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Abstract
“Evolutionary rescue” is the potential for evolution to enable population persistence in a changing environment. Even with
eventual rescue, evolutionary time lags can cause the population size to temporarily fall below a threshold susceptible to
extinction. To reduce extinction risk given human-driven global change, conservation management can enhance populations
through actions such as captive breeding. To quantify the optimal timing of, and indicators for engaging in, investment in
temporary enhancement to enable evolutionary rescue, we construct a model of coupled demographic-genetic dynamics
given a moving optimum. We assume “decelerating change”, as might be relevant to climate change, where the rate of
environmental change initially exceeds a rate where evolutionary rescue is possible, but eventually slows. We analyze the
optimal control path of an intervention to avoid the population size falling below a threshold susceptible to extinction,
minimizing costs. We find that the optimal path of intervention initially increases as the population declines, then declines
and ceases when the population growth rate becomes positive, which lags the stabilization in environmental change. In
other words, the optimal strategy involves increasing investment even in the face of a declining population, and positive
population growth could serve as a signal to end the intervention. In addition, a greater carrying capacity relative to the
initial population size decreases the optimal intervention. Therefore, a one-time action to increase carrying capacity, such as
habitat restoration, can reduce the amount and duration of longer term investment in population enhancement, even if the
population is initially lower than and declining away from the new carrying capacity.

Keywords Bioeconomics · Optimal control · Evolutionary rescue · Population enhancement · Climate change ·
Management intervention · Endangered species
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Introduction

Global environmental change such as climate change has
the potential to exceed the physiological tolerances of
many organisms (Thomas et al. 2004; Urban 2015). For
a population faced with environmental conditions outside
its range of tolerance, persistence might occur through
either a shift in its range or genetic adaption (Davis et al.
2005). Persistence via genetic adaptation in response to
environmental change in a population that would otherwise
perish is called “evolutionary rescue” (ER, Gomulkiewicz
and Holt 1995; Carlson et al. 2014).

To date, theory on evolutionary rescue has focused
on two situations where it can occur naturally. First, if
the environmental optimum shifts suddenly, population
size initially declines and eventually increases if enough
genetic variation relative to the amount of change exists for
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adaptation to the new environment to occur (Gomulkiewicz
and Holt 1995; Carlson et al. 2014). Such evolutionary
rescue typically involves a period of low population
size during which a population might be susceptible to
factors such as demographic stochasticity, environmental
stochasticity, Allee effects, inbreeding, and genetic drift
(Lande 1998; Gilpin and Soule 1986). Second, if the
environmental optimum is continuously changing at a
constant rate, population growth declines, but populations
with enough genetic variance relative to the rate of
environmental change maintain population growth (Lynch
and Lande 1993; Bürger and Lynch 1995). Therefore,
populations with a given amount of genetic variation have
a “critical rate” of environmental change above which ER
cannot occur and growth rates become negative (Kopp and
Matuszewski 2013).

As an example of a changing environmental optimum,
climate change lies between sudden shift and gradual
change. Depending on the amount of greenhouse gas
emissions and therefore the rate of change in the climate
(e.g., mean annual temperature), there might be a period of
time where the rate of change in the optimum is “super-
critical,” exceeding the rate where evolutionary rescue
can occur. However, as the rate of change decelerates,
as eventually occurs for all future climate scenarios
(Meinshausen et al. 2011), evolution might play a greater
role in population persistence.

Conservation management to increase the likelihood of
evolutionary rescue and therefore population persistence
under environmental change such as climate change can
take two forms: mitigation and adaptation. Mitigation to
reduce the rate or amount of change in temperature (e.g., by
reducing greenhouse gas emissions) can increase the abil-
ity for evolution to keep up with the changing environment.
However, for climate change, mitigation requires interna-
tional cooperation (King DA 2004). Conservation manage-
ment, however, most often occurs at local, regional, or
national scales. Further, local efforts to mitigate emissions
do not reduce locally felt effects of climate change. Without
a direct role in mitigating climate change, then, conservation
management must focus on “adaptation” in the anthro-
pogenic sense, which in a conservation context involves
promoting processes that increase the likelihood of popu-
lation persistence (Stein et al. 2013). For the case of increas-
ing the likelihood of ER, adaptation can involve reducing
local stressors (e.g., Baskett et al. 2010) or enhancing pop-
ulation size to reduce the likelihood of a population falling
below a threshold size at risk of extinction (Fraser 2008).

For decelerated change such as climate change, manage-
ment interventions during the initial period when change
might be super-critical could preserve the option for a longer

term ER to occur. Interventions inevitably differ in whether
they have a temporary or permanent effect on population
size and growth rate. Interventions with potentially perma-
nent effects include habitat restoration (Bradshaw 1996) and
removal of invasive predators or competitors (Myers et al.
2000). Interventions with temporary effects, i.e., which only
affect the population transiently, include resource provision-
ing (Ruffino et al. 2014), head-starting (captive rearing of a
vulnerable early life stage), and captive breeding (Heppell
et al. 1996; Griffiths and Pavajeau 2008). Climate change
threatens a variety of species that are also targets for cap-
tive breeding. For example, climate change-driven changes
to river flow and temperature can negatively affect Pacific
salmon (Crozier et al. 2008), and hatcheries (i.e., hatching
of eggs in captivity to release into the wild at early life
stages) are a long-standing tool to increase salmon popu-
lation sizes (Naish et al. 2007). Analogously, increases in
extreme temperature events threaten the persistence of trop-
ical corals (Bellwood et al. 2004), and “coral gardening”
(i.e., nursery-based growth of small fragments into larger
corals to outplant into the wild) can provide large-scale pop-
ulation supplementation for corals (Lirman and Schopmeyer
2016). Yet, captive rearing and breeding have the potential
to involve unintended negative consequences for wild popu-
lations such as domestication, the negative effects of which
can accumulate over multiple generations, which leads to
recommendations to limit the use and duration of such pro-
grams (Snyder et al. 1996; Fraser 2008). In addition, the
ultimate success of captive breeding and rearing in leading
to population persistence without requiring indefinite inter-
vention (i.e., conservation reliance sensu (Scott et al. 2010)),
depends on addressing the factors that originally lead to
population declines (Fraser 2008).

In addition to the potential to incur unintended conse-
quences, interventions such as captive breeding and rearing
can be costly (Snyder et al. 1996) and budgets are inevitably
limited. Thus, a key management question is the efficient
allocation of resources both over time and among popula-
tions. For example, when is it bioeconomically optimal to
invest in an intervention and for how long should a manager
keep investing? Furthermore, what biological or economic
indicators can be used to make such decisions? Investing
early may help build population abundance and reduce the
effects of environmental change. Alternatively, for popu-
lations initially close to carrying capacity and thus self-
regulating, early investments may have less effect per dollar
spent. Self-regulation might also determine the efficacy of
pairing an investment with a temporary effect such as cap-
tive rearing with an action with a permanent effect such
as habitat restoration. In particular, a one-time investment
to permanently increase carrying capacity might reduce the
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investment necessary in captive rearing by decreasing the
role of self-regulation, or it might have little effect if self-
regulation has little effect on population dynamics when
populations are initially declining under rapid environmen-
tal change. Economic factors that might further influence
the pattern of investment include budget constraints and the
rate of discounting. Possible indicators for optimal timing
of investment include a population growth rate, population
size, or the rate of environmental change.

Here, we quantify the bioeconomically optimal invest-
ment schedule for an evolving population undergoing decel-
erating environmental change. The objective of the regulator
is to minimize costs (and therefore the amount of interven-
tion) given a goal of avoiding extinction. To this end, we
develop a model that couples the demographic dynamics
necessary to account for extinction risk, the genetic dynam-
ics necessary to account for ER, and the economic dynamics
necessary to determine the optimal investment schedule.
Our biological model assumes a moving optimum where the
rate initially exceeds the critical rate for ER to occur and
eventually slows to that rate (Fig. 1a). Without intervention,
the population size will decline below a critical threshold
considered at risk of extinction (Fig. 1b). We also assume a
management intervention that temporarily increases popu-
lation growth (e.g., resource provisioning, head-starting, or
captive breeding) but is costly. We analyze the pattern of
intervention that minimizes costs, subject to the constraint
of keeping the population above a critical size, given dif-
ferent values for the carrying capacity, discount rate, and
annual budget.

Materials andmethods

Our bioeconomic model consists of a submodel for the envi-
ronment, the biological response of the population, and the
economic costs of control (i.e., management interventions to
improve population growth). Combining these submodels,
we pose an control problem for optimally scheduling spend-
ing on the control while avoiding extinction. We analyze the
problem numerically to find the optimal solution.

Model

Changing environment

To represent environmental change, we consider an environ-
mental optimum θ(t) that changes in time with rate k(t). Ini-
tially, the rate of change k0 exceeds a critical rate kc, above
which evolution cannot prevent population declines (e.g., as
in Lynch and Lande 1993) but it slows to less than kc by

time tsafe. We assume the optimum changes deterministically
as follows:

θ(t) = k(t)t (1)

where,

k(t) =
{

kc

(
κ0 − κ0−κmin

tsafe−t0
t
)

for t < tsafe

κminkc for t ≥ tsafe
, (2)

and with κ0 > 1 and κmin < 1.

Biological dynamics

Our model follows the joint demographic-genetic dynam-
ics of population size N(t) and genetic distribution ψt(a)

of quantitative trait a under stabilizing selection toward
the optimum θ(t). We assume the order of events in the
life cycle is mating, density dependence, then viability
selection. Note our life cycle ordering corresponds to hard
selection (Wallace 1975). We also assume random mating,
a closed population, and discrete generations. Finally, we
assume many genes of small effect additively contribute to
the genotype such that, by the central limit theorem, the
genetic distribution ψ(a) is normal (Lande 1976). There-
fore, we define the genetic distribution by its evolving
mean āt and genetic variance σ 2

a (N), which depends on the
census population size to account for the effects of drift,
ψt(a) = exp(−(a − āt )

2/(2σ 2
a (N)))/

√
2πσ 2

a (N). Specif-
ically, we use the stochastic house-of-cards approximation
of mutation-selection-drift balance for the genetic variance
σa , as in Bürger and Lynch (1995), which we specify below.

In the mating step, the number of offspring per individual
is R0, and the assumption of random mating means that
the genetic distribution is unchanged (Lande and Arnold
1983). In the density dependence step, we apply a saturating
(Beverton and Holt 1957) function with parameter K

determining carrying capacity (equal to (R0 − 1)K), where
density-dependent survival is independent of genotype.
Therefore, encapsulating both reproduction and density
dependence, the preselection growth function g(N(t)) =

R0N(t)
1+N(t)/K

depends solely on the population size N(t).
In the viability selection step, we convert genotype a

to phenotype z given random environmental contribution
to the phenotype e normally distributed with mean 0 and
variance σ 2

e , i.e., we account for imperfect inheritance but
not phenotypic plasticity, such that z = a + e. Therefore,
the phenotype probability distribution given a particular
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Fig. 1 Under “decelerating environmental change” (a), the optimum
trait value (solid line) initially increases rapidly, then slows to the
critical rate where evolutionary rescue can occur at time tsafe (verti-
cal dash-dot line). The population mean trait (dashed line) initially
lags from the optimum but after tsafe closes the gap. Without interven-
tion to supplement or improve population growth (b), the population

will fall below critically low size susceptible to extinction (gray line)
for an extended period, but it does eventually increase. Meanwhile,
the genetic variance decreases with decreasing population size (c)
according to the stochastic house-of-cards approximation

genotype is P(z|a) = exp(−(z − a)2/(2σ 2
e ))/

√
2πσ 2

e . We
then apply stabilizing selection for θ(t) given width of the
fitness function (inverse of selection strength) ω2, such that
fitness W(z) = exp(−(z − θ(t))2/ω2. Applying selection
to the genetic distribution yields the genotypic distribution
at time t as ψ ′

t (a) = ∫
W(z)P (z|a)ψt (a)dz, where the

overall population fitness in generation t , equivalent to the
proportion of the population that survives viability selection
is as follows:

W̄ (t) =
∫

ψ ′
t (a)da =

√
ω2

ω2 + σ 2
a (N) + σ 2

e

e
− (āt −θ(t))2

2(ω2+σ2
a (N)+σ2

e ) .

(3)

Therefore, as θ(t) changes each generation, mean fitness
changes as well, cascading into changes in the population
size and genetic distribution. For the population size,
applying fitness-dependent survival after growth yields the
recursion of N(t + 1) = W̄ (t)g(N(t)). Using the above-
described growth function that accounts for reproduction
and density dependence, the overall natural population
growth factor (excluding any intervention-based growth),
calculated from N(t + 1)/N(t) is as follows:

λ̄(t, N) = W̄ (t)R0

1 + N(t)/K
. (4)

For the genetic dynamics, we normalize the genetic distri-
bution ψt+1(a) = ψ ′

t (a)/W̄ (t) to yield the new genotypic
distribution with mean is as follows:

āt+1 = θ(t)σ 2
a (N) + (ω2 + σ 2

e )āt

ω2 + σ 2
a (N) + σ 2

e

. (5)

To simplify notation, we let s(N) = σ 2
a (N)/(ω2 +σ 2

a (N)+
σ 2

e ) and rearrange to arrive at the mean genotype recursion
as follows:

āt+1 = āt + s(θ(t) − ā(t)). (6)

In these recursions, we use the stochastic house-of-cards
(SHC) approximation as in Bürger and Lynch (1995): first,
setting the effective population size to Ne(N) = 2R0

2R0−1N

and, second, using the formula σ 2
a (N) = 2VmNe(N)

1+α2Ne(N)/(ω2+σ 2
e )

,

where α2 is the genetic effect size variance of a new mutation
and Vm is the mutational variance. The SHC approximation
accounts for the equilibrium effect of changing population
size on genetic variance with a fixed optimum, constant
mutational variance, effect size, and demography; using it
for dynamic population size change as we do (consistent
with Bürger and Lynch 1995) is inexact but caputres the
coarse-scale effect of population size change on genetic
variance (Kopp and Matuszewski 2013).
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Our model for a decelerating optimum, Eq. 1, requires
choosing a value for the parameter defining a critical rate
of change kc beyond which ER cannot occur. To do so,
we use an approximate model with constant environmental
change θ(t) = k̃t given k̃ constant in time. Then, the model
is identical to a simplified version of Bürger and Lynch
(1995) presented in Kopp and Matuszewski (2013), and the
population reaches a dynamic equilibrium where the trait
lags the optimum by the value k̃(σ 2

a (N)+ω2 +σ 2
e )/σ 2

a (N).
Using this, Kopp and Matuszewski (2013) calculate the
value of k̃ at self-replacement such that for any k̃ > kc

the population is below replacement (i.e., λ̄ < 1) and the
population will decline as follows:

kc(N) = σ 2
a (N)

√
2 log

(
R0

√
s(N)

)
σ 2

a (N) + ω2 + σ 2
e

. (7)

Here, we still employ the SHC approximation, such that
the population size affects the critical rate kc(N), which
thus should be computed for the minimum population size
reached during ER. For this, we use a population size, N =
Nc,g below which negative factors beyond demographic
stochasticity (e.g., mutational meltdown) may cause rapid
population extinction.

The control: improving population growth in situ

We consider a control that temporarily modifies the
population growth rate in situ, resulting in changes in
population dynamics and costs to the manager. If the control
increases the population by a factor v(t) ≥ 1 at each time
t simultaneous with natural production R0, then we replace
the population size N(t) with N(t)v(t) in Eq. 4, and the
population dynamics with the intervention are as follows:

N(t + 1) = N(t)v(t)λ̄(t, v(t)N(t)). (8)

The mean trait dynamics (6) are unchanged.
We assume that interventions incur costs c(v(t)) that

scale quadratically with the proportional increase in the
growth rate (i.e., the log of v). We also consider a yearly
budget constraint.

Statement and analysis of the control problem

The control problem is to minimize costs c(v(t)) while
avoiding population sizes below a critically low level, Nc,s ,

assuming the growth rate (4) determines the biological
dynamics, values of the control within the feasible set v(t) ∈

, and with discount rate � across the time horizon T are
as follows:

min



∑
t

c(v(t))

(
1

1 + �

)t

∀t ≤ T (9a)

subject to N(t) ≥ Nc,s, v(t) ≥ 1, (9b)

where the dynamics of population N(t) are defined in Eq. 8.
To analyze the discrete-time optimal control problem

(9a), we specify concrete functional forms for the costs and
add constraints based on the population dynamics. For a
control v(t), we assume a simple cost function c(v(t)) =
log v(t)2, which results in a cost of 0 when v(t) = 1 and
quadratic costs for log-scale intervention u(t) = log v(t).
The objective at each time (neglecting discounting) is then
u(t)2. We also let x(t) = log N(t), and denote the log-scale
initial population size as xinit = log N(0), which enters the
problem as an equality constraint at time 0. We denote the
log-scale critical population size as xc = log Nc,s , which
enters the problem as an inequality constraint at each time.
In log scale, the recursion for population growth from Eq. 8
is x(t + 1) = u(t) + x(t) + log λ̄(t, exp(x(t) + u(t)));
these dynamics enter the problem as an equality constraint
at each time. Finally, we assume a budget constraint with a
constant budget b within each year, which imposes another
inequality constraint at each time. Accounting for all of this,
the constrained control problem is as follows:

min
u(t)

T −1∑
t=0

u(t)2
(

1

1 + �

)t

subject to (10a)

x(t+1)−x(t) = u(t)+log λ̄ (t, exp(u(t) + x(t))) (10b)

t = 0, 1, . . . T

x(0) = xinit (10c)

0 ≤ u(t) t = 0, 1, . . . T − 1 (10d)

u(t)2 ≤ b t = 0, 1, . . . T − 1 (10e)

x(t) ≥ xc t = 0, 1, . . . T . (10f)

Parameter choices and assumptions

To model a situation where the population is initially
declining but could eventually recover (albeit having
experience populations too low to persist), we assume tsafe,
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the time at which the rate of environmental change k(t) in
Eq. 2 transitions from being greater than to being equal to
the rate at which ER is possible, kc(Nc,g), occurs within the
time horizon, i.e., tsafe ≤ T .

We chose the biological parameters to start in a
space where, without intervention, the population initially
declines to a low population size susceptible to stochasticity
but not to deterministic extinction, as that is the parameter
space where our central questions on the effects of
intervention on ER are relevant. We also assume that the
population initially is experiencing a sustainable rate of
environmental change. See Table 1 for all default parameter
values used. In addition to analyzing the optimal path
of investment in intervention for these default values, we
compare the optimal path under varying density dependence
K = 10, 000 or K = 15, 000 to explore the effect of popu-
lation regulation, and a discount rate of � = 0 or 0.025
and a budget of b = 0.01 or 0.02 to explore the effects
of economic factors. In all cases, the initial genetic mean
is the initial optimal phenotype a0 = θ(0) = 0 and
the initial population size is set equal to the equilibrium
population size with K = 10, 000 accounting for variance
load N(0) = W̄ (0)(R0 −1)K under the assumption that the
environment is already changing at a rate κmin (this results in
N(0) ≈ 3600).

Model analysis

We numerically analyzed the system (10a–f) with aug-
mented Lagrangian minimization (Birgin and Martı́nez
2008) as implemented in the NLOPT library (Johnson
2016). This requires restating the problem as a constrained
discrete-time optimal control problem (see, e.g., Chow
1997), with Eq. 10a as the objective to minimize, Eqs. 10b
and 10c as equality constraints and Eqs. 10d, 10e, and 10f
as inequality constraints. See the supplementary methods
(Appendix B; Online Resource 1) for code. For all para-
meter combinations, we set the initial control and popula-
tion to a path found using a zero discount rate and a large
number of iterations. For global optimization algorithms
such as the one we employ, convergence is difficult to assess
in general. For a convergence criterion, we considered a path
optimal if the solver consistently converged upon it with
an increasing number of iterations and for different random
seeds (see Appendix A).

Results

Given our choice of parameter space and assumption that
the rate of environmental change starts greater than, and

eventually shows to, a value where ER is possible (Fig. 1a),
without intervention population growth is initially nega-
tive and population size falls below a critically population
vulnerable to extinction (Fig. 1b). Eventually, as envi-
ronmental change slows, population growth will become
positive (Fig. 1b), with a U-shaped demographic trajec-
tory analogous to ER models with sudden environmental
shifts (Gomulkiewicz and Holt 1995; Carlson et al. 2014).

Optimal investment trajectory and indicators

The optimal trajectory for investment in intervention
initially increases quickly, with investment peaking at or
before the time when the population size reaches the
minimum acceptable population size (Fig. 2). Notably,
investment increases even as the population is declining
under the management intervention (Fig. 2c). Thus, in this
case, declining population under a management intervention
does not imply that the strategy is non-optimal.

Optimal investment then begins to slow in the year that
the population growth rate, including effects of intervention
(gray line in Fig. 2c), transitions from population decline to
stable. Investment reaches a very low level once population
growth rate would be positive without the effects of
intervention (Fig. 2c); this occurs with some delay after the
rate of change decreases to the critical rate kc. Once that
occurs, at time tsafe, the rate of environmental change is still
positive, but at a rate slow enough for evolutionary rescue
to occur if it were constant; however, intervention is still
needed after tsafe to reduce lag between the population mean
trait and the optimal trait to a sustainable magnitude.

Factors that influence the optimal trajectory
of investment

A carrying capacity further from the initial population size
favors lower investment overall and shifts investment later in
time (Fig. 3). Compared to carrying capacity, the economic
factors of discounting and budget constraints had weaker
effects on the amount of investment in intervention (Figs. 3-
4). Greater discounting favors investing later in time (Fig. 4)
and weakens the need to ramp investment down to zero after
positive population growth is achieved (with zero discounting
investment goes to zero at this point; see Fig. 4).

Discussion

We find that, with decelerating change, short-term invest-
ment in enhancing population growth can reduce extinction
risk to allow for a combination of evolution and global-scale
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Table 1 Parameters and default values

Parameter Default value Description

R0 1.5 Number of offspring per individual

K 15,000 Carrying capacity

ω2 50 Selectional variance (inverse of selection strength)

α2 0.05 Genetic effect size variance of a new mutation

Vm 0.001 Mutational variance

σ 2
e 0.5 Environmental contribution to phenotypic variance

tsafe 20 Time at which the rate of environmental change slows to a value where ER can occur

κ0 2.5 Maximum rate of change (multiplied by kc(Nc,g))

κmin 0.95 Minimum range of change (multiplied by kc(Nc,g))

Nc,g 500 Population size used for calculating critical rate of change kc

Nc,s 1,000 Critical population size for extinction risk due to stochastic factors

� 0.025 Discount rate

b 0.01 Annual budget

mitigation (resulting in deceleration of the optimum) to lead
to long-term persistence. This occurs because at the time
investment is stopped, the rate of change is within the popu-
lation’s tolerance limits (see, e.g., Bürger and Lynch 1995).
Optimal investment trajectories to conserving populations
in the face of global stressors may initially mean doubling
down on what appears to be a failing strategy due to ongo-
ing population decline (Fig. 2a, b). Mumby et al. (2017)
provide a similar example where a declining system state is
not a signal of improper management. In their analysis of
coral reef management under climate change, they point out
if managers and the public consider the unmanaged (or non-
optimally managed) counterfactual scenario, then this can
alter perceptions of management utility. Such analyses are
necessary to evaluate the effectiveness of management and
distinguish between those strategies that are actually fail-
ing and those which are optimal but still result in declines;
our results demonstrate that such exercises may be needed
to avoid a crisis of motivation when managing populations
that are capable of evolutionary rescue.

In contrast to the trend or status of population size,
under optimal management the trend in population growth
rate (including management’s effect on population growth)
reliably increases, at first becoming less negative and
eventually leveling out to stable then increasing to
persistence (positive population growth; Fig. 2c). This
indicates that trend in growth rate may provide a reliable
signal of management efficacy as compared to the trend
in population size. These same observations imply that
timing of assessment matters: assessing the effect of an
intervention prematurely may lead managers to dismiss
what would be a successful strategy in the long run.

Overall, the optimal investment trajectory of initially
increasing, then, as population growth stabilizes, decreas-
ing, to ramp down when population growth is positive, is
surprisingly robust to an array of economic assumptions and
parameters, both qualitatively and quantitatively (Fig. 3).
Two caveats due to our modeling and analysis choices
should be kept in mind. First, the strongly peaked nature of
the optimal paths may be influenced by the choice of cost
function and scale on which the control value is analyzed;
in our case, the costs are assumed to be quadratic but the
scale is such that the control values fall in (0,1); thus, the
smoothing effect of quadratic costs on the control paths is
less strong than is often the case. Using an alternative scale
for the cost function (e.g., c̃(u) = (1 + u)2) does result
in control paths that are smoother and have higher initial
investment (not shown); these are less strongly peaked but
still unimodal. Second, the algorithm and convergence crite-
rion we employ does not guarantee global convergence, and
it seems likely that true optimal paths involve completely
stopping investment at the point (well after tsafe) where our
control paths reach a very low level. Further work is needed
to assess and analyze whether this continued low invest-
ment is in some cases driven by the biological model (e.g.,
due to the effect of population size on the speed of ER).
Note, however, that the unimodal investment trajectories we
find are analogous to that in Lampert and Hastings (2014),
focused on the optimal investment schedule for restoration
to accelerate the recovery of a degraded system in a stable
environment (without evolution). Much like the cessation
of investment when evolutionary rescue can occur naturally
in our model, the optimal investment trajectory in Lampert
and Hastings (2014) ceases after at an “economic restoration
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Fig. 2 Details of the a optimal
investment path, b population
size, and c population growth
rate (log λ̄) under the default
parameter values (Table 1) with
varying K . The strategy that
minimizes costs to intervention
while avoiding a population size
below a threshold vulnerable to
extinction (horizontal dotted line
in B) results in an initial
increase in investment, which
peaks then decreases (a) in the
same year that the growth rate
including the intervention (gray
line) transitions from negative to
zero (stable; C); note that
without the intervention
population growth rate would
still be negative (black line in
C). Investment ramps down after
the time tsafe (vertical dash-dot
line) when the rate of
environmental change equals the
critical rate where evolutionary
rescue can occur, i.e., population
growth can become positive
without intervention (Fig. 1)
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threshold”, before full recovery has occurred. Both Lam-
pert and Hastings (2014) and our study are examples of
a phenomenon that is likely more general in conservation
decision making: optimal management involves investing to
a point when natural processes can complete recovery.

Carrying capacities closer to the initial population
size led to earlier and greater investment in population
enhancement (Fig. 3), which indicates a significant role
of density-dependent suppression of population growth
even for declining populations. This result reflects the fact
that per-capita reproduction decreases as the population
approaches the carrying capacity, and again points to
population growth serving as a more useful indicator than
population size: while a population size near carrying

capacity might, based on intuition, be considered to be
not yet in need of support, the faster initial decline (due
to stronger density dependence in combination with rapid
environmental change) means that it actually requires
greater initial intervention. In addition, this result indicates
that a separate investment to permanently enhance carrying
capacity, such as through restoration, can significantly
reduce the investment necessary in short-term population
enhancement, such as through captive rearing or breeding.
A key next step in this analysis would be to analyze
the optimal investment across actions with long-term
and short-term effects; note that, unless the action with
long-term effects enhances population growth rather than
carrying capacity, investment in short-term population
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Fig. 3 Optimal control with varying carrying capacity (varying
grayscale) and discount rate (varying linetype) for two yearly budgets.
a Population sizes under the optimal path of investment in intervention,
which includes the constraint of not allowing the population to fall
below a size considered vulnerable to extinction (horizontal-dotted
line). b Optimal investment trajectory relative to the budget constraint
(horizontal line), where investment ends when population growth is
positive, lagged after the rate of change decreasing to the critical rate
where evolutionary rescue can occur at tsafe (vertical dash-dot line).
Discount rates have little effect relative to that of carrying capacity.
A carrying capacity closer to the initial population size (which
corresponds to K = 10, 000) leads to initially steeper population
declines and earlier peak investment. The larger budget (b = 0.02 per
year) never constrains the solution. All solutions assume decelerating
environmental change as in Fig. 1a where the rate of environmental
change decreases to the critical rate where evolutionary rescue can
occur at tsafe (vertical dash-dot line)

enhancement will always be necessary under our model
assumptions given rapid environmental change leading to
initial population declines.

Applications

Our model provides a generic representation of cases
of systems where climate change might threaten near-
term persistence and interventions to increase population
size during such a period are feasible. Examples include

climate change-driven changes to rivers threatening Pacific
salmon Pacific salmon (Crozier et al. 2008) whose
populations can be supplemented via hatcheries (Naish
et al. 2007), and climate threats to the persistence of
tropical corals (Bellwood et al. 2004) whose populations
can be supplemented via “coral gardening” (Lirman and
Schopmeyer 2016).

Direct application of our model to one of these
cases would require empirical knowledge of both genetic
potential and the change in the environmental optimum,
as well as other biological parameters. Although such
estimates of genetic parameters are often available (see,
e.g., Carlson et al. 2014) estimates of environmental optima
are rare, but critical for predicting evolutionary responses
to environmental change (Chevin et al. 2010, 2017). Our
analysis demonstrates how such predictions might be used
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Fig. 4 Optimal control with varying discount rate (varying linetype)
including zero discount. The zero-discount path was used to initialize
the runs with positive discount. a Population sizes under the optimal
path of investment in intervention, which includes the constraint of
not allowing the population to fall below a size considered vulnerable
to extinction (horizontal dotted line). b Optimal investment trajectory
relative to the budget constraint (horizontal line). All solutions assume
decelerating environmental change as in Fig. 1a where the rate of
environmental change decreases to the critical rate where evolutionary
rescue can occur at tsafe (vertical dash-dot line)
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by managers; the next step is to develop parameter estimates
and models for specific settings. Such case-specific models
would need to address not only biological parameters but
policy choices, for example, the quasi-extinction threshold,
Nc,s . In fact, even the use of a threshold is a choice. For
some cases, an alternative model where a explicit value is
placed on existence of the population my be preferable.

Assumptions and analytical choices

As with any model, our model makes a number of
simplifying assumptions for tractability. For example,
we use a generic form of population enhancement that
temporarily increases growth rate, which we associate with
actions such as resource supplementation, head-starting,
or captive breeding. As noted in the Introduction, such
actions might incur unintended consequences such as
domestication and reduced fitness, which we ignore with
our assumption that the genetic dynamics (dynamics of āt )
are independent of the intervention. For example, reductions
in wild fitness occurs rapidly in Pacific salmon reared
in hatcheries (Araki et al. 2008); reductions can occur
within one generation (Christie et al. 2012). Incorporating
such unintended fitness consequences of captive rearing
would likely delay the evolutionary response in our model
and therefore might increase the duration of intervention
necessary given our constraint of maintaining a population
size above a critical threshold, depending on how much
an increase in program duration intensifies domestication
selection. Quantitative genetic models indicate that one
potential approach to reducing such unintended fitness
consequences is to consistently target a combination of
captive-reared and wild-reared individuals in the captive
environment (Ford 2002; as opposed to captive-reared
only (Baskett and Waples 2013). Alternatively, careful
management of breeding’s effects on genetic variance in
trait and fitness might prove an accelerator for evolution
and be purposely used (as in “adaptive provenancing” sensu
Weeks et al. 2011; or “assisted evolution” sensu van Oppen
et al. 2015)), where the balance between domestication and
assisted evolution effects would determine the efficacy of
this approach.

One major omission from our modeled scenario is phe-
notypic plasticity. When phenotypes plastically respond to
environmental change, this can facilitate adaptation to a
changing environment (Chevin et al. 2010) and thus evolu-
tionary rescue; the relationship between the environmental
cue that affects phenotype and the environment of selec-
tion, however, is critical for determining whether plasticity
increases the chances of evolutionary rescue (Ashander

et al. 2016). However, accounting for plasticity may be
important in understanding the effects of climate change, as
much of the response in traits observed to date owes to plas-
ticity (Merilä and Hendry 2014). This may be especially true
for species with complex life cycles involving many tran-
sitions between environments (e.g., Pacific salmon, Crozier
et al. 2008).

Our modeled intervention to increase short-term popu-
lation growth assumes immediate effect. In reality, many
interventions, such as habitat restoration or removal of stres-
sors like invasive species, might have delayed effects and
require intervention over multiple years for a permanent
effect to occur (Myers et al. 2000; Borja et al. 2010). In
a discrete-time formulation such as ours, delays like this
would likely result in greater investment earlier in time.
These and other subtleties warrant investigation in future
work on the interaction between microevolution and restora-
tion, a topic of increasing import given climate change (Rice
and Emery 2003).

In our analysis, we rely on a threshold population
size Nc,s to indicate extinction risk to factors such
as demographic stochasticity, environmental stochasticity,
Allee effects, inbreeding, and genetic drift. Although
this approach is common, and may seem conservative
(Gomulkiewicz and Holt 1995), it may mislead. Explicit
analyses of demographic and genetic stochasticity can
more effectively describe how extinction risk varies with
factors such as genetic variance and indicate that minimum
population size might better predict extinction risk than time
below a threshold (Boulding and Hay 2001). However, for
applications, it is more common to set management goals
in terms of population size as compared to actual extinction
risk (Flather et al. 2011). In part, this may be because
population size is easier to quantify than risk.

For our population dynamics, we further assume a satu-
rating, Beverton and Holt (1957) form of density-dependent
regulation, which ignores the potential for overcompensa-
tion (i.e., a decline, rather than saturation, at large pop-
ulation sizes, as in Ricker density dependence). Strong
overcompensation would likely delay the optimal initial
investment until after some population decline has occurred,
such that enhanced population growth would not increase
the population size beyond the overcompensatory level
where large-scale declines would then occur. Analogously,
an initial action to permanently increase carrying capacity
and therefore weaken density dependence might have even
a stronger effect under overcompensatory density depen-
dence. However, we examined only a single life cycle
ordering (reproduction, density dependence, viability selec-
tion), which corresponds to hard selection (Wallace 1975).



Theor Ecol (2019) 12:165–177 175

Viability selection occurring before, rather than after, den-
sity dependence would likely reduce the role of increasing
carrying capacity in decreasing the amount of investment
necessary. Further, we examined only non-overlapping gen-
erations without age structure. The response of such pop-
ulations is an interesting topic for future work, as it is
unclear whether they would respond more or less rapidly
than the case of non-overlapping generations studied here.
On the one hand, overlapping generations with age structure
can increase the maintenance of genetic variation (Ellner
and Hairston 1994), and greater genetic variation can mean
greater adaptive capacity and therefore more rapid evolu-
tionary response. On the other hand, generation time is
longer in such populations, resulting in slower evolutionary
response.

We relied on standard assumptions for quantitative
genetic models, which include a large number of loci
contributing additively to a trait with a normal distribution
(Lande 1976, 1982). Such assumptions typically have
minor effects on the predicted evolutionary trajectory
((Turelli and Barton 1994)). We did account for the effect
of population size on genetic variance, where we used
the stochastic house-of-cards (SHC) approximation as in
Bürger and Lynch (1995). This captures the effect of
how small population sizes will lower genetic variance,
thus reducing the capacity for evolutionary rescue (Lynch
and Lande 1993; Bürger and Lynch 1995; Gomulkiewicz
and Holt 1995; Carlson et al. 2014) and therefore likely
increase the amount and duration of investment necessary.
Although, as Kopp and Matuszewski (2013) point out,
the SHC approximation does not account for the effect
of directional selection on increasing genetic variance,
both this effect and the mutation-selection-drift balance
modeled by the SHC occur only after some transient period;
the SHC approximation likely captures the correct overall
average effect of declining population size: reducing genetic
variance.

Our major economic assumption is that cost of the
intervention is quadratic in the proportion by which the
intervention increases the growth rate. In reality, there
might be decreasing costs, i.e., returns to scale, for
supplementation programs. However, for planning initial
investments in a program for a small and declining
population, the context we focus on here, such returns
may never be achieved. Future research should example
sensitivity to different assumptions on the form of costs for
supplementation.

Evolutionary rescuemodeling frameworks

As noted in the introduction, our model of a decelerating
optimum is an intermediate between the typical evolution-

ary rescue models of either a sudden environmental shift
(Gomulkiewicz and Holt 1995; Carlson et al. 2014) or an
ongoing moving optimum (Lynch and Lande 1993; Bürger
and Lynch 1995). Because we assume that the rate of envi-
ronmental change is initially greater than the critical rate
of change for evolutionary rescue to occur, without (and
even with) intervention, we find a U-shaped population
trajectory of initially decreasing, then increasing, popula-
tion size (Fig. 1b), commonly associated with models that
have sudden environmental shifts. As compared to other
moving-optimum models, which typically use criteria for
rescue that are conservative and imply that, when evolution-
ary rescue occurs, population size never declines (Kopp and
Matuszewski 2013), we present a more realistic representa-
tion of environmental change such as climate change (albeit
one that does not yet include effects on climate variabil-
ity), while still constructing a generic model as compared
to system-specific models of evolutionary response to local-
scale climate trajectories (e.g., Baskett et al. 2009, 2010;
Sinervo et al. 2010; Reed et al. 2011). Therefore, the decel-
erating optimum model illustrates a general approach to
exploring the interaction between mitigation (management
to reduce the rate of change) and adaptation (management
to enhance the capacity for local systems to respond to
change) in promoting evolutionary rescue and population
persistence under climate change.
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Appendix A: Initialization and convergence
of optimal paths

We initialized all optimization runs from the optimal path
found with zero discount rate with uniform random initial
conditions, and run for 2,500 iterations (Fig. 4). To assess
convergence, we re-ran each parameter combination for
1000, 2000, and 2500 iterations for different random seeds.
The longer runs showed consistent paths (Figs. 5 and
6), which is a criterion for convergence recommended
for global optimization algorithms like the augmented
Lagrangian method we employed (Johnson 2016).
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Fig. 5 Optimal paths for
increasing run times (lighter
grays) to show convergence of
control paths for different
budgets (columns) and discount
rates (subpanel rows) at three
carrying capacities
corresponding to a K = 10, 000,
b K = 15, 000. There are three
runs shown in each panel: 1000,
2000, and 2500 iterations. In
most cases, the two longest runs
resulted in the same path
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Fig. 6 Optimal paths for
increasing run times (lighter
grays) to show convergence of
population trajectories for
different budgets (columns) and
discount rates (subpanel rows) at
three carrying capacities
corresponding to a K = 10, 000,
b K = 15, 000. There are three
runs shown in each panel: 1000,
2000, and 2500 iterations. In
most cases, the two longest runs
resulted in the same path.
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Appendix B: Code and graphics

We performed all numerical analyses in R using the
nloptr package to perform optimization and dplyr to
manage numeric outputs; we provide R code and metadata
for optimal paths in Online Resource 1; the optimal path
used for initial conditions is provided in Online Resource
2 and the optimal paths for all parameter combinations are
provided in Online Resource 3. We produced all graphics
using R packages ggplot2 and cowplot.
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