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Crucial transitions in cancer—including tumor initiation, local expansion,metastasis, and therapeu-

tic resistance—involve complex interactions between cells within the dynamic tumor ecosystem.

Transformative single-cell genomics technologies and spatial multiplex in situ methods now pro-

vide an opportunity to interrogate this complexity at unprecedented resolution. The Human Tumor

Atlas Network (HTAN), part of the National Cancer Institute (NCI) Cancer Moonshot Initiative, will

establish a clinical, experimental, computational, and organizational framework to generate infor-

mative and accessible three-dimensional atlases of cancer transitions for a diverse set of tumor

types. This effort complements both ongoing efforts to map healthy organs and previous large-

scale cancer genomics approaches focused on bulk sequencing at a single point in time. Gener-

ating single-cell, multiparametric, longitudinal atlases and integrating them with clinical outcomes

should help identify novel predictive biomarkers and features aswell as therapeutically relevant cell

types, cell states, and cellular interactions across transitions. The resulting tumor atlases should

have a profound impact on our understanding of cancer biology and have the potential to improve

cancer detection, prevention, and therapeutic discovery for better precision-medicine treatments

of cancer patients and those at risk for cancer.

Cancer forms and progresses through a series of critical transi-

tions—from pre-malignant to malignant states, from locally

contained to metastatic disease, and from treatment-responsive

to treatment-resistant tumors (Figure 1). Although specifics

differ across tumor types and patients, all transitions involve

complex dynamic interactions between diverse pre-malignant,

malignant, and non-malignant cells (e.g., stroma cells and im-

mune cells), often organized in specific patterns within the tumor
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microenvironment. Morphological, genetic, and epigenetic di-

versity of pre-malignant and malignant cells, even from the

same tumor, is crucial for cancer development, adaptation to

new metastatic sites, and resistance to treatment. Interactions

with non-malignant cells in the tumor microenvironment also

play critical roles in driving disease progression. Tumor cells

can remodel their environment to promote their growth, enable

tissue invasion to nearby or distant sites, or evade immune clear-

ance. Conversely, diverse immune and stromal cells can either

restrict or promote tumor growth and progression depending

on the context.

The genomic revolution in cancer has led to the identification

and pursuit of numerous genetic drivers of malignancy (The

Cancer Genome Atlas Research Network et al., 2013; The In-

ternational Cancer Genome Consortium, 2010), but these ef-

forts have relied, by necessity, on bulk profiling of advanced tu-

mors, most commonly at a single point in time, with limited

information about patient treatment and outcomes (Figure 2).

This has made it difficult to capture the intricate cellular, spatial,

and temporal dimensions of tumorigenesis and their role in dis-

ease progression and dissemination. Recent advances in sin-

gle-cell and multiplexed spatial analysis of tissue allow us

to interrogate this complexity at unprecedented resolution (An-

gelo et al., 2014; Buenrostro et al., 2015; Chen et al., 2016a;

Chen et al., 2016b; Du et al., 2019; Gaublomme et al., 2019;

Gierahn et al., 2017; Giesen et al., 2014; Goltsev et al., 2018;

Habib et al., 2017; Kang et al., 2018; Lee et al., 2014;

Lin et al., 2018; Macosko et al., 2015; Moffitt et al., 2016a; Mof-

fitt et al., 2016b; Shalek et al., 2013; Ståhl et al., 2016; Stoeck-

ius et al., 2018; Trombetta et al., 2014; Vickovic et al., 2016). As

a result, it is now possible to systematically identify subcellular

structures, cell types, cell states, and different genetic clones in

a tumor and to relate them spatially to each other and to the

overall tumor. This should allow us to better understand tumor

evolution and heterogeneity with the promise of improved diag-

nostics and therapeutics.

The Human Tumor Atlas Network (HTAN) was established by

the National Cancer Institute (NCI) as part of the Cancer Moon-

shot Initiative, tasked with the ambitious goal of making a de-

cade’s worth of progress in cancer prevention, diagnosis, and

treatment in just 5 years (https://ccr.cancer.gov/research/

cancer-moonshot). HTAN will generate three-dimensional (3D)

atlases of cancer transitions for a diverse set of pre-cancers

and established tumors. Transitions will span tumor evolution

from pre-malignancy to malignancy, from primary tumor to

metastasis, and from pre-treatment to post-therapeutic

response (Figure 1). Analogous to geographical information sys-

tems such as Google Maps, these interactive atlases should de-

pict evolving tumor ecosystems in multiple dimensions across

space and time to enable generalization and abstraction from in-

dividual tumor instances to their overall principles. The hope is

that visualizing the structure, composition, and multiscale inter-

actions at distinct points in tumor evolution will help identify

novel predictive biomarkers and therapeutically relevant cell
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types, cell states, and cellular interactions and suggest new

avenues for effectively targeting them. To construct even prelim-

inary atlases, we must overcome substantial clinical, experi-

mental, computational, and organizational challenges. To maxi-

mize the atlases’ impact and applicability, we also plan to

develop robust yet flexible strategies for data integration, visual-

ization, and sharing.

Here, we introduce the concept of a dynamic, multiparametric

3D tumor atlas, its potential to affect basic and translational

research, and the experimental and computational strategies

for its construction. We also discuss HTAN’s organization and

opportunities for engagement and collaboration with comple-

mentary initiatives.

3D Atlases of Critical Transitions in Cancer

We envision tumor atlases as comprehensive, generalized cata-

logs of cell states, types, and programs and cell-state transitions

and that these will incorporate the physical positions of tumor

cells in relation to each other, the supporting stroma, and the

extracellular matrix. To encompass the heterogeneous nature

of tumors within and across patients, our atlases will generalize

underlying features and programs that are unique or shared by

multiple tumors and relate these molecular features to functional

and clinical data elements and patient outcomes. HTAN atlases

will represent different tumor types, disease sites, genders, and

patient ethnicities. Because mechanisms of tumorigenesis are

diverse and not all tumor types or metastatic sites can be

sampled in the same way, the information available in specific

atlases will vary.

Figure 1. Crucial Transitions in Cancer
HTAN aims to generate 3D atlases of three critical
transitions in cancer: tumor initiation (from pre-
cancerous lesions to local malignancy), expansion
(from local malignancy to metastasis), and pro-
gression to a therapy-resistant state through
intrinsic (purple) or acquired (yellow) resistance
mechanisms. These transitions involve complex
interactions between pre-malignant, malignant,
and/or non-malignant cells within the tumor
ecosystem.

Broadly, first-generation atlases are

likely to comprise interactive 2D and

3D visualizations of sets of similar tu-

mors and associate key molecular and

cellular features with clinical data ele-

ments and patient outcomes (Figure 3).

The Cancer Genome Atlas (TCGA) iden-

tified cancer drivers by finding mutations

that significantly recur in tumors against

a background of variation between indi-

vidual patients while accounting for the

context of characteristic histologic tumor

features and limited clinical information

(The Cancer Genome Atlas Research

Network et al., 2013). Second-genera-

tion tumor atlases will need to achieve

a similar level of abstraction from multi-

parametric datasets to meaningfully represent the combined

genetic, molecular, ultrastructural, cellular, and histological fea-

tures that characterize a specific tumor stage and type. To

accomplish this goal, HTAN tumor-atlas generation is expected

to involve five interdependent steps: (1) collection of longitudi-

nal data from diverse modalities across multiple spatial scales

ranging from subcellular (<250 nm) to cell-cluster (�50 mm) res-

olution; (2) basic processing and quality control of each data

modality to ensure accuracy and reproducibility; (3) identifica-

tion of cell types, states, and positions for annotating tumor

composition; (4) identification of features for describing cell-

cell interactions, intercellular communication, cell neighbor-

hoods, and mesoscale spatial motifs; and (5) integration of

experimental and clinical datasets into a comprehensive atlas

(Figure 3).

HTAN atlases will be constructed around clinical transitions

for multiple adult and pediatric malignancies (Figures 1 and

4)—although not all transitions can feasibly be studied in all tu-

mor types. Because understanding tissue architecture is a ma-

jor goal, HTAN will focus mostly on solid tumors, particularly

those that represent critical unmet needs in oncology. These

correspond to tumor types with poor prognosis, including tri-

ple-negative breast cancer, high-grade glioma, glioblastoma,

high-risk neuroblastoma, pediatric sarcoma, high-risk acute

lymphoblastic leukemia, and pancreatic ductal adenocarci-

noma; pre-malignancies in breast, lung, hematologic, prostate,

and colorectal cancers and cutaneous melanoma (both hered-

itary and sporadic); primary and metastatic lung and pancre-

atic cancer; and drug-resistant metastatic breast cancer,
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metastatic melanoma, and metastatic colorectal carcinoma

(Figure 4).

Once constructed, HTAN atlases should facilitate clinical pre-

dictions by using features or biomarkers—such as molecular

levels, cellular composition, or in situ structural and molecular

patterns—that correlate with and ideally predict relevant clinical

transitions, including treatment response (Figure 5A). Moreover,

multiparametric insights from atlases are expected to guide

future investigations into the basic biological processes that un-

derlie malignant transformation (Figure 5B). A user should be

able to query an atlas by using data froma new specimenwithout

the need for the full battery of measurements (Figure 5C). For

example, one could use a new specimenmeasured only with he-

matoxylin and eosin (H&E) staining or single-cell RNA-seq

(scRNA-seq) to obtain predictions for other layers (e.g., the loca-

tion of specific cells and molecules in the H&E stain or the origin

of scRNA-seq profiles within a histology section). As a result, one

mode of testing can connect genomics and histopathology and

help to glean a wealth of spatiomolecular information. Finally,

HTAN efforts should inform future charting efforts by the broader

scientific community; drive the development of image quantifica-

tion analytics such as TCGA did for genome-scale sequencing

analysis; help integrate data across tumors, healthy tissue, and

other disease states; and enable additional tumor specimens

to be compared with this reference dataset or added to it with

relative ease.

The Promise of Tumor Atlases for Improving

Clinical Care

HTAN atlases will illuminate at least three translational aspects of

malignancy that could not be fully addressed by previous large-

scale cancer genomics programs (e.g., TCGA and the Interna-

tional Cancer Genome Consortium [ICGC]) (Figure 2). First, the

tumor microenvironment and its constituent cellular interac-

tions—accessible to HTAN through spatial and single-cell ap-

proaches—represent remarkable targeting opportunities for

therapy (Binnewies et al., 2018; Galon and Bruni, 2019; Sharma

et al., 2017). Second, whereas most previous efforts focused on

primary tumors with limited treatment and outcome data (Beane

et al., 2019; Shain et al., 2015), HTAN emphasizes longitudinal

sampling (including pre-cancers, advanced tumors, metastases,

and treatment responses) alongside collection of comprehen-

sive clinical data. Together, these will inform detection, preven-

tion, and treatment strategies (Srivastava et al., 2018). Third,

the integration of spatial methods will help link cancer genomics

and histopathology, the two primary means of diagnosing can-

cer and informing therapy. As a result, predictive biomarkers

based on HTAN’s integrative, multimodal analyses could outper-

form genetic or histological biomarkers alone. For example, they

might include compositions and arrangements of cancer and

non-cancer cell neighborhoods or spatial heterogeneity in tran-

scriptional, epigenetic, or mutational states along with features

fromH&E and immunohistochemistry staining. Machine-learning

(ML) approaches could make it possible to relate such features

to more traditional measures of tumor state, thus bridging the

gap between established diagnostic methods and spatiomolec-

ular information.

In the context of pre-malignancies, HTAN-defined biomarkers

could help stratify lesions that are likely to progress and thus

benefit from therapy, and they could inform positive prognoses

for which treatments can be reduced or avoided. Moreover,

they will help users to identify and assess the efficacy of new pre-

vention strategies, enable early detection, and potentially pro-

mote more effective and less invasive screening contexts. In

cancers such as in situ ductal carcinoma, the most common his-

tologically recognized form of early breast cancer, HTAN-identi-

fied genomic alterations and cellular compositions associated

with progression and outcome could inform prognosis and inter-

vention strategies. Similar approaches can be taken in colorectal

and skin cancers.

For established cancers, HTAN data could help to identify pa-

tients at risk for local invasion or metastasis, facilitate the detec-

tion of recurrence, and distinguish between aggressive and

slow-growing tumors. Cancer models, signatures, and bio-

markers based on atlas data are further expected to define tar-

gets for intervention and to predict treatment responses and

potential resistance mechanisms, including the role of the tumor

microenvironment. Genomics alone cannot reveal all aspects of

complex resistance mechanisms. HTAN atlases of cancer tran-

sitions will help to define the range and spatial distribution of

clonal variation within or across tumors and could guide treat-

ment design for tumors that are likely to progress. For example,

Figure 2. HTAN Is Complementary to Previous Large-Scale Cancer Genomics Initiatives and Ongoing Atlas Efforts
HTAN will illuminate aspects of malignancy that could not be fully addressed by previous large-scale cancer genomics programs and is complementary to
ongoing atlas building efforts across healthy and disease tissues.
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adjuvant therapy is currently effective in only 5%–20% of com-

mon breast, colon, and lung cancers, and predictive markers

for invasion and metastasis could obviate the need for adjuvant

therapy in a substantial subset of patients. Another example is

the Immunoscore (Galon and Bruni, 2019), which accounts for

the spatiotemporal interplay of numerous different immune cell

types in the tumor and is used for predicting relapse in early-

stage colon cancer.

All HTAN atlaseswill provide spatially resolved immunopheno-

types and are therefore likely to inform response and resistance

to immuno-oncology drugs. Knowing which cells express im-

mune checkpoint receptors and their ligands, and where in a tu-

mor juxtracrine signaling can occur, is particularly helpful for the

design of new combination therapies. For example, a resistance

program expressed by malignant cells, associated with T cell

exclusion and cold immune niches, predicts clinical responses

to anti-PD-1 therapy in melanoma and can be reversed by

CDK4/6 inhibitors (Jerby-Arnon et al., 2018).

HTAN atlases should allow for more precise treatment of can-

cer patients or those with increased cancer risk and the tailoring

of first-line therapies to reduce the risk of resistance and recur-

rence. They will also help in the development of new strategies

for patients whose tumors are unlikely to respond to existing

treatments.

How to Build a Tumor Atlas

Because building 3D tumor atlases requires the integration

of clinical, experimental, computational, and organizational

frameworks, HTAN efforts span a wide range of activities from

sample collection and tool development for cellular and spatial

profiling to data analysis, atlas visualization, and querying.

HTAN is committed to openly disseminating the clinical data,

experimental methods, computational tools, standards, and

multimodal data that it generates through these efforts.

Biospecimen Collection and Clinical Annotation

To ensure the broadest impact and usage, HTAN will obtain

high-quality samples from ethnically diverse populations. Sam-

ples will be extensively annotated so that they capture detailed

and harmonized clinical data elements, including demographic

information and treatment history. Most samples will be

Figure 3. Building 3D Human Tumor Atlases
HTAN centers will measure data modalities at multiple scales of resolution, from molecular to ultrastructural to cellular to histological to anatomical (when
possible), and will collect relevant clinical information from patients with tumors under study. These modalities will be used for profiling samples according to the
capabilities of each HTAN center. Most centers will use both molecular and spatial profiling methods to generate data. Data that pass HTAN-defined basic
processing and quality control will be utilized for interrogating cell-type composition, cell-cell interactions, and spatial structures (left panels). Atlases will then be
constructed through the integration of these data modalities measured across time (right panel).
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prospectively collected, and in select cases, multisite sampling

will be used for acquiring matched combinations of normal

tissues, pre-cancer lesions, primary tumors, and metastases.

To study resistance to therapy, HTAN will profile pre- and

post-treatment samples in several tumor types (Figure 4),

including, in some cases, matched pre- and post-samples

from the same patient.

To study the transition from pre-cancer to cancer, HTAN in-

vestigators will leverage retrospectively banked frozen or

formalin-fixed paraffin-embedded (FFPE) biopsies or tissue re-

sections procured fromprimary tumorswith adjacent pre-cancer

components not accessible in screening settings. They will also

prospectively collect longitudinal samples of advanced or

adjacent pre-cancerous lesions. Where possible, longitudinal

Figure 4. Key Tumors Studied by the Consortium
HTAN centers will generate 3D atlases of human tumors spanning different tissue types across adult and pediatric tumors from patients with pre-cancer, primary
tumors, and metastases, as well as resistant tumors before and after treatment. Projected ranges for the number of samples to be profiled over the 5-year HTAN
period are depicted for each center and tumor type. In some cases, multiple samples will be profiled from the same patient. HTAN includes the following centers:
Children’s Hospital of Philadelphia (CHOP), Dana-Farber Cancer Institute (DFCI), Oregon Health & Science University (OHSU), Washington University in St. Louis
(WUSTL), Duke University School of Medicine, Pre-Cancer Atlas Pilot Project (PCAPP), Human Tumor Pilot Project (HTAPP), Vanderbilt University Medical Center
(VUMC), Stanford University, Boston University (BU), Memorial Sloan Kettering Cancer Center (MSCKK), and Harvard Medical School (HMS).
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cohorts will follow cases where pre-invasive lesions progress to

carcinoma.

To study the metastatic transition, HTAN will procure biopsies

and surgical resections from primary andmetastatic sites. A pro-

portion of sampled cases that return with recurrent cancer will

enable the capture of matched metastatic tissue via biopsy or

resection. Single-cell profiling can be applied for small biopsy

specimens, and most imaging modalities currently work well

with needle cores, although fine-needle aspirates typically pro-

duce too much tissue distortion. To study the transition to ther-

apeutic resistance, HTAN investigators will sample lesions

both before and after treatment. Prospective longitudinal sam-

pling will also be supplemented by rapid autopsies, which enable

extensive sampling of primary and disseminated tumors at mul-

tiple sites from the same individual (Iacobuzio-Donahue

et al., 2019).

High-resolution single-cell and spatial assays require appro-

priate quality metrics for diverse sample types (resections, bi-

opsies, and body fluids) and processing methods (fresh, frozen,

and fixed) and harmonized collection of metadata. HTAN inves-

tigators will address several key challenges during specimen

collection, including (1) the documentation of pre-analytic vari-

ables, such as the time from sample collection to profiling as

well as photographic documentation of the samples; (2) stream-

lined handling of fresh, frozen, and fixed tissues by testing,

benchmarking, and sharing protocols and standard operating

procedures (SOPs); (3) the manipulation of a single tumor spec-

imen for multiple assays by prioritizing technologies depending

on sample size; (4) longitudinal sampling from the same individ-

uals; and (5) obtaining cases that represent the spectrum of dis-

ease from a range of possible samples to profile.

Cellular and Spatial Profiling

Most HTAN centers have adopted a two-pronged approach that

pairs the collection of single-cell profiles from dissociated spec-

imens (transcriptome, multiplexed protein, genome-wide chro-

matin accessibility, or methylation) with spatially resolved multi-

plexed assays for RNAs or proteins in tissue (Figure 3 and Box 1).

The two types of approaches are complementary: whereas sin-

gle-cell profiling methods often lack spatial resolution, spatially

resolved methods currently either are low in sample throughput

or multiplex fewer measurements. Some centers will record

anatomical information longitudinally by using magnetic reso-

nance imaging (MRI), computed tomography, or positron emis-

sion tomography (PET), and some will record tissue structure

at very high resolution by using serial electron microscopy.

Bulk genomic, epigenomic, proteomic, metabolomic, and lipido-

mic profiling will facilitate the integration of existing data from

prior consortia (The Cancer Genome Atlas Research Network

Figure 5. What We Can Learn from the Atlases and How to Query Them
(A and B) HTAN centers will combine clinical outcome and measurement data to (A) capture shared and unique characteristics and features across tumors—or
subsets of tumors—and (B) associate them with ‘‘structural’’ features such as genes, molecules, cells, cellular interactions and structures, and histology.
(C) By identifying features that correlate with clinical transitions and disease states, responses to treatment, and/or structural and molecular traits, tumor atlases
will facilitate clinical and structural predictions according to query datasets.
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et al., 2013; The International Cancer Genome Consortium,

2010; Rudnick et al., 2016). Among the key challenges for

HTAN is the development of techniques for single-cell andmulti-

plex spatial profiling of specimens in FFPE blocks (Foley et al.,

2019). In particular, most clinical samples of pre-cancers are

preserved as FFPE blocks for diagnosis, but FFPE reduces the

availability of macromolecules for genomic assays. Additional

challenges include the need to develop, deploy, and disseminate

newmethodologies in a rapidly changing technology landscape,

optimize tumor-type-specific protocols, and obtain multiple data

types from the same sample. Benchmarking efforts across the

network will help tackle these challenges. Such efforts include

Box 1. Toolbox Used for Building 3D Tumor Atlases across Scales

The HTAN toolbox includes molecular, spatiomolecular, histological, and anatomical profiling.

Molecular Profiling

Single-Cell Profiling

(1) Single-cell or single-nucleus RNA sequencing (sc/snRNA-seq). Massively parallel sc/snRNA-seqmethods allow quick and cost-effective profiling

of gene expression from tens of thousands of single cells or nuclei (Habib et al., 2017; Macosko et al., 2015). For snRNA-seq, frozen tissue samples

can be accrued over time and then multiplexed for reducing costs and limiting potential batch effects (Gaublomme et al., 2019; Kang et al., 2018).

HTAN centers will use several profiling methods, including approaches based on plates (Patel et al., 2014; Shalek et al., 2013; Tirosh et al., 2016a;

Trombetta et al., 2014; Wallrapp et al., 2017), droplets (Habib et al., 2017; Macosko et al., 2015), microwells (Gierahn et al., 2017), and combinatorial

indexing (Rosenberg et al., 2018; Vitak et al., 2017). This methodological breadth ensures that the optimal platform can be used by a given center

according to considerations such as tissue type, accessibility, required scale, and level of expertise. (2) To examine gene regulation, HTAN centers

will also profile epigenomic features such as chromatin accessibility and DNAmethylation by using single-cell epigenomics approaches (Buenrostro

et al., 2015). (3) HTAN centers will also quantify proteins from single cells by using cellular indexing of transcriptomes and epitopes by sequencing

(CITE-seq) (Stoeckius et al., 2017) to confirm and complement the sc/snRNA-seq data.

Bulk Profiling

For a subset of samples, HTAN researchers will apply bulk characterization methods, including (1) whole-exome sequencing to characterize the

mutations, copy-number alterations, and clones in the tumor; (2) bulk RNA-seq to provide transcriptome annotations and help determine whether

any major cell subset is disproportionally lost in dissociation; (3) epigenomic profiling as a control for all the cell types present in a sample; (4) pro-

teomics measurements by reverse-phase protein array and mass spectrometry; and (5) metabolomics. Many of these assays have been used for

profiling tumors in other consortia and will facilitate the integration of existing legacy data with HTAN data.

Spatiomolecular Profiling

HTAN centers will deploy multiplexed in situ RNA and protein assays that could rely on imaging, sequencing, spatial coding, and computational

inference. These technologies fall into two broad categories: (1) approaches that quantify specific nucleic acids (Chen et al., 2015; Chen et al.,

2016a; Moffitt et al., 2016a; Moffitt et al., 2016b) or proteins (Angelo et al., 2014; Giesen et al., 2014; Goltsev et al., 2018) by using targeted nucleic

acid probes or antibodies, respectively, and (2) those that profile RNA by using sequencing (Lee et al., 2014; Ståhl et al., 2016; Vickovic et al., 2016).

These methods have a trade-off between multiplexing capacity and spatial resolution, and currently most genome-wide methods do not reach sin-

gle-cell resolution. In some cases, sub-cellular profiling will be performed.

Histological and Anatomical Profiling

Hematoxylin and eosin (H&E) staining of tissue sections will inform the histology of the tumor tissue and will be complemented by longitudinal but

lower-resolution technologies, such as MRI and PET, for anatomical imaging. Together, these methods will provide information about tissue archi-

tecture and a connection to common assays deployed in clinical care.
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a series of trans-network projects across multiple centers with

the goal of improving SOPs to maximize data reproducibility.

Data Analysis and Atlas Building

Computational analysis is a fundamental component of HTAN

tumor-atlas construction and iteratively guides study and exper-

imental design. HTAN researchers will employ computational

approaches to map between cellular and spatial profiles and

multiscale histological and anatomical structures. They will

further integrate these with clinical data across time to generate

a coherent atlas that is broadly accessible and can be dynami-

cally queried by the scientific community. HTAN researchers

will also aim to predict the functional impact of cell-cell interac-

tions and test these predictions with functional validation

studies. A particular challenge in the assembly of tumor atlases

is the seemingly idiosyncratic nature of each tumor. However,

akin to the discovery of recurring driver mutations in cancer

genome atlases, the goal of a tumor cell atlas is to find recurrent

higher-order features by using computational and statistical

means to identify common attributes across tumors. At the

same time, it will also be important to identify unique tumor fea-

tures and to connect both common and unique features to clin-

ical outcomes.

The integration of multiple data modalities constitutes a major

frontier in computational biology (Achim et al., 2015; Durruthy-

Durruthy et al., 2014; Satija et al., 2015). Progress on similar

problems in other computational domains could provide guid-

ance (Jha et al., 2018; Ma et al., 2019; Wang et al., 2016). For

example, new ML approaches leverage the unifying concept

that cells lie on a low-dimensional manifold defined by related

biological features (genome, epigenome, transcriptome, prote-

ome, cell neighborhoods, etc.) and that similar cells neighbor

each other (Argelaguet et al., 2019). Deep-learning approaches

in particular are well suited to mapping this manifold because

they do not require the important features to be defined before-

hand, provide a natural means of integrating different feature

types (e.g., single-cell data described as vectors and spatial

data described as images), and are highly scalable (Amodio

and Krishnaswamy, 2018; Liu et al., 2019; Lopez et al., 2019).

HTAN atlases will provide benchmarking data for ML algo-

rithms currently in development (Goodfellow et al., 2017) to

improve performance on tasks such as identifying cell-type

and spatial features associated with clinical characteristics.

The accuracy of ML-based cell-type calling can be tested

through comparison of assignmentsmade fromH&E or immuno-

histochemistry with HTAN analysis of multiplexed imaging data

and spatially resolved RNA expression data (Figure 5). These

methods will be designed to help pathologists make more accu-

rate assessments. We envision HTAN data as a treasure trove for

the development of algorithmic approaches to mining spatially

resolved ’omic data, which could have potentially far-reaching

implications in tumor biology. We expect the final atlas for

each tumor type to consist of a set of recurrent structured fea-

tures that characterize cell-type composition, cell states, cell-

cell interactions, cell neighborhoods, and histological modules,

as well as their relation to key temporal transitions.

Integrated atlas data will be made accessible through a dedi-

cated HTAN portal, which will consist of a federated set of ser-

vices and platforms spanning multiple technologies and tools.

Initially, the platform will federate and extend the capabilities

of the Sage Synapse platform, the cBioPortal for Cancer Geno-

mics (https://www.cbioportal.org/; Gao et al., 2013), and the

Cancer Digital Slide Archive. New computational tools devel-

oped by HTAN will also be integrated into the portal as they

mature.

Challenges and Possible Solutions

Building tumor atlases poses several overarching challenges.

First, samples representative of multiple stages of tumor pro-

gression will typically come from different patients and thus

require us to infer pathways and mechanisms of progression

computationally.

Second, atlases will have heterogenous datasets, reflecting

differences that are technical (e.g., sample processing times),

biological (e.g., diverse patient groups, cancer tissue origin,

and disease status), or in profiling modalities (e.g., single-cell

or single-nucleus RNA-seq [sc/snRNA-seq], assay for transpo-

sase-accessible chromatin using sequencing [ATAC-seq], and

distinct spatial profiling methods). Technical hurdles can be ad-

dressed with both batch correction methods developed for bulk

genomics data (Büttner et al., 2019; Johnson et al., 2007) and

newer methods developed for single-cell genomics (Luecken

and Theis, 2019). Merging samples with biological differences

is more complicated because methods for merging these data-

sets must balance between recognizing the cell types and states

that are common across datasets and not overcorrecting or

losing important biological differences (Barkas et al., 2019; Kor-

sunsky et al., 2019; Lopez et al., 2019; Stuart et al., 2019; Welch

et al., 2019). Trans-network efforts will help to improve the

needed cell-type calling and alignment.

Third, assessing the predictive potential of HTAN requires a

statistical power analysis for the number of individuals, cells,

and fields of view needed for each tumor type. Although sin-

gle-cell profiling studies might collect fewer tumors than

TCGA, the single-cell resolution addresses compositional con-

founders (Smillie et al., 2019) and thus helps to reveal disease

mechanisms. The power of HTAN datasets will increase by inte-

gration with prior bulk profiling studies in TCGA and ICGC

through deconvolution (Jerby-Arnon et al., 2018; Tirosh et al.,

2016a; Tirosh et al., 2016b) as well as by transfer learning for

training predictive models while borrowing parameters from a

model that performs well on a similar task (Azizi et al., 2018;

Wang et al., 2019; Yosinski et al., 2014).

Fourth, HTAN will need heterogenous data types (Box 1 and

Figure 3) along with clinical data (Figure 3) in one coherent

model. This can benefit from ML approaches, such as multido-

main translation (Yang and Uhler, 2019), that rely on the assump-

tion that all observations (e.g., expression, epigenomics, and

histology) should reflect a single latent space and that learn a

joint embedding of all data modalities, either unsupervised or su-

pervised with clinical data. The result will be a general model that

aims to predict—on the basis of cellular compositions, states, in-

teractions, and histological organization—the relevant clinical

outcomes.

Fifth, there is an explosion in technological development,

particularly for spatial assays measuring RNA and protein and

for multiomic measurements, many of which have not been
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applied to tumor tissue. HTAN trans-network efforts will test and

benchmark new technologies to assess the extent to which they

can be used for profiling clinical samples.

HTAN as a Community Resource

To ensure that its efforts have the broadest impact, HTAN is

committed to open-access publication and the sharing of data,

clinical information, metadata, experimental protocols, and

computational tools with the broader scientific community.

These commitments are consistent with the ambitious goals of

the NCI Cancer Moonshot data-sharing and open-access publi-

cation policy (https://www.cancer.gov/research/key-initiatives/

moonshot-cancer-initiative/funding/public-access-policy).

All HTAN-generated data will be available through a dedicated

cloud-enabled data portal provided by the HTANData Coordina-

tion Center (DCC); this portal will have proper access controls as

required by patient privacy concerns and be based on findable,

accessible, interoperable, and reusable (FAIR) data principles

and standards compatible with other Cancer Moonshot Initia-

tives (Wilkinson et al., 2016). TheHTANdata portal will be directly

available to the international scientific community and will facili-

tate the transfer of HTAN data to existing and planned data no-

des within the wider NCI Cancer Research Data Commons

ecosystem. Data tables will also be accessible and queryable

with the use of NCI Cloud Resources. HTAN strives to provide

compatibility with other relevant platforms, such as the Human

Cell Atlas (HCA) Data Coordination Platform and the Human Bio-

molecular Atlas Program (HuBMAP) High-Performance Inte-

grated Virtual Environment portal. To maximize the accessibility

and interoperability of HTAN data and tools, the DCC will work in

collaboration with HTAN centers to develop and unify annotation

standards for clinical data elements used across HTAN and to

develop and unify metadata on biospecimens and assay-spe-

cific data types. Application program interfaces will ensure inter-

operability of data-validation and -visualization tools, and the

availability of source code on GitHub will make it possible for

others to build on HTAN technology.

Given the diverse data types and dynamic technology land-

scape, HTAN centers will both build data pipelines based on

existing algorithms and leverage new tools developed by both

consortium members and the broader scientific community as

they arise. They will also develop analytical tools and fast, inter-

active, multiscale visualization algorithms that integrate molecu-

lar and spatial data. For example, one HTAN center has already

released web-based and desktop tools for rapid zooming and

panning across multichannel tumor images obtained by cyclic

immunofluorescence (CyCIF, https://www.cycif.org; Krueger

et al., 2020; Lin et al., 2015; Lin et al., 2018).

Just as importantly, HTAN will share experimental protocols

and SOPs by using both open-access platforms such as proto-

cols.io (Teytelman et al., 2016) and hands-on training by

dedicated teams of HTAN researchers. To better disseminate

knowledge about complex, multistep laboratory procedures,

one HTAN pilot project (see below) has developed a ‘‘specialized

work acquisition teams’’ model in which a group of experts from

one laboratory travels to another to work side by side to fully,

accurately, and quickly convey their experimental and computa-

tional know-how.

Who Is Part of HTAN?

HTAN currently consists of a network of ten interdisciplinary

research centers—five focused on pre-cancers and five studying

more advanced tumors—working together along with the DCC.

Each center focuses on one or more aspects of specific tumor

types and transitions (Figure 4) and employs a subset of the

experimental and analytical tools of the HTAN toolbox (Box 1).

The centers coordinate through a joint steering committee

with four working groups (policy, clinical and biospecimen, mo-

lecular characterization, and data analysis working groups).

More information on funded HTAN research projects can be

found on the NCI Cancer Moonshot website (https://www.

cancer.gov/research/key-initiatives/moonshot-cancer-initiative/

implementation/human-tumor-atlas).

HTAN members are actively engaged with other complemen-

tary initiatives both at the NIH—including HuBMAP (HuBMAP

Consortium, 2019), the Brain Research through Advancing

Innovative Neurotechnologies (BRAIN) Initiative (Ecker et al.,

2017), the NCI Information Technologies for Cancer Research

(ITCR), the Cancer Systems Biology Consortium (CSBC), and

the Cancer Research Data Commons—and internationally,

such as the HCA (Regev et al., 2017; Rozenblatt-Rosen et al.,

2017) and the Global Alliance for Genomics and Health.

HTAN will interact and synergize with these efforts to obtain a

broader and more complete picture of the dynamic molecular

and cellular states that drive cancers, their therapeutic re-

sponses, and/or resistance. The 3D maps of normal human or-

gans are expected to serve as particularly valuable references

for corresponding tumor atlases (Figure 2). Collaboration with

atlas-building consortia for other diseases will further serve to

address overlapping experimental and computational chal-

lenges (Figure 2). Likewise, work in the CSBC could provide

much-needed experimental data for multiscale computational

modeling of tumor biology.

In consideration of the challenges that HTAN faces, two feasi-

bility pilot projects were initiated prior to its launch: the Pre-Can-

cer Atlas Pilot Project (PCAPP) and the Human Tumor Atlas Pilot

Project (HTAPP). These projects were designed to develop and

advance the standardization of key protocols, procedures,

metadata schemata, and tools for use by HTAN. Data and proto-

cols generated by the pilot projects are being shared both within

HTAN and with the broader community. For example, PCAPP

has generated SOPs and guidelines for generating FFPE blocks

for optimal spatial profiling, an imaging panel for pre-cancer

samples, and protocols for low-input profiling of DNA and RNA

from small FFPE samples (Foley et al., 2019). HTAPP has devel-

oped a sc/snRNA-seq toolbox for systematic processing of

various fresh and frozen tumor samples (Slyper et al., 2019)

and a cloud analysis pipeline (Li et al., 2019).

Outlook

By building a framework for integrating cellular and spatial mo-

lecular profiling of tumors during key clinical transitions, HTAN

provides an opportunity to refine our fundamental concepts of

malignancy and is poised to have a profound impact on transla-

tional medicine (Figure 6). HTAN atlases span multiple scales,

and we expect their high-resolution view of clinically relevant

transitions to highlight new aspects of the development and
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evolution of malignancy, metastatic disease, therapeutic

response, and resistance—including both tumor-specific and

universal mechanisms.

In pre-cancers, HTAN should help identify the genetic, epige-

netic, and environmental factors involved in the earliest steps of

malignancy, such as non-cell-autonomous factors distinguish-

ing successful from unsuccessful immune surveillance. In later

stage cancers, atlases should help us to understand the differ-

ence between immune-infiltrated and cold tumors; the drivers

of metastasis, which could be more readily discernable with

spatial data than with purely genomic data; and the impact of

tumor heterogeneity and ecosystems on therapeutic response

and resistance. A better understanding of these mechanisms

will inform new predictive models and prognostic biomarkers,

signatures, and diagnostics that can ultimately be deployed

at point of care to improve the outcomes of cancer patients.

It will also improve the development of preventive strategies,

therapeutic agents, and drug combinations that can effectively

target these processes at multiple steps in the malignant

process.

HTAN atlases will be shared community resources that accel-

erate both exploratory and hypothesis-driven research. The

network will provide protocols, software, and best-practice

guidelines to promote the development and deployment of tech-

nologies that we believe will have a profound impact on the study

of human tumors, including open standards in histology and his-

topathology. HTAN’s collaborative nature will establish a model

within our scientific community for the integration of efforts and

data. We hope that HTANwill give rise to a foundational resource

that will improve the understanding, diagnosis, monitoring, and

treatment of cancer patients.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.
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