Adaptive Real-Time Routing in Polynomial Time

Kunal Agrawal and Sanjoy Baruah
Washington University in Saint Louis
{kunal,baruah} @wustl.edu

Abstract—We consider a recently-proposed problem on net-
works in which each individual link is characterized by two
delay parameters: a (usually very conservative) guaranteed upper
bound on the worst-case delay, and an estimate of the delay that
is typically encountered, across the link. Given a source node, a
destination node, and an upper bound on the end-to-end delay
that can be tolerated, the objective is to determine routes that
typically experience a small delay, while guaranteeing to respect
the specified end-to-end upper bound under all circumstances.
We show that the prior algorithm that has been proposed for
this problem has super-polynomial running time, and derive
polynomial time algorithms for solving the problem.

I. INTRODUCTION

A recent paper [1] considered real-time routing problems
on graphs in which each edge is labeled with a pair of
edge-weights, one denoting the maximum delay one could
encounter while traversing the edge and the other, an estimate
of the delay one typically encounters upon traversing the edge.
The goal is to travel from a specified source vertex to a
specified destination vertex on a path that minimizes typical
delay, while simultaneously guaranteeing a specified end-to-
end delay bound. Such problems are motivated in [1] by nu-
merous application scenarios in real-time computing: consider,
for instance, the autonomous vehicles that play a significant
role in many testbeds and exemplars of cyber-physical system
(CPS) principles and technologies. Such vehicles often need
to traverse a network between locations of interest. While it
may be possible to obtain worst-case bounds on the delays that
will be encountered across each segment of roadway, making
routing decisions solely on the basis of such worst-case delay
bounds may result in routes that perform needlessly poorly
under typical conditions; one should simultaneously seek to
optimize for typical traversal times as well.

Figure 1 shows one such graph with source vertex s and
destination ¢. There are four possible paths from s to ¢ and
the following table shows the worst case delay (denoted by
cw) and the typical delay (denoted by cr) encountered on
each path.

Path cw () cost | cr(-) cost
s—t 25 12
s— v —t 20 14
s —> v —>va =t 30 10
s— v —v3 —t 34 6

We see that the paths are ordered differently from the
perspectives of typical delay and guaranteed delay; e.g., the
fourth path (s — v; — v3 — t) is the best with respect to
typical delay while the second path is able to guarantee arrival
within the shortest duration (20 time units rather than 34). This

Fig. 1. An example graph. Each edge is characterized by a pair
of two weight parameters that are estimates on delay-bounds — the
smaller value represents an estimate of the delay that will typically
be encountered across the edge, while the larger value represents a
guaranteed upper bound on such delay.

difference in ordering of path lengths depending upon whether
one is looking at typical or worst-case delay complicates the
choice of routes. Suppose, for instance, that we would like
to travel from s to ¢ rapidly under typical circumstances, but
were additionally required to guarantee an end-to-end delay of
25: the first path would be best since only the first two paths
are feasible (guarantee to get to ¢ within the required 25 time
units) and of these the first path has the smaller typical delay.

A distinction was made in [1] between static and adaptive
routing strategies. A static strategy decides the entire route
prior to setting out from the source vertex, whereas an adaptive
strategy can make decisions on the way. Let us return to our
example in Figure 1 where we want to guarantee an end-to-end
delay of 25. Consider the following strategy:

Traverse the edge s — v

if (the actual delay encountered is < 5 time units)
traverse the path v; — vy — ¢

else traverse the edge v; — ¢

This is an adaptive strategy, since the decision regarding the
route to take from v; to t is made upon reaching v;. We can
verify that this strategy guarantees the end-to-end delay of 25:

« If the delay encountered on edge (s,v;) is at most 5 time
units, then the total delay from s to ¢ is at most 25 since
the maximum delay on (v; — v — t) is 10 + 10 = 20.

« If, on the other hand, the delay on (s, v1) is between 5 and
10 time units, taking the direct edge (v; — t) guarantees

that the maximum delay from s to ¢ is 10 + 10 = 20.

Hence this strategy is correct in the sense that it respects
the end-to-end delay bound. To determine the typical delay
associated with this correct strategy, we note that the typical
delay on edge (s, v1) is 4 time units, which implies that upon
reaching v; we would typically take the path (v; — vy —)
for a total typical delay of 4 + 3 + 3 = 10 time units, in
contrast to the 12 time units associated with the optimal static
solution, which is the first path in the above table.

Static, fully-adaptive, and semi-adaptive routing. As the
above example illustrates, for a given worst-case end-to-end
delay bound, adaptive strategies are generally capable of
achieving smaller typical delays than static ones, by using
knowledge of the delay that was experienced across already-
traversed edges to make future routing decisions. (We will
see in Section VII that static routing strategies may perform
arbitrarily poorly in comparison to adaptive ones.) In this
paper, we further distinguish between fully-adaptive and semi-
adaptive strategies. A fully-adaptive strategy assumes that
upon traversing an edge, the exact actual delay that was
encountered while doing so becomes known — the example
above illustrates a fully-adaptive strategy. A semi-adaptive
strategy, by contrast, makes the weaker assumption that upon
traversing an edge it only becomes known whether the actual
delay that was experienced exceeds the typical estimate or
not — the exact duration of the delay may not be known. An
algorithm was presented in [1] for determining optimal fully-
adaptive strategies; however, we are not aware of any prior
algorithms for determining optimal semi-adaptive strategies.

A fact in favor of static strategies is that their run-time over-
head tends to be small: at each intermediate vertex only the
constant-time operation of looking up the outgoing edge from
this pre-computed path needs to be performed. In contrast,
fully-adaptive strategies may require non-trivial computations
during run-time.

In addition to the per-intermediate-vertex processing time,
a routing strategy also typically requires some pre-runtime
computation. For static strategies, the entire path must be
computed in advance. For semi-adaptive and fully-adaptive
strategies, one must pre-compute some initial path and then
potentially recompute the path to be taken at each vertex
based on the information we have so far. Therefore, we can
compare different approaches based on the overall running
time: the sum of the time for computations performed prior
to setting out from the source and the times taken at each
individual intermediate vertex during run-time. We will see
in Section VII that the problem of determining an optimal
static route is NP-hard; this implies that we are unlikely
to find optimal static routing strategies with overall running
time polynomial in the representation of the problem. To our
knowledge the computational complexity of optimal adaptive
routing has remained open: while the algorithm for determin-
ing optimal fully-adaptive routing strategies that was proposed
in [1] is easily seen to have polynomial processing time at
each intermediate vertex, it is not clear from [1] whether the

preprocessing step for that algorithm is a polynomial-time one
or not.

Our contributions. We report the following major research
findings concerning adaptive routing in this paper.

1) As mentioned above, the overall running time of the
adaptive routing strategy presented in [1] was unknown.
Our first contribution is to show, in Section IV, that the
pre-runtime processing step in this strategy is not, in
general, a polynomial-time one; consequently the overall
running time of the algorithm of [I] for determining
optimal adaptive routing strategies is not polynomial in
the representation of the problem.

2) We then provide an algorithm for finding optimal semi-
adaptive routing strategies whose overall complexity is
polynomial in the problem size. In particular, the complex-
ity of pre-runtime computation is the same as that of Di-
jkstra’s algorithm for shortest paths [2], while the runtime
complexity at each intermediate vertex is a constant.
Our third (and main) contribution is an algorithm for
finding optimal fully-adaptive routing strategies that has
overall run-time polynomial in the representation of the
problem and the number of edges in the actual optimal
adaptive path realized. (This distinguishes our algorithm
from the one in [1] since that has pseudo-polynomial
running time regardless of the number of edges in the
optimal adaptive path. While it is straightforward to show
that the number of edges in the optimal adaptive path
is polynomial in problem size for undirected graphs or
directed acyclic graphs, we do not yet know whether
optimal adaptive paths with polynomially many edges are
guaranteed to exist for directed graphs that may contain
cycles.)

4) Recall that the typical delay bounds specified for the edges
of the graph are estimates; what if more accurate estimates
become available after an optimal routing strategy has
been determined (perhaps even after we have traversed
some part of the route as dictated by the strategy)? The
algorithm of [1] must be re-run (as stated above, we show
in this paper that this may take pseudo-polynomial time
in the worst case) from scratch; an additional contribution
contained in this paper is a result showing that the new
algorithm we have derived is able to incorporate such
information into future routing decisions in fast polynomial
time.

3

~

Organization. The remainder of this paper is organized as
follows. Section II provides the formal definition of the
problem. Section III has a brief description the algorithm
proposed in [1]. Our main technical contributions are presented
in Sections IV-VI: Section IV contains an example and a
proof that the approach of [1] has super-polynomial run-
time on this example; Section V derives a polynomial-time
algorithm for optimal semi-adaptive routing; and Section VI
derives an optimal fully-adaptive routing that has running time
polynomial in the graph size and the number of edges in
the actual optimal adaptive path. In Section VII we formally

demonstrate some advantages of adaptive routing strategies
over static ones.

II. MODEL AND DEFINITIONS

As discussed above, we want to calculate routing strategies
that provide low typical delays between a source and a
destination in a graph, while simultaneously guaranteeing to
arrive at the destination within a specified duration of leaving
the source even if some (or all) edges experience delays as
large as the worst-case estimates. We represent the network
as a directed graph G = (V, E), where the vertices represent
locations of interest, and the edges, direct connections between
pairs of locations. There are two cost functions on edges:
cr : E — Nand ¢y : E — N. For any edge (u,v) € E,
cr(u,v) and cy (u, v) respectively denote an estimate of the
typical delay, and a guarantee of the maximum delay, that will
be encountered across this edge. A path p from vertex u to
vertex v (sometimes designated as u Lv)is a sequence of
vertices (u = vg,v1,va, ...,V = v) such that (v;_1,v;) € E
for each i,1 < i < k. The cost parameters cr(p) and cy (p)
of this path p are defined in the obvious manner:

k k
cr(p) = ZCT(Ui—hvi) and cw (p) = ZCW(Ui—17Ui)
i=1 i=1

An instance I = (G,cr,cw,s,t,D) of our problem is
specified by specifying such a graph G = (V, E) with the
two cost functions ¢y : E — N and ¢y : E — N, a source
vertex s € V and a terminal vertex t € V, and an end-to-
end delay bound D € N. Instance I = (G, cr,cw,s,t, D)
is said to be feasible if there exists some path p from s to
t (e, s % t) with ey (p) < Dj; otherwise it is infeasible.
We seek algorithms that are able to traverse the graph G from
the source s to the destination ¢ of any feasible instance with
minimum delay under typical circumstances (when no edge
exceeds its typical delay estimate), while guaranteeing that
the delay is no larger than the delay bound D under even
worst-case circumstances.

For static strategies — i.e., the entire path from the source
vertex s to the destination vertex ¢ must be completely speci-
fied prior to departing from s — the optimization criterion is
straightforward: we must identify a path p, s Lt satisfying
(ew(p) < D), for which ¢r(p) is minimized. (Identifying
such paths is easily shown to be NP-hard — see Section VII.)

The optimization criterion is somewhat more difficult to
state for adaptive strategies. Let us start with some intuition:
An adaptive strategy must never allow the entity traversing the
network to reach an unsafe state during run-time — that is, it
must never traverse an edge which could make it impossible to
reach the destination vertex within the specified delay bound
of D after leaving the source vertex. In addition, assuming the
actual delay on each edge is at most its typical delay, we want
to minimize the end-to-end delay. To formalize this intuition,
we start with some definitions.

Definition 1 (W(v); a : V — N): Consider some instance
(G,er,ew, s, t, D). For every vertex v € V, W(v) denotes a

CT(Uh Vi+1), CW(I‘u Vi+1)

7
> er(vi-1,v))
j=1

Fig. 2.
experienced up to wv;, them we can get to ¢ within a duration

Correct semi-adaptive routes: if typical delays have been

1
Z CT(U]'_17 ’Uj) + cw (’Ui, ’Ui+1) + Oé(’Ui+1) of having left s
j=1

shortest path from v to ¢ according to the maximum delay
bounds (cy) on the edges. a(v) denotes the sum of the
maximum-delay costs of the edges on path W(v) — that is,
a(v) = ew (W()). O
Intuitively, if an entity traversing the network reaches vertex
v with remaining end-to-end delay of a(v), then it is “safe”
in that there exists a path from v to ¢ that allows us to meet
the end-to-end deadline.
Now we can define the correctness criterion for adaptive
routing strategies. Let us start with semi-adaptive routing.
Definition 2 (Correct semi-adaptive route): Let p = (s =
Vg, V1, V2,...,U = t) denote a route of feasible instance
G,cer,ew, s, t, D> that was taken during some traversal from

s to t. This route is said to be a correct semi-adaptive route
for instance (G, ¢r, cw, 8, t, D) if

Vi:0<i<k:

<Z er(vi-1,v5) + ew (v, vig1) + o(vigr) < D)
Jj=1
]
Here is the intuition (see Figure 2): Say that we have
reached vertex v; without experiencing delay larger than the
typical delay on any edge from s to v;. The first term in the
inequality denotes the estimate of the delay so far (since a
semi-adaptive strategy does not know the exact delay and must
assume that, in the worst case, the delay on every edge so far
was exactly its typical estimate). The second term denotes the
maximum delay we may experience in traversing the edge
(vi,vi+1), and the third term, the maximum delay we will
experience if we were to traverse the path W(v; 1) from v; 41
to the destination ¢. The condition requires that the sum of
these terms not exceed the specified end-to-end delay bound;
if it is satisfied, we may conclude that it is safe to take the edge
(vi, vi4+1) out of vertex v; since it remains possible upon doing
so to get to the destination vertex ¢ within the specified end-to-
end delay bound even if the worst-case delay is encountered
while traversing this edge and all subsequent edges en route
to the destination.
An optimal semi-adaptive strategy never reaches an unsafe
state while guaranteeing that the typical delay of the path
is minimized whenever the actual delay that is experienced

across each edge during this traversal does not exceed the
typical delay estimate for that edge. Note that in the case
where the actual delay on any edge exceeds the typical esti-
mate, all we guarantee is that the end-to-end delay bound will
be met. Based on the definitions, for semi-adaptive strategies
we observe that for a particular problem instance, an optimal
instance needs to compute a single path P — the path with the
smallest typical delay among all correct semi-adaptive paths.
During runtime, we traverse P as long as all edge delays do
not exceed their respective typical estimates. As soon as the
delay on any edge, say (v;,v;41) exceeds its typical estimate,
we then then take the path W(v;11) from v;41 to t.

The correctness condition of a fully-adaptive route is similar
to semi-adaptive correctness, except that it considers the actual
delay encountered on each edge. Let delay(u,v) denote the
actual delay that was experienced on edge (u, v) in a particular
traversal.!

Definition 3 (Correct adaptive route): Let p = (s =
vg, V1, V2,...,U = t) denote a route of feasible instance
(G,cr,ew, s,t, D) that was taken during some traversal from
s to t. This route is said to be a correct adaptive route for
instance (G, cr, cw, s,t, D) if

Vi:0<i<k:

Zdelay(vj_l,vj) + ew (Vi, Vig1) + @(vit1) < D
j=1

An optimal adaptive strategy is one that minimizes, at every
intermediate vertex v;, the sum of the actual delay encountered
so far from s to v; and the typical delay of the future path from
v; to t while guaranteeing correctness. Since the optimality and
correctness depends on the actual delays experienced during
the traversal, it is not sufficient to compute a single path — the
correct optimal path may change based on how much delay
has been experienced so far in a particular traversal.

III. THE APPROACH OF [1]

As mentioned above, the problem we are studying in
this paper was introduced in [1]. Given a feasible in-
stance <G,CT,CW,5,t,D>, the algorithm of [I] uses a
dynamic-programming approach derived from the Bellman-
Ford shortest-paths algorithm [3] to construct a lookup table
at each vertex in the graph in a pre-processing phase before
setting out from s. For our purposes the details of this pre-
processing algorithm are unnecessary; it suffices to state that
the lookup table at each vertex u contains entries of the form
(d,v) where d € N and (u,v) is an edge in the graph. The
presence of the entry (d,v) at the vertex u has the following
interpretation:

Of all the correct adaptive routes p,u g, of
the instance (G, cr,cw,u,t,d) in which the actual
delay encountered across each edge e is exactly

'We assume that delay; < cy (vi—1,v;) for all j: we are not required to
meet the end-to-end deadline if this condition is violated.

d edge
24 | — vs
20 — U2
10 —1

(4,10)

Fig. 3. The lookup table at vertex v; that is generated by the algorithm of [1]
on the example instance that is depicted in Figure 1. Upon reaching vertex
v1, an entity would leave on the edge (v1,v3) if the remaining duration of
its end-to-end delay bound is > 24, on the edge (v1,v2) if this remaining
duration is smaller than 24 but > 20, and on the edge (v1, t) if this remaining
duration is less than 20 but > 10. If the remaining duration is < 10 then no
route exists that guarantees to reach the destination vertex ¢ on time.

equal to the estimated typical delay cr(e) of that
edge, the one for which cr(p) is minimized has
(u,v) as its first edge.
That is, the outgoing edge (u,v) should be taken in order to
travel from u to the destination vertex ¢ in the shortest time un-
der typical circumstances, while simultaneously guaranteeing
to arrive at ¢ within a duration d of leaving v.

The lookup table at the vertex v; for the graph in Figure 1
is depicted in Figure 3 — its use is explained in the caption of
the figure.

It was shown in [1] that (i) the execution time of the
pre-processing algorithm to constructs these lookup tables
is polynomial in the cumulative size (i.e., number of rows)
of the lookup tables on all the vertices; and (ii) at each
intermediate vertex, the time to decide which edge to follow
next is logarithmic in the number of rows of the lookup table
at the vertex. In Section IV we will show that the number
of rows in the lookup table at a vertex may be larger than
polynomial in the representation of the instance; it therefore
follows that the preprocessing time (and consequently, also the
overall running time) of this approach is not polynomial.

IV. THE APPROACH OF [1] HAS SUPER-POLYNOMIAL
TIME-COMPLEXITY

We consider the main result of this section —that the lookup
tables at individual vertices may contain super-polynomially
many rows— to be very counter-intuitive; our expectation was
that the number of rows in the lookup table at a vertex would
not exceed the out-degree of (number of outgoing edges from)
the vertex. To be more specific, we did not expect that the
same out-going edge from a vertex would turn out to be the
best one to take for non-overlapping ranges of the remaining
worst-case delay bound. However, our intuition turned out to

Table at s
d edge
20 — U1
15 —t
10 | = vy
Fig. 4. An example used in Section IV, illustrating the intuition that large

look-up tables may be necessary.

be incorrect; Figure 4, shows an example graph along with the
lookup table at the vertex s:

« If the end-to-end delay bound is at least 20 time units, then
the edge s — v; should be taken, since it is safe and under
typical conditions the path s — v; — t yields a typical
delay of 1 +2 = 3.

o If the end-to-end delay bound is in the range [10,15), then
the only correct option is s — v; — vo — t, for a typical
delay of 1+ 2+ 3 = 6.

o However, if the delay bound is in the range [15,20), then
the direct edge s — t yields a typical delay of 5 (while the
alternative path, s — v; — vo — t, has typical delay of
1+2+3=6).

Thus, the edge s — v; is optimal for the non-overlapping
range of delay-bound values [10,15) and [20, c0), while the
edge s — vy is optimal for interval [15,20) that lies between
these two ranges. Consequently the number of rows in the
lookup table exceeds the number of outgoing edges.

We now generalize the example above to carry the intuition
through to its logical conclusion.? Figure 5 shows an example
graph for which the table size at a vertex is actually super-
polynomial in the number of vertices of the graph. The graph
consists of 1/n layers numbered from 0 to \/n — 1. Layer 4
consists of one switching node w; and \/n fan out nodes v; o
to v; /z_1. The switching node w; is connected to the fan out
node v; ; as follows: oy (u;, v ;) = jx/n" and ey (u;,v; ;) =
ki —cr(u;,v; ;) where k; = 2(\/ﬁ’+1 —+/n"). For instance, in
layer 0, we have cp(ug,vo ;) = j and ew (uo,vo,;) = 2¢/n —
2 — j. All the fan out nodes of layer ¢ are connected to the
switching node of layer ¢+ 1 with both typical and worst case
costs of 0. The fan out nodes of the last layer are connected
to the sink ¢ with edges of weight (0,0).

Intuition for large tables. We will show that switching nodes
have large tables. In particular, we will show that the table
at switching node wu; can have size \/ﬁ‘/ﬁ_z. We first state
some observations that are clear from the figure. The following
observation follows from the fact that there are /n layers and
there are /n independent paths in each layer.

>This generalization is quite technical and detailed, and the remaining
sections of this paper do not assume an understanding of these details; it
may therefore safely be skipped at a first reading.

Observation 1: The number of paths from u; to u; is /0’ .
Therefore, the number of paths from wuq to ¢ is \/ﬁﬁ

The following observation says that the edges are well-
behaved in that their typical delays are not larger than their
worst case delays.

Observation 2: For each edge, we have cy (e) > cr(e).
Proof: Edges from fanout nodes to switching nodes have both
cw and cp equal to O — so this is trivially true. Consider
any layer ¢ and the edges from its switching node to fanout
nodes. The edge with the largest ¢y and the smallest cy
is the edge (u;,v; m_1). For this edge, cr(ui,v; m_1) =

(Vr=1)(v/n') and ey (ui, v; 1) = ki—(Vn—1)(Vn') =
2"t /') = (Vi =il = er(uivi o). For all
other edges in the layer, cr < cw . (]
This observation states the relationship between typical and
worst case delays of paths between switching nodes.
Observation 3: For any path p that goes from ug to uj,

ew (p) = Y24 ki—er(p) = 2¢/n" —2—cr(p). Therefore, for
any path from ug to ¢, we have cy (p) = Zﬁﬁ —2—cr(p).

We can use these observations to understand the intuition as
to why the switching nodes need large tables. Let us consider
the particular case of wug
1) Each path from ug to ¢ has a distinct typical delay between

0 and \/ﬁﬁ — 1 (proven formally in Lemma 1).

2) For any path from ug to ¢, Observation 3 tells us that

the worst case delay is cy (p) = Z;;i k; — cr(p) where

2: k; = Zﬁﬁ — 2. Therefore, all worst case delays
are also distinct and take values between \/ﬁ\/E — 1 and
2\/5‘/57 2. But their ordering is opposite of typical delays
— for any pair of paths p1,pa, if cr(p1) > cr(p2), then
cw (p1) < ew (p2).

3) On careful observation, we see the following for paths from
up to t: a path p with cr(p) = 7 mod /n must go through
vp,; since all typical weights except the weights of fan out
edges in the first layer are multiples of \/n. Therefore, the
first edge on the path from ug to ¢ decides the remainder
when the path weight is divided by /n.

4) Now let us consider the lookup table at u. If the remaining
end-to-end delay bound is smaller than \/ﬁ\/ﬁf 1, then this
graph is infeasible. If the remaining end-to-end delay bound
is \/ﬁ‘/ﬁ — 1, this packet is forced to take the bottom path
through vy /1,01, /m—1,-.- in Figure 5 with the typical
delay bound of \/ﬁﬁ — 1 since this is the only path with
the required worst case delay bound. On the other hand,
if the remaining end-to-end delay bound at ug is at least
2\/ﬁﬁ — 2, then the packet can take the top path through
V0,0, V1,0--- for the typical delay bound of 0. All end-to-end
delays between these quantities, there is a unique path that
has that particular worst case bound.

5) Recall that paths with smaller worst case delay have larger
typical delays. For any particular remaining end-to-end
delay bound of Y at ug, to get the smallest typical delay,
we should choose the path p such that ¢y (p) = Y and

Layeryn — 1

Vyn-14n-1

Fig. 5. The example to show that we need pseudopolynomial size tables. The example is a layered graph with \/n layers where each layer has a switching
node u; and y/n fan-out nodes. Each edge is labeled with its typical and worst-case delays as cr, cyy.

therefore, cr(p) = 2\/ﬁﬁ — 2 —Y. This path p will go

through vertex v ; if cr(p) =5 mod /n.

To be even more concrete of when we might store a large
table, consider the case where the source node is connected
to up with an edge with cr(s,up) = ew(s,ug) = L =
\/ﬁﬁ — 1 and the end-to-end delay deadline between s and
tis D = 2\/77\/H — 2. Therefore, the packet may experience
any delay between 0 and L on the link (s, ug) and therefore,
its remaining end to end budget can be anywhere between
D-L=n""—1and D = 2,/n"" — 2. Table I shows
the \/ﬁ‘/ﬁ table we must store at ug in this case. The left
column d is the maximum worst case delay we can tolerate
and the second column indicates the edge it must take to get
the smallest typical delay given this worst case delay. As the
third column, (just for illustration) the table also shows the
expected typical delay for the particular value of d.

This table has \/ﬁ‘/ﬁ rows at ug. Since the total number
of nodes in the network is O(n) (n + y/n + 2 to be exact),
the table is super-polynomial in the size of the network. It
is still pseudo-polynomial since it can not be larger than D
or the sum of all the worst-case delays. All switching nodes
are similar — wu; must store \/ﬁ\/ﬁ_Z rows since there are
\/ﬁﬁﬂ paths from u; to t.

Rigorous proof for large tables. We now do the rigorous
proof. Again, relatively obvious facts are stated as observa-
tions.

Observation 4: For any path p between u; and u;, cr(p) is
a multiple of /n'".

Proof: All edge weights between u; and u; are products of
\/n'. Therefore, path weights must also be multiples of /n".
(]

This key lemma shows that all paths have unique weights.

Lemma 1: No two paths between u; and wu; (for all ¢ and
all 7 > 7) have the same typical weight (therefore worst-case
weight). In particular, there are \/n’ ' paths between u; and

d edge expected cr(p)
D(= Qﬁﬁ —-2) — 00,0 0
D—-1 — 00,1 1
D -2 — 00,2 2
D—(Vi—1) vy i1 V-1
D — \/ﬁ — 00,0 \/ﬁ
D*(\/’E+1) — 00,1 (\/ﬁ+1)
D—(2yn—1) vy 2/n — 1
D-(a" —vm) | —wo | vaYT-vm
D—(\/ﬁ‘/ﬁ—\/ﬁ-‘rl) — 00,1 \/ﬁﬁ_\/ﬁ+1
D-(n"=1) | owma | (A-1)
TABLE I

THE LOOKUP TABLE AT ug FOR THE EXAMPLE SHOWN IN FIGURE 5

u; and each of these paths has cr(p) = zy/n’ for different
values of = between 0 and /n’ " — 1.
Proof: Proof is by induction. As a base case, consider a single
layer. From Figure 5, for all i, we see that the /n paths
between u; and u;4; have unique typical delays that take
values 0, /n",2y/n', ..., (v/n — 1)y/n".

Assume for inductive hypothesis that the statement is true
for paths between wu; and u;. We must now prove it for
paths between u; and u;;. Note that the \/n paths between
uj and wujy; have unique weights and they take values
0,v/n’,2y/n’,....,(v/n —1)y/n’ (from base case).

From the inductive hypothesis, each path from u; to u; takes
a unique weight among 0,/7n',2y/n’, ..., (v’ ' = 1)y/n'.
Consider path p%J with weight x\/ﬁl O<z< " =1
and path p/i ! with weight y/n’ (0 <y < /n—1). If we

concatenate these paths, we get a path of length zv/n' +y/n’.
Since x < /n’"" — 1, the first term z\/n' < /0’ — /0"
Therefore, the sum of the two terms are unique for all values
of z and y.

In addition, by Observation 4, all these paths lengths must
be multiples of \/ﬁl. Finally, for the largest values of x and
y, we have zy/n' + yy/n' = 't - yn' = (VT -
1)/n'. Therefore, path from u; to u;;1 has cr(p) = zy/n’
for different values of = between 0 and /n’ g |

Corollary 1: There are \/ﬁ\/ﬁ paths between 1 and ¢ and
they all have unique typical weights between 0 and \/ﬁ‘/ﬁ

Lemma 2: If we consider the paths from ug to t — all
paths with typical weight j mod /n go through v ; for all
0<j<vn—1
Proof: From Lemma 1, paths from u; to ¢ have weights
0,v/n,2+/n, ...,. These values are all 0 mod +/n. Therefore,
in order to get a weight of ; mod /n, we must add a path
of weight j between ug and u; and the only way to do that
is to go through vy ;. (]

Now say a packet X delay on edge (s,ug) and has the
remaining end-to-end delay bound of Y = D — X, where X
can take any value between 0 and L. Therefore, at ug it must
decide what path to take to get the minimum typical delay.

Lemma 3: If we need the worst case delay from ug to ¢ to
be less than some quantity Y = D — X for 0 < X < L, then
we should take the path which will go though fan out node
Vo, if X :_] mod \/’Tl
Proof: Observation 2 tells us that a path with worst case
delay cy (p) has average delay cr(p) = 2\/ﬁﬁ —2—cw(p).
Therefore, among all paths that have worst case delay at most
D — X, the one with the smallest typical delay would be the
one with typical delay cr(p) = Qﬁﬁ -2-D-X=X
(since D = 2\/ﬁﬁ—2). Therefore, this packet should take the
path with average delay X, which by Lemma 2 goes through
vo,; if X =7 mod y/n. O

Therefore, to get the best typical delay, we need a lookup
table at ug that is as large as X + 1, which is \/ﬁ\/ﬁ in this
case. Note that we can modify this example and change the
number of layers and the number of fan-out nodes. For any
value of €, we can have n¢ fan-out nodes and n'~¢ layers
with the total number of nodes still O(n). (For our example,
we have picked e = 1/2.) This will give us (n)" * unique
paths. Given a table of size (ne)"lfe, at runtime, when we
are node ug, we need n'~¢lgn time to search for the best
path using binary search. Therefore, the runtime overhead at
intermediate nodes can be arbitrarily close to nlgn (at least
at ug). In Section VI, we will see an algorithm which takes
polynomial pre-processing time and the runtime overhead at
intermediate nodes is only slightly larger.

V. AN OPTIMAL SEMI-ADAPTIVE ALGORITHM

Recall from Section II that for semi-adaptive strategies,
upon traversing an edge e the actual delay experienced in
doing so is not revealed — we only know whether this
actual delay exceeded the typical delay estimate cr(e) or

not. Hence, an optimal strategy must minimize the typical
delay encountered if no delay exceeds its typical estimate
while ensuring that meeting the end-to-end delay bound never
becomes impossible along the way. As mentioned in Sec-
tion II, determining such an optimal strategy is equivalent to
determining the single “safe” path P with minimum typical
delay. Le., the execution of the strategy proceeds as follows:

1) Prior to setting out from the source vertex, we will
identify a path P from the source to the destination vertex
— the manner in which we will do this is described below.

2) We then set out from the source vertex along this identi-
fied path P. We continue to follow this path so long as
the actual delay we encounter while traversing each edge
does not exceed the typical delay estimate for that edge.
If we reach the destination vertex, we are done.

3) Otherwise, let (u,v) denote the first edge in the path for
which the actual delay encountered exceeds cp(u,v). We
then travel along a potentially different path W(v) from
v to the destination vertex ¢, that was also pre-calculated
in a manner discussed below.

Given a problem instance I = <G,CT, cw, S, D>, we wish
to find this path P such that we are guaranteed to reach the
destination ¢ within a duration D of leaving the source vertex
s, so long as the delay on any edge e does not exceed the worst
case guaranteed delay of ¢y (e). In addition P is a shortest
path (in terms of typical delays) among all such safe paths.

Before we describe the algorithm, we need a few additional
definitions. Recall from Definition 1 that for any vertex v,
a(v) denotes the smallest value of the maximum delay we may
experience in getting from v to the destination vertex ¢, and
W(v) denotes a path on which this delay may be experienced.
We point out that the «(v) values, as well as the paths W(v)
that define them, may be determined very efficiently using
standard shortest-path algorithms such as the one in [2], for
which implementations with O(| E|+|V|log|V|) running time
are known [4].

The next concepts we seek to define are inter-dependent;
hence they are defined concurrently.

Definition 4 (f : V — N; useful edges; T : V — N): For

every vertex v € V, define 5(v) as follows:

pls) = 0
Blv) =

(Recall that s denotes the source vertex)

minimum sum of typical-delay costs of the
edges on a path from s to v in which all the
edges are useful

where an edge (z,y) is defined to be useful if and only if

Bx) + ew(z,y) +aly) < D

We let 7 (v) denote the path from s to v consisting only of
useful edges, that realizes the typical delay of S(v). O

We will now show that the path P that we wish to identify
prior to setting out from s is the path 7(¢). In the following
two lemmas, we show that (i) the choice of T(t) as P
guarantees that we will always reach the destination within D

time of leaving the source if we follow the procedure described
above; and (i) 7 (¢) is the shortest such safe path.

Lemma 4: The choice of T (t) as P guarantees that we will
reach the destination within a duration D of leaving the source
vertex s.

Proof: Let us consider the path taken in an individual instance.
First consider the case where the delay experienced across no
edge on the path exceeded the typical delay estimate of that
edge. Then the algorithm will take the path P with cost 5(¢).
Say that the last edge on the path was (v,t). By definition
of P, it is a useful edge. Therefore, we have 3(t) = B(v) +
er(v,t) < B(v) +ew (v, t) < D by definition of useful edges.

Next, consider the case where the delay on some edge e
exceeds the typical estimate cr(e), and (u,v) denote the first
such edge. Then, according to the procedure outlined above,
the overall path taken is the prefix of P until v and then W(v).
Therefore, the delay experienced is the at most the sum of the
typical delay until u, ey (u,v) and a(v). Since any prefix of a
shortest path is also a shortest path, the delay experienced until
u is B(u). Therefore, the total delay is B(u)+cw (u,v)+ a(v)
which is at most D since (u,v) is a useful edge by virtue of
being on path 7T (). O

Lemma 5: Given the form of the solution where we take
a single path P until some edge exceeds the typical delay,
choosing any path with shorter typical delay than 7 (¢) as the
choice for P is unsafe. That is, if we chose a shorter path as
‘P, then the deadline may not be met.

Proof: T (t) is the shortest path from s to ¢ using only useful
edges. Therefore, any shorter path must use at least one edge
which is not useful. Consider such a path X which uses a
non-useful edge, and let (u,v) denote the first such edge on
X. That is, all edges on path X from s to u are useful. By
definition, since (u, v) is not useful, 5(u)+cw (u, v)+a(v) >
D. We now show a circumstance which results in a violation
of the end-to-end delay bound if we choose X as P. The
edges on the prefix of the path until » will experience typical
delays, causing us to stay on X and incurring a delay of 3(u)
since all edges on the path from s to u are useful. At this
point, the algorithm will choose the edge (u,v) which will
experience the worst-case delay cyy (u, v). After this, all edges
on whichever path is chosen will also experience its worst-
case delay — hence we can not get from v to ¢ in time less
than «(v). Therefore, the total delay experienced is S(u) +
ew (u,v) + a(v) > D thereby violating the delay bound. O

From Lemmas 4 and 5, we conclude that it is sufficient to
find 7 (¢) in order to solve the optimal semi-adaptive routing
problem. Figure 6 provides an algorithm to calculate 5(¢) and
T (t); in the remainder of this section we prove its correctness
and derive bounds on its running time. Before doing so, we
first make an obvious observation.

Observation 5: Each edge is (u,v) is considered for relax-
ation exactly once — when the vertex u (the originating vertex
of the edge) is extracted from Q). (]

Correctness of the algorithm of Figure 6 is proved in the
following theorem.

1 for each vertex v € V

2 DIST(v) = oo

3 DIsT(s) =0

// Q is a priority queue prioritized by the DIST(-) values

4 for each vertex v € V

5 ().INSERT(v)

6 while () is not empty

7 u = Q.EXTRACTMIN()

8 for each edge (u,v) such that v € Q

9 if ((DIST(U) + ew (u,v) + a(v) < D) and

(D1ST(u) + 7 (u,v) < DlST(v)))
// “relax” this edge

10 DIST(v) = DIST(u) + e (u,v)
11 PARENT(v) = u

To find 7 (t), we trace back the parent pointers from the
destination node ¢ until we reach the source.

Fig. 6. Pseudo-code for optimal semi-adaptive algorithm. It calculates the
path 7(¢). The final values of DIST(u) for all nodes u represent 8(u).

Theorem 1: For the algorithm of Figure 6

1) pDIsT(u) is always an upper bound on the [(u) (i.e.,
DIST(u) > B(u) at all times);

2) when a node u is extracted from @, DIST(u) = B(u); and

3) an edge is relaxed if and only if it is useful.

Proof: We will prove this by induction on the number of
iterations of the while loop. As the base case, we know that
DIST(s) = 0 and DIST(u) = oo for all other u — therefore, in
the beginning Property 1 is satisfied. The first node extracted
by the algorithm is s and DIST(s) = S(u) = 0 at this time —
satisfying Property 2. Finally, consider an outgoing edge (s, v)
from s. This edge is relaxed iff DIST(s)+cw (s, v)+a(v) < D.
Therefore, these edges are relaxed iff they are useful, satisfying
Property 3.

We will now induct on the extraction of vertices and
relaxation of edges. As the inductive hypothesis (IH), assume
that right before vertex w is extracted, all three properties
were satisfied for all vertices and edges. We must now show
that until the next vertex is extracted, all properties are still
satisfied.

We first show that Property 2 holds about u when u is
extracted. Let us assume, for a contradiction, that DIST(u) #
B(u) when u is extracted. By the IH on Property 1, we know
that, right before extraction, we have DIST(u) > B(u). Since
DIST(u) never increases, and we assumed that DIST(u) #
B(u), we must have DIST(u) > B(u) when u is extracted.

Consider path 7 (u) — the actual shortest path from s to v
consisting of only useful edges. This path has length 5(u).

On this path, consider the first node, say x, that is still
in @), and the node immediately before x on the path, say
w. Therefore, w is no longer in () and was extracted during
some previous iteration. Hence, by the inductive hypothesis
and Property 2, DIST(w) = S(w). Now consider edge (w, x).

This edge was considered for relaxation when we extracted w.
Since T (u) consists of only useful edges, this edge is useful.
Therefore by IH on Property 3, this edge was relaxed when
w was extracted.

When this edge was relaxed, the algorithm set DIST(z) =
DIST(w) + er(w,x) = B(w) + er(w,x). Since T (u) is the
shortest path from s to u with only useful edges, and all edge
weights are positive, 7 (u)’s prefix from s to x is 7 (x) (by
what is commonly referred to as the inclusion property of
shortest paths: every sub-path of a shortest path is a shortest
path between its first and last vertices). Therefore, after edge
(w, x) is relaxed DIST(z) = B(x).

Therefore, if x = u, we have a contradiction since we as-
sumed that DIST(u) > S(u) when u is extracted and DIST(u)
never increases. If # u, then x comes before u on T (u).
Therefore, we know that DIST(z) = 8(z) < 8(u) < DIST(u).
Since x and w are both in @ at this point, we would extract x
before we extract u— which is also a contradiction since we
are currently extracting u before x Therefore, when a vertex
u is extracted, DIST(u) = 3(u) (Property 2)

Now consider Property 3. Edge (u,v) is relaxed when u is
extracted if DIST(u) + ew (u,v) + a(v) < D which implies
that B(u) + ew (u,v) + a(v) < D. This is the definition of
usefulness — therefore, the edge will be relaxed iff it is useful.

For property 1, consider a vertex v. DIST(v) is the typical
length of the path that is realized by the current parent pointers
from s to v. Before u was extracted, DIST(v) > B(v) by IH.
DIST(v) changes only if we relaxed the edge (u,v). If edge
(u,v) is relaxed, the algorithm sets DIST(v) = DIST(u) +
cr(u,v) = B(u) + er(u,v). We know that the entire path
T (u) that realizes B(u) has only useful edges and (u,v) is
useful. Therefore, this new DIST(v) which is the length of
the path 7 (u) extended by (u,v) also only consists of only
useful edges. Therefore, DIST(v) is the length of the path
T (u) U (u,v), which is a path from s to ¢ consisting of useful
edges. Since B(v) is the length of the shortest path from s to
v consisting of useful edges, we must have DIST(v) > 5(v).
d

Therefore, after the algorithm completes, DIST(t) = [3(t)
and therefore, the parent pointers identify the path 7 (¢). Recall
that Lemmas 4 and 5 guarantee that 7 (¢) is the optimal semi-
adaptive path. We now prove the performance bound.

Theorem 2: The pre-processing time is O(E + V' lg V).
Proof: First, we calculate W(v) for all vertices v by running
Dijkstra’s algorithm from ¢ using the worst case delays for
running time of O(E 4 V'lgV). The algorithm consists of
|V| INSERT operations, |V'| EXTRACTMIN operations and E
DECREASEKEY operations. DECREASEKEY operations occur
when an edge is relaxed and DIST(v) is changed. According
to Observation 5 each edge is relaxed exactly once, for at
E' DECREASEKEY operations overall. Just as for normal
Dijkstra’s algorithm, we can use Fibonacci Heaps to im-
plement the priority queue with amortized costs of O(1),
O(logn), and O(1) respectively for INSERT, EXTRACTMIN
and DECREASEKEY respectively [4], giving us the total run-
ning time of O(E 4+ V1gV). O

In addition, at each intermediate vertex, the runtime over-
head is constant for the overall running time of O(E+V 1g V).

VI. OPTIMAL ADAPTIVE ROUTING IN POLYNOMIAL TIME

As mentioned in Section III, the pre-processing time for
the adaptive routing approach of [1] is polynomial in the size
of the lookup tables, and the running time overhead at each
intermediate vertex is logarithmic in the size of the lookup
table at that vertex. The result of Section IV shows that lookup
table sizes (and hence, the pre-processing time) can be super-
polynomial; therefore, the per-vertex run-time overhead during
traversal can be close to linear in the representation of the
instance.

We saw in Section V that the optimal semi-adaptive algo-
rithm has polynomial pre-processing time as well as constant
overhead at runtime per vertex. We will now extend this
algorithm to get an optimal fully-adaptive algorithm which
has the following properties:

1) the pre-processing phase is identical to the semi-adaptive
algorithm and has polynomial running time.

2) the running time at each intermediate vertex during traver-
sal is also polynomial in the representation of the instance
(in this regards it is hence slower than the semi-adaptive
algorithm which has constant per-vertex complexity, but
comparable to the approach of [1]); and

3) the end-to-end delays are identical to the ones that are
obtained by the approach of [1]and hence optimal.

We now proceed to describe our proposed approach. We start
out with an informal observation that we will formalize and
prove a bit later (as Lemma 7): the first edge taken by an
optimal semi-adaptive algorithm is also the first edge taken by
the optimal fully-adaptive algorithm (on the same instance).
This observation is not surprising: informally speaking, this
happens because no additional (“on-line”) information, in the
form of the actual delays experienced upon traversing an edge,
has been revealed prior to leaving the source vertex s, and both
approaches are making the best use of the same pre-runtime
information to choose the same edge by which to leave s.

Of course, the actual delay encountered while traversing this
first edge may be different from its estimated typical delay. Let
(s,v1) denote this first edge out of the source vertex s, and
let delay(s,v1) denote the actual delay that was encountered
across this edge (s,v1). If delay(s,v1) # cr(s,v1), the route
v1 ~» t taken by the a semi-adaptive algorithm may differ
from the one taken by an optimal adaptive algorithm, since
the fully-adaptive algorithm takes account of the magnitude of
the difference between delay, and cr(s,v1) in order to inform
its future routing decisions, while a semi-adaptive algorithm
does not have this information.

The crucial observation that underpins our fully-adaptive
approach is this: upon having reached the vertex v;, the value
of delay(s, v1) becomes known, and it can hence be concluded
that there is a duration (D —delay(s, v1)) remaining of the end-
to-end delay bound. We can therefore look upon the problem

Let (G,cr,cw, s,t, D) denote a feasible instance we seck to
solve. That is, we seek to travel from the source s to the
destination ¢ with minimum delay subject to a worst-case delay
bound D

source = s
D, =D

Call semi-adaptive algorithm on (G, cr, cw, source, t, Do)
Say (vo,v1) is the first edge of the returned path.

Traverse this edge; Say actual delay is delay(vo, v1)

if (v1 = 1) exit // Destination has been reached

if delay, > cw(vo,v1) then exit

// Worst-case delay bound on edge exceeded

8 D, = D, — delay, // Remaining end-to-end delay

9 source = v1 // The new source vertex

10 goto Line 3

NN N A W=

Fig. 7. Pseudo-code representation of an optimal adaptive routing strategy
that has polynomial time-complexity

of getting from v; to the designated destination ¢ as a fresh
instance of the problem:

<G,CT,CW,Ul,t, (D_delayl)> (1)

which requires us to get from this vertex vy to ¢ with minimum
typical delay while guaranteeing to do so within a worst-case
delay of (D —delay,). And this fresh problem can be solved in
polynomial time by applying the semi-adaptive pre-processing
algorithm. Using an argument that is essentially identical to
the one used to show that the first edge in the paths for
semi-adaptive and adaptive algorithms are identical, it follows
that the second edge selected by an optimal fully-adaptive
algorithm is identical to the first edge selected by a semi-
adaptive algorithm on the instance represented in Expression 1
above. Therefore, at every intermediate vertex v;, we make a
call to semi-adaptive algorithm on a new problem instance
with the source replaced with v; and the end-to-end delay
bound replaced with D minus the delay experienced so far.
This idea is represented in pseudo-code form in Figure 7.
(The repeated calls to the semi-adaptive algorithm are made
in Line 3.) We will now show that this strategy is correct:

Lemma 6: The strategy of Figure 7 always generates a
correct adaptive route on a feasible instance, provided all
actual delays that are experienced during run-time do not
exceed the respective worst-case bounds.

Proof: We show that if the initial instance is feasible, then each
call to the semi-adaptive algorithm made in Line 3 of Figure 7
is on a feasible instance. This can be shown by induction on
the number of times Line 3 is executed: the instance is clearly
feasible the first time. Assuming for the induction hypothesis
that the instance is feasible at the ¢’th call, since the actual
delay that is encountered upon traversing the edge (Line 5 of
the pseudo-code) is no larger than the corresponding worst-
case bound (as checked in Line 7) it follows that the instance
on which Line 3 is executed for the (i 4 1)’th time will also
be feasible. (]

Lemma 7 shows that the semi-adaptive algorithm and the
optimal fully adaptive algorithm (from [1]) take the same

outgoing edge from the source vertex for any feasible instance:

Lemma 7: Let P = (s = vg,v1, V2, ...,v; = t) denote
the path generated by semi-adaptive algorithm on a feasible
instance I = <G,CT, cw, s,t,D). Edge (s, v1) is also the first
edge traversed by the approach of [1] on instance I.

Proof: The approach of [1] takes the edge (s,v1) from s
if there is an entry d,v; in the lookup table at s such that
d < D and this is the largest such d. Recall from Section III
that an entry (d,v) in the lookup table at a vertex u denotes
that the outgoing edge (u,v) is the one that should be taken
in order to travel from w to the destination vertex ¢ in the
shortest time provided the delay experienced across each edge
does not exceed the typical delay estimate for that edge, and
we are guaranteed to be able to get to ¢ within a duration
d. From the correctness and optimality condition of semi-
adaptive algorithms in Section V, this is exactly the path that
is identified by the semi-adaptive algorithm. Hence the first
edge on both paths is the same. (]

Repeated application of Lemma 7, one for each edge that

is traversed, immediately yields the following result:

Theorem 3: The s ~> path generated by the Algorithm
depicted in Figure 7 on a feasible instance (G, cr, cw, s,t, D)
is identical to the path generated by the approach of [1].

Dealing with updates to cr(-) values

While in our model the cyy(-) values are assumed to repre-
sent guaranteed upper bounds on the delays experienced while
traversing across edges, the cp () values represent estimates
of the delays that are typically encountered. We now discuss
how all three approaches — the one proposed in [1], the semi-
adaptive algorithm, and the one in Figure 7 — could deal with
more accurate estimates of these cp(+) values if they were to
become available after the traversing entity has started on its
path.

o The approach of [1] would require that the lookup ta-
bles at all the vertices be recomputed which may be a
non-polynomial time operation (Section III). Realistically
speaking, one would probably ignore these fresh estimates,
potentially compromising the optimality property.

« Since the semi-adaptive algorithm predetermines the entire
route before leaving the source vertex, there are two rea-
sonable strategies for dealing with updated cr(-) estimates:
ignore the updates (thereby compromising the optimality of
the obtained route), or re-compute the route from the current
location. But this latter alternative is exactly what the fully-
adaptive strategy does anyway.

o The fully adaptive approach in Figure 7 only uses the
estimated cr(-) values to compute the next hop to take; once
this hop has been taken, the subsequent hop is recomputed
(again, using the estimated cp(-) values). Hence if the cp(+)
estimates changed while traversing an edge, the approach of
Figure 7 can automatically use the new estimates for the next
and all subsequent hops. Therefore, this approach provides,
in polynomial time, superior (i.e., smaller end-to-end delay

(D—-2,D —2)

Fig. 8. An example feasible instance upon which static routing may perform
arbitrarily poorly in comparison to adaptive routing.

under typical circumstances) routes than the approach of [1]
if the approach of [1] does not change its lookup tables upon
receiving fresh cr(-) estimates.

VII. SHORTCOMINGS OF STATIC ROUTING STRATERIES

In this paper, we have explored adaptive routing strategies,
justifying (in Section I) the need to do so by arguing that
they are in capable of providing shorter delays under typical
conditions than static routes are. In this section, we formally
show that static routing can perform poorly in comparison to
adaptive routing strategies along both dimensions of compar-
ison: 1. determining optimal static routes is NP-hard while
(as shown in Section VI) optimal adaptive routes can be
determined in time polynomial in the problem size and the
number of edges in the optimal adaptive path; and 2. the
ratio of the duration of the delay experienced under typical
circumstances may be arbitrarily poorer under static routing
than under adaptive routing.

§1. Determining an optimal route/ routing strategy. We
can show that the problem of determining an optimal route is
NP-hard by transforming the RESTRICTED SHORTEST PATHS
PROBLEM (RSP) to the problem of determining an optimal
static route. The RSP is defined [5] as follows:

Given a directed graph in which each edge has
a length and a transition-time, a source vertex, a
destination vertex, and a transition-time bound 7T,
determine a path of shortest cumulative length from
the source vertex to the destination vertex for which
the cumulative transition-time is < 7.

Given an instance of the RSP, we can transform it to a problem
of obtaining an optimal static route as follows.

1) The graph, the source, and the destination vertices are the
same.

2) Edge lengths become the typical delay estimates while edge
transition-times become the maximum delay bounds.

3) The transition-time bound 7" becomes the end-to-end delay
bound.

It is straightforward to show that a static route of minimum
cumulative typical delay that has worst-case delay bound no
greater than 7 in the transformed instance is exactly a shortest
path solution to the RSP instance.

§2. Comparing the typical delays that can be obtained. We
now show that for some feasible instances, the ratio of the
typical delay obtained by an optimal static algorithm to that
obtained by an optimal adaptive algorithm may be arbitrarily
large. Figure 8 shows an example graph with source s and
destination ¢ with an end-to-end delay not exceeding D. Ob-
serve that the only static feasible static route is (s — v; — t).
The typical delay of this route is is 1 + (D —2) =D — 1.

Consider now the following adaptive strategy:

—

traverse the edge (s, v1)
if the actual delay encountered is < 1 time unit
3 continue along the path (v; — vy — t)

// Worst-case delay: 1+ (D —2)+1=D
4 else take the edge (v; — t)
// Worst-case delay: 2+ (D —2) =D

[\

This adaptive strategy clearly satisfies the worst-case end-to-
end delay bound of D. Under typical conditions it would take
the path (s — v; — vy — t); its typical delay therefore 1 +
141 or 3. The ratio of the typical delay under static routing
to the typical delay under adaptive routing is therefore (D —
1)/3; by making the value of D arbitrarily large, this example
illustrates that the performance of a static routing strategy may
be arbitrarily poor when compared to an adaptive one.

VIII. SUMMARY AND DISCUSSION

We have considered real-time routing problems on networks
when specified end-to-end delay bounds need to be met, but
the delays that are encountered across individual edges of
the network are not known precisely beforehand. We have
seen that adaptive routing strategies, that are not required to
statically pre-determine the entire route to the destination prior
to setting out from the source vertex, are in general able
to provide superior (i.e., smaller) end to end delays. Here
we propose a semi-adaptive polynomial time approach and
then generalize it to a fully-adaptive approach. Our fully-
adaptive approach has the additional benefit that if fresher
estimates of delays that are typically encountered across edges
become available, such updates can be seamlessly integrated
to maintain optimality without increasing run-time complexity.

Despite its super-polynomial run-time complexity, the ap-
proach of [1] seems to integrate the most closely with current
practice in real-time routing, which is primarily based on
constructing lookup tables at each vertex beforehand and using
these tables to make on-line routing decisions. We consider
our result in Section IV to be particularly significant from
this perspective, since it shows that such table-based routing
methods cannot yield polynomial-time solutions. As we had
stated in Section IV, we were surprised to discover that super-
polynomial sized tables are needed for optimal routing: this
result ran counter to our intuition. As future work we plan to
try and better understand what precise features of a network
give rise to this need for inordinately large tables: we believe
such understanding may yield useful design guidelines for

building real-time networks. We also plan to study table-
lookup based routing approaches from the perspective of
approximation: how far removed from optimality would the
resulting routes be, if we were restricted to constructing
polynomial-sized tables in polynomial time?

ACKNOWLEDGEMENTS

This research was supported, in part, by the the Na-
tional Science Foundation (USA) under Grant Numbers CNS-
1618185, CNS-1911460, CCF-1337218 and CCF-1439062.

(1]
(2]
(3]
(4]
(51

REFERENCES

Sanjoy Baruah. Rapid routing with guaranteed delay bounds. In Real-
Time Systems Symposium (RTSS), 2018 IEEE, Dec 2018.

E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1(1):269-271, December 1959.

Richard Bellman. On a routing problem. Quarterly of Applied Mathe-
matics, 16(1):87-90, 1958.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, third edition, 2009.

H.C Joksch. The shortest route problem with constraints. Journal of
Mathematical Analysis and Applications, 14(2):191 — 197, 1966.

