
ar
X

iv
:1

90
8.

05
18

1v
1

 [a
st

ro
-p

h.
IM

]
14

 A
ug

 2
01

9

SkyLLH - A generalized Python-based tool for

log-likelihood analyses in multi-messenger

astronomy

The IceCube Collaboration∗

http://icecube.wisc.edu/collaboration/authors/icrc19_icecube

E-mail: martin.wolf@icecube.wisc.edu

Common analysis techniques in multi-messenger astronomy involve hypothesis tests with

unbinned log-likelihood (LLH) functions using data recorded in celestial coordinates to identify

sources of high-energy cosmic particles in the Universe. We present the new Python-based tool

”SkyLLH“ to develop such analyses in a telescope-independent framework. The main goal of the

software is to provide an easy-to-use and modularized concept to implement and to execute such

LLH functions efficiently on the computer with high-performance. SkyLLH can be applied on

different multi-messenger data like neutrino and gamma-ray events from experiments such as the

IceCube Neutrino Observatory and the Fermi-LAT. In this contribution we highlight SkyLLH’s

various design goals, current development status, and prospects for its wider application in

multi-messenger astronomy.

Corresponding authors: Martin Wolf†1

1 Physik-department, Technische Universität München, D-85748 Garching, Germany

36th International Cosmic Ray Conference -ICRC2019-

July 24th - August 1st, 2019

Madison, WI, U.S.A.

∗For collaboration list, see PoS(ICRC2019) 1177.
†Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons

Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

http://arxiv.org/abs/1908.05181v1
http://icecube.wisc.edu/collaboration/authors/icrc19_icecube
mailto:martin.wolf@icecube.wisc.edu

SkyLLH - A generalized Python-based tool for log-likelihood analyses Martin Wolf

1. Introduction

In multi-messenger astronomy (MMA) the maximum log-likelihood (LLH) hypothesis ratio

test (LRT) is a common analysis technique. Let Θ denote the entire allowed parameter space of the

model with model parameters ~θ , the LRT is constituted of the LLH ratio test statistic, logΛ(~D), for

a null- and alternative hypothesis, H0 : ~θ ∈ Θ0, and H1 : ~θ ∈ Θc
0, respectively:

logΛ(~D) = sup
~θ∈Θ0

{

logL (~θ |~D)
}

− sup
~θ∈Θ

{

logL (~θ |~D)
}

, (1.1)

where logL (~θ |~D) is the logarithm of the likelihood function with parameter set ~θ for the given

(observed) data ~D. In the limit of large statistics the probability density function (PDF) of the test-

statistic λ (~D) = −2logΛ(~D), i.e. f (λ), follows a χ2
k -distribution with the number of degrees of

freedom, k, equal to the number of free parameters in the test, if the parameter values are sufficiently

far away from their bounds [1].

In MMA a usual task is to analyze data composed of independent events, so-called event

data, with contributions from a signal and a background component. Hence, a two-component, i.e.

signal and background, likelihood model is usually chosen. In such a model a likelihood function

L (~θ |~D) can be constructed, that evaluates the observable PDFs for each component, i.e. signal

and background, of each of the N data events, Di:

L (~θ |~D)≡ L (ns,~θs|~D) =
N

∏
i=1

[ns

N
S (Di|~θs)+ (1−

ns

N
)B(Di)

]

. (1.2)

Here, the parameter set ~θ consists of the mean number of signal events in the data, ns, and the

parameters ~θs describing the signal source. S and B are the signal and background probability

density functions for the N data events Di, respectively.

In the special case, when assuming a negligible signal contribution, e.g. in a background-

dominated experiment, the null-hypothesis can be defined as the data without any signal events,

i.e. H0 : ns,0 = 0. Thus, the negative of the log-likelihood ratio test statistic for the two-component

likelihood function (1.2) can be written as

− logΛ(~D) = sup
ns,~θs

{

log
L (ns,~θs|~D)

L (ns = ns,0 = 0|~D)

}

= sup
ns,~θs

{

N

∑
i=1

log

[

ns

N

(

S (Di|~θs)

B(Di)
−1

)

+1

]}

.

(1.3)

It should be noted that the PDF f (λ) of the test statistic function λ (~D) does not follow a χ2-

distribution function under this null-hypothesis, because the parameter value for ns lies on the

boundary of the allowed parameter value space [0,N]. Instead, f (λ) follows the super-position of

a δ -function and a χ2
k -distribution function [2]:

f (λ) =
1

2
δ (λ)+

1

2
χ2

k (λ) (1.4)

The SkyLLH software provides a framework for defining maximum LLH hypothesis ratio

tests, to construct, and to evaluate LLH ratios as given in equation (1.1). It allows the user to define

a statistical LRT analysis for a given set of data. Furthermore, the user can easily generate pseudo

data trials to determine statistical properties of the analysis, e.g. sensitivity and discovery potential,

in a frequentist approach.

2

SkyLLH - A generalized Python-based tool for log-likelihood analyses Martin Wolf

2. The SkyLLH Framework

The SkyLLH framework is implemented entirely in the programming language Python1 and

is an open-source package licensed under the GPLv3 license2. It is available on the open source

github repository3 of the IceCube collaboration. The software package dependencies for SkyLLH

are kept to an absolute minimum: numpy, scipy, and astropy. These packages are usually already

available in most Python installations. In cases where they are not, they are at least easily available

for installation on most platforms.

SkyLLH utilizes object-oriented-programming (OOP) techniques. The class structure is tied

to the mathematical objects of the LLH ratio formalism. A fundamentally used mathematical object

is the PDF. Thus, the Python abstract base class core.PDF exists and defines the interface of a

PDF object. The most important method of this class is PDF.get_prob, which is supposed to

return the probability for each data event Di.

The code of the SkyLLH framework is structured into four distinct main Python modules: core,

physics, plotting, and detector specific implementations and specializations. The core module

contains all Python classes defining the base framework of SkyLLH. This includes the classes for

all mathematical objects like PDFs, LLH ratio functions, and test statistic functions. The physics

module provides classes defining the physics models of interest. Since the actual sources of high-

energy cosmic rays, including photon and neutrino emission, remain unknown to-date, commonly

used physics models are generic flux models for the messenger particle of interest that creates

a signal in the particular detector. The plotting module contains auxiliary functionality for

plotting particular objects of the framework, e.g. PDF objects. This is meant mainly for integrity

checks of the analysis. Finally, the fourth part of modules provide detector specific implementations

and specializations based on the classes defined in the core module. Currently this includes the

i3 module for the IceCube Neutrino Observatory [3], which is a cubic-kilometer neutrino detector

installed in the ice at the geographic South Pole between depths of 1450 m and 2450 m, and was

completed in 2010.

3. Source Hypothesis Definition

The first step of a LRT in MMA is the definition of the source hypothesis. Because the actual

sources of high-energy cosmic rays in the Universe are still unknown, a common approach is to

define a generic differential particle flux at Earth, ΦS, from a source. Such a generic differential

flux can be parameterized as

d4ΦS(α ,δ ,E, t|~θs)

dEdΩdAdt
, (3.1)

which is a function of the celestial coordinates right-ascention, α , and declination, δ , as well as

the energy and time of the source (signal) particle, given the source parameters ~θs. Ω and A denote

the sky’s solid-angle covered by the source, and the surface area of Earth covered by the flux,

1Both, Python2 and Python3 environments are supported. However, Python3 based developments of analyses, that

utilize SkyLLH, is preferred.
2https://www.gnu.org/licenses/gpl-3.0.txt
3https://github.com/IceCubeOpenSource/SkyLLH/

3

SkyLLH - A generalized Python-based tool for log-likelihood analyses Martin Wolf

respectively. ΦS can describe a point-like source, like a Blazar, or an extended source, like the

galactic plane of the Milky Way.

The IceCube Neutrino Observatory searches for point-like sources using a factorized flux

model as source hypothesis:

d4ΦS(α ,δ ,E, t|~θs)

dEdΩdAdt
= Φ0ΨS(α ,δ |~θs)εS(E|~θs)TS(t|~θs), (3.2)

where Φ0 is the flux normalization carrying the differential flux units, and ΨS, εS, and TS are the

spatial, energy, and time profiles of the source, respectively. For a point-like source at the celestial

location~rs = (αs,δs) the spatial profile collapses to a Dirac-δ -function:

ΨS(~r|~θs) = δ (~r−~rs), (3.3)

with~r = (α ,δ) being the celestial coordinate vector. As energy profile εS(E|~θs) a common choice

is the power-law function

εS(E|~θs) =

(

E

E0

)−γ

(3.4)

with spectrial index γ and reference energy E0. The time profile TS(t|~θs) is usually choosen to be

box-shaped or gaussian-shaped. For a steady emitting source the time profile is unity.

SkyLLH provides the abstract base class physics.flux_models.FluxModel for the

generic differential flux given by (3.1). Utilizing the units module of the astropy package, this

class supports the specification of individual energy, angle, length, and time units for the flux, as

well as the their conversion to the internally used flux unit of GeV−1 sr−1 cm−2 s−1. In addition

FactorizedFluxModel provides a class for a factorized flux model as given in equation (3.2).

Individual spatial, energy, and time flux profiles can be designed through the abstract base class

FluxProfile.

In case the LRT consists of several sources, it is useful, from a computational point-of-view,

to group sources with the same flux model into source hypothesis groups. Each group of sources

will share the same implementation for the flux model, the mean number of expected signal events

in the detector, i.e. the detector signal yield, and the signal event generation method. Calculations

for those quantities can then be parallelized for all sources of a source hypothesis group. SkyLLH

provides the SourceHypoGroup and the SourceHypoGroupManager classes to define and

to mange those groups of source hypotheses.

4. Data Management Concepts

An important utility feature of SkyLLH is the ability to pre-define common data sets that can

be used by different analyses. To accommodate this feature, the core.dataset module pro-

vides the Dataset class. An instance of the Dataset class describes a particular data set. The

general enfolded properties of a data set are its name, the location on disk of the experimental

and simulation data, as well as its live-time. Data can be stored on disk in various data formats.

Depending on the file name extension of the data files, SkyLLH selects a specific file loader class

for a particular data file format. The list of file loader classes is extendable by the user in order

4

SkyLLH - A generalized Python-based tool for log-likelihood analyses Martin Wolf

to be able to support user-specific data file formats. Sometimes a data sample is split into several

individual data sets. For instance when an event selection has to be performed on individual de-

tector configurations or calibrations, resulting into separate detector responses for each data set. In

SkyLLH such individual data sets can be grouped into a collection of data sets by using an instance

of the core.dataset.DatasetCollection class. In addition to the data set properties

listed above, the Dataset class supports the version and version qualifiers properties to allow for

a documented evolution of data sets. This simplifies the reproduce-ability of the results of analyses.

After the pre-definition of data sets and collection of data sets, i.e. data samples, such data

sets can be chosen by an analysis. For each data set the experimental, simulation, and possible

auxiliary data can be loaded with a single call to the load_and_prepare_data method of

the Dataset class. This class method applies possible data preparation functions to achieve

uniformity in available data fields throughout the data sets. These data preparation functions also

allow for analysis related data selection cuts. The loaded data is then stored in an instance of the

data holder class DatasetData and can be used for creating PDF objects, background and signal

event generator instances.

Internally, the data is stored as numpy arrays. A dedicated class named core.storage.

DataFieldArray has been developed for SkyLLH to store the data fields of a data set as one-

dimensional numpy.ndarray objects, whereas the interface of this class mimics the one of a

structured ndarray object. Because numerical operations for the analysis are usually performed

on a single data field for all events of the data set at once, data access is more efficient on one-

dimensional ndarrays, where field data of consecutive events are stored continuously in memory,

compared to structured ndarrays where entire event records are stored continuously in memory,

resulting into a much larger memory footprint when traversing a single data field for all events. By

using DataFieldArray as internal data holder, memory cache misses can be reduced, causing

faster data access and shorter program execution times.

Another unique data management concept of SkyLLH is the management of trial data. For

each analysis trial new pseudo event data has to get generated, which is based, in some analysis

defined way, on the loaded data from the pre-defined data sets. The likelihood function L (~θ |~D)

is always evaluated on the trial data. In the case of data unblinding, the trail data equals the

experimental data. In SkyLLH the core.trialdata.TrialDataManager class provides

a manager for the event data of a trial. The manager allows to define additional event data fields

and their calculation based on the data fields of the data set and previously defined data fields for

the trial data manager. TrialDataManager data fields have assigned possible dependencies on

source properties and fit parameters. Hence, only those data fields have to be recalculated, whose

dependencies were updated during the LLH function maximization process and the data ~D for the

LLH function logL (~θ |~D) is requested solely through the TrialDataManager instance of the

data set.

5. Hypothesis Parameter Definition

For the LRT the definition of the parameter set Θ is essential. In general it can contain fixed and

floating, i.e. fit, parameters ~θ . For the signal-and-background two-component likelihood model, a

parameter θ belongs either to a signal, a background, or some other model, for instance a nuisance

5

SkyLLH - A generalized Python-based tool for log-likelihood analyses Martin Wolf

model. We denote the parameter θ as a global parameter and define a local parameter, θ̃ , as a pa-

rameter of a specific model. In general the signal component can consist of multiple contributions,

e.g. multiple individual point-like neutrino emitting sources in the Universe. Each signal model

would represent a single source, modeled for instance by a neutrino flux as given in equation (3.2).

Such a scenario is commonly referred to as "stacking of sources“.

A specific model has a distinct set of parameters with their names. Hence, in the special case

of a multi point-like source scenario the flux model, as given in equation (3.2) with the energy

profile of a power-law (c.f. eq. (3.4)), has the spectral index (local) parameter γ̃ , named "gamma",

defined several times, once for each source. It raises the question how these local parameters

should be handled in the global likelihood maximization process. Obviously, this question is of

hypothesis nature. Depending on the source hypothesis these local spectral index parameters should

all be independent global fit parameters, or should all share the same single global spectral index

parameter, or should be grouped into groups of shared global spectral index parameters. SkyLLH

provides the ModelParameterMapper class that takes a global parameter and assigns it to a

local parameter of one or more models. Hence, global fit parameters can be assigned to local model

parameters in a highly flexible manner.

6. Application of SkyLLH in Multi-Messenger Astronomy

SkyLLH is being developed within the IceCube collaboration as a standard tool to search for

neutrino emitting sources in the Universe. The implementation of generalized concepts in terms of

source hypothesis and hypothesis parameter definition makes it easy to use the SkyLLH framework

also for searches of other messenger particles in other experiments. Whenever a LRT as given in

equation (1.1) with celestial data has to be performed, SkyLLH is a suitable tool. Possible future

applications of SkyLLH could be combined analyses of same-kind messenger particle data, for

instance from different neutrino telescopes like IceCube and ANTARES [4] / KM3NeT [5], or

of different messenger particle data of neutrinos and gamma-rays, for instance from IceCube and

Fermi/LAT [6].

References

[1] S. S. Wilks, Annals Math. Statist. 9 (1938) 60–62.

[2] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Eur. Phys. J. C71 (2011) 1554. [Erratum: Eur. Phys.

J.C73,2501(2013)].

[3] IceCube Collaboration, M. G. Aartsen et al., JINST 12 (2017) P03012.

[4] ANTARES Collaboration, M. Ageron et al., Nucl. Instrum. Meth. A656 (2011) 11.

[5] KM3Net Collaboration, S. Adrian-Martinez et al., J. Phys. G43 (2016) 084001.

[6] Fermi/LAT Collaboration, W. B. Atwood et al., Astrophys. J. 697 (2009) 1071.

6

