Elastic Scheduling of Parallel Real-Time Tasks with Discrete

Utilizations
James Orr Johnny Condori Uribe Chris Gill
Washington University in St. Louis Purdue University Washington University in St. Louis
james.orr@wustl.edu jecondori@purdue.edu cdgill@wustl.edu
Sanjoy Baruah Kunal Agrawal Shirley Dyke
Washington University in St. Louis Washington University in St. Louis Purdue University
baruah@wustl.edu kunal@wustl.edu sdyke@purdue.edu
Arun Prakash Iain Bate Christopher Wong
Purdue University University of York Brown University
aprakas@purdue.edu iain.bate@york.ac.uk christopher_wong2@brown.edu
Sabina Adhikari
Stephen F. Austin State University
adhikaris3@jacks.sfasu.edu
ABSTRACT We use the real-world example of real-time hybrid simulation as

Elastic scheduling allows for online adaptation of real-time tasks’
utilizations (via manipulation of each task’s computational work-
load or period) in order to maintain system schedulability in case
the utilization demand of one or more tasks changes. This is done
currently by assigning each task a utilization (and therefore period
or workload) from within a continuous range of acceptable values.
While this works well for anytime tasks whose quality of service
improves with duration or for tasks that can run at any rate within
a given range, many computationally-elastic tasks have a specific
workload for each distinct mode of operation and therefore cannot
perform arbitrary amounts of work. Similarly, some period-elastic
tasks must run at specific (e.g. harmonic) rates. Therefore, a discrete
set of candidate utilizations per task must be accommodated in such
cases.

This paper provides a new elastic task model in which each task
has a discrete set of possible utilizations (instead of a continuous
range). This allows users to specify only relevant candidate periods
and workloads for each task. The discrete nature of this model also
allows each task to modify its workload and/or its period when
changing its mode of operation, instead of adapting in only one
dimension of task utilization. Elastic tasks thus can exploit both
period elasticity and computational elasticity. This greatly increases
both the diversity of adaptations available to each task and the kinds
of real-time tasks relevant to elastic scheduling.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

RTINS 2020, June 9-10, 2020, Paris, France

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7593-1/20/06...$15.00
https://doi.org/10.1145/3394810.3394824

a motivating application domain with discretely computationally-
elastic, period-elastic, and combined-elastic parallel real-time tasks
under the Federated Scheduling paradigm. We prove the scheduling
of these tasks to be NP-hard, and provide a pseudo-polynomial time
scheduling algorithm. We then use this scheduling algorithm to
implement the first virtual real-time hybrid simulation experiment
in which discrete elastic adaptation of platform resource utiliza-
tions enables adaptive switching between controllers with differing
computational demands. We also study the effects of scheduling
tasks with discretized vs. continuous candidate utilizations.

CCS CONCEPTS

« Computer systems organization — Real-time system archi-
tecture; Real-time system specification; Embedded software.

KEYWORDS

real-time scheduling, discrete elastic tasks, real-time hybrid simula-
tion

ACM Reference Format:

James Orr, Johnny Condori Uribe, Chris Gill, Sanjoy Baruah, Kunal Agrawal,
Shirley Dyke, Arun Prakash, Iain Bate, Christopher Wong, and Sabina
Adhikari. 2020. Elastic Scheduling of Parallel Real-Time Tasks with Discrete
Utilizations. In 28th International Conference on Real-Time Networks and
Systems (RTINS 2020), June 9-10, 2020, Paris, France. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3394810.3394824

1 INTRODUCTION

The elastic task model, first introduced by Buttazzo et al. [3],
allows for online modification of task periods to maintain schedu-
lability of adaptive period-elastic tasks without the pessimism
required for a static schedule accommodating the worst-case be-
havior of the most utilization-intensive mode of operation. That
model was later extended to include multiprocessor scheduling,
tasks with internal parallelism, and tasks that instead can adapt
their computational loads (computational elasticity). [16-18]

https://doi.org/10.1145/3394810.3394824
https://doi.org/10.1145/3394810.3394824

RTNS 2020, June 9-10, 2020, Paris, France

In this paper we provide a new elastic task model that expands
the state of the art by introducing discrete elastic scheduling in
which each task’s assigned utilization is obtained from a finite set of
candidate tuples, each of which has an associated period and work-
load. From one tuple to the next, a task may change its period, its
computational workload, or both. The discrete elastic model more
accurately describes tasks that have distinct modes of operation,
such as a robot with multiple available planning algorithms with
varying degrees of computational demand, or a control application
that may get better results from running at a higher frequency
but needs to maintain harmonic rates with respect to other tasks
in the system. Unlike the continuous elastic model, the discrete
model allows adaptation of both computational demand and period
together, at once (combined elasticity).

We use the real-world application domain of real-time hy-
brid simulation (RTHS), used by earthquake engineers to un-
derstand structural behavior with high fidelity at realistic time-
scales [9, 10, 19], as a motivating example for discrete elastic sched-
uling. In RTHS a well-understood portion of a structure is simulated
while a portion to be tested or validated is physically built. The
combined structure is then connected via sensors and actuators and
subjected to external stimuli (such as earthquake ground motions)
at fine-grained time scales in order to examine how the relevant por-
tions behave. Different portions of the structure can be simulated at
different rates to yield resources to portions of special interest (e.g.,
those near the physical specimen) that require higher resource uti-
lization. However, to date, resources have been statically assigned
in RTHS experiments: each substructure runs at a fixed rate with
a fixed set of computational resources, and changes to the system
can only be made between successive runs. We exploit discrete
elastic scheduling to conduct the first (virtual) real-time hybrid
simulation experiment in which resource adaptation enables adap-
tive switching between controllers with different computational
demands. In this experiment, the control algorithm that determines
the response to the system’s behavior is able to execute in multi-
ple modes of operation, i.e., using a non-linear Kalman filter vs. a
more computationally-expensive particle filter. Other tasks in the
system (which must run at rates harmonic with that of the control
algorithm) are similarly able to adapt their periods, computational
loads, or both, accordingly.

This paper is structured as follows. Section 2 provides relevant
background information. Section 3 presents the discrete elastic
scheduling system model, including a discussion of the impli-
cations of combined elasticity, which allows for a task to adapt
both its computational workload and its period. In Section 3 we
also prove the scheduling of parallel tasks using this model under
the Federated Scheduling paradigm to be (weakly) NP-hard via a
reduction from the Knapsack Problem. We then present a pseudo-
polynomial time dynamic-programming algorithm (obtained by
reducing our scheduling problem to an instance of the Multiple
Choice Knapsack Problem) that can efficiently create an optimal
schedule for such tasks. Section 4 describes our adaptive virtual
RTHS experiment. Section 5 evaluates the level of pessimism when
using discrete elastic scheduling vs. idealized (but often practically
unsuitable) continuous elastic scheduling. Section 6 concludes and
describes future directions for extending this work.

Orr et al.

Although this paper focuses on the discrete elastic scheduling of
parallel real-time tasks under federated scheduling, we point out
that many of the concepts introduced here are also applicable to
sequential tasks; hence, our proposed model should be considered
an extension of the elastic task models for sequential and parallel
workloads.

2 BACKGROUND

In this paper we present the novel concept of discrete elastic schedul-
ing, focusing on discretely elastic parallel real-time tasks under the
Federated Scheduling paradigm. This section provides background
information about elastic scheduling and the example application
domain that motivates our approach and is used to evaluate it:
real-time hybrid simulation (RTHS).

2.1 Elastic Scheduling

The (continuous) elastic task model was first proposed by But-
tazzo et al. [3] for scheduling adaptive sequential tasks on unipro-
cessor systems via period manipulation. The approach is based on a
sophisticated analogy between (1) uniprocessor tasks maintaining a
collective utilization no greater than a desired utilization Uy (e.g. for
schedulability, U; = 1.0 for preemptive EDF scheduling) and (2) a
set of springs laid end-to-end being compressed by a collective force
until their combined length is at or below a desired maximum length.
Just as springs have different maximum and minimum lengths and
resistances to compression, elastic tasks have different minimum
and maximum period values (and therefore different maximum and
minimum utilizations) and resistances to changing their periods [3].

Each task is formally represented as 7; = <C,-, Tl.(max), Tl.(min), E,~>
where C; represents the task’s constant worst-case execution time

(WCET) and the closed range [Tl.(mm), Ti(max)] spans all acceptable
period values for a task, where a lower period (and therefore higher
utilization) is always preferred. The current period is denoted T;.
A task’s elasticity coefficient E; is a measure of how relatively easy
or difficult it is to change a task’s period, analogous to a spring’s
stiffness as a measure of its resistance to changing its length: a
higher elasticity coefficient indicates a more elastic task.

Buttazzo et al. present an efficient (©(n?)) iterative scheduling
algorithm [3] that increases each task’s period T; from Tl.(mm) pro-

portional to its elasticity coefficient E; (to a maximum of Tl.(max)).

Recall that a task’s utilization U; = % With a constant C;, the
values Tl.(min) and Tl.(max) therefore can be expressed equivalently

as maximum and minimum utilizations Ul.(max) and Ul.(min), respec-
tively. The algorithm ends either when tasks successfully have been
assigned periods such that their combined utilization is less than

Uy, or when each task’s period has been stretched to Tl.(max) (giving
Ul.(mi")) and their combined minimum utilization is still greater than
Uy, in which case the taskset is declared unschedulable. Chantem
et al. [6, 7] later proved this algorithm to be equivalent to solving
the following optimization problem:

n
minimize Z %(Ui(max) - U;)? (1)

i=1 "t

Elastic Scheduling of Parallel Real-Time Tasks with Discrete Utilizations

such that)
Ui(mm) <U; £ Ul.(max) for all 7;

i Ui <U,.
i=1

Uniprocessor elastic scheduling has since been expanded to in-
clude constrained deadlines [6], resource sharing [4] and unknown
computational loads [5].

The Federated Scheduling paradigm was first introduced by
Li et al. [15] to schedule sporadic parallel tasks represented as di-
rected acyclic graphs (DAGs), each with a utilization U; > 1 that
demands more than a single processor. These high-utilization
tasks are each given exclusive use of m; processors according to

the equation

m; = [Cl Li } @

Ti - L;

In Equation 2, C; is the task’s cumulative work, or the sum of the
worst-case execution times of all nodes in its DAG of precedence-
constrained sub-tasks. This is equivalent to the task’s worst-case
execution time if run on a single processor. Similarly L; is its span
(or critical-path length), the longest worst-case execution time of
any sequential chain of nodes in the DAG. This forms a lower bound
on the task’s execution time on a theoretically infinite number of
processors. T; is each task’s minimum inter-arrival time or pe-
riod, which also serves as its implicit deadline. It was proved [15]
that a taskset composed of high utilization tasks is schedulable if
the required number of processors is less than or equal to m, the
number of processors available to the system. Low-utilization
tasks with utilization U; < 1 are treated as sequential tasks under
Federated Scheduling and are scheduled on the pool of remaining
processors.

Later work by Orr et al. [17, 18] extended the elastic task model
to include parallel real-time DAG tasks under Federated Scheduling.
To keep parallel elastic scheduling as semantically equivalent to
Buttazzo’s original model as possible, the authors present an optimal
scheduling algorithm that directly solves a minimization problem
similar to that given in Equation 1:

and

n
1
minimize Z E(Ui(max) - U;)? 3)
i=1 !
such that:)
Ul.(mm) <U; < Ui(max) for all 7;
and

n
Zmi <m
i=1

Each task is initially given its minimum number of processors,
and the remaining CPUs are allocated in a manner that minimizes
the sum in Equation 3. That work also expanded the concept of
task elasticity. Noting that task utilization is dependent on both
computational load and period, it allows for tasks to have a range of

acceptable utilizations [Ui(min),Ui(max)] that can be either a range

of acceptable periods [Tl.(min) , Tl.(max)] as in Buttazzo’s model or a
range of acceptable computational loads [Cgmin) , Cgmax)]A Tasks
that adapt their periods are called period-elastic tasks, while tasks
that adapt their workloads are computationally-elastic tasks.

RTNS 2020, June 9-10, 2020, Paris, France

This paper extends that elastic task model, (1) allowing for the more
realistic scenario of discrete candidate utilization values instead of
continuous ranges; and in doing so also (2) allowing for combined-
elastic tasks to adapt both their periods and computational loads
at once.

2.2 Motivating Application Domain

Although the adaptive capabilities and discrete workloads enabled
by discrete elastic scheduling are relevant to a variety of real-
time applications, we focus here on real-time hybrid simulation
(RTHS), which is used by structural engineers to study the dynamic
behavior of a structural specimen under loading that potentially
results in unknown and highly nonlinear behavior. Traditionally, a
new structural concept or a new vibration mitigation device is vali-
dated in one of two ways: a physical structure is built and subjected
to tests, or a numerical model is tested via computer simulations.
However, building physical structures, even if not at full scale, and
subjecting them to full physical tests, though robust, can be prohib-
itively expensive in terms of money and time. On the other hand,
running computer simulations such as finite element models is less
expensive but may not fully capture nuances of a physical structure:
for instance, accurate numerical models may not exist for some
types of damage that a physical structure could sustain.
Realy-time hybrid simulation (RTHS) [9, 10] combines the
strengths of purely physical and purely numerical approaches.
A portion of a structure is physically built to be studied, while
the remainder is simulated numerically. The complete structure
(composed of both physical and simulated components) is then dy-
namically subjected to external loads (such as earthquake ground
motions) during experimentation, resulting in a feedback control
system with numerical models that must be executed on-line. At
fine-grained time scales with real-time requirements, the physical
components are driven by actuators, and their displacement, veloc-
ity, and acceleration are measured by sensors and input back into
the computational subsystem. The resulting computation in turn
determines the forces the actuators should apply to the physical
substructure in the next time step. A widely-used platform for RTHS
is MathWorks’s Speedgoat/XPC Target that runs in coordination
with real-time Simulink. However, such a system is neither parallel
nor adaptive, which limits the kinds of experiments that it can run.
The potential for extensive damage to equipment, test specimens,
or even people as a result of unintended actuation (e.g., in the
case of an unstable control algorithm) necessitates that before full
RTHS experimentation can be done safely, as much validation of
the proper system setup as possible must be performed. One such
validation that always precedes a RTHS is a virtual RTHS in which
the physical component of RTHS is replaced by a simulation, often
on an entirely different machine and using the same interface as the
physical component. Although the simulated “physical component”
in a virtual RTHS cannot fully capture the dynamics of the actual
physical specimen under examination in the full RTHS (indeed the
partially unknown dynamics of the physical specimen may be the
very reason for running the RTHS experiment), a virtual RTHS
can effectively validate control algorithms and numerical models
that will be used in RTHS experiments. As such, in this paper we
present an adaptive virtual RTHS using discrete elastic scheduling

RTNS 2020, June 9-10, 2020, Paris, France

(in Section 4) as a crucial first step towards a full adaptive RTHS
using our new discrete elastic scheduling model.

Multi-time-stepping (MTS) decomposes an RTHS into subsys-
tems (with individual tasks) and runs each task at its own harmonic
periodic rate, where for any two subsystems, the periodic rate of
one has a time-step ratio of x times that of the other. Data are
exchanged at each iteration of the slower of the tasks to ensure
subsystems have a consistent view of the overall system. Multi-
time-stepping allows for more precise control over individual sub-
systems’ periods (e.g., one subsystem runs relatively quickly in
order to read a vital physical sensor more frequently or another
subsystem runs more slowly in order to process more simulation
data in each period) than if the entire system were running at a
single periodic rate. However, multi-time-stepping alone does not
allow for fine-grained control over tasks’ computational loads. Nor
does it allow for run-time re-allocation of resources (e.g., which
would allow for a subsystem’s runtime behavior to change with its
workload) [2].

The Cybermech platform was developed by Ferry et al. [9] to
run paralle]l RTHS experiments. Although Cybermech supports
multi-time-stepping, each subsystem only runs at a fixed periodic
rate [2], and thus is only applicable to systems whose control model
is linear. In contrast, the discrete elastic scheduling approach intro-
duced in this paper allows for dynamic re-allocation of individual
subsystems’ periodic rates and/or computational resources to ac-
commodate linear and potentially non-linear behavior which can
occur with new experimental devices (e.g., for energy-dampening).
We demonstrate such adaptive resource management capabilities
and use them to enable adaptive switching between controllers
with differing computational demands for the first time in a virtual
RTHS as is described in Section 4.

3 DISCRETE ELASTIC SCHEDULING

In this section we present a new discrete elastic task model for
parallel real-time systems. We then discuss implications of the
combined-elastic adaptations enabled by this model. We also prove
that scheduling of discrete elastic tasks under Federated Scheduling
is NP-Hard in the weak sense, and provide a pseudo-polynomial
time algorithm for scheduling them. !

3.1 Task Model

Similar to the continuous elastic task model, in the discrete elastic
task model, each task 7; has elasticity coefficient E; and the assigned

utilization U; of each task can range between Ui(mm) and Ui(max).
However, in the discrete model, rather than allowing any utilization
within the continuous range [Ul.(mm), Ui(max>], each parallel task 7;
has exactly k; discrete modes of operation. Each mode of operation
Jj (1 < j < ki) for each task has a specific period (and implicit
deadline) Tl.(]), work Cg’), and span Lg’). The candidate utilizations
for the task come from the period and work in each of these modes

of operation Ul.(j) = Clg) / Tl.(j), and Ul.(min) and Ul.(max) are the lowest

!n this paper we focus on scheduling high-utilization tasks (U; > 1) via Federated
Scheduling, although low-utilization tasks (U; < 1) canbe (partitioned if necessary and
then) scheduled sequentially on a uniprocessor in a fashion similar to that described in
this section by focusing on keeping their aggregate system utilization below a desired
utilization Uy.

Orr et al.

and highest such utilizations, respectively. In strictly period-elastic
tasks, all modes have the same work and span values (i.e., Vx,y;1 <
x <ki,1 <y <kj; C;‘ = Cl.y, L;‘ = Lly). Similarly, all modes of
operation in strictly computationally-elastic tasks have the same
period (i.e., Vx,y;1 < x < ki1 <y <k Tix = Tiy). We use
Equation 2 to determine m?), the number of processors required to
schedule 7; in mode j. 2

We seek to schedule n tasks on m processors by selecting a mode
of operation j for each task 7; (1 < j < k;) while minimizing Equa-
tion 3. A pseudo-polynomial time algorithm for this is presented in
Section 3.4. The tasks may be fully independent, in which case there
are no restrictions on the potential modes of operation for each
task. In other cases, the potential modes of operation may encode
dependencies among tasks (e.g., all tasks must run at rates harmonic
to a base control rate). Even with those encoded dependencies, we
assume that each task is free to change among its modes inde-
pendently of the other tasks (e.g. any such rate dependencies are
encapsulated by only allowing modes that contain such harmonic
rates).

On its face the discrete elastic task model presented in this paper
is similar to one used decades ago by Kuo and Mok [14] to model
adaptive real-time tasks. However, there are several key differences.
Both models have a set of adaptive tasks with candidate modes
of operation. However, whereas our model allows for arbitrary
C; and T; combinations between modes of operation, the model
presented by Kuo and Mok scales task periods and workloads under
a constant utilization. For instance, 7; = (C;, T;) may have candidate
modes (2,4), (2.5,5), (3, 6) in [14] where all modes necessarily have
a utilization of 0.5. This is allowed in the discrete elastic model
presented here. However, a fourth candidate mode of (2, 5) with
utilization 0.4, which is also acceptable in our model, is not allowed
in theirs. Furthermore [14] seeks to assign periods in such a way as
to maximize harmonic chains and therefore maximize schedulability
on a uniprocessor. The period-assignment problem asks whether
there is a period assignment such that the maximum harmonic base
is at least a certain value. This problem is proven to be strongly NP
complete (i.e., no pseudo-polynomial time algorithm exists unless
P=NP). The problem considered here is fundamentally different.
This model does not (necessarily) care about harmonic chains and
uses a pseudo-polynomial time dynamic programming algorithm
for utilization selection.

3.2 Discussion

The continuous elastic task model allows for tasks to adapt their
periods or their workloads to any value over a continuous range
depending on the needs of the system. This is useful for many
kinds of tasks. Consider, for instance, an anytime algorithm [8]
that can return a valid answer at any instant with the quality of
the answer potentially improving as the algorithm is allowed to
run longer. Such an algorithm can be modeled as a task with an
elastic computational requirement that may vary over a continuous
range. However, not all algorithms are anytime algorithms: for
some tasks, meaningful results are only returned if the algorithm is
allowed to execute for certain specific durations. In a similar vein,

2We assume each task receives at least 1 dedicated CPU under Federated Scheduling.

Any mode of operation with Ui(j) <=1 will receive a single dedicated processor.

Elastic Scheduling of Parallel Real-Time Tasks with Discrete Utilizations

-------- Maximum Utilization
— — Minimum Utilization
—— Range of Adaptation

Computational Load (C)

Frequency (1/T)

Figure 1: Continuous Computationally-Elastic Task

3
N reeeees Maximum Utilization
' ! — — Minimum Utilization
X i » Modes of Operation
' Y
P |
Oh
ol *
@
o ®
=
= 1=
sy
20
S 1 ® ® X l“.
=] x * -
a|l ®
g box .,
o' » =~
1 R
\ . o T
. T —
x x x ’
LS * x
® %
AT
_________ e

Frequency (1/T)

Figure 3: Discrete Combined-Elastic Task

periodic tasks that form part of a control loop may need to execute
at frequencies (and hence period values) that are consistent with
the remainder of the control loop (e.g., harmonic with respect to the

base system frequency), and cannot operate with arbitrary periods.

Therefore, the continuous elastic task model is not appropriate
for some important kinds of tasks. This becomes more apparent
when one considers that on actual hardware, task execution times
are essentially discrete. Processors treat time not as a continuous
interval but as a discretized count of cycles. Therefore on a general-
purpose CPU, no job can actually run for an arbitrary amount of
time, but instead executes for an integer number of CPU cycles.

Under the discrete elastic task model, each task 7; has k; unique
modes of operation, each of which has an associated period and
workload. Varying only a single dimension (i.e., changing only
the period or workload as in the continuous model) may allow
for more appropriate management of the selected attribute than
the continuous elastic model. For instance, the discrete elastic task
model allows for the guaranteed selection of harmonic periods
among period-elastic tasks.

RTNS 2020, June 9-10, 2020, Paris, France

I
" T, U Maximum Utilization
1 = = Minimum Utilization
| ——Range of Adaptation
1
— |1
Qh
Eib
- I
Th
2
£
20
El1
o
alT
1\
\
A
\
‘-!-.
Frequency (1/T)
Figure 2: Continuous Period-Elastic Task
I
vy e Maximum Utilization
XX — — Minimum Utilization
| = Modes of Operation
1
—_1
Sh
i
x %
=K
Ty
S« *
Eh
2
El
[=]
IS
Vx x x x
1
A
~
\--

Frequency (1/T)

Figure 4: Discrete Workloads and Harmonic Rates

Perhaps an even greater benefit of the discrete elastic model is
its ability to allow exploitation of both period elasticity and compu-
tational elasticity. This combined elasticity increases the range of
potential modes of operation for a given task. Figures 1 — 4 demon-
strate the diversity of adaptations enabled by combined elasticity.
Each of the four images shows the same task exploiting different
types of elasticity. The y-axis is the task’s computational load (C),
and the x-axis is its frequency (1/T). Any point within the allowed
region therefore represents a potential work and period assignment
for the task. Constant values U(™") and U(™4%) are represented
by dashed and dotted curves, respectively, so any valid assignment
of C and T must therefore fall between these two curves.

Figures 1 and 2 show the potential period and workload values
of a computationally-elastic task and a period-elastic task, respec-
tively, under the continuous elastic task model. Although there are
infinitely many acceptable period (or workload) values that keep
the utilization between U(™") and U(™3%), the range of adaptation
for a single task is relatively narrow.

Contrast this with Figure 3, which demonstrates the potential pe-
riod and workload values of combined-elastic tasks enabled by the

discrete elastic task model. Although there are finitely many modes

RTNS 2020, June 9-10, 2020, Paris, France

of operation, adaptation is allowed in both computational and pe-
riod dimensions, potentially offering a much broader adaptation
space. Any point in the entire region between the minimum and
maximum utilization curves may be a candidate mode of operation.
Thirty such (randomly-chosen) points are plotted in Figure 3.

Which (and how many) candidate points are available is then a
configurable application-specific concern. System designers can se-
lect as many or as few potential modes of operation as appropriate.
For example, anytime tasks that can perform arbitrary amounts
of work for arbitrary time periods have a multitude of possible
period and workload combinations. In other cases (such as RTHS),
application constraints such as the need to run at harmonic rates
and/or have a fixed set of computational completion points restrict
or even determine actual modes of operation. Figure 4 shows a
sample RTHS task with four potential harmonic periods and four
potential workloads. Note that as Figure 4 illustrates, not all work-
loads can be run at all harmonic periods since the utilization may
exceed the maximum utilization curve as the workload increases
or the period decreases.

Finally, we note that some loss of utilization may be incurred
by discretization. For instance, if the same period-elastic task were
scheduled under both the continuous and discrete elastic models,
the continuous model may assign a task a feasible period that is
between two discrete candidate periods. To maintain schedulability,
the task may need to be assigned the longer of the two periods
under the discrete model, thereby resulting in a lower utilization
than under the continuous model (at the potential cost of some
control performance). However, we note that the smaller the gap
between candidate periods in the discrete model, the smaller the
loss of such system utilization due to discretization is. Anytime
tasks can exploit this small loss of utilization by selecting many
potential modes of operation that are close together in both di-
mensions, to approximate continuous elasticity while gaining the
benefit of combined elasticity, at a (potentially acceptable) cost of a
longer-running scheduling algorithm (see Section 3.4). We discuss
and study potential utilization loss due to discretization further, in
Section 5.

3.3 Proof of NP-Hardness

We now prove that the Federated Scheduling of parallel discrete
elastic tasks is NP-hard, via a reduction of an instance of the Knap-
sack Problem [12] to an instance of the Discrete Elastic Scheduling
Problem.

THEOREM 1. Discrete Elastic Scheduling is NP-hard.

Proof: Reduce KNAPSACK to Discrete Elastic Scheduling.
An instance of KNAPSACK is specified as follows:3

Tinarsack = <{(si7 vi)}lr-l:l, S, V>

where the objective is to fill a knapsack of capacity S with items
chosen from a set of n items, and item i (i = 1...n) has weight s;
and value v;, such that the weight of the selected items sum to no
more than the knapsack’s capacity S and their combined value is
maximized, with a total of at least the target value V.

3 All parameters are assumed to be rational numbers.

Orr et al.

Given such a specification, we construct an instance of the Elastic
Scheduling problem with n tasks, each of which has 2 modes of
operation, to be scheduled on (n + S) processors. All n tasks have
the same period in all modes of operation, denoted x (i.e., all tasks
are computationally-elastic—we note that though all tasks in this
construction are computationally-elastic, the same algorithm also
schedules period-elastic and combined-elastic tasks). We construct
each task’s first mode of operation as follows: Assign CEI) L<1)

x for all i. As a consequence these are all sequential zero- slack

modes of operation, and ms.l) = 1 (for all i). For each i, define the
second mode of operation as ng) =x-(1+s;)and L(l.z) = 0. These
are “embarrassingly parallel” modes of operation. Note that we

consequently have m() = (1+s;). Let elastic coefficient E; = s?/vi.
Note that choosmg the second mode of the i’th task requires an
additional s; processors (since the first mode requires 1 processor).
Let I} and I, respectively, denote the tasks for which the first mode
and second mode, respectively, are selected. Recall that in Elastic

(max) 2
Scheduling, we seek to minimize Z, v (U Ul-) . Therefore:

)
i

(2)
E(CT B Ul)z

_Z (x (1+Sl)—Ui)2
Ui) +2Eii((1+si)—Ui)2

iel; ! i€l
1 2 1 2
=> —((1+s,-)— 1) + > —((1+s,-)—(1 +si))
4 E; 4 E;
iely iel,
NS
iely Ei
=S u
i€l

We thereby conclude that a solution to the Discrete Elastic Sched-
uling Problem in which the function in Equation 3 takes on a value

at most
(D) -v

1

exists if and only if Iyapsack € KNAPSACK. H

3.4 Pseudo-Polynomial Time Scheduling
Algorithm

MurtipLE-CHOICE KNAPSACK [20] is similar to KNAPSACK, but rather
than selecting items from a single set, there are multiple mutually-
exclusive sets, and exactly one item must be chosen from each set
in such a way as to maximize profit and ensure a total weight below
the knapsack’s capacity. We now provide a pseudo-polynomial time
algorithm for Discrete Elastic Scheduling by reducing an instance
of it to an instance of MULTIPLE-CHOICE KNAPSACK.

A pseudo-polynomial time algorithm. We define the following
reduction from Discrete Elastic Scheduling to MULTIPLE-CHOICE

Elastic Scheduling of Parallel Real-Time Tasks with Discrete Utilizations

RTNS 2020, June 9-10, 2020, Paris, France

Inverse
Compensator

h 4

Input >

H-Infinity Controller

Linux

Kalman/Particle Filter

>
I
l(:omman? > Mode-Changing
Displacement Plant
I
Measured
- Displacement
- xPC

Figure 5: Virtual RTHS Details

Knapsack: each of the n tasks with k; modes of operation becomes
one of n mutually exclusive sets with k; distinct items. Each task in
Discrete Elastic Scheduling needs a mode to be selected, and each
set from MULTIPLE-CHOICE KNAPSACK needs one item to be selected.
Task 7; operating in mode j becomes an item in the corresponding
set with profit EL, (Ui(max) -u!)2 and weight m?). The knapsack
has capacity m. By giving each item weight m?), we ensure that if
they fit in a knapsack of capacity m, then the corresponding tasks
in the selected modes are schedulable on m processors. Although
traditional MULTIPLE-CHOICE KNAPSACK seeks to maximize the
value of selected items, we instead attempt to minimize the value
in Equation 3, which is exactly the profit assigned to each item. We
thus use a min() function in place of a max() function that would
otherwise be used, which has no bearing on the correctness or
complexity of the algorithm.

We note that by successfully selecting one item from each mutually-
exclusive set for the knapsack while keeping their combined weight
within the knapsack’s capacity m, we also select a mode of oper-
ation for each task on at most m processors. We therefore have a
valid parameterization of the Discrete Elastic Scheduling instance.

A pseudo-polynomial dynamic programming algorithm pre-
sented in [13] finds an optimal solution to MuLTIPLE-CHOICE KNAP-
SACK by considering the maximum value achievable when con-
sidering the first [mutually exclusive sets and reduced knapsack
capacity d, in our case, 1 <[< nand 1 < d < m. We reproduce a
slightly modified version of this algorithm in Algorithm 1: rather
than finding the maximum “value” of items in a knapsack, we seek
to minimize 7, E%(Ui(max) - U;)%

In Algorithm 1 we build a two-dimensional table MCKES where
MCKES[d][1] gives the optimal solution after considering the first
I tasks on d processors. We begin by assigning a score of infinity
(since we are minimizing) to both the impossible case of scheduling
I tasks on 0 processors (Line 1) and the trivial case of scheduling
0 task on d processors (Line 2). The for loop beginning on Line 3
considers scheduling tasks on d CPUs. The inner for loop beginning
on Line 4 similarly considers the first [tasks on the d processors
available. While iterating we assign each task a mode of operation,
with the goal of minimizing the objective function in Equation 3.
Hence we assign the MIN score of each task an initial score of
infinity (Line 5) and consider each mode of operation j in turn (Lines
6-14). Line 7 makes sure there are enough unallocated processors to
select mode j. If not, we disregard mode j. Otherwise, we consider

Algorithm 1 Multiple Choice Knapsack Elastic Scheduling
(MCKES)

1: MCKES|[0][I] < oo

2. MCKES[d][0] « oo

3: ford « 1..m do

4: for! <« 1...ndo
5: MIN « oo
6: for j « 1...k; do
7: if d — m?) > 0 then
8: if | ==1and
£ ~ U < MIN then
o MIN « U™ —u)y
10: else if MCKES[d - m\/][I - 1]+
£ ~ U2 < MIN then
1 MIN « MCKES[d - m{"][l - 1]+
Ell(Ul(max) _ UI(J))Z
12: end if
13: end if
14: end for
15: MCKESI[d][!] min(MIN,MCKES[d — 1][1])
16: end for
17: end for

18: return MCKES[m][n]

whether selecting mode j decreases the current minimum (Line
10). If so, the new minimum value is stored (Line 11). In the special
case that [== 1 (this is the first task scheduled), the MIN score
simply becomes El, (Ul(max) —UI(J))2 (Lines 8-9). After considering all
potential modes of operation, we assign MCKES[d][l] the minimum
of MIN and MCKES[d — 1][1] (Line 15). The final optimal value
is found at MCKES[m][n]. One can keep track of which mode is
selected at each iteration for task 7;, and the set of modes that give
the value in MCKES[m][n] are then assigned to their respective
tasks.

Runtime complexity. Algorithm 1 has worst-case running time
O(m x N), where N = Z?zl k;, as there are m CPUs to allocate (for
loop beginning on Line 3) and N modes of operation selected for
each value of m (for loops beginning on Line 4 and on Line 6).

A note about sequential tasks. As alluded to in Footnote 1, Al-
gorithm 1 can be applied to the scheduling of sequential elastic

RTNS 2020, June 9-10, 2020, Paris, France

tasks on a uniprocessor by: (1) assigning each item associated with
a candidate mode of operation, a weight equal to the corresponding
utilization; and (2) assigning the knapsack a capacity equal to the
desired system utilization Uy.

4 ADAPTIVE VIRTUAL REAL-TIME HYBRID
SIMULATION EXPERIMENT

To evaluate our discrete elastic scheduling approach and to validate
its usefulness in a real-world application, in this section we present
a virtual real-time hybrid simulation (RTHS) experiment that (1)
has tasks with various discrete work and period values in different
modes of operation, (2) can exploit our discrete elastic scheduling
approach at run-time to improve experiment accuracy by switching
adaptively between modes of operation, and (3) can handle con-
straints like harmonic rates and discrete workloads effectively. To
our knowledge, this is the first time even a virtual RTHS that can
adapt its period and/or computational load has been conducted.

This simple experiment is meant as a proof of concept that dis-
crete elastic scheduling and the adaptations thereby enabled are
beneficial to real-world applications (namely RTHS). Therefore,
we start with a less complicated setup than would be involved
with validating a new structural component. This virtual RTHS is
a tracking problem, meaning we send a displacement signal to a
moving non-linear spring (henceforth referred to as the plant), and
we attempt to make the plant follow the displacement given in the
input signal as closely as possible.

The details of our experiment are shown in Figure 5. The input
into the system is a recording of the displacement of a physical
specimen that has been excited by forces taken from the EI Cen-
tro earthquake. This is sent to an inverse compensator, which en-
hances tracking performance by reducing/smoothing small residual
time delays introduced by the control algorithm. The controller
itself uses a modified robust integrated actuator control (RIAC)
strategy [19], which uses H-infinity optimization [11] to provide
a trade-off between performance and robustness. The H-infinity
controller uses the smoothed desired displacement passed to it from
the inverse compensator and an estimate of the plant’s current lo-
cation to determine a command displacement to send to the plant.
This estimate is the output of either a Kalman filter or a particle
filter (depending on which mode of operation the task is in), both
of which provide an estimate of the plant’s current displacement
based on noisy data (the last known measured displacement of
the plant and the last commanded displacement). Each of these is
calculated once per iteration and both inform the behavior of the
system in the next iteration. It is assumed that when the desired
displacement exceeds a certain threshold (i.e., when the plant is
too far from its origin), the plant’s behavior becomes more difficult
to predict. Therefore, the more computationally-expensive particle
filter is used then, while the Kalman filter is used otherwise.

All of the above components except the plant (which is simulated
on an xPC target machine?) are run within a single parallel real-time
task on Linux with the RT-PREEMPT patch. The relative simplicity
of this experiment means that multiple tasks are not needed to
accomplish the main goal of this virtual RTHS (VRTHS) experiment.

4MathWorks’s Speedgoat/XPC Target runs in coordination with real-time Simulink. It
is a widely-used platform for a variety of cyber-physical systems, including RTHS.

Orr et al.

To gauge our approach more fully however, for scenarios where
there may be different substructures of a building to simulate (at po-
tentially different rates or detail levels) within a realistic structural
validation experiment, we generate additional synthetic discrete
elastic tasks to run alongside the vRTHS task, as there would be in
a more complex virtual RTHS. These tasks may adapt their system
resources (i.e., operate in different modes of execution) in response
to the virtual RTHS task whenever it changes modes of operation
from using the Kalman filter (which requires 1 processor) to the
particle filter (which requires 2 processors), or vice versa. Similar to
a structural validation RTHS experiment with multi-time stepping,
we constrain each synthetic task to run at a rate that is harmonic
with the 2048Hz rate needed by the virtual RTHS. Some of these
new tasks are period-elastic, some are computationally elastic, and
some are combined-elastic.

To perform this experiment, we extended the parallel (continu-
ous) elastic concurrency platform from [17], which is available as
open-source [1]. The underlying system calls, concurrency mecha-
nisms, and synchronization techniques remain unchanged, but we
replaced the original scheduling algorithm with Algorithm 1. All
tasks were run on a 16 core machine with two Intel E5-2687W pro-
cessors running at a constant 3092.616 MHz with Hyperthreading
disabled. The RTOS used was x86-64 Linux with the RT-PREEMPT
patch, and all programs were written in C++ and compiled with
GNU G++ 5.2.0.

Figures 6 and 7 show the results of our adaptive virtual RTHS
experiment. The solid line shows the curve of the desired plant dis-
placement, while the dotted line shows the estimated displacement
output from the particle filter or the Kalman filter. The horizontal
lines mark the mode-change criterion. For any desired displacement
between the lines, the estimator uses the Kalman filter. The system
switches modes and uses the particle filter when the plant’s desired
displacement is too far from its origin, i.e., outside the lines.

Looking at Figure 6, the two curves appear nearly indistinguish-
able. However, when we zoom in on the peaks in Figure 7, the
difference becomes visible.

As mentioned before, we ran synthetic tasks with the virtual
RTHS task that adapted with its mode change, similar to how more
elaborate RTHS experiments would do. Figures 8 and 9 show the
workload and period of each task in the system during operation
of the Kalman filter and particle filter, respectively. Note that the
virtual RTHS task and Synthetic Task 3 adapt their workloads (be-
tween 488y sec and 812 p sec and between 2000y sec and 5000y
sec, respectively); Synthetic Task 1 adapts its period (between 1953
1 sec and 976 u sec), and Synthetic Task 2 adapts both its period
(between 976 y sec and 1953 p sec) and workload (between 8000 y
sec and 5500 p sec). Also note that there are only 3 period values
used-2048Hz~ 488y sec, 1024Hz~ 977y sec, and 512Hz~ 1952 sec.
This is because the estimator must run at a constant 2048Hz and
substructure tasks in more complicated RTHS experiments must
run at harmonic rates with respect to the main feedback control
loop.

A normalized root mean squared error (nRMSE) of approximately
0.5% is considered acceptable in the RTHS community. The nRMSE
between the estimated and desired displacement shown in Figure 6
is 0.267%. Therefore, the virtual RTHS not only successfully transi-
tions modes, but also performs well.

Elastic Scheduling of Parallel Real-Time Tasks with Discrete Utilizations

0015 |

Desired Displacement
Predicted Displacement

0005 |

Displacement (m)

0.005 -

25 30 35

Figure 6: VRTHS Desired vs. Predicted Displacement

RTNS 2020, June 9-10, 2020, Paris, France

T T
— Desired Displacement
00t - «wwew1:- Predicied Displacement | -

o014 | 4

o
T
L

o
2

Displacement (m)

0008 [B

AT e

'I’Tme (s)

Figure 7: A Closer Look at Desired vs. Predicted Displacement

Virtual RTHS with Kalman Filter
2500
2000 A
= - ©RTHS Task
3
;’ 1500 HEsynthetic Task 1
Q
g 1000 Synthetic Task 2
a
500 @ X Synthetic Task 3
0
0 2000 4000 6000 8000 10000
Work (us)

Virtual RTHS with Particle Fliter
2500
— 2000 @ RTHS Task
w
% 1500 W Synthetic Task 1
o
';-E 1000 = Synthetic Task 2
< .
500 o Synthetic Task 3
0
0 2000 4000 6000 8000 10000
Work (us)

Figure 8: System Overview during Kalman Filter Execution Figure 9: System Overview during Particle Filter Execution

It is important to note that the primary function of this experi-
ment is to validate that discrete elastic scheduling can allow for the
on-line adaptation of resources for parallel tasks in a real system.
The tracking of a spring via an adaptive controller accomplishes
this goal and lays a necessary foundation for using the discrete elas-
tic scheduling technique for larger experimentation for structural
validation via RTHS in the future.

5 EFFECTS OF TASKSET DISCRETIZATION

In this section we look at the effect that discretization of tasks’
periods and workloads has on schedulability of example tasksets
through loss of system-wide processor utilization compared to
the continuous version. We begin by randomly generating 10, 000
continuous parallel elastic tasks in the manner described in [17].
Each task is either period-elastic or computationally-elastic, and
we schedule these continuous tasks according to the optimal algo-
rithm provided in [17, 18], noting the overall system utilization and
objective function value. We then create four discretized tasksets
from each continuous one by assigning a discretization delta of
0.05, 0.1, 0.2, and 0.5, to each task, meaning we discretize each
task in such a way that in the new tasksets, there is a candidate

utilization every 5%, 10%, 20%, and 50% of the way between y(min)
and U@%), plus the endpoints. For example, a period-elastic task
with an T(™") = 0 and T("4*) = 100 would be discretized to have
candidate period values of 0, 20, 40, 60, 80, and 100 for A = 0.2, and
it would have candidate period values of 0, 10, 20, 30, 40, 50, 60, 70,
80, 90, and 100 for for A = 0.1, etc. We then schedule each of these
40,000 generated discrete elastic tasks using Algorithm 1, again
noting the system utilization and objective function value.
Figures 10 through 13 show representative results. Figure 13
shows the average (and standard deviation of the) system utiliza-
tion for each level of discretization. Without exception, each dis-
cretized taskset had a higher (worse) objective function value from
Equation 3 than the continuous taskset from which it was derived.
Typically, the objective function value increased with the discretiza-
tion delta, too, as in the examples shown in Figure 10 and Figure 12.
The single exception in 10,000 tasksets is depicted in Figure 11. In
this case the optimal solution for the taskset obtained from A = 0.1
occurs when each task selects the utilization value obtained from
the 50th percentile. This is exactly the subset of candidate utiliza-
tions used to obtain the taskset derived from A = 0.5 and so also
gives the optimal solution for that taskset (a subset of the former).

RTNS 2020, June 9-10, 2020, Paris, France

151 (3] 1588
[Utiization 5~ Objective Value s

|
|
|
~
~
L L
n =
&]

System-Wide Utilization
Objective Function Value

.
s
E]

\

&
‘
8

9 o I I I I
Contifious A=5% A=10% A=20% A=50%
Amount of Discretization

Figure 10: Taskset 1 Utilization and Objective Value

720

151 p 44980
| —f— Utilization 3 Objective Valua J
/
14} f
/! - 36036
!]
c
S e / =
o \\!j Hzmsz §
ﬁ PN B
o er N 5
= / e w
E i/ {18148 >
£t / E
w
2 i)
@ s 8
e
820
10F P
P
- /6
Ty — — @’ L L L 260
Contiftous A=5% A=10% A=20% A=50%

Amount of Discretization
Figure 12: Taskset 3 Utilization and Objective Value

However, none of those selected periods are in the taskset derived
from A = 0.2 (a different subset of the former). Therefore, the objec-
tive function’s value when A = 0.2 is necessarily higher. This trend
of a (typically) worsening objective function value with an increase
of discretization is thus expected. We note that objective function
values cannot be compared directly between tasksets as they are
dependent on tasks’ elastic coefficients and maximum utilizations.
For the majority of tasksets, system utilization also decreased
as a taskset became more discretized, as in Figure 10. However,
because we make scheduling decisions based on the objective func-
tion (weighted task utilization) rather than on system utilization,
there are cases when making an inferior objective function decision
increases taskset utilization: this occurred in approximately 18% of
tasksets (consider Figure 12 where A = 0.1 gives a higher system
utilization than even the continuous version of the taskset).

6 CONCLUSION

In this paper, we have presented a new elastic task model with dis-
crete sets of possible utilizations for each task. This model allows
each task to modify its workload and/or its period when changing

Orr et al.

151 (]1) o4z
[—F—Utiization —3~ Objective Value \

—
L
=
=
@

L
=]
w
@

System-Wide Utilization
Objective Function Value

-
L
=
&
@

026

L L . .
Contirtous A=5% A=10% A=20% A=50%
Amount of Discretization

Figure 11: Taskset 2 Utilization and Objective Value

15 T T T

System-Wide Utilization

Continuous A=5% A=10% A=20% A=50%
Amount of Discretization

Figure 13: Average Utilization (10K Tasksets)

modes of operation, instead of adapting in only one of those dimen-
sions. This in turn allows a wider range of parallel real-time tasks
to exploit elastic scheduling techniques, and also offers a greater
diversity of potential adaptations of each task, over a larger region
of potential periods and workloads. It is also better aligned with
task execution times on realistic hardware.

We have shown how this model can support new real-time hybrid
simulations with discretely computationally-elastic, period-elastic,
and combined-elastic parallel real-time tasks under the Federated
Scheduling paradigm, via a pseudo-polynomial time scheduling
algorithm. We used this scheduling algorithm to implement, for the
first time, adaptive resource management to enable adaptive switch-
ing between controllers with different computational demands in
a virtual real-time hybrid simulation (vRTHS), and examined the
effects of scheduling tasks having discretized vs. continuous candi-
date utilizations in terms of both system utilization and objective
function value.

The results presented in this paper motivate further expansion
of this research as future work. Of particular interest is to begin
using these tecniques for full-scale RTHS structural validation.

Elastic Scheduling of Parallel Real-Time Tasks with Discrete Utilizations

REFERENCES

[1] [n. d.]. Real-Time Scheduling of Parallel Tasks: Theory and Practice. http:
//prt.wustl.edu/

[2] Gregory B Bunting. 2016. Parallel Real-Time Hybrid Simulation of structures using
multi-scale models. Ph.D. Dissertation. Purdue University.

[3] Giorgio C. Buttazzo, Giuseppe Lipari, and Luca Abeni. 1998. Elastic Task Model
for Adaptive Rate Control. In IEEE Real-Time Systems Symposium (RTSS).

[4] Giorgio C. Buttazzo, Giuseppe Lipari, Marco Caccamo, and Luca Abeni. 2002.
Elastic Scheduling for Flexible Workload Management. IEEE Trans. Comput. 51,
3 (March 2002), 289-302. https://doi.org/10.1109/12.990127

[5] M. Caccamo, G. Buttazzo, and Lui Sha. 2000. Elastic feedback control. In Pro-
ceedings 12th Euromicro Conference on Real-Time Systems. Euromicro RTS 2000.
121-128. https://doi.org/10.1109/EMRTS.2000.853999

[6] T. Chantem, X. Hu, and M. Lemmon. 2009. Generalized Elastic Scheduling
for Real-Time Tasks. IEEE Trans. Comput. 58, 4 (April 2009), 480-495. https:
//doi.org/10.1109/TC.2008.175

[7] T.Chantem, X. S. Hu, and M. D. Lemmon. 2006. Generalized Elastic Scheduling.
In 2006 27th IEEE International Real-Time Systems Symposium (RTSS’06). 236-245.

[8] Thomas Dean and Mark Boddy. 1988. An Analysis of Time-dependent Plan-
ning. In Proceedings of the Seventh AAAI National Conference on Artificial Intelli-
gence (AAAI'88). AAAI Press, 49-54. http://dl.acm.org/citation.cfm?id=2887965.
2887974

[9] D. Ferry, G. Bunting, A. Maqghareh, A. Prakash, S. Dyke, K. Aqrawal, C. Gill,
and C. Lu. 2014. Real-time system support for hybrid structural simulation. In
2014 International Conference on Embedded Software (EMSOFT). 1-10. https:
//doi.org/10.1145/2656045.2656067

[10] David Ferry, Amin Maghareh, Gregory Bunting, Arun Prakash, Kunal Agrawal,
Chris Gill, Chenyang Lu, and Shirley Dyke. 2014. On the performance of a highly
parallelizable concurrency platform for real-time hybrid simulation. In The Sixth
World Conference on Structural Control and Monitoring.

[11] J. William Helton. 1978. Orbit structure of the Mobius transformation semigroup
action on H-infinity (broadband matching). 129-198.

[12] R.Karp. 1972. Reducibility Among Combinatorial Problems. In Complexity of
Computer Computations, R. Miller and J. Thatcher (Eds.). Plenum Press, New York,
85-103.

[13] Hans Kellerer, Ulrich Pferschy, and David Pisinger. 2004. The Multiple-Choice
Knapsack Problem. Springer Berlin Heidelberg, Berlin, Heidelberg, 317-347.

RTNS 2020, June 9-10, 2020, Paris, France

https://doi.org/10.1007/978-3-540-24777-7{_}11

[14] Tei-Wei Kuo and Aloysius K. Mok. 1991. Load Adjustment in Adaptive Real-Time
Systems. In Proceedings of the IEEE Real-Time Systems Symposium. 160-171.

[15] Jing Li, Abusayeed Saifullah, Kunal Agrawal, Christopher Gill, and Chenyang
Lu. 2014. Analysis Of Federated And Global Scheduling For Parallel Real-Time
Tasks. In Proceedings of the 2012 26th Euromicro Conference on Real-Time Systems
(ECRTS ’14). IEEE Computer Society Press, Madrid (Spain).

[16] James Orr and Sanjoy Baruah. 2019. Multiprocessor Scheduling of Elastic Tasks.
In Proceedings of the 27th International Conference on Real-Time Networks and
Systems (RTNS °19). ACM, New York, NY, USA, 133-142. https://doi.org/10.1145/
3356401.3356403

[17] J. Orr, C. Gill, K. Agrawal, S. Baruah, C. Cianfarani, P. Ang, and C. Wong. 2018.
Elasticity of workloads and periods of parallel real-time tasks. In Proceedings of
the 26th International Conference on Real-Time Networks and Systems, RTNS 2018.
ACM Press.

[18] J. Orr, C. Gill, K. Agrawal, J. Li, and S. Baruah. [n. d.]. Elastic scheduling for
parallel real-time systems. Leibniz Transactions on Embedded Systems ([n. d.]).
https://www.cse.wustl.edu/~cdgill/publications/LITES19_ElasticParallel.pdf

[19] Ge Ou, Ali Irmak Ozdagli, Shirley J. Dyke, and Bin Wu. [n. d.]. Ro-
bust integrated actuator control: experimental verification and real-time
hybrid-simulation implementation. Earthquake Engineering & Structural
Dynamics 44, 3 ([n. d.]), 441-460. https://doi.org/10.1002/eqe.2479
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/eqe.2479

[20] P Sinha and A. A. Zoltners. 1979. The Multiple Choice Knapsack Problem.
Operations Research 27 (1979), 503-515.

ACKNOWLEDGMENTS

This research was supported in part by NSF grants CCF-1337218
titled “XPS: FP: Real-Time Scheduling of Parallel Tasks”, CNS-
1136073/1136075 titled “CyberMech, a Novel Run-Time Substrate
for Cyber-Mechanical Systems”, and CMMI-1661621 titled “RCN:
Research Network in Hybrid Simulation for Multi-Hazard Engi-
neering’.

http://prt.wustl.edu/
http://prt.wustl.edu/
https://doi.org/10.1109/12.990127
https://doi.org/10.1109/EMRTS.2000.853999
https://doi.org/10.1109/TC.2008.175
https://doi.org/10.1109/TC.2008.175
http://dl.acm.org/citation.cfm?id=2887965.2887974
http://dl.acm.org/citation.cfm?id=2887965.2887974
https://doi.org/10.1145/2656045.2656067
https://doi.org/10.1145/2656045.2656067
https://doi.org/10.1007/978-3-540-24777-7{_}11
https://doi.org/10.1145/3356401.3356403
https://doi.org/10.1145/3356401.3356403
https://www.cse.wustl.edu/~cdgill/publications/LITES19_ElasticParallel.pdf
https://doi.org/10.1002/eqe.2479
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/eqe.2479

	Abstract
	1 Introduction
	2 Background
	2.1 Elastic Scheduling
	2.2 Motivating Application Domain

	3 Discrete Elastic Scheduling
	3.1 Task Model
	3.2 Discussion
	3.3 Proof of NP-Hardness
	3.4 Pseudo-Polynomial Time Scheduling Algorithm

	4 Adaptive Virtual Real-Time Hybrid Simulation Experiment
	5 Effects of Taskset Discretization
	6 Conclusion
	References
	Acknowledgments

