Craft Distillation: Layer-wise Convolutional Neural
Network Distillation

Cody Blakeney, Xiaomin Li, Yan Yan, Ziliang Zong*
Computer Science Department, Texas State University, San Marcos, TX, USA
{cjb92, x_130, tom_yan, ziliang} @txstate.edu

Abstract—Convolutional neural networks (CNNs) have
achieved tremendous success in solving many challenging com-
puter vision tasks. However, CNNs are extremely demanding
for computation capability, memory space, and power capacity.
This limits their usage to the cloud and prevents them from
being deployed on edge devices with constrained resources and
power. To tackle this problem, we propose craft distillation, a
novel model compression approach that leverages both depthwise
separable convolutions and knowledge distillation to significantly
reduce the size of a highly complex model. Craft distillation has
three advantages over existing model compression techniques.
First, it does not require prior experiences on how to design
a good ‘“student model” for effective knowledge distillation.
Second, it does not require specialized hardware support (e.g.
ASIC or FPGA). Third, it is compatible with existing model
compression techniques and can be used with pruning and
quantization together to further reduce weight storage and
arithmetic operations. Our experimental results show that with
proper layer block replacement design and replacement strategy,
craft distillation reduces the computational cost of VGG16 by
74.6% compared to the original dense models with negligible
influence on accuracy.

Index Terms—convolutional neural network, model distillation,
depthwise separable convolution

I. INTRODUCTION

Nowadays, Convolutional Neural Networks (CNNs) have
undoubtedly become the most promising method in solving
many challenging tasks in computer vision such as image
recognition [1], object detection [2], image segmentation
[3], and multimodal data analysis [4]. However, deep neural
network models are computationally expensive and memory
intensive, as well as energy-hungry. Therefore, most of the
heavy lifting in today’s deep learning paradigm is limited to
the cloud, which has powerful GPUs/TPUs and endless power
supply. As the edge devices become more ubiquitously used
and the issues (e.g. privacy, data transfer, and CO2 emission)
of in-cloud Al become increasingly evident, the transition from
in-cloud AI to on-device AI will be an emerging trend, as
shown in Figure 1.

Nevertheless, deploying deep neural networks on edge de-
vices is a daunting task because on-device Al must reduce
power usage and keep the model size small without sacrificing
accuracy. Currently, model acceleration and model compres-
sion [5] techniques have shown great potential in tackling this
challenge. Model acceleration is primarily a hardware-based
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approach by adding ASIC or FPGA accelerators to devices for
efficient and low power deep learning [6]-[9]. Model compres-
sion focuses on reducing the size of deep neural networks via
software techniques, which include quantization [10], network
pruning [11], depthwise separable filters [12], and knowledge
distillation [13]. Quantization reduces the memory footprint
and computation demand of a model by clustering weights and
rounding them off. Pruning reduces redundant parameters of a
CNN model by setting unimportant weights to zero or remove
part of filters which can reduce the memory footprint and run-
time computation needs to some degree. Both quantization
and pruning techniques require fine-tuning to regain accuracy.
In addition, compressed networks via unstructured pruning
need special hardware support to exploit weight sparsity
[14]-[16]. Recently, Howard et al. proved that depthwise
separable convolutions can substantially reduce computation
relative to standard convolutions and used it to create efficient
convolutional neural networks in Google’s MobileNets [12].
Hinton et al. [13] found that knowledge learned from a large
complex “teacher model” (or an ensemble of models) can be
distilled to a smaller “student model”. The original knowledge
distillation approach defines the architecture of the “student
model” in advance and trains the entire “student model” during
the knowledge distillation process.

In this paper, we propose a different methodology, craft
distillation, that takes advantage of both depthwise separable
convolutions and a special approach to knowledge distillation.
Instead of generating an independent ‘“student model” in
advance and transferring knowledge to it, craft distillation
transforms the “teacher model” into a smaller model by re-
placing its standard and costly convolution layers with cheaper
depthwise separable convolution layers. Craft distillation has
three advantages over existing model compression techniques.
First, it does not require prior experiences on how to design
a good “student model” for effective knowledge distillation.
Second, it does not require specialized hardware support (e.g.
ASIC or FPGA). The derived small models can run directly on
CPUs or GPUs. Third, it is compatible with existing model
compression techniques and can be used with pruning and
quantization together to further reduce weight storage and
arithmetic operations. In this work, we explore using layer-
wise distillation to reduce both FLOPs and memory footprint
of convolutional neural networks. We also provide a detailed
process of selecting an effective architecture for replacing
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Fig. 1: Difference between in-cloud Al and on-device Al. Deep CNNs running in cloud (e.g. Amazon AWS, Microsoft Azure,
and Google Cloud) require powerful GPUs/TPUs and unlimited power supply. Edge devices only have limited battery and
constrained resources in computation and memory space. It is essential to accelerate large CNN models or compress them to

smaller ones before they can be deployed on edge devices.

standard convolution layers and explain how to derive a small
model from the original complex model. Our experimental
results show that with proper layer block replacement design
and replacement strategy, craft distillation can reduce the
computational cost of VGG16 by 74.6% compared to the
original dense models with negligible influence on accuracy.
This proves that craft distillation is a new viable model
compression strategy.

To summarize, the contributions of this paper can be high-
lighted as follows:

o We propose craft distillation, a novel model compression
strategy that transforms complex CNN models to simple
models via multiple layer-wise distillations.

o We design a detailed craft distillation process and provide
answers to several key design questions.

e We compare the accuracy and compression rate of our
method with filter level structured pruning methods and
verify the effectiveness of the proposed craft distillation
method.

II. RELATED WORK
A. Neural Network Efficiency

The power of deep neural networks to solve challeng-
ing problems comes at the cost of excessive amount of
computation, memory, energy, and CO2 emission. According
to [17], the computation cost of deep learning algorithms,
from AlexNet in 2012 to recent AlphaGo Zero in 2019,
has increased by 300,000x in 6 years. This is not feasible
for on-device Al. It is essential for deep neural networks
to become smaller and more efficient before they can be
deployed on edge devices. Research topics to reduce model
size, training/inference time, memory footprint and energy cost
have become increasingly popular.

Parameter Pruning. Pruning induces sparsity in weights
and activations of neural networks to reduce parameter size
and computation time. Optimal Brain Damage [18] and Opti-
mal Brain Surgeon [19] are the earliest works that proposed
the idea of network pruning in 1990s. Han et al. [11] pruned
networks weights with a small magnitude threshold which
brought network pruning back into public attention. After-
wards, pruning has diveraged into two branches, unstructured
pruning and structured pruning. The former one increases
the sparsity of weights in neural networks and generates
fine-grained sparse weight tensors. The drawback is that the
required sparse data structures can only accelarate models that
are deployed on specialized hardware. For structured pruning,
there are vector level, kernel level, filter level and channel
level pruning strategies [20]. Distinguished from unstructured
pruning, filter level structured pruning directly changes net-
work architectures and it can be implemented on any general
purpose computational hardware.

Low-rank Factorization. Low-rank factorization uses ma-
trix/tensor decomposition to estimate the informative parame-
ters which can be applied on both convolutional layers and
fully connected layers. Inspired by the idea of dictionary
learning, Rigamonti et al. [21] proposed a learning separa-
ble 1D filter scheme. Jaderberg et al. [22] achieved double
speedup for a single convolutional layer with only 1% drop in
classification accuracy in text recognition tasks, when using
different tensor convolutional decomposition schemes. Tai et
al. [23] introduced a new method that computes the low-rank
tensor decomposition by training low-rank constrained CNNs
from scratch.

B. Knowledge Distillation

Knowledge distillation transfers/distills the knowledge
learned from a cumbersome model (a single complex model or
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Fig. 2: Overview of the craft distillation process. A convolutional layer of the dense model is selected as the “Teacher” to
train cheaper depthwise separable convolution layers. The trained cheaper layers are inserted back to replace the original
convolutional layer. Such a layer-wise distillation process is repeated in a top-down manner to replace other convolutional

layers in the dense model.

an ensemble of separate models) to a small model which has
less amount of computation, smaller memory footprint, and
equivalent accuracy with its large counterpart. This method
became popular after Hinton et al.’s work [13]. The knowledge
is transferred from the larger model to the smaller model by
minimizing a loss function where the target is the output of
a softmax function (class probabilities) on the large model’s
logits. Knowledge distillation can also be combined with
other model compression techniques. For example, [24]-[26]
combined knowledge distillation with quantization and [27],
[28] combined it with network pruning. Our craft distillation
method is distinct from the original knowledge distillation
method because it transforms the complex model on a layer
by layer basis using local activations instead of the final layer.

Progressive Blockwise Distillation. Progressive Blockwise
Distillation [29] is a method that also leverages local loss
combined with classification loss to progressively shrink the
size of a student model. However, unlike their methodology
which is only a match to the architecture of VGG, our method
operates on a per layer basis and can be used to compress any
traditional convolution layer, which is applicable to a much
larger variety of network types. Additionally, our method only
considers the local loss, which can significantly reduce the
compute resources required to compress the model.

C. Depthwise Seperable Convolution

Depthwise separable convolutions [12] separate the stan-
dard convolution calculation into two layers: the depthwise
convolution and the point-wise convolution. Depthwise con-
volution performs operations using one kernel for each input

channel of the input feature map. The output of the depthwise
convolutional layer is then used as input for the pointwise con-
volutional layer. Pointwise convolution operates by applying
a 1 x 1 kernel over all channels of its input feature map. The
number of output features are obtained through the number of
1 x 1 kernels applied over the input feature map. Depthwise
separable convolutions have significant computational savings
over standard convolutions depending on the size of the kernel.
Consider computing convolutions on an input feature map
of size 128 x 128 x 3 with a 3 x 3 kernel to obtain an
output with 256 features. Standard convolution would have the
computational cost of 109, 734, 912 multiplications. However,
depthwise separable convolution has the computational cost of
428,652 multiplications in the depthwise convolutional layer
and 12,192, 768 multiplications in the pointwise convolutional
layer, totaling to 12,621,420 multiplications. This has a com-
putational cost of approximately é of the standard convolution.

III. CRAFT DISTILLATION PROCESS

In traditional knowledge distillation [13], a large “teacher
model” is used to train a smaller “student model”. Figure 2
illustrates the proposed craft distillation process, which is
different because it selects a single layer of the original model
at a time and teaches a block consisting of one or more
depthwise separable layers (or other layer types that can reduce
complexity). After selecting a convolution layer to replace, the
input feature maps for the layer are used as the training data
and act as the teacher. The output feature maps become the
labels. The training is treated as a simple regression problem
using the Mean Squared Error (MSE) loss. Let us consider the



case of replacing layer [ in our model. Let f; be the function
that maps an input image to the activations at layer [. Let g
be the replacement block for layer [. Our loss function can be
represented as L = + Zf\il | fi1(zs) — g o fi_1(x;)||>. When
the replacement block has reached convergence, it is inserted
into the original model in place of the selected convolutional
layer. This process is referred to as layer-wise distillation.
Craft distillation performs layer-wise distillation repeatedly
to replace several or all convolutional layers in the “teacher
model”. The large “teacher model” is transformed to a small
model when craft distillation is completed.

In order to effectively carry out the craft distillation process
described above, several key research questions need to be
answered.

1) How to select the replacement blocks?

2) In what order should layers be replaced?

3) How does craft distillation perform compared to other
structure altering compression techniques?

In the following subsections, we layout the experiments that
are designed to answer each of these questions. Specifically,
subsections A, B, and C answer question 1, 2, and 3 re-
spectively. Each experiment is carefully designed to determine
the best strategy when conducting craft distillation as well
as evaluate the effectiveness of craft distillation compared to
other model compression techniques.

A. Architecture Search

Finding an efficient replacement block for the costly convo-
lution layers is essential to the effectiveness of craft distilla-
tion. We first attempt to train a single depthwise separable
layer as a replacement for a convolution layer but end up
with very poor results. The next natural thought will be
stacking several depthwise separable layers, which still uses
less parameters and flops than a traditional convolution layer,
thanks to the properties of depthwise separable layers. We
conduct a series of architecture searches to evaluate the best
way to stack depthwise separable layers. The ideal architecture
for replacement blocks should keep the added number of
parameters as low as possible and be able to minimize the
MSE loss.

Figure 3 depicts the four candidate architectures explored
in our experiments, which include the two depthwise sep-
arable layers (a), three depthwise separable layers (b), two
depthwise separable layers with skip connections similar to
residual blocks (c), and three depthwise separable layers with
skip connections (d). We design experiments to evaluate the
effectiveness of four candidates as follows. First, we train
a VGG16 model on CIFAR-10 with the baseline accuracy
of 86.45%. Each candidate architecture aims to replace the
second convolution layer in the VGG model. We train each
block for 20 epochs on the teacher model’s intermediate
activations. After that, the layers are inserted into the original
model to replace layer 2 and the accuracy of the model is
recorded. The weights of the 2nd layer are then fine-tuned
using traditional cross entropy loss on the labeled CIFAR-10
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Fig. 3: Candidate Replacement Layer Architectures. For the
purpose of this paper we refer to the combination of depth
wise separable, batch normalization, and relu activation as one
layer.

image data. During fine-tuning all other model weights other
than the replacement block are frozen.

TABLE I: RMS Loss, Top-1 Accuracy, and Fine Tuning Top-1
Accuracy results of different replacement architectures.

Arch Loss Top-1 FT Top-1
Two Layer 3.028E-05 | 86.40%  87.32%
Three Layer 7.410E-05 | 85.28%  85.37%
Two Layer w/Skip 3.536E-05 | 86.28%  86.98%
Three Layer w/Skip | 3.877E-05 | 86.16%  87.03%

Table 1 summarizes the results of the four candidate archi-
tectures. While the layers with skip connections do reasonably
well, they do not outperform the simple two layer variation.
We hypothesize that this might be because these blocks are not
deep enough to have significant problems with disappearing



gradient. Since the two layers architecture yields the best per-
formance, we use it as the replacement block for convolution
layers in the rest of experiments.

B. Order of Layer-wise Distillation

A deep CNN contains many convolution layers. A strategy
of in what order to replace them must be decided in the craft
distillation process. Obvious choices are either top down or
bottom up replacement. To determine the best strategy, we take
the pretrained VGG16 model on CIFAR-10 with an original
accuracy of 86.45% as the baseline model. Each targeted layer
for replacement is trained for 50 epochs on the intermediate
layer activation. The layer is then inserted into the model and
the loss on the test set is recorded with the replacement blocks.
The model is then fine-tuned for 5 epochs with all layers but
the replacement block frozen. After the fine-tuning process
the weights that resulted in the lowest loss, either from fine-
tuning or layer distillation, are kept. After the individual layer
training, the resulting model becomes the “teacher model” and
the next layer to be replaced was chosen.

TABLE II: Results of Different Replacement Strategies

Model Loss Top-1
Original 0.50657 | 86.45%
Bottom Up | 0.76339 | 81.67%
Top Down | 0.61581 | 86.59%

As can be seen from Table II, the top down strategy results
in the highest accuracy. In fact, it is even higher than the
original model, which could be the result of the base model
not being trained optimally. It is also worth noting that even
though the top down strategy yields a higher accuracy than
the original model, it also has a higher loss. This may indicate
that it is less robust to adversarial attacks and is less certain
of its predictions. It could also be that the top down strategy
alleviates the overfitting issue of the dataset.

A possible reason for the different accuracies is the fine-
tuning. The bottom up strategy gives less or no opportunity to
fix mistakes in the layer representations. When training and
replacing happens in a top-down manner, if the previous layer
reaches some sub-optimal local minimal that shifts the layer
representations, the next layer still has a chance to repair it
and restore accuracy through fine tuning.

C. Comparison to Structured Pruning

To the best of our knowledge, there is no existing work that
compares directly to our proposed craft distillation method.
Quantization [10] achieves similar model size reductions in

TABLE III: Comparison to L1-norm based Filter Pruning [30].
Results are calculated for the CIFAR-10 dataset.

Model Top-1 (%) MACCs Reduced %  Parameters  Reduced %
VGG-16 933 3.13x 10 1.5x 107

ResNet-50 95.3 2.38 x 107

VGG-16 [30] 94.0 206 x 108 34 5.4 x 106 64

357x 105 744
1.49 x 107 37.0

VGG-16 (ours) 92.7 793 x 107 74.6

ResNet-50 (ours) 94.5

TABLE IV: Individual layer comparison to L1-norm based
Filter Pruning [30].

layer type | w; x h; MACCs | MACC% [30] MACC% (ours)
Conv_1 32x32 1.8E+06 | 50% 0%
Conv_2 32x32 38E+07 | 50% 74.7%
Conv_3 16 x 16  1.9E+07 | 0% 64.3%
Conv_4 16 x 16 3.8E+07 | 0% 76.2%
Conv_5 8x8 1.9E+07 | 0% 65.5%
Conv_6 8x8 3.8E+07 | 0% 77.0%
Conv_7 8x8 3.8E+07 | 0% 77.0%
Conv_8 4x4 1.9E+07 | 50% 66.1%
Conv_9 4x4 3.8E+07 | 75% 77.4%
Conv_10 4x4 3.8E+07 | 75% 77.4%
Conv_11 2x2 9.4E+06 | 75% 77.4%
Conv_12 2x2 9.4E+06 | 75% 77.4%
Conv_13 2x2 9.4E+06 | 75% 77.4%
Linear 1 2.6E+05 | 50% 0%
Linear 1 5.1E+03 | 0% 0%
Total | 3.1E+08 | 34% 74.6%

The two right most columns indicate the reduction in percentage of MACCs
for both methods. Craft distillation significantly reduces MACCs (by 74.6%)
even though it does not apply to the fully connected layers. .

memory, although it retains the same number of parameters
and can increase throughput of the calculations by using FP16
or Int8 data types. But it doesn’t alter the structure of the
original model or the total number of arithmetic operations.
Unstructured pruning [11] does modify the model’s structure,
but requires specialized hardware to run effectively. Structured
pruning is probably the fairest comparison to craft distillation
because it is performed on a layer by layer basis of a pretrained
model and it does not require specialized hardware to work.

Table III and IV illustrate the comparison results of craft
distillation to the L1-norm based filter pruning [30] for com-
pressing VGG-16 on the CIFAR-10 dataset and our results
on ResNet-50. While the structured pruning method achieves
a higher accuracy (94%) than our method (92.7%), we are
able to reduce the total number of flops by 74.6%. Table
IV shows the detailed comparison at each individual layer. It
appears that structured pruning does not prune each layer by
the same percentage. In fact, it leaves several layers unpruned
entirely. In craft distillation, however, there is no option of
what percentage of weights will be removed from a layer. A
layer is either completely replaced or it is not replaced at all.
We argue that craft distillation is more efficient than structured
pruning to compress CNN models with negligible accuracy
degradation. The essence of craft distillation is distinct from
structured pruning as well.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we propose craft distillation, a novel method
for compressing convolutional neural networks. Craft distilla-
tion can transform a complex deep CNN model to a simple
model via multiple layer-wise distillations. In each layer-wise
distillation, a standard convolution layer is replaced by more
efficient depthwise separable layers. We illustrate several key
design decisions when conducting craft distillation and show
that with the top-down iterative replacement strategy, craft
distillation can reduce 74.6% of the computation cost of the



VGG-16 model without compromising accuracy. Compared
to the traditional knowledge distillation method [13], craft
distillation does not require prior experiences in designing
a good “student model” for effective knowledge distillation.
In addition, it does not need special hardware support and
performs better than structured pruning. Since convolutional
layers are the most expensive layers in a CNN, we primarily
focus on craft distilling convolutional layers of VGG-16 in
this work. The methodology of craft distillation may also be
applicable to other layers (e.g. fully connected layers) provided
that a more efficient structure can be identified and trained with
good accuracy to replace the original layers. It is also worth
noting that the effectiveness of draft distillation method may
degrade when applying to compressed models like ResNet,
MobileNet, and EfficentNet. This is because our method takes
advantage of replacing components with depthwise separable
layers. If a compressed model already leverages it previously,
our method is not able to double dipping the benefit.

In this study, we explore iteratively replacing layers in
the top down and bottom up fashion. We plan to investigate
and evaluate the third option, which is training them all
independently first then making a composite in the future
work. Meanwhile, although we confirm that draft distillation
method works well on VGG in this work and we believe
it can be applied more broadly, future work needs to be
done to evaluate its effectiveness on other network models
or layers. Since our method uses only local loss and there
is no requirement of having labeled data, we plan to further
investigate if the draft distillation method can work with
unlabeled data and unsupervised learning.
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