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Abstract—Instance retrieval systems are widely used in ap-
plications such as robot navigation, medical diagnosis, and
augmented reality. Blippar is a company that creates compelling
augmented reality experiences or provides you with the tools to
build your own. In this paper we focus on one of the company’s
augmented-reality applications, with which users are able to point
their phone cameras at different objects in order to receive infor-
mation about the objects in real time. In this paper, we provide
what we believe to be the first study of forward index compression
techniques for such instance retrieval systems. First, we perform
an analysis of real-world data from a large-scale commercial
instance retrieval system, run by Blippar focusing on augmented
reality. Then we propose an entropy-based lossless compression
strategy. Experiments show that our proposed Huffman-based
approach outperforms a variety of other compression techniques,
while also increasing overall system efficiency slightly.

Index Terms—Instance Retrieval, Index Compression, Re-
trieval Efficiency, Augmented Reality

I. INTRODUCTION

Content-based instance retrieval has shown significant po-

tential in both industry applications and research. It plays

an important role in commercial image search engines, aug-

mented reality, medical image databases, etc. There are two

main approaches to content-based instance retrieval: SIFT-

based and CNN-based methods [1]. The Scale Invariant Fea-

ture Transform (SIFT) [2] is used to describe important patches

around key points of images, and known to be effective for

identifying similar instances between the images. SIFT-based

methods usually utilize a bag-of-words (BoW) model. The

idea is to quantize local descriptors into much shorter “visual

words”, and thus represent each image as a vector of words,

the same way a document is represented in text retrieval. A

convolutional neural network (CNN) is a hierarchical structure

that has been shown to outperform hand-crafted features such

as SIFT in various vision tasks. Since the work of Krizhevsky

et al. [3] in 2012, CNN-based methods have gained more

attention. Most CNN-based and SIFT-based instance retrieval

systems use a multi-phase cascading ranking architecture [4]–

[6], as in text retrieval [7], [8], where the first phase obtains
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a large candidate pool at a lower cost, while the succeeding

phases refine the instances with additional features.

In search engine architectures, a forward index stores a list

of words for each document. In our application, we refer to

the forward index as a data structure that stores mapping

from images to their correponding features. In practice, a

forward index of instance features is often stored in the main

memory rather than on the disk to speed up the ranking. In

our application, the size of the forward index becomes a huge

issue as the number of indexed images increases. This project

focuses on how to reduce the memory usage of the forward

index while maintaining the same level of query throughput.

CNN-based approaches have much more advantage for

specific object retrieval (e.g., buildings, pedestrians) when suf-

ficient training data is provided, while SIFT-based approaches

with a large visual-word vocabulary is still very competitive

in generic object retrieval and highly efficient (see Figure 6

and Table 6 in [1]). In our application, users keep moving

and pointing their phone cameras at different objects in order

to receive information about those objects in real time, and

create 3D models and other augmented reality actions that

are triggered when these objects are recognized. This requires

a system that, given a set of generic objects from a camera

image, retrieves their best top-1 matches with extremely low

latency. Our application prioritizes efficiency, even at the cost

of a slight loss in accuracy. SIFT-based approaches with a

large visual-word vocabulary are suitable in this case. While

our case mainly focuses on user-interface interaction for top-1

generic object recognition, Blippar also heavily utilizes more

complex CNN-models when the user decides to click on the

top-1 match on the screen and obtain more information of

certain recognized objects for specific categories (e.g., brands,

shoes, watches, cars, etc) to enhance retrieval accuracy, which

is often at a higher cost of efficiency.

In particular, our contributions are as follows:

1. We perform a thorough data analysis of forward index

data from a commercial instance retrieval system, run by Blip-

par focusing on augmented reality. Insights from the analysis

then guide us in our exploration of potential compression

strategies.

2. We propose a compression strategy where we first reorder

the data to transform it into a more compressible format, and

then apply integer-coding techniques on the reordered data.978-1-7281-0858-2/19/$31.00 ©2019 IEEE



We consider a number of different reorderings and choices

of integer compression methods, including state-of-the-art

entropy coders based on Huffman coding and on Asymmetric

Numeral Systems (ANS) [9], [10].

3. We provide an end-to-end evaluation of our proposed

compression strategy on real-world data sets, and show that

with the best choice of reordering and integer coding methods,

our approach achieves good compression while also slightly

improving retrieval efficiency.

The remainder of the paper is organized as follows: Sec-

tion 2 presents some background and discusses related work.

In Section 3 we present our data analysis on the given data

set. Section 4 outlines the experimental setup. Next, Section 5

discusses the overall approach, and presents the experimental

evaluation of the proposed framework. Finally, Section 6

provides some concluding remarks.

II. BACKGROUND

In this section, we provide some background on instance

retrieval, inverted indexes, forward indexes, reordering tech-

niques, compression techniques, and other related work.

A. Instance Retrieval

Content-based instance retrieval are mainly divided into

SIFT-based and CNN-based instance retrieval methods. SIFT-

based methods train a codebook of visual words offline. Based

on the size of the codebook used during encoding, they can

be classified into three categories: using small codebooks,

using medium-sized codebooks, and using large codebooks

[1]. For methods using small codebooks, the visual words

are fewer than several thousands and usually exhibit inferior

accuracy. Medium-sized codebooks have sizes of 10-200k.

The visual words exhibit medium discriminative ability, and

the inverted index and binary signatures of visual words are

constructed [11]. Large codebooks have sizes of 1 million

or more. The visual words demonstrate high discriminative

ability, and more memory-friendly signatures are used [12]. A

frequent concern with the BoW model is the lack of geometric

constraints among local features. Geometric verification are

often utilized as an effective filter for matching. The most

well-known method for global spatial verification is RANSAC

[13]. RANSAC is effective in re-ranking a subset of top-

ranked instances but has efficiency problems. To efficiently

and accurately incorporate spatial features in the SIFT-based

framework is very important.

The CNN-based methods have three categories: hybrid

method, using pre-trained CNN models and using fine-tuned

CNN models [1]. For the hybrid method, a number of image

patches are generated from an input image, which are fed into

the network multiple times for feature extraction. Encoding

and indexing are similar to SIFT-based methods. The last two

categories compute the global feature with a single network

pass. For the second category, the CNN models are pre-trained

on some large-scale datasets like ImageNet [3] and can be

expected to be directly used on target dataset. For the third

category: The CNN models are fine-tuned on a training dataset

[14] which has a similar distribution to the target dataset before

usage.

While CNN-based methods excel in most research bench-

marking datasets (Holidays [15], Ukbench [16], etc), these

datasets are relatively small. It remains unknown if training

CNNs on more generic and very large-scale instance-level

datasets will bring further improvement [1]. Despite the usual

advantages of CNN-based methods, SIFT feature is still fa-

vored in some scenarios: gray-scale instance retrieval, intense

instance color changing, small object retrieval, severe occlu-

sions of queried instance, book/CD cover retrieval, instance of

rich textures, etc [1].

B. Inverted Indexes and Forward Indexes

For image retrieval, the BoW model is efficiently imple-

mented using an inverted index [17], which is a simple data

structure that allows us to find images containing particular

visual words. Given a collection of N images, we assume

each image is identified by a unique image ID between 0 and

N − 1. An inverted index contains many lists, where each list

Lw contains a sequence of postings describing all the images

where visual word w occurs in the collection. More precisely,

each posting contains the ID of an image that contains the

visual word w, plus an impact score for the visual word in the

image. Postings in each list are usually sorted by image ID or

impact score, to allow for effective compression and fast list

intersection.

In the reranking phase of image retrieval, spatial information

about the visual words in a candidate image, in particular the

coordinates, angle (orientation), and size of the corresponding

keypoints, need to be accessed to perform geometric verifica-

tion. In contrast to the inverted lists, each forward list contains

all the data for a certain image, that is, all the visual words

in the image as well as their associated coordinates, angles,

and sizes. A forward index contains all the forward lists of

the images.

C. Reordering Data for Better Compression

The idea of reordering a data set for better compression

has been used by researchers in several application areas. In

particular, reordering of documents has been used in informa-

tion retrieval systems to improve inverted index compression,

access speed [18]–[20] and query processing speed [21], [22].

Compressed graph representations can also benefit signifi-

cantly from reordering of the vertices [23]–[26]. In database

systems, reordering of tuples is used to improve compression

of database tables [27], [28]. One common and simple way

to reorder data in these applications is to sort by one of the

attributes or, in the case of search engine indexes and web

graphs, to sort documents or nodes by their URLs. However,

other more involved approaches, such as clustering or TSP-

type traversal of the data, have also been proposed, and these

can sometimes significantly outperform simple sorting.

In particular, data reordering is considered an important

component in most column-oriented database architectures

[29], [30]. In [28], Lemire and Kaser show that picking the









choices as they can adapt to the characteristics of the data in

each image. However, if we apply Huffman coding directly to

the features, a separate Huffman code table has to be stored for

each feature of each image, which is too much space overhead.

On the other hand, a global table will not be able to adjust to

different images, and will also be very large for features such

as codewords and angles, slowing down decompression.

To address this issue, when encoding integers from

[0 . . . N−1] where smaller integers are more likely, we divide

[0 . . . N − 1] into increasing ranges, where range sizes are

powers of two. For example, the first few ranges may contain

only a single integer, then two, then four, eight, etc. Overall,

we end up with only a few dozen ranges. We now build a

Huffman code that only specifies in which range the encoded

value falls, and add log
2
s extra bits, where s is the size

of the range, to specify the exact value in the range. This

results in much smaller Huffman tables that can be stored

for each image, while giving almost the same compression as

a complete Huffman table. We then store the Huffman table

itself, in canonical form, with the image data.

For ANS coding, we also code ranges rather than exact

values, followed by extra bits, and store other types of meta

information for decoding (instead of the code table in Huffman

coding) with each image. As in Arithmetic coding, in ANS the

number of bits for each symbol is amortized among a sequence

of encoded symbols, which means symbols do not get assigned

a direct code that has an integer number of bits. To apply ANS

coding for the above framework, we first encode all the ranges

using ANS, followed by all the extra bits for the image.

E. Experimental Results

In Table III, we show the bit rates (bits an integer takes on

average) of coding the forward index with our Huffman coding

approach, for different reorderings. Of course, whenever we

sort by one field, then coding for that field improves. However,

when sorting by codeword and by angle, we only exploit this

effect; when sorting by X, Y, and size, we also enable duplicate

suppression and exploit cases where a run of different Y values

occurs with the same X. (Duplicate suppression is not that use-

ful for codewords and angles, where there are few duplicates.)

As a result, sorting by X, Y, and size outperforms the other two

schemes, which have almost the same performance. Thus, we

choose this ordering, together with the remapping proposed in

Subsection 5.A.

In Table IV, we compare the bit rates of various other coding

methods for the different features, when key points are sorted

by X-Y-size. We show the results for the following coding

techniques: Variable-Byte (Vbyte) [32], Simple9 [33], Golomb

coding [31], OptPFD [20], Gzip, and our versions of Huffman

and ANS coding1 [10]. All methods compress best on the X

coordinate, since X has a low entropy, as shown in Table I,

and we are able to apply delta encoding for X. Angle is the

most difficult feature to compress, since its entropy is 15.69,

1ANS coding was implemented using the code at
https://github.com/Cyan4973/FiniteStateEntropy

almost equal to 16 bits, which is the number of bits in a basic

uncompressed representation. Thus, while there were visible

spikes for angle along the four cardinal directions, as shown

in Figure 3, most of the data lies outside the peaks of the

spikes. Codeword is also hard to compress, while size and

Y are relatively easy to compress. Among all the methods,

Simple9 has the worst performance, and the reason is that for

codewords and angles, it usually only packs a single value into

each 32-bit word. (Note that Simple9 might fare better if we

had sorted by codewords or angles.). Vbyte does not benefit as

much as other approaches for X, since Vbyte does not do well

when many numbers are much smaller than 27, and there are

many small X values. Golomb coding performs the best for

X, because it compresses small values well. Overall, Huffman

and ANS outperform all other methods, indicating that for our

forward index compression problem, integer coding techniques

introduced in the context of compressing inverted indexes are

not that useful. Huffman performs slightly better than ANS

because the meta information stored under ANS is larger than

the Huffman code table; this might change if images were

much larger.

Features by codeword by angle by X-Y-size
X 8.286 8.286 1.684
Y 8.412 8.412 6.861

size 9.592 9.592 8.155
angle 15.857 8.201 15.857

codeword 13.115 20.761 20.761
all 55.262 55.252 53.318

TABLE III: Bit rate under Huffman coding, for different features
and different orderings.

Compressor X Y size angle c.w. all
None 16.000 16.000 16.000 16.000 32.000 96.000

Simple9 2.059 10.668 13.670 30.418 31.890 88.705
Vbyte 7.996 12.471 15.671 21.948 23.928 82.014
Gzip 1.884 10.638 11.869 15.984 22.835 63.210

Golomb 1.646 8.959 10.892 16.967 21.958 60.422
OptPFD 1.885 8.806 11.470 16.478 21.641 60.280

ANS 1.662 7.286 8.672 15.842 21.034 54.496
Huff 1.684 6.861 8.155 15.857 20.761 53.318

TABLE IV: Bit rates for different integer coding techniques.

For an image query, about 50% of the time is spent on

feature extraction, 25% on object detection, and 25% on

cascaded ranking in our system. In Table 5, we show the bit

rate per key point, decompression cost per image retrieved

from the forward index, and overall query execution cost in

milliseconds. Since our main focus is to reduce the memory

size of the forward index, we take ANS and Huffman coding

and compare their performance. In our experiments, ANS took

about twice the time to decode the features of an image than

Huffman coding. Note that using Huffman or ANS in fact

results in slightly faster overall query execution than using no

compression, most likely because the smaller forward index

results in better memory access and cache behavior. (The

uncompressed forward index was also completely in main



memory.) However, the speedup is fairly small, and the main

motivation for compression is the reduction in size by almost

a factor of 2, meaning that larger indexes can be completely

held in a given amount of main memory.

Compressor bit rate decompress cost (us) image-query cost (ms)
None 96.000 N/A 242.6
ANS 54.496 391.31 239.8
Huff 53.318 198.64 232.1

TABLE V: Bit rate, decompression cost in us per image, and average
query execution cost in ms, for ANS and Huffman coding.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we provide what we believe to be the first

study of forward index compression in a real-world instance

retrieval system for augmented reality applications. We com-

pare various index compression approaches, and find that

entropy-based coders such as Huffman and ANS result in the

best compression ratio for our scenario, achieving compression

of about a factor of two, while also very slightly speeding up

query processing. Our implementation is tested and deployed

in Blippar’s AR platform.

While our approach is a promising first step, we suspect

there might be additional patterns in the data, say between

similar images, that could be explored in the future for

better compression. Furthermore, when additional features

are involved, our findings could still be useful and other

compression ideas might apply.

We also plan to further design suitable lossy compression

schemes and explore the trade-off between retrieval quality

and forward index size, and we believe we might be able to

achieve significant reduction of index size with minor or even

no quality loss.
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