct position, one can calculate the relationship between each SCS and its associated BCS
following the process outlined in Appendix 2.2.

2.4. Inverse kinematics

The process of calculating joint angles from sensor angles requires four steps, represented
by the columns of blocks in Figure 3.

Step 1: The set of angles [a, e, 7] describing the orientation (azimuth, elevation, and roll)
of each SCS relative to the transmitter frame U is converted to a rotation matrix.

Step 2: These rotation matrices are multiplied with the rotation matrices describing the
orientation of each SCS relative to its associated BCS (determined during calibration) to determine
the orientation of each BCS relative to U.

Step 3: The rotation matrices (describing the orientation of each BCS relative to U) of
adjacent BCS are multiplied to calculate the orientation of one BCS relative to its adjacent BCS
(which gives the JCS rotation matrix).

Step 4: The joint angles are extracted from the JCS rotation matrices.

Though the second and third steps in this process involve only simple matrix
multiplications, defining the proper rotation matrices (in Step 1 and during calibration) and
extracting joint angles can be challenging. All of the equations needed to perform each of these
steps are provided in Appendix 3.

2.5.7-DOF model

The upper limb is often modeled as having 7 DOF (instead of 9 DOF) by assuming that the
carrying angle of the elbow (f,) and the amount of axial rotation at the wrist (y,,) are constant.
These assumptions simplify the extraction of joint angles from rotation matrices (Appendix 3.4).

2.6. Leftarm

For clinical motions of the left limb to have the same sign convention as those for the right
limb (e.g. wrist flexion is positive, wrist extension is negative), the BCS of the left limb must be
defined differently than the BCS of the right limb. In anatomical posture, the BCS frames of the
left limb and thorax must have y-axes that point distally and x-axes that point dorsally, with z-axes
completing the right-handed triad as shown in Figure 4 (compare to Figure 1). Using the postural
calibration method to calibrate the left arm requires additional care (see Appendix 2.2.2).

3. Discussion

In vivo measurement of joint angles during whole-arm movements requires many steps,
including body and joint coordinate system definitions, sensor placement, calibration, and inverse-
kinematics algorithms. Some of these steps are not well defined in the literature, particularly for
EM sensors. Important details are often omitted, spread across many different sources,
incompatible across sources (sometimes even across joints within the same source), or under-
constrained. A small number of such gaps is easily overcome by the individual researcher.
Unfortunately, the number, complexity, and inter-relatedness of these gaps become almost
intractable for in-vivo measurements of whole-arm movements using EM sensors, rendering it
difficult to choose the best course of action and compare results between studies. Therefore, the



purpose of this paper was to provide a comprehensive methodology for using EM motion capture
to track joint angles of the whole arm in vivo.

3.1. Comparison to ISB Recommendations

3.1.1. Conformance

The method presented in this paper is based as closely as possible on the ISB
recommendations and the studies that formed the basis for the ISB recommendations. BCS
definitions for all four limb segments (Table 1) were selected following ISB recommendations for
global limb motion. JCS definitions also followed ISB recommendations for global motion (Table
2). We used global definitions because they are more common in the disciplines of motor control,
clinical evaluation, rehabilitation, and occupational therapy.

The ISB recommendations do not include guidelines for calibration but states that “it is up
to the individual researcher to relate the marker or other (e.g. electromagnetic) coordinate systems
to the defined anatomic system” [10]. The landmark calibration method described in this paper
uses an anatomical system that follows the ISB landmarks used to define BCS as closely as
possible (minor adaptation for third metacarpal).

3.1.2. Differences

In select instances, the methods presented in this paper deviated from the ISB standards.
These specific deviations include the landmarks of the third metacarpal and the BCS definitions
of the left limb. The landmarks used to define the third metacarpal in the landmark method were
altered from those specified by the ISB, which are not accessible in-vivo. We chose landmarks
that, in addition to being accessible in vivo, would result in a similar calibration as the inaccessible
landmarks. The BCS frames for the left limb are defined such that right and left limb motion follow
the same sign convention. This follows the ISB recommendations for the left elbow-forearm and
wrist, but differs from the ISB recommendations for the left shoulder, which suggests mirroring
marker data with respect to the XY plane. Since this practice creates inconsistencies between the
joints of the same limb and is not directly applicable to EM sensors (which output sensor
orientation directly instead of just marker position), we provided explicit BCS definitions for EM
motion capture of the left shoulder that are compatible with the other methods presented here.

3.1.3. Additions

Some information provided in this paper is not addressed in the ISB recommendations but
is still necessary for in-vivo measurement of whole-arm movements. Examples include proper
sensor placement, explanations of gimbal lock for specific rotation sequences, adaptations for a 7-
DOF model, and the process and accompanying equations needed to estimate the center of rotation
for the glenohumeral joint. Likewise, the equations and algorithms needed to perform inverse
kinematics on EM data are presented in full.

In addition to the landmark calibration method, we also presented the postural calibration
method. It differs slightly from the ISB guidelines (in its definition of the long axis of the forearm)
but provides a quick and simple approximation of the landmark method and is commonly used in
the disciplines mentioned above.

We also provided the equations for a shoulder angle sequence (ZX'Y"") that does not suffer
from gimbal lock in anatomical position like the ISB-recommended YX'Y" sequence. Studies



focusing on large abduction angles should use the YX'Y"' sequence, which places gimbal lock in
neutral abduction-adduction, whereas studies focusing on small shoulder abduction angles are
better off using the ZX'Y' sequence, which places gimbal lock at 90° of abduction (see 2.1 for more
details).

3.2. Implementation

The methods presented here have been tested and successfully implemented in whole-arm studies
of tremor [25, 26]. We are currently working on a quantitative comparison of postural vs landmark
calibration methods to allow for more informed comparison between studies.

3.3. Limitations

The methodology given in this paper has two noteworthy limitations in the inverse
kinematics process: the inverse kinematics algorithms do not 1) take advantage of the position
information of the sensors or 2) compensate for the effects of soft-tissue artifact. It is possible to
use the partially redundant nature of the position and orientation data from the sensors to minimize
errors [20] or compensate for soft-tissue artifact. Soft-tissue artifact refers to the error in calculated
joint angle caused by movement of the skin (and the sensor placed on the skin) relative to the
underlying skeletal structures. This error is especially large in axial rotation of the humerus and in
forearm pronation-supination. During axial rotation of the humerus, for example, the tissues close
to the glenohumeral joint remain mostly static, whereas tissues close to the elbow joint rotate, with
varying amounts of movement in between. It is clear that sensors placed at different locations on
the upper arm will detect different amounts of rotation, resulting in errors on the order of 20-50%
of the axial rotation of the humerus [27-29]. Multiple methods have been developed to compensate
for soft-tissue artifact [27, 28, 30-34], but with the exception of [28], these methods were
developed for optoelectric motion capture systems and cannot be directly applied to
electromagnetic motion capture systems because the algorithms take advantage of the individual
markers used in optoelectronic systems. The first step in developing soft-tissue artifact
compensation methods for electromagnetic systems is to establish a self-consistent framework for
calibration and inverse kinematics, which is the focus of this paper. We are currently working on
extending the inverse kinematics presented here to include soft-tissue artifact compensation.

3.4. Additional Methodological Considerations

This paper focuses on the steps necessary for tracking joint angles: defining joint angles,
placing sensors, calibrating the sensor system, calculating rotation matrices from sensor data, and
extracting unique joint angles from rotation matrices. However, there are additional considerations
that must be taken into account when using EM sensors. Yaniv et al described a broad set of factors
influencing the utility of EM motion capture systems in clinical settings [1]. Here we discuss
briefly some of these and other factors.

One of the chief concerns is accuracy; it is important to verify the instrument’s accuracy within
one’s own testing environment. This can be accomplished in a variety of ways. Some studies have
placed sensors at known distances to the transmitter or to each other, often using assessment
phantoms such as grid boards [1-4, 6, 8, 35]. Other studies have characterized the accuracy of EM
systems by comparing EM measurements to a standard, such as a robot [36] or materials testing
device [8], optoelectronic motion capture system [5, 36, 37], inclinometer [15], pendulum
potentiometer [38], inertial-ultrasound hybrid motion capture system [39], or linkage digitizer [7].



Factors affecting accuracy include transmitter-receiver separation distance, distortion of the
electromagnetic field, and limitations in dynamic response:

Transmitter-receiver separation: In EM systems, the signal drops off with the third power of
transmitter-sensor separation, so errors are reduced by keeping the sensor(s) as close as possible
to the transmitter [2]. The effect of distance from the transmitter can be assessed by measuring the
distance and relative orientation between two sensors fixed relative to each other as the sensors are
moved throughout the testing environment. If it is known that the sensor will remain within a
certain distance from the transmitter, it is possible in some EM systems to increase the resolution
by decreasing the range of the analog-to-digital conversion.

Distortion of electromagnetic field: Since EM motion capture systems use an electromagnetic field
to measure the position and orientation of the sensors, distortions of this field cause measurement
errors. Many studies have investigated the magnitude of such errors due to ferromagnetic materials
or electrical equipment (power lines, monitors, accelerometers) close to the motion capture system
[1-4, 6-8, 35], or in specialized environments such as clinical suites [1, 3, 8, 40], specialized
laboratories [41], and VR environments [39]. These studies have made it clear that the most direct
approach for decreasing such errors is to increase the distance between ferromagnetic materials
and the transmitter and/or sensor, since metal effects decrease as the third power of transmitter-
metal separation and sensor-metal separation, and as the sixth power of separation of metal from
both transmitter and sensor [2]. Interference from electrical equipment can be reduced with
appropriate sampling synchronization and filtering [2]. Further reductions in errors may be
possible by applying correcting algorithms [5, 37] or choosing the sampling rate based on the type
of metal [6].

Limitations in dynamic response: For applications in which fast dynamic response is required (e.g.
visual feedback in virtual-reality environments), one may have to take additional factors into
account. Adelstein et al characterized the latency, gain, and noise of two EM systems at a variety
of frequencies spanning the bandwidth of volitional human movement [42].

There are, of course, additional considerations specific to each application. For example, in their
study on using EM systems to localize electrodes and natural landmarks on the head, Engels et al
found that skin and hair softness and head movements affected the localization precision [4].

3.5. Conclusion

The purpose of this paper was to provide a detailed methodology for in-vivo measurements
of whole-arm movements using EM sensors, following the ISB recommendations [10] as much as
possible. This methodology includes consistent definitions of joint angles for global motions of
the whole arm, recommendations for placing sensors, processes required for calibration, and
complete equations for performing inverse-kinematics. We present this methodology for both the
right and left upper limbs and for the landmark and postural calibration methods. Although
presented here for the entire upper limb (9 or 7 DOF), the methodology can be adapted to a subset
of upper-limb joints. It is hoped that this paper will simplify new investigations of whole-arm
movement using EM sensors and facilitate comparison between studies.
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Appendix

Appendix 1: Notation

In this paper we use the following, common notation described in more detail in [11]. The
unit vectors defining a coordinate system (CS) are labeled with the name of the CS as a trailing
subscript. For example, CS B is defined by unit vectors X, y5, and Zg. Vectors can be expressed
in (i.e. decomposed into the unit vectors of) any CS, and the preceding superscript indicates the
CS in which a vector is expressed. For example, %5, 495, and 4z are the unit vectors of CS B,
expressed in CS A. Rotation matrices, which describe the orientation of one CS relative to another,
have a leading superscript and subscript that indicate the original and final CS. For example, 4R
is the rotation matrix that describes B relative to A, i.e. 4R =[4%z 495 “425]. The product
AR = Ry(a) Ry (B) Ry (y) means that 4R is the rotation matrix describing a sequence of three
rotations: first about the Y-axis by a, then about the once-rotated X’-axis by [, then about the
twice-rotated Y”-axis by y. In general, rotation matrices vary with time, and 4R (t) denotes the
rotation matrix at some time ¢, whereas 4R(0) denotes the rotation matrix established during
calibration. The symbol X represents the cross-product operation, and |@| represents the magnitude

(L? norm) of vector d.

Appendix 2: Calibration

Step 2 of the inverse kinematics process (Figure 3) requires the rotation matrices describing
the orientation of each SCS relative to its associated BCS (4R, iR, %R, #R). We provide here the
equations necessary to obtain these rotation matrices using two methods: landmark calibration and
postural calibration.

Appendix 2.1: Landmark Calibration

The landmark calibration method requires the positions of the landmarks listed in Table 4,
which can be obtained using a stylus (see 2.3.1). Here we use the following notation: Ep.,
represents the vector location of the C7 landmark in the frame of Sensor E at the time C7 was
located with the stylus; ZR., represents the rotation matrix describing the SCS frame E with
respect to the universal frame at the time C7 was located with the stylus; and £y, is a vector
pointing along the y-axis of BCS A, expressed in SCS E (but unlike £§,, £y, does not generally
have unit length). Rotation matrices 4R, 4R, &R, and %R can be obtained as follows:

Matrix ER:
Eﬁm = 5R67 (Uﬁm - UﬁE)
EﬁTs = gRTB (Uﬁrs - UﬁE)
Eﬁ]] = lb;le (Uﬁlj - UﬁE)
EﬁPX f gRP{ (UﬁPX_\_ UﬁE)_\
. Epiy + Epey B Eppx + Eprs
Ya = > ) >
Ea _ YA
AT Byl




Ezy = EP, x ( Pc7 51])

Matrix R (must be calculated before PR because ER requlres Ve):
pEL = UREL (UpEL YDe)
pEM = UREM v pEM YDe)
PRS = URRS v PRS “be)
“pus = URUS ( pUS YDe)

PEL +6 pEM R
Gyc - 2 GPUS
G
Gj}\ _ yC
c=
|iYC| R
xc = “9c X (“Prs — “Pus)
Gx
G)/C\C — c
|ch|
. 620 = % % O,
¢R = [ch GYC GZC]
Matrix BR
Fpen (calculated as described in Appendix 2.1.1)
FFPEL = FII;REL (UIzEL - UPE)
Pem = yREM (gleM _FlipF)
F.. _ F= PeL t  DEM
Y = DPGH — —2
Fj/\ _ FyB
5 =
|Fysl
F}A’CF: SRUS gRusGYC
Zgp =Yg X Yc
F
Fj ZB
5 =
|FZB|
Fip = F9p x Fip
gR = [FfB F)A’B FZAB]
Matrix &R:

Ha _ H Uz Uz
Puczaa = uRmc2na "Puczna — “Pu)
~ _H Uz Uz
Pmcznd = URmczna CPmcsna — ~Pu)



Hz _H Uz Uz
Pucana = URmcana "Pucana — “Pu)

Hz _H Uz Uz
Pmc3a = vRmczpa (CPmcapa — “Pu)

H, _ Hz Hp
Yp = "Pmc3Bd — PMc3HA
HYD
Ha
T
H., _ Hg Hp Hp
xp = "Pp X ( pMCI_%Hd — "Pumcana)
X
Hoa D
Xp = Hy
D
HZAD = H)/C\D X HAD
Hp _ [Hg Hga Ha
pR =["%p Yp Zp]

Appendix 2.1.1: Estimating the center of rotation of the glenohumeral joint (adapted from [21])

To estimate the location of the GH used in the landmark calibration method, subjects are
asked to make a number of shoulder rotations involving flexion-extension, abduction-adduction,
and internal-external humeral rotation. Given the position and orientation of the upper arm sensor
relative to the transmitter (Ypg ; (¢) and ZR(¢), respectively), and the position and orientation of
the scapular sensor relative to the transmitter (Ups ;(¢) and %R(t)), we can express the position
and orientation of the scapular sensor relative to the upper arm sensor:

"ps(0) = GRO["Ps(0) — Upp(D)]
SR(t) = fR(OSR()

The rotation of the scapula relative to the humerus is described by the instantaneous helical axis,

e . - T )
whose direction is given by the angular velocity vector w(t) = [a)x, Wy, a)z] (superscript T
denotes the transpose). The elements of @ (t) (expressed in terms of frame F) can be determined
from the rotation matrix and its derivative [24]:

0 —w,(t)  wy(t) F
w,(t) 0 —afx(t) = @[ER(G]T
—wy (1) wy(t) 0

The position of the instantaneous helical axis (IHA) at any time ¢ is expressed in terms of frame F
as

Fa(t) x Fps(t)
FOIE

Foma(t) = Fps(t) +

The center of rotation over time is the mean ‘pivot’ closest to all IHA. For a set of n IHA with
positions (¥p;y4); and angular velocity vectors “@;, the optimal position (in the least-squared
sense) of the center of rotation of the glenohumeral joint is

n
R .1 R
FpGH =Q 152 Qi (FpIHA)i
i=1
with

-1 - Fp Fz T
Q=-2iQandQ; =1—-"n;"ny



Fai
T
this method is sensitive to low angular velocities, Stokdijk et al excluded from the calculation
samples with angular velocity below 0.25 rad/s [21].

where I is the 3-by-3 identity matrix and 7; is the unit vector along @;, i.e. F7; Because

Appendix 2.2: Postural Calibration

In the postural calibration method, the subject assumes a posture in which his/her BCS
frames have a known orientation with respect to the transmitter frame U (see 2.3.2). Since the BCS
frames are different for the right and left arms (see 2.1 and 2.6), we present the process separately
for the right and left arms.

Appendix 2.2.1: Right arm

With the right upper limb and transmitter positioned as shown in Figure 2B, the rotation
matrices describing the orientation of the BCS relative to the universal frame are

-1 0 0 01 0
XR(0)=UR(0)=[o 0 —1]and’gR(0)=UR(0)=[1 0 0]
0 -1 0 0 0 -1

where we made explicit that rotation matrices are functions of time t, i.e. YR(t), with t =0
representing the moment of calibration (when landmarks were aligned). From the orientation of
the SCS at the moment all landmarks are aligned (YR(0), YR(0), YR(0), and FR(0)), the
relationship between the BCS and SCS can be calculated as

&R = §R(0) ER(0), ER = §R(0) FR(0), &R = GR(0) GR(0), and 4R = GR(0) zR(0)

The relationship between an SCS and its corresponding BCS was approximated as constant over
time, i.e. 4R = 4R(t) = 4R(0). For more detail, see the Limitations section of the Discussion.

Appendix 2.2.2: Left arm

With the left upper limb and transmitter positioned as shown in Figure 4B, the orientations
of the BCS frames relative to the transmitter frame are

10 0 0 -1 0
ZR(O)zgR(0)=[0 0 —1] and LC’R(O)zgR(O)=[1 0 0]
01 0 0 0 1

From the orientation of the SCS at the moment all landmarks are aligned (YR (0), YR (0), YR(0),
and JR(0)), the relationship between the BCS and SCS can be calculated with the same equations
used for the right upper limb:

&R = GR(0) §R(0), FR = {R(0) FR(0), GR = GR(0) ¢R(0), and {R = {R(0) {R(0)

Appendix 3: Inverse Kinematics
As described in section 2.4, the process of calculating joint angles from sensor angles
requires four steps (Figure 3).



Appendix 3.1: Step 1: Calculating rotation matrices from sensor angles

Most electromagnetic motion tracking systems provide the orientation of each sensor as a
set of Euler angles or as a rotation matrix (between transmitter and sensor). If the output is given
as a rotation matrix, Step 1 can be skipped, but before moving on to Step 2 one should ensure that
the rotation matrix describes the SCS relative to the universal frame and not the universal frame
relative to the SCS (e.g. YR instead of ER). If the output is given as the rotation of the universal
frame relative to the SCS, one can obtain its inverse by simply transposing the matrix (e.g. YR =
E R—l — E RT)

U - .

If the sensor orientation is given in terms of angles (e.g. azimuth, elevation, and roll), the
rotation matrices must be calculated before moving on to Step 2. Calculating the rotation matrices
requires a knowledge of the Euler angle axes and sequence used by the system. For example, for
trakSTAR, the Euler angles are defined as follows: rotation about z by a, followed by rotation
about y’ by e, followed by rotation about x'' by r, where a, e, and r are the angles of azimuth
(yaw), elevation (pitch), and roll, respectively, and z, y’, x'" are axes of the rotating sensor frame.
From this, the rotation matrix can be calculated. For example, YR can be calculated from the
[a, e, ] angles associated with sensor E as

YR=R,(a) R, (e) R, (r)
E z y X

ca —sa O0][ce 0 sel[l O 0
YR=|sa ca O[O0 1 Ofl0 ¢cr -sr
0 0 1ll—se 0 cell0 sr cr

cace casesr —sacr casecr + sasr
YR = |sace sasesr +cacr sasecr — casr
—se cesr cecr

where ¢ = cos and s = sin. The same equations can be used to calculate YR, YR, and JR. Using
angles a, e, and 7 at time t, this equation can be used to calculate YR (t), ¥R(t), YR(¢), and YR (1).
Alternatively, using angles a, e, and r obtained during calibration, this equation can be used to
calculate YR(0), YR(0), YR(0), and JR(0).

Appendix 3.2: Step 2: Obtaining BCS orientation in universal frame

The rotation matrices found in Step 1, which describe the orientations of the SCS relative
to U, are multiplied with the rotation matrices describing the orientation of each SCS relative to
its associated BCS (determined during calibration). The resulting product is the orientation of each
BCS relative to U:

YUR(t) = YR(®) 5R(0), YR(t) = YR(t) ER(0), YR(t) = YR(t) GR(0),

and pR(t) = FR(t) GR(0)

Appendix 3.3: Step 3: Obtaining JCS rotation matrices

The rotation matrices describing the orientation of each BCS relative to U found in Step 2
are then used to calculate the JCS rotation matrices. More specifically, adjacent BCS are



multiplied to obtain the JCS rotation matrices describing the orientation of one BCS relative to its
adjacent BCS:
8R(t) = (R(t) BR(1), ER(t) = GR(t) ¢R(t), and §R(t) = GR(t) pR(L)

Appendix 3.4: Step 4: Extracting joint angles from rotation matrices

The final step in the inverse kinematics process is to extract joint angles from the rotation
matrix associated with each JCS (4R, 2R, and jR). The relationship between the joint angles and
rotation matrix associated with a JCS is prescribed by the rotation sequence of that JCS.
Consequently, different algorithms must be used for different JCS. The 9-DOF case is presented
first, with simplifications for the 7-DOF case presented afterwards.

Appendix 3.4.1: 9-DOF model
Shoulder

YX'Y" sequence

According to the ISB recommendations [10], the rotation sequence associated with the JCS
of the thoracohumeral joint is YX'Y"', so its rotation matrix is:

éR = Ry(as) Ry (Bs) Ry (¥s)

cag, 0 sag1l O 0 cys 0 sys

AR=| 0 1 O”O cBs —sﬁs” 0 1 O]

—sa; 0 cagll0 sBy  cfs Il=sys 0 cys
_SaSCﬁSSYS + CaSC)/S SaSSﬁS SaSCﬁSCVS + CaSSYS
éR = Sﬁssys Cﬁs _Sﬁscys ]
—CC!SC,BSS)/S — SAsCYs Cassﬁs CasC.BSCYS — SAsSYs

where ¢ = cos and s = sin. The elements of 4R must equal the numeric values of the elements of
4R calculated through steps 1-3 of the inverse kinematics process, resulting in 9 equations and 3
unknowns. Unfortunately, these nine equations do not contain enough information to determine a
unique solution; there are two sets of joint angles ([as, B, V511 and [, Bs, ¥s]2) that satisfy these
nine equations. Which set 1s correct? They are both correct in the sense that both sets produce the
same joint configuration (i.e. the same orientation of the distal limb segment relative to the
proximal limb segment); therefore, mathematically it does not matter which set is chosen as long
as one consistently chooses the same set to avoid discontinuities in joint angles from one sample
to the next. That said, for ease of interpretation it may be useful to choose the set that is within the
range of motion of the joint, as follows. The cosine of 3, is given in 4R(2,2), and the sine of S

can be calculated from 4R(2,1) and 4R(2,3) as ++/[4R(2,1)]? + [4R(2,3)]2. Therefore, S, can
be computed as

Bs = atan2 {iJ[ﬁR(Z,l)]Z + [3R(23)]% éR(Z,Z)}

where atan? is the four-quadrant inverse tangent function. Choosing the negative square root as
the first argument of atan2 (as opposed to the positive square root) forces S5 to be in the range



—180° < B < 0°, which is appropriate for shoulder abduction-adduction (abduction is negative
according to the ISB convention). Having chosen this range for [, one can find unique solutions
for the other two angles:

5R(1,2) 5R(3,2)
%s = atanZ{ sinfy ~ sinf }

5R(2,1) —§R(2,3)
Ys = atanZ{ sinfs ' sinfs }

These equations work well unless f; = 0 or f; = 180°, resulting in division by zero. In
these configurations, the joint is in gimbal lock, and it is not possible to differentiate between
and y; because their axes (Y and Y'') are parallel (or antiparallel). To clarify, after a rotation about
Y by as, then a “rotation” about X’ by s = 0, and finally a rotation about Y'' = Y by yx, it is not
possible to determine how much of the total rotation came from the first rotation vs. the last
rotation. However, it also does not matter since the final joint orientation will be the same no matter
how much of the rotation is assigned to a; vs. y;. Therefore, one may choose the proportions to
assign to each angle. It is common to set a; = 0, assigning all of the rotation to ;. In this case
(ag = Bs = 0), the rotation matrix degenerates to

cys 0 sy
4R=]1 0 1 0
—=sYs 0 cys

and y, can be uniquely determined as
¥s = atan2{gR(1,3), 3R(1,1)}

Although the calculation of a and y; results in division by zero only when [ exactly equals 0 or
180°, effects of gimbal lock are felt in the vicinity of S5 = 0 and 5 = 180°. More specifically,
close to gimbal lock, small changes in limb orientation may cause very large changes in joint
angles. While the resulting joint angles may not be easily interpreted, they are nonetheless correct
in the sense that they represent the correct joint configuration.

ZX'Y" sequence

If one uses the ZX'Y" sequence to describe the shoulder (see section 2.1), the rotation
matrix is:

gR = RZ(as) RX’(.BS) RY”(YS)

ca;, —sag; 011 O 0 cys 0 sys
éR =|sag ca; O 0 cfs —sPs 0 1 0
0 0 1110 S,Bs C.Bs —SYVs 0 CYs
—SasSPsSys + cascys —sagcfs  SagSPsCys + cagsys
gR = CasS.BsSys + sascys Cascﬁs _CasS.BsCys + SO[SS)/s]
—CPBsSYs SPBs cBscys

where ¢ = cos and s = sin. Analogous to the derivation above, s can be calculated as

Bs = atan2 {‘B‘R(&Z), iJ[éR(3,1)]2 + [SR(3.3)]2}




Choosing the positive square root for the second argument of atan2 forces S to lie in the range
—90° < s < 90° and results in a unique set of joint angles:

{—sR(LZ) éR(z,z)}
a; = atan2

cosfs ' cosPs
—5RG,1) gR(3,3)}

cosfs ' cosPs

Vs = atanz{

Positive values of [ represent adduction beyond neutral position and are generally outside the
range of motion of the shoulder. However, s will be positive when the joint is in extreme
positions, e.g. when the shoulder is abducted beyond 90°. Although it may be difficult to interpret
such extreme joint angles as clinical motions, they nonetheless are mathematically correct in the
sense that they produce the correct joint configuration.

For this rotation sequence (ZX'Y""), gimbal lock occurs when Bg = —90° (arm abducted
into the horizontal plane) or B = 90° (not physically possible). As for the YX'Y"', in gimbal lock
the first and third axes are parallel, and it is not possible to determine how much of the rotation
should be assigned to the first vs. third axis; it is common to set g = 0, assigning all of the rotation
to ¥s. In this case (a; = 0° and B; = 90°), the rotation matrix degenerates to

.\ [CVS 0 sy ]
gR=[sys 0 —cys
0 1 0

and y, can be uniquely determined as
¥s = atan2{4R(1,3),4R(1,1)}

Elbow-forearm

In accordance with the ISB guidelines, we used the ZX'Y" rotation sequence for the elbow-
forearm joint. The derivation of the rotation matrix is identical to that of the shoulder when using
the ZX'Y"" sequence:

CR RZ(ae) RX’(ﬁe) RY”(Ve)

ca, —sa, Ye 0 sve
R = sae cae ] [ Cﬁe —s e][ 0 1 0 ]
Sﬁe C e —SYe 0 CYe
_Saesﬁesye + Caecye Saecﬁe Saesﬁec)/e + Caesye
BR = | capsBesye + saqcye Cap,Cfe —CASPeCYe + saesye]
_Cﬁesye Sﬁe C.Becye

where ¢ = cos and s = sin. Extraction of the joint angles is analogous to the shoulder joint; the
elements of 2R must equal the numeric values of the elements of 2R calculated through steps 1-3
of the inverse kinematics process, resulting in 9 equations and 3 unknowns, which are satistied by
two sets of joint angles: [, Be, Vel1, and [, Be, Yel2- The two B, angles are:



B. = atan2 {?}R(B,Z), + J [ER(3,1)]? + [?}R(B,B)]Z}

In this case, the physical limitations of the ROM of S, (i.e. carrying angle) make the choice
between 5,1 and [, obvious. The carrying angle will always be well within the range: —90° <
Pe < 90°, therefore the positive square root will always yield clinically interpretable joint angles.
Having selected f,1, a.q and y,; can be found as

_ earn [TERALD) ER(22)
e = atan cosfB, ' cosf,
—¢R(31) ¢R(33)

Y. = atan2 ,
cosf, cosf,

For the elbow-forearm joint, gimbal lock occurs when f, = —90° or 5, = 90° (i.e. carrying angle
=4 90°). Neither of these orientations are physically possible, so gimbal lock is not a problem for
the elbow.

Wrist

In accordance with the ISB guidelines, we defined the wrist joint using the ZX'Y"' rotation
sequence. The derivation of the rotation matrix is identical to that of the elbow:

SR = Ry(ay,) Ry r(ﬁw)R " (Yw)

ca,, —sa, Vw0 syw
CR = saw caw ][0 cBy -—S W][ 0 1 0 ]
Sﬁw C w —SYw 0 CYw
gR =| cay,SPwSYw + SauCYw cay,cfy —caySBuwCYw + sawsyW]
_C,BWSVW Sﬁw C.BWCVW

where ¢ = cos and s = sin. Extraction of the joint angles is analogous to the elbow-forearm joint.
The elements of SR must equal the numeric values of the elements of SR calculated through steps
1-3 of the inverse kinematics process, resulting in 9 equations and 3 unknowns. Again, these
equations yield two sets of joint angles: [a,,, B, Ywl1, and [y, Buw) Vv ]2-

Calculating S,,1 and f3,,, involves the same equation as the elbow-forearm joint:

B, = atan2 {5R(3,2), + J [SRG3,DI? + [SR(3.3)]2}

In this case, the physical limitations of £, (i.e. radial/ulnar deviation) also make the choice
between f,,; and S, obvious. The wrist will never deviate radially or ulnarly beyond the range
—90° < B, < 90°, therefore the positive square root will always yield clinically interpretable joint
angle values. Having selected f3,,1, @, and y,,; can be found as

—5R(L,2) 5R(2,2)

a,, = atan2 ,
cosf, ~ cospB,
— atanz |ZPRGD 5REG3)
hy = atan cospB, ' cosp,



For the wrist joint, gimbal lock occurs when f,, = —90° or S, = 90° (i.e. radial deviation of
90° or ulnar deviation of 90°, respectively). Neither of these orientations are physically possible,
so gimbal lock is not a problem for the wrist.

Appendix 3.4.2: 7-DOF model

The 7-DOF model of the arm is a simplification that assumes the elbow carrying angle (£,)
and wrist axial rotation (¥, ) to be constant (see Table 2). The wrist experiences only small amounts
of axial rotation, so one may wish to approximate y,, as zero. The carrying angle has been
measured to be on the order of 5-15° for men and 10-25° for women [17]. Depending on the
application, one may wish to approximate the carrying angle as zero or as a constant value in the
measured range. Alternatively, the carrying angle could be measured for individual subjects as the
angle between the ulna and the extension of the humerus when the arm is in anatomical position
(Figure 1) [17]:

Be = acos(Jg - Jc)

where [-] denotes the dot product. Unit vectors Pz and y, must be expressed in the same frame.
Choosing frame B,

Be = acos[Bj/‘B : (gR CJA’C)]

where 295 = €9, =[0,1,0]7 and 2R describes the orientation of C relative to B when the arm is
in anatomical position.

Having chosen a value for f3,, one can calculate a, and y, directly using the equations in
Appendix 3.4.1:

_ aramy | ZER0L2) ER(22)
e = atan cosB, ' cosp,
—¢RB,1) ¢R(3,3)

Y. = atan2 ,
cosf, cosf,

Since a, and y, depend on fS,, all three joint angles will differ from those calculated with the 9-
DOF model. In contrast, choosing a value for y, does not affect 5, and a,, (see Appendix 3.4.1):

B, = atan2 {gR(B,Z), J [SR(3,1)]2 + [gR(3,3)]2}

—5R(L,2) 5R(2,2)
cosB,,  cosp,

a,, = atanZ{

Note that the simplicity associated with the 7-DOF model comes at a cost: the resulting
joint angles no longer satisfy the rotation matrices perfectly.
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Figures and Tables

Table 1: Body coordinate systems (BCS) and sensor coordinate systems (SCS) suggested for in-
vivo measurements of whole-arm movements, chosen from among the multiple definitions
advocated by the ISB recommendations [10].

o Reference to ISB
Label Description Recommendation [10]
A BCS of thorax 2.3.1
B BCS of upper arm (humerus) 23.5=33.1
C BCS of forearm (distal forearm) |2.3.6 =3.3.2
D BCS of hand (third metacarpal) |4.3.4
E SCS of sensor on thorax N/A
F SCS of sensor on upper arm N/A
G SCS of sensor on forearm N/A
H SCS of sensor on hand N/A
U Stationary frame of transmitter | N/A




Table 2: Joint coordinate systems (JCS) suggested for in-vivo measurements of whole-arm
movements, chosen from among the multiple definitions advocated by the ISB recommendations
[10]. Each JCS is defined by axes of rotation, listed in order from first to third rotation axis. The
rotation axes are given in terms of axes of the BCS of the distal segment and, in parentheses, in
terms of axes embedded in the proximal and distal segments.” Given are also the names of the
angles of rotation used in this paper, along with their descriptions and explanations of which
direction is positive and where the angle begins. Finally, the last column lists the equivalent axes

and angles defined in the ISB recommendations (with references).

. . L Positive PPN .
Joint Axis | Angle Description direction Origin (0°) ISB Equivalent
. . .. . .. el of humerus rel. to
. s = Y (Y,) a, Plane of elevation (positive Y) | (anatomical position) thorax, y;, (2.4.7)
= 2 <
=32k , . .. , . .. e2 of humerus rel. to
E QE, £ X'(Int.)| PBs Elevation (positive X") | (anatomical position) thorax. B, (2.4.7)
“ 8= Y (Yg) Axial rotation Internal (anatomical position) e3 of humerus rel. to
= B Vs rotation P thorax, (y), (2.4.7)
—= ~| Z (Zg) a, Elbow ﬂt?XlOIl- Flexion Fully extended el. qf clbow/forcarm
L g 2 g extension joint, ayr (3.4.1)
g = g g Y, in e2 of elbow/forearm
S x® ! : e ! c
5 g § g X'(Int.)| B. Carrying angle (positive X") X, — Y, plane ioint, Bye (3.4.1)
ha @ 2| yr ) Forearm pronation- Pronation Fully supinated e3 of elbow/forearm
¢ Ye supination Yy sup joint, yyr (3.4.1)
_ Wrist flexion- . 3™ metacarpal el of wrist joint,
E g Z(Zo) Tw extension Flexion parallel to line from 4.4.1)
- < . . . . .
22 & G|y Wrist radial-ulnar Ulnar US to EL-EM e2 of wrist joint, 5
§ < § :é X'(nt.) | Pu deviation deviation midpoint (4.4.1)
o 2| . . . . .. ' Xp in e3 of wrist joint, y
g Y"(Yp) | 1w | Wristaxial rotation | (positive Y'") X, — Y, plane (4.4.1)

7 For example, in terms of the BCS of the distal segment, the configuration of the shoulder joint is defined by first
rotating the humerus about the Y axis of the BCS of the humerus, then about the X axis of the once-rotated BCS of
the humerus (X'), and finally about the Y axis of the twice-rotated BCS of the humerus (Y"'). The configuration of the
shoulder can equivalently be defined in terms of axes embedded in the proximal and distal frame: the first rotation is
about the Y, axis of the proximal BCS (thorax, A), the third rotation is about the Yy axis of the distal BCS (humerus,
B) in its final orientation, and the second rotation is about an intermediate axis (Int.) that is perpendicular to both the
first and third axes (Y, and Y3).



Table 3: Alternative joint coordinate system (JCS) for the shoulder (ZX'Y""). This JCS exhibits
gimbal lock in 90° of shoulder abduction instead of anatomical position (0° of abduction).

Joint Axis Angle Description Positive direction Origin (0°)
= Z (Zy) a, Shoulder flexion-extension Flexion (anatgmlcal
=22 position)
=2 < . .
=25 , Shoulder abduction- . (anatomical
E g = X'(Int.) Bs adduction Adduction position)
@®z 8 Y (¥,) Shoulder internal-external Internal rotation (anatomical
~ B Vs humeral rotation position)

Table 4: Anatomical landmarks used in the landmark calibration method. The descriptions of
landmarks C7 through US are taken directly from the ISB recommendations [10], but landmarks
for the hand (MC2Hd through MC3Bd) were altered for in-vivo use.

Abbreviation Description
C7 Processus Spinosus (spinous process) of the 7 cervical vertebra
T8 Processus Spinosus (spinous process) of the 8" thoracic vertebra
1J Deepest point of Incisura Jugularis (suprasternal notch)
PX Processus Xiphoideus (xiphoid process), most caudal point on the sternum
GH Glenohumeral rotation center, estimated by motion recordings
EL Most caudal point on lateral epicondyle
EM Most caudal point on medial epicondyle
RS Most caudal-lateral point on the radial styloid
US Most caudal-medial point on the ulnar styloid*
MC2Hd Dorsal projection of midpoint of head of second metacarpal}
MC3Hd Dorsal projection of midpoint of head of third metacarpal
MC4Hd Dorsal projection of midpoint of head of fourth metacarpal
MC3Bd Dorsal projection of midpoint of base of third metacarpal}

*According to 2.3.5 of the ISB recommendations, this landmark must be located when the elbow
is flexed 90° and the forearm is fully pronated
1The fingers should be in a relaxed position

Table 5: Anatomical landmarks used in the postural calibration method.

Abbreviation Description

AC Acromion

EL Most caudal point on lateral epicondyle

EJCv Ventral projection of elbow joint center (EJC) into antecubital fossa, where
EJC is assumed midway between EL and EM

WICd Dorsal projection of wrist joint center (WJC), where WIC is assumed
midway between RS and US

WICI Lateral projection of wrist joint center (WJCL = RS)

MC3Hd Dorsal projection of midpoint of head of third metacarpal

MC2HI Lateral projection of midpoint of head of second metacarpal




Figure 1: Body-segment coordinate systems (BCS) and sensor coordinate systems (SCS) of the
right arm are shown in A and B, respectively. A: The BCS of the thorax, upper arm, forearm, and
hand align in anatomical position. B: In general, the SCS are not aligned to each other or to their
respective BCS.



WJCd MC3Hd

Figure 2: Landmarks needed for Landmark calibration method (A) and Postural calibration
method (B). A: In the landmark method, the landmarks given by solid circles are localized with
the help of the stylus. The center of the glenohumeral joint (GH, open circle) cannot be palpated
and is estimated from shoulder movements. Note that some landmarks, such as the ulnar styloid,
should be located in a different posture (see above). B: In the postural method, the illustrated
landmarks are aligned parallel to the axes of the universal frame of the transmitter (U). Laser
levels used to aid in this process are depicted as dashed lines. Abbreviations in A and B are defined
in Table 4 and Table 5, respectively.
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Figure 3: Schematic of the inverse kinematics process for whole-arm movements. Inputs include
angles [a, e, r] (representing azimuth, elevation, and roll) of each sensor (E-H) and the rotation
matrices between each sensor and its BCS (A-D) established during calibration. The output
consists of the three joint angles ([, 8,y]) for each of the shoulder (s), elbow-forearm (e), and
wrist (w) joints. The inverse kinematics process includes the four steps described above, each
represented by a column of boxes: 1) aer — Rgcs converts sensor angles into rotation matrices
describing the orientation of each SCS with respect to the universal frame, 2) Rgcs = Rpes
multiplies each SCS rotation matrix by its calibration matrix, yielding the rotation matrices
describing the orientation of each BCS related to the universal frame, 3) Rgcs = R;cs multiplies
the rotation matrices of adjacent BCS to obtain JCS rotation matrices, and 4) R;cs = afy extracts
joint angles from each JCS rotation matrix. The leading superscript and subscript of rotation
matrices indicate the original and final CS; for example, 4R is the rotation matrix that describes B
relative to A (see Appendix 1 for more detail).



Figure 4: Body-coordinate systems are defined differently for the left arm, shown here in
anatomical position (A) and neutral position (B).



