Check for
Updates

Demonstration Papers |

SIGIR 20, July 25-30, 2020, Virtual Event, China

Supporting Interoperability Between Open-Source Search
Engines with the Common Index File Format

Jimmy Lin,' Joel Mackenzie,” Chris Kamphuis,” Craig Macdonald, Antonio Mallia,’
Michat Siedlaczek,” Andrew Trotman,’ Arjen de Vries’

! University of Waterloo
* University of Glasgow

ABSTRACT

There exists a natural tension between encouraging a diverse ecosys-
tem of open-source search engines and supporting fair, replicable
comparisons across those systems. To balance these two goals, we
examine two approaches to providing interoperability between the
inverted indexes of several systems. The first takes advantage of in-
ternal abstractions around index structures and building wrappers
that allow one system to directly read the indexes of another. The
second involves sharing indexes across systems via a data exchange
specification that we have developed, called the Common Index File
Format (C1rF). We demonstrate the first approach with the Java sys-
tems Anserini and Terrier, and the second approach with Anserini,
JASSv2, OldDog, PISA, and Terrier. Together, these systems provide
a wide range of implementations and features, with different re-
search goals. Overall, we recommend CIFF as a low-effort approach
to support independent innovation while enabling the types of fair
evaluations that are critical for driving the field forward.

ACM Reference Format:

Jimmy Lin, Joel Mackenzie, Chris Kamphuis, Craig Macdonald, Antonio
Mallia, Michat Siedlaczek, Andrew Trotman, and Arjen de Vries. 2020.
Supporting Interoperability Between Open-Source Search Engines with
the Common Index File Format. In 43rd International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (SIGIR ’20),
FJuly 25-30, 2020, Virtual Event, China. ACM, New York, NY, USA, 4 pages.
https://doi.org/lo.l 145/3397271.3401404

1 INTRODUCTION

Academic information retrieval researchers often share their inno-
vations in open-source search engines, a tradition that dates back
to the SMART system in the mid 1980s [2]. Today, there exists a vi-
brant ecosystem of IR toolkits capturing a variety of ranking models,
query evaluation techniques, and other research innovations. Yet,
as several replicability and reproducibility efforts have shown, it is
often difficult to compare different systems in a fair manner, both
in terms of retrieval effectiveness and query evaluation efficiency,
on standard test collections [3, 7]. In terms of effectiveness, many
mundane details such as the stemmer, stopwords list, and other
difficult-to-document implementation choices matter a great deal,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGIR 20, July 25-30, 2020, Virtual Event, China

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8016-4/20/07...$15.00
https://doi.org/10.1145/3397271.3401404

2 The University of Melbourne
> New York University

2149

% Radboud University
® University of Otago

often having a greater impact than more substantive differences
such as ranking models. These issues also affect efficiency-focused
studies—for example, the presence or absence of stopwords alters
skipping behavior during postings traversal.

On the one hand, a vibrant intellectual community demands
diversity in terms of the tools available to researchers. On the
other hand, the ability to conduct meaningful evaluations across
systems is critical to driving progress. How can we meaningfully
balance these two desiderata? Despite explorations of alternative
formulations of keyword search [1], inverted indexes and associated
data structures remain at the heart of nearly all IR systems today.
Thus, if we are able to devise a mechanism for different search
engines to share index structures, this would represent substantial
progress towards achieving our aforementioned goals.

In principle, there are two ways such sharing can be accom-
plished: Since most search engine implementations have internal
abstractions of index structures—providing support for basic opera-
tions such as postings lookup and traversal—it may be possible for
one search engine to directly read the index structures created by
another through an intermediate adaptor or wrapper. Alternatively,
we could define a data exchange format through which one system
exports its index, to be imported by another system. For expository
convenience, we refer to the first as the “wrapper” approach and
the second as the “data exchange” approach.

There are advantages and disadvantages to both approaches.
The wrapper approach is only possible if the search engine imple-
mentations provide the necessary internal abstractions and that
their definitions are (reasonably) aligned; feasibility is further con-
strained by technical practicalities. For example, interoperability
might be possible between two JVM-based systems, but bridging a
Java and a C++ implementation might be too onerous. Furthermore,
this approach requires n x (n — 1) distinct wrappers to support inter-
operability between n systems, as every system would need to wrap
the index structures of every other system. A final disadvantage is
the overhead involved in these wrappers, which might make fair
efficiency-focused evaluations difficult to conduct.

A data exchange approach presents a different set of tradeoffs.
As such structures are not meant to be operated on directly, each
system would need to read the data and rewrite the indexes into
the system’s native representation, necessitating an extra step to
enable interoperability. In order for the format to be general and
robust, it is likely to be more verbose than each engine’s native
encoding, and thus this approach has the disadvantage of requir-
ing researchers to distribute (across the network) large files that
may be unwieldy to manipulate. On the plus side, though, this ap-
proach avoids quadratic interactions, as each system would only
need to write an exporter and an importer of the exchange format

https://doi.org/10.1145/3397271.3401404
https://doi.org/10.1145/3397271.3401404
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3397271.3401404&domain=pdf&date_stamp=2020-07-25

Demonstration Papers |

to support full interoperability [4]. Finally, data exchange incurs
no performance penalty at query time, and thus can support fair
efficiency evaluations.

This work demonstrates both approaches. First, we apply the
wrapper approach to bridge Terrier and Anserini, both Java-based
systems. Second, we propose a Common Index File Format (CIFF)
and have built an index exporter that converts Lucene indexes into
this format. Additionally, we have implemented importers to take
Crrr and transform the data into the native representations of four
other systems (JASSv2, OldDog, PISA, and Terrier), demonstrating
interoperability by data exchange in practice.

After presenting experimental results using both approaches, we
recommend the second and our Common Index File Format (C1FF)
as the preferred method to enable rapid, decoupled independent
research and exploration of ideas while enabling fair comparisons
between systems that are critical to advancing the field.

2 EXPERIMENTAL SETUP

Our efforts brought together researchers who have built a number
of open-source search engines (listed alphabetically by system):

e Anserini [15] is an IR toolkit built on the popular open-source
Lucene search library.

e JASSv2 [12], written in C++, uses an impact-ordered index and
processes postings Score-at-a-Time. It can index TREC collections
directly, but imports web collection indexes from ATIRE.

PISA [10] is an efficiency-focused search system, containing
many state-of-the-art indexing and retrieval techniques. PISA
primarily uses document-ordered indexes and Document-at-a-
Time query evaluation.

OldDog [5] is an IR engine built using a relational database,
named after the work of Miihleisen et al. [11]. Its design supports
rapid prototyping through formulation of different SQL queries.
Terrier [9] is an IR toolkit, first released in 2004. It is written
in Java, and supports a large number of TREC collections and
retrieval approaches, including BM25 and learning to rank.

For our experiments, we used the following two test collections:

® Robust@4: TREC Disks 4 & 5, excluding Congressional Record,
with TREC topics 301-450, 601-700.

e ClueWeb12B: The ClueWeb12-B13 web crawl from Carnegie Mel-
lon University, with TREC topics 201-300.

The first is perhaps the most widely used test collection in IR. The
goal of using ClueWeb12B is to demonstrate the scalability of our
approach—to provide a sense of how large CIFF can get, and to
confirm that these structures can still be manipulated on modern
hardware with reasonable ease.

3 WRAPPERS

As an example of the wrapper approach, we describe how interop-
erability between Terrier and Anserini, both Java-based systems, is
achieved by wrapping the Lucene indexes generated by Anserini in
Terrier APIs, such that Terrier can directly traverse Lucene postings
for query evaluation.

The Terrier wrapper! we have implemented for the Lucene
IndexReader API allows a Terrier postings list iterator to directly

!https://github.com/cmacdonald/terrier-lucene

2150

SIGIR 20, July 25-30, 2020, Virtual Event, China

System AP P@30
Anserini (BM25) 0.2531 0.3102
Anserini (BM25+RM3) 0.2903 0.3365
Anserini (BM25+Axiomatic QE) 0.2896 0.3333
Terrier (BM25) 0.2530 0.3106
Terrier (BM25+Bol QE) 0.2931 0.3406
Terrier (BM25+RM3) 0.2945 0.3371
Terrier-Lucene (BM25) 0.2524 0.3091
Terrier-Lucene (BM25+Bol QE) 0.2890 0.3356
Terrier-Lucene (BM25+RM3) 0.2887 0.3284

Table 1: Comparison of Anserini, Terrier, and the Terrier
wrapper for Anserini’s Lucene indexes on Robust04.

call the underlying Lucene methods; the change is entirely trans-
parent to Terrier. This works well for simple frequency-based and
positional representations, but we did not implement index fields
due to differences in how they are defined in the two systems. Re-
sults on Robust®@4 are shown in Table 1, where it is now possible
to compare different query expansion methods using essentially
the same index. We note that differences in BM25 effectiveness are
very small, while the various query expansion methods have at
most 2% AP difference.

Despite the feasibility of this approach here, we felt that the
effort involved was too substantial to be scaled to more systems. In
particular, since Terrier and Anserini were both implemented in
Java, API-level integration was not too onerous. However, bridging
either with, for example, a system implemented in C++ such as
PISA or JASSv2, would involve much more effort. This motivated
us to explore the data exchange approach more thoroughly.

4 COMMON INDEX FILE FORMAT

Our second approach to supporting interoperability among different
search engines is to define a data exchange specification that we
call the Common Index File Format (C1rF) whereby systems can
share their inverted indexes and other associated data structures
that are required for ranking. Critically, we intend for this to be an
exchange format and not an operational one—that is, we expect each
system to read CIFF and transform the contents into the system’s
own internal representation.

At a high level, C1rF defines a specification for serializing post-
ings lists and other associated data structures necessary for search
engines. Put into practice, the simplest workable exchange format
could be based on plain text files. Postings lists have regular, re-
peating structure, and in principle, it would be possible to define a
delimited text format for capturing these structures. However, we
decided against this approach for several reasons: In such a scheme,
metadata such as the semantics of the delimiters would need to be
documented separately, and thus easily “lost”. Additionally, there
is no easy way to enforce the integrity and validity of a particular
export—unless we explicitly build in error checks, in which case
the format becomes even more complicated.

Ultimately, for serialization we decided to use Protocol Buffers
(protobufs), which provide a language-neutral, platform-neutral
extensible mechanism for serializing structured data that is widely

https://github.com/cmacdonald/terrier-lucene

Demonstration Papers |

deployed in industry. Protobufs share some similarities with C
structs in providing a language to define abstract data types that
can be arbitrarily nested and repeated to represent lists. The proto-
buf specification restricts types to those found on nearly all plat-
forms (e.g., 32-bit integers) and from a definition, the protobuf
compiler can automatically generate code for reading and writing
data in the specified format, supporting a multitude of languages
and platforms.

The complete specification of the protobuf messages defined in
CrFF are available at http://ciff.osirrc.io/. Lacking sufficient space
to include here, we instead present a high-level overview: A CIFr
export is comprised of a single, possibly compressed, file with a
sequence of delimited protobuf messages, exactly as follows:

o a Header message, followed by

e exactly the number of PostingsList messages specified in the
num_postings_lists field of the Header, followed by

o exactly the number of DocRecord messages specified in the
num_docs field of the Header.

A CIFF export begins with a Header that captures metadata such
as versioning information, global index statistics, and a description
of how the export was generated. The num_postings_lists field
specifies the number of postings lists that are included in a particu-
lar export, which allows CIFF to support the use case of including
only postings lists that correspond to a particular set of evalua-
tion topics. Naturally, such a setting yields an export that is far
smaller than the export of a complete index. A PostinglList con-
tains the term, its document frequency, its collection frequency, and
a number of individual Posting messages equal to the document
frequency. Following standard conventions, the docid is encoded
as gaps. A CIFF export ends with document-specific information
that is captured by a series of DocRecord messages, which contain
the integer docid (referenced in the postings lists), the external
collection docid (a string), and the length of the document.

A reference implementation that generates (and reads) CIFF ex-
ports from Lucene indexes built by Anserini is open-source and
available at http://ciff.osirrc.io/. We have also implemented im-
porters for all the other systems described in Section 2; links to
code can also be found in our repository. The complete Anserini
Lucene CI1FF exports of the Robust@4 and ClueWeb12B indexes used
in our experiments are 162 MiB and 25 GiB, respectively, as gzipped
files; exports that contain only the query terms are 17 MiB and 1.3
GiB (compressed), respectively. Links to all these exports can be
found at the above URL as well. We see that, even for reasonably
large web collections that are used in IR research, CIFF exports
are modest in size for modern hardware, both to ship across the
network and to manipulate on disk.

4.1 Case Study: BM25 Variants

With CIFF, it is possible to conduct meaningful evaluations of rank-
ing models from diverse systems that completely factor out the
effects of different document processing pipelines (i.e., document
cleaning regimes, tokenization, stopwords, etc.). We illustrate with
a simple case study examining “BM25”.

One major finding from previous replicability studies [3, 7] is
that systems purporting to implement BM25 can exhibit large ef-
fectiveness differences on standard test collections. This is due to

2151

SIGIR 20, July 25-30, 2020, Virtual Event, China

Robust04 ClueWeb12B

System

AP P@30 NDCG ERR
Native Document Processing
JASSv2 0.2570 0.3157 0.1132 0.0809
PISA 0.2543 0.3139 0.1169 0.0845
Terrier 0.2530 0.3106 0.1308 0.0978
Anserini 0.2531 0.3102 0.1340 0.0970
Common Index File Format
JASSv2 0.2524 0.3096 0.1311 0.0937
PISA 0.2519 0.3083 0.1345 0.0971
OldDog-A 0.2531 0.3102 0.1345 0.0971
OldDog-L 0.2530 0.3102 0.1345 0.0971
Terrier 0.2524 0.3091 0.1321 0.0956

Table 2: Comparison of BM25 variants.

a combination of two factors: First, systems have different docu-
ment processing pipelines; details like data cleaning make a big
difference, but are relatively uninteresting to researchers. Second,
“BM25” actually encompasses a large number of variants. However,
Trotman et al. [14] and Kamphuis et al. [6] found that such differ-
ences are unlikely to be statistically significant. In both cases, this
conclusion was arrived at by the authors implementing all the vari-
ants in the same search engine to support the comparisons. Needless
to say, this is a time-consuming task, and not scalable in the general
case, where we would like to compare arbitrary ranking functions
from any search engine. This is exactly where CIFF comes in: With
our exchange format, it is possible to conduct fair evaluations of
ranking effectiveness on different systems.

To illustrate, we present a simple, multi-system study of BM25
variants. For Robust@4 and ClueWeb12B, we exported the Lucene
indexes generated by Anserini into CIFF (see previous section),
which is then imported by all the remaining systems. We evalu-
ated each system’s BM25 ranking using standard metrics: AP (at
rank 1000) and P@30 for Robust04, NDCG@10 and ERR@10 for
ClueWeb12B. In all cases we set k; = 0.9 and b = 0.4, per the rec-
ommendations of Trotman et al. [13]. These results are shown in
Table 2. In the top block of the table, we present figures from each
system’s “native” document processing pipeline to provide points
of reference. Note that since Anserini is built directly on Lucene,
its C1rF and “native” results are identical. For OldDog, we report
both ATIRE BM25 (OldDog-A) and Lucene BM25 (OldDog-L).

There are three sources of differences in systems’ rankings: (1)
implementation of the document processing pipeline, (2) variants of
the BM25 scoring function (including different parameter settings,
quantization effects when computing impact scores, etc.), and (3)
tie-breaking effects. With CIrr, we have eliminated the first effect.
The third effect has been characterized in previous work [8, 16] and
is mitigated here because CIFF ensures that documents are consis-
tently ordered across all systems. Thus, this experiment allows us
to isolate the effects of BM25 variants, although we must still man-
ually ensure that every system uses the same parameter settings.
In short, we have replicated previous replicability studies [6, 14],
but in a manner that supports cross-system comparisons.

http://ciff.osirrc.io/
http://ciff.osirrc.io/

Demonstration Papers |

(]

— Anserini Native

NDCG@10

SIGIR 20, July 25-30, 2020, Virtual Event, China

— Anserini O Native ¢ CIFF

Topic

Topic

Figure 1: Per-topic scores for all systems, sorted in descending order of the metric (y-axis), based on Anserini’s scores: Robust04

on left and ClueWeb12B on right.

From Table 2, we see that effectiveness differences between the
various systems with native document processing are larger than
with C1FF. This effect is particularly noticeable with ClueWeb12B:
On web documents, document processing (e.g., cleaning of HTML)
has a much larger impact on effectiveness compared to Robust4,
which comprises relatively clean SGML documents.

We conducted a Tukey’s HSD (honestly significant difference)
test for all the “native” systems as a group and with CIFF as a
group: None of the differences are statistically significant, for both
Robust@4 and ClueWeb12B. Nevertheless, if we examine per-topic
scores, the differences between each system’s native document pro-
cessing pipeline and CIFF become much more prominent. Consider
Figure 1 (left), which plots the per-topic AP scores for Anserini on
Robust®4, in decreasing order of effectiveness. We have overlaid
the scores for the corresponding topics from all systems for both
the native and C1rF conditions. Clearly, we see that CIFF reduces
most of the per-topic effectiveness differences between systems.
This experiment was repeated on the ClueWeb12B collection, us-
ing NDCG@10 as the metric; results are shown in Figure 1 (right).
Once again, although there remain differences between systems’
scores under CIFF, the conflating issue of document processing has
been eliminated, thereby allowing researchers to more accurately
characterize effectiveness.

Our simple case study demonstrates how CIFF supports meaning-
ful cross-system comparisons. This approach can be easily extended
to evaluations of different ranking models, candidate generation
techniques in multi-stage ranking pipelines, performance compar-
isons of query latency, and beyond.

5 CONCLUSIONS

We envision CIFF to be an ongoing, open, and community-driven
effort that allows researchers to independently pursue their own
lines of inquiry while supporting fair and meaningful evaluations.
Additional contributions are most welcome! As our efforts gain trac-
tion, we envision future research papers adopting “standard” CIrr
exports in their experiments—this would have the dual benefit of
standardizing empirical methodology and more clearly highlighting
the impact of proposed innovations.

2152

ACKNOWLEDGMENTS

This research was supported in part by the Natural Sciences and
Engineering Research Council (NSERC) of Canada, Compute On-
tario and Compute Canada, the Australian Research Council (ARC)
Discovery Grant DP170102231, the US National Science Founda-
tion (IIS-1718680), and research program Commit2Data with project
number 628.011.001 financed by the Dutch Research Council (NWO).

REFERENCES

[1] Leonid Boytsov, David Novak, Yury Malkov, and Eric Nyberg. 2016. Off the
Beaten Path: Let’s Replace Term-Based Retrieval with k-NN Search. In CIKM.
Chris Buckley. 1985. Implementation of the SMART Information Retrieval System.
Department of Computer Science TR 85-686. Cornell University.

Ryan Clancy, Nicola Ferro, Claudia Hauff, Jimmy Lin, Tetsuya Sakai, and
Ze Zhong Wu. 2019. Overview of the 2019 Open-Source IR Replicability Challenge
(OSIRRC 2019). In CEUR Workshop Proceedings Vol-2409.

Matt Crane, J. Shane Culpepper, Jimmy Lin, Joel Mackenzie, and Andrew Trot-
man. 2017. A Comparison of Document-at-a-Time and Score-at-a-Time Query
Evaluation. In WSDM.

Chris Kamphuis and Arjen de Vries. 2019. The OldDog Docker Image for OSIRRC
at SIGIR 2019. In CEUR Workshop Proceedings Vol-2409.

Chris Kamphuis, Arjen de Vries, Leonid Boytsov, and Jimmy Lin. 2020. Which
BM25 Do You Mean? A Large-Scale Reproducibility Study of Scoring Variants.
In ECIR.

Jimmy Lin, Matt Crane, Andrew Trotman, Jamie Callan, Ishan Chattopadhyaya,
John Foley, Grant Ingersoll, Craig Macdonald, and Sebastiano Vigna. 2016. Toward
Reproducible Baselines: The Open-Source IR Reproducibility Challenge. In ECIR.
Jimmy Lin and Peilin Yang. 2019. The Impact of Score Ties on Repeatability in
Document Ranking. In SIGIR.

Craig Macdonald, Richard McCreadie, Rodrygo L.T. Santos, and Iadh Ounis. 2012.
From puppy to maturity: Experiences in developing Terrier. OSIR Workshop at
SIGIR.

Antonio Mallia, Michat Siedlaczek, Joel Mackenzie, and Torsten Suel. 2019. PISA:
Performant Indexes and Search for Academia. In CEUR Workshop Proceedings
Vol-2409.

Hannes Miihleisen, Thaer Samar, Jimmy Lin, and Arjen de Vries. 2014. Old Dogs
Are Great at New Tricks: Column Stores for IR Prototyping. In SIGIR.

Andrew Trotman and Matt Crane. 2019. Micro- and Macro-optimizations of SaaT
Search. Software: Practice and Experience 49, 5 (2019), 942-950.

Andrew Trotman, Xiang-Fei Jia, and Matt Crane. 2012. Towards an Efficient
and Effective Search Engine. In SIGIR 2012 Workshop on Open Source Information
Retrieval.

Andrew Trotman, Antti Puurula, and Blake Burgess. 2014. Improvements to
BM25 and Language Models Examined. In ADCS.

Peilin Yang, Hui Fang, and Jimmy Lin. 2018. Anserini: Reproducible Ranking
Baselines Using Lucene. Journal of Data and Information Quality 10, 4 (2018),
Article 16.

Ziying Yang, Alistair Moffat, and Andrew Turpin. 2016. How Precise Does
Document Scoring Need to Be?. In AIRS.

=
2

[11

[12]

(13]

[15

[16

	Abstract
	1 Introduction
	2 Experimental Setup
	3 Wrappers
	4 Common Index File Format
	4.1 Case Study: BM25 Variants

	5 Conclusions
	References

