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Abstract
Recent water resources planning studies have proposed climate adaptation strategies in which
infrastructure and policy actions are triggered by observed thresholds or Bsignposts.^ However,
the success of such strategies depends on whether thresholds can be accurately linked to future
vulnerabilities. This study presents a framework for testing the ability of adaptation thresholds
to dynamically identify vulnerable scenarios within ensemble projections. Streamflow projec-
tions for 91 river sites predominantly in the western USA are used as a case study in which
vulnerability is determined by the ensemble members with the lowest 10% of end-of-century
mean annual flow. Illustrative planning thresholds are defined through time for each site based
on the mean streamflow below which a specified fraction of scenarios is vulnerable. We
perform a leave-one-out cross-validation to compute the frequency of incorrectly identifying
or failing to identify a vulnerable scenario (false positives and false negatives, respectively).
Results show that in general, this method of defining thresholds can identify vulnerable
scenarios with low false positive rates (< 10%), but with false negative rates for many rivers
remaining higher than random chance until roughly 2060. This finding highlights the tradeoff
between frequently triggering unnecessary action and failing to identify potential vulnerabilities
until later in the century, and suggests room for improvement in the threshold-setting technique
that could be benchmarked with this approach. This testing framework could extend to
thresholds defined with multivariate statistics, or to any application using thresholds and
ensemble projections, such as long-term flood and drought risk, or sea level rise.

1 Introduction

Water resource planners routinely face uncertainty in supply and demand, including inter- and
intra-annual weather variability as well as longer-term population changes (Fletcher et al.
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2017). However, model projections of water security risks under climate change—for exam-
ple, due to nonstationary mean and variance of annual streamflow, or changes in drought
frequency and severity—remain highly uncertain by comparison (Ranger et al. 2013). This
Bdeep uncertainty^ prevents analysts from knowing or agreeing on the probabilities of future
scenarios (Lempert 2002), which hinders the interpretation of ensemble projections from
general circulation models (GCMs) (Hallegatte et al. 2012; Kwakkel and Pruyt 2013). Despite
this uncertainty, decisions must be made regarding infrastructure and operating policies for
water supply, flood control, hydropower generation, and environmental flows. Adapting to a
changing climate could be done with exact knowledge of a future probability distribution, but
planning based on a range of plausible scenarios, with some indicating significant departures
from the historical record, remains challenging.

Multiple methodological frameworks have been proposed to address the challenge of
climate adaptation under deep uncertainty, recognizing that probabilities may not be necessary
to inform policy development (Dessai and Hulme 2004). Broadly, these frameworks focus on
resilience, robustness, flexibility, or a combination of these (Adger et al. 2005; Walker et al.
2013). Resilience aims for quick recovery from extreme events (Dessai and Hulme 2004).
Robustness requires preparing for the full range of plausible future scenarios, which includes
changes to climate and other uncertain exogenous variables (Lempert and Collins 2007;
Herman et al. 2015; Giuliani and Castelletti 2016). Because robust strategies are generally
costly, plans may include improvements that would be beneficial in any future scenario, such
as repairing leaks or developing drought-resistant crops (Hallegatte 2009). Similarly, flexible
strategies are intended to keep options open as the climate changes, often using real options
analysis, which allows water planners to alter or reverse strategies as needed while minimizing
long-term costs (DiFrancesco and Tullos 2014; Jeuland and Whittington 2014; Buurman and
Babovic 2016). These frameworks are termed bottom-up approaches to climate adaptation
planning, as they identify static thresholds beyond which the current system would be
vulnerable (e.g., thresholds of sea level rise, floods, or droughts) regardless of the likelihood
of future climate projections (Herman et al. 2015). Specific examples include Scenario
Discovery (Bryant and Lempert 2010) and Decision Scaling (Brown et al. 2012). This
contrasts with top-down methods, which evaluate the impact of downscaled climate projec-
tions in simulation models to estimate system performance metrics of interest, typically
expressed as a probability distribution (Wilby and Dessai 2010). Significant opportunities
exist to combine insights from both approaches. For example, the vulnerability thresholds
identified in bottom-up methods can be compared to an ensemble of top-down scenarios to
approximate their relative likelihood (Taner et al. 2017; Ray et al. 2018), or—as in this study—
to determine whether ensemble projections contain information that can dynamically identify
future vulnerabilities. This study contributes a framework to evaluate the classification accu-
racy of planning thresholds using ensembles of top-down climate scenarios. This threshold
testing framework could be applied to any adaptation problem using thresholds and ensembles
of outcomes, such as water supply, sea level rise, flooding, or temperature changes.

Plans aiming for static robustness to all possible scenarios are likely to be costly. To avoid
the risk of over-investment, one option is to monitor hydrologic variables over time and tie
adaptation decisions to these observations. In other words, a dynamic planning process
involves defining the conditions under which certain actions should be taken. Planning
frameworks using this approach might generally be called Badaptive pathways,^ drawing from
a range of published work, including Adaptation Tipping Points (Kwadijk et al. 2010) and
Dynamic Adaptive Policy Pathways (Haasnoot et al. 2013; Kwakkel et al. 2015; Zeff et al.
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2016). These methods work by identifying tipping points, triggers, or Bsignposts^ as indicators
to determine that the current management strategies of a system will no longer function, and
then planning responses to those conditions. These responses can be set actions determined in
advance, a reassessment of the plan itself, or a set of pathways to follow depending on which
tipping points, triggers, or signposts are reached (Kwadijk et al. 2010; Haasnoot et al. 2013;
Kwakkel et al. 2015). The common thread between these methods is the use of thresholds (i.e.,
tipping points or triggers) to determine the timing of policy changes, which is similar to control
methods developed for short-term operational decisions (e.g., Zeff et al. 2014; Herman and
Giuliani 2018). For long-term climate adaptation with greater uncertainty, an adaptive pathway
can only be successful if its thresholds accurately identify vulnerable scenarios, ideally in
advance of when vulnerability occurs to allow time to build infrastructure or change policies to
prevent unwanted, costly outcomes.

For these threshold-based planning frameworks, analysis of GCM-derived scenario ensem-
bles can inform how well a chosen threshold can classify vulnerable scenarios amid the
uncertain range of projections. Ensemble projections of water availability under climate
change come with several important limitations that affect the development of planning
thresholds based on these simulations. First, some ensemble members may not adequately
capture the internal variability of the climate system, represented by, for example, the historical
mean, variance, and autocorrelation of streamflow at multiple timescales. Second, the uncer-
tainty across scenarios in the ensemble does not represent the full range of possibilities
(Hallegatte et al. 2012) and may only represent the lower bound of uncertainty (Stainforth
et al. 2007). Third, if all simulations in an ensemble are created under the same model
assumptions (e.g., model structure and parameterization), it is possible that they share the
same errors (Hallegatte et al. 2012; Steinschneider et al. 2015). Lastly, many ensembles
contain scenarios derived from multiple representative concentration pathways (RCPs), and
although the different RCPs are not equally likely (Katz 2002; Kundzewicz et al. 2018), they
are often treated as such due to the lack of an agreed-upon weighting system. Despite these
limitations, GCM ensembles present potentially useful information for water resource plan-
ners. Therefore, a structured approach is needed to support adaptive planning while acknowl-
edging the severe uncertainties that have been identified in long-term climate projections
(Frigg et al. 2013).

This study focuses on a set of river basins predominantly in the western USA, a region with
a host of water supply challenges due to climate change. These challenges, both predicted and
observed, have been studied extensively. The population of the area continues to grow rapidly,
while water resources face multiple competing demands such as flood control, hydropower
production, irrigation supply, and environmental protection (Leung et al. 2004). Increasing
temperatures across the region are predicted with high confidence (Leung et al. 2004), and
spring temperatures have already risen by several degrees since the beginning of the twentieth
century (Cayan et al. 2001; Donat et al. 2013). In addition, tree ring reconstructions indicate
higher temperatures in the past half-century than any similar period in the last 900 years
(Luckman 1998; Donat et al. 2013). As a result, hydrologic changes that depend on temper-
ature increases are also predicted with high confidence (Cayan et al. 2001; Leung et al. 2004;
Knowles et al. 2006; Pederson et al. 2011), and these temperature-related effects have already
been observed across the region (Mote et al. 2005; Stewart et al. 2005; Barnett et al. 2008).
Long-term trends in total annual precipitation are less certain, and many areas could become
either wetter or drier. However, the frequency and magnitude of floods and droughts are
expected to increase over the western USA (Anderson et al. 2008; US Global Change
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Research Program 2009). With future water availability surrounded by severe uncertainty,
designing adaptive pathways under climate change will require understanding how well
thresholds or signposts can reliably indicate future vulnerabilities.

2 Methods

We propose a framework to test the classification accuracy of thresholds, defined in terms of
long-term average streamflow, to identify vulnerable scenarios for rivers predominantly in the
western USA. An illustrative approach is developed to define planning thresholds using
ensembles of GCM-based streamflow projections, similar to an approach that might be taken
by systems planners. Then, a leave-one-out cross-validation is used to determine how well
those thresholds classify vulnerable scenarios over time. The methodology combines top-down
and bottom-up approaches to adaptation strategies by incorporating both adaptive planning
thresholds and climate projection information. Further spatial analysis considers the utility of
planning thresholds across river basins in the region. Each river site represents a simplified
case study, where water resource planners would in principle use these thresholds as vulner-
ability signals to trigger investments in infrastructure, or a revision of operating rules. Table 1
defines key terms used throughout this paper.

2.1 Data sources

Future streamflow projections are drawn from a 2014 U.S. Bureau of Reclamation (USBR)
study in which climate projections (supplemental Table S1) from the Coupled Model Inter-
comparison Project (CMIP5) were downscaled using the Bias-Correction and Spatial Disag-
gregation (BCSD) technique described in Brekke et al. (2014). In the USBR study, these
downscaled projections were then routed through the Variable Infiltration Capacity (VIC)
hydrologic model (Liang et al. 1994) to create streamflow projections for sites predominantly
across the western USA. For each river site, 97 different BCSD climate projections are
available, representing combinations of 31 climate models and four RCPs (2.6, 4.5, 6.0, and
8.5). A total of 91 sites were selected from the set of 242 sites available in the USBR dataset.
Sites were first eliminated to include only one point per river reach, eliminating sites whose
downscaled streamflows were highly correlated. Next, sites with relatively low flows (less than

Table 1 Terms and definitions

Term Definition

Scenario One GCM-based streamflow projection. There are 97 for each river site in this study
Ensemble A group of GCM-based streamflow projections
Vulnerability A state in which a river is unlikely to have enough water volume (annually) to fulfill its needs,

including water supply, hydropower production, and environmental flows
Threshold A line defined through the time series that signals vulnerability if a scenario crosses below it at

any time. The illustrative thresholds developed for this study are defined in Eq. 4
Model

agreement
The fraction of vulnerable scenarios below the threshold at a given time. Model agreement

defines how stringent a threshold is, with a higher value denoting a more stringent threshold
Missing point A threshold value at a particular year that is undefined because a threshold value could not be

found that met the model agreement (see Eq. 4), and interpolation was not possible
Error rates The percent of false negatives and false positives for a given year, defining how well the chosen

threshold is able to classify scenarios
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roughly 1000 TAF/year or 1.23 km3/year) were eliminated because they are considered less
important for water supply, and their flows have high relative fluctuations when normalized
against the historical baseline. The remaining 91 river sites selected are spread over the western
USA (Fig. 1) and nine of the 19 continental US HUC-2 watersheds: California, Pacific
Northwest, Colorado (Upper and Lower), Missouri, Arkansas-White-Red, Texas-Gulf, Upper
Mississippi, and Lower Mississippi (Seaber et al. 1987).

The projections include statistically representative streamflow data for the historical period
1949–2000. Additionally, observed historical data through 2018 is drawn from multiple
sources for comparison: the California Data Exchange Center (CDEC), the Natural Resources
Conservation Service (NRCS), and the U.S. Geological Survey (USGS). Data sources for each
river site are listed in supplemental Table S2, along with additional data including mean
historical flow, location, and reservoir name where applicable.

Examples from the streamflow projection dataset are shown in Fig. 2 for four selected
river sites. The data plotted in Fig. 2 includes three important transformations that will be
used throughout the study, and these transformations are shown step by step in Fig. 3.
First, the monthly streamflow values from the original dataset are summed annually
(Fig. 3a). The inter-annual dynamics are considered more important for analyzing long-
term water supply than monthly or seasonal dynamics, as many of these river locations
have large reservoirs with carryover storage. Second, for each annual flow time series
Q(t), the 50-year moving average is taken: QMA(50)(t) (Fig. 3b). Sensitivity experiments
later in the study consider different moving window sizes. Finally, the moving average is
normalized by the mean flow over the historical period (Fig. 3c) to allow comparison of
rivers with different flow magnitudes:

~QMA 50ð Þ ¼
QMA 50ð Þ tð Þ

QMA 50ð Þ t ¼ 2000ð Þ ð1Þ

The values of ~QMA 50ð Þ, hereafter shortened to ~QMA, reflect the percent change in average

annual streamflow relative to the historical baseline.

Fig. 1 River sites used for this study from the USBR streamflow projection dataset (Brekke et al. 2014). The
sites marked with red dots have reservoirs, many of which provide water supply among other purposes
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The same transformations are applied to the observed historical data (black lines in Fig. 2).
The observed time series are included as visual references for these sites to show that in recent
years, the long-term average streamflow has changed relatively little. However, the hydrologic
projections vary much more in the coming decades, with some indicating end-of-century
changes of ±20% or more. From a water supply perspective, the focus of this study, drier years
are more concerning when attempting to determine how robust water supplies will be in the
long-term. However, for the purpose of generality, the following methodology will also be
applied to sites where the majority of scenarios are wetter than the historical average. Wetter
years might suggest more flooding, although finer-timescale projections would be needed to
analyze patterns in flood frequency, where downscaled GCM projections often show large
disagreement (Hirabayashi et al. 2013; Dottori et al. 2018). Figure 2 also shows projections for
the four RCPs in different colors, showing no clear distinction between them. Distributions for
each of the RCPs at 2050 and 2100 are shown in supplemental Figs. S1 and S2, also indicating
a lack of clear distinction between the RCPs.

2.2 Developing planning thresholds

Many approaches exist for developing planning thresholds, for example through a multi-
objective optimization approach (Kwakkel et al. 2015) or a data assimilation approach (Hui
et al. 2018). Any of these approaches could be tested using the methods proposed here. To
define thresholds in this study based on an ensemble of streamflow projections, we employ an

a b

dc

Fig. 2 Examples of the normalized 50-year moving average streamflow ~QMA

� �
showing the range of end-of-

century uncertainty for selected rivers. (a) The Colorado River near Cameo. (b) The Missouri River at Fort Peck
Dam. (c) The Columbia River at Priest Rapids Dam. (d) The American River at Folsom Dam
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illustrative approach relying on the concept of vulnerability as might be defined by stake-
holders. Specifically, we assume that the set of scenarios Sv with the lowest 10% of end-of-
century streamflows in each of the ensembles are vulnerable:

Sv ¼ ~QMAi tð Þ : ~QMAi t ¼ 2100ð Þ < p10 ~QMA t ¼ 2100ð Þ
� �n o

; i∈ 1;…; nf g ð2Þ

where the subscript i denotes a member of the ensemble of streamflow projections (up to a
total of n) and the operator p10 refers to the percentile of lowest end-of-century average
streamflow values. Similarly, we define the set of scenarios that are not vulnerable, Sn:

Sn ¼ ~QMAi tð Þ : ~QMAi t ¼ 2100ð Þ > p10 ~QMA t ¼ 2100ð Þ
� �n o

; i∈ 1;…; nf g ð3Þ

The choice to use the 10th percentile of normalized moving-average streamflow to define
vulnerability is an illustrative choice, as these are likely the scenarios that would cause most
concern among water resources planners. However, this choice is not based on local water
supply needs at each location, which would require a more detailed discussion with stake-
holders to determine. Instead, this methodology is developed with the intention that it can be
easily applied using different criteria to define vulnerable scenarios.

a b

dc

Fig. 3 Methods flowchart using the Lewis River (Pacific Northwest Basin) as an example. (a) The original
projected annual streamflow data. (b) The projections transformed using a 50-year moving average, and
classifying the lowest 10% of scenarios at end-of-century as vulnerable (blue). (c) The projections are normal-
ized, and a vulnerability threshold (red) is drawn at the point for each time t where at least 60% of the scenarios
below are classified as vulnerable. Validation of the method was performed using leave-one-out testing (d), in
which each of the 97 scenarios was removed from defining the threshold one at a time to determine if that
streamflow time series could be classified correctly in each year as either vulnerable or not
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After defining the set of vulnerable scenarios, we assume that for each year t, there exists a
threshold T(t) which will identify a scenario as Bvulnerable^ if the normalized streamflow ~QMA

falls below it. This threshold is determined by finding the maximum value of ~QMA in the
ensemble below which a certain percent of streamflow projections are considered vulnerable
by the end of the century (Fig. 3c). This percent is the model agreement, m.

T tð Þ ¼ max ~QMA tð Þ :
Sv≤ ~QMA tð Þ

n o���
���

Sv≤ ~QMA tð Þ
n o���

���þ Sn≤ ~QMA tð Þ
n o���

���
≥m

0
B@

1
CA ð4Þ

where Sv≤ ~QMA tð Þ� ��� �� denotes the count of the subset of vulnerable scenarios with

streamflow less than ~QMA tð Þ for each year, and Sn≤ ~QMA tð Þ� ��� �� is a count of the subset of

scenarios that are not vulnerable with streamflow less than ~QMA tð Þ for each year. In this
equation the model agreement,m, is expressed as a decimal value. The threshold T(t) cannot be
solved for explicitly. Instead, numerical iteration is used to find the first (highest) value of the
threshold where this condition is met. The process is repeated for each year, t. This study
considers model agreement values ranging from 40 to 80%. The higher the model agreement,
the more stringent the threshold criteria will be. The window size used for this process is also
varied from 20 to 60 years to further explore the sensitivity of the approach to parameter
assumptions, recognizing that the 60-year window size only covers 2010–2100 (10 years
fewer than for other window sizes) because all climate projection data starts in 1949.

Two potential issues can occurwith this approach to defining thresholds. First, for some rivers in

some years, the threshold T(t) may be undefined because no values of ~QMA can be found where at
least 60% of the scenarios below it are vulnerable. In general, a high model agreement makes it
difficult to draw a threshold because the criteria cannot be met. In this case, interpolation is used to
fill in threshold gaps. If gaps in the threshold occurred at the beginning or end of the century, no
threshold was drawn for those years. Years without a threshold value are referred to as missing
points, as defined in Table 1. The second issue that can occur, even when T(t) is defined, is a small
sample size of scenarios below the threshold. In this studywe do not consider sampling uncertainty
in the definition of T(t), as themethod of defining thresholds is intended to be illustrative. However,
in future work, it may be possible to propagate this uncertainty into the testing framework, where
the threshold could be defined as a range or a distribution instead of a single value.

2.3 Leave-one-out testing

We aim to determine the capability of a threshold-based planning approach to correctly
identify vulnerable scenarios before they become vulnerable, i.e., well before the end of the
century. For example, this warning signal would be especially useful for infrastructure
investment. To test how accurately the threshold identifies vulnerable scenarios, a leave-one-
out testing methodology is used. This approach tests the classification accuracy of the planning
threshold for a scenario that was not used to determine the threshold initially. For each river
site, one of the 97 streamflow projections is removed from the ensemble, and the threshold is
identified using the data from the remaining 96 scenarios. Next, the removed scenario is tested
against the threshold to see whether it can be correctly classified as vulnerable or not
vulnerable in each year (Fig. 3d). This evaluation process is repeated for each of the 97
scenarios, and then for each of the 91 rivers.
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For each river site in each year, the leave-one-out testing methodology classifies each
scenario as either vulnerable or not. The classification is therefore either a true positive (TPi(t)),
false positive (FPi(t)), false negative (FNi(t)), or true negative (TNi(t)). Figure 4 shows a
confusion matrix defining the four possible outcomes of this classification. The following
logical relationships were used to determine the classifications at each year for each scenario in
each river:

True positive : TPi tð Þ ¼ ~QMAi tð Þ < T tð Þ and ~QMAi tð Þ∈Sv ð5Þ

False positive : FPi tð Þ ¼ ~QMAi tð Þ < T tð Þ and ~QMAi tð Þ∉Sv ð6Þ

False negative : FNi tð Þ ¼ ~QMAi tð Þ > T tð Þ and ~QMAi tð Þ∈Sv ð7Þ

True negative : TNi tð Þ ¼ ~QMAi tð Þ > T tð Þ and ~QMAi tð Þ∉Sv ð8Þ

These expressions will result in binary values. The total error rates for a given river site in
year t represent the fraction of leave-one-out scenarios (n = 97) in which that outcome
occurred, e.g.:

TP tð Þ ¼ ∑n
i¼1TPi tð Þ

n
ð9Þ

where i is the index of the ensemble member left out in validation. Years for which the
threshold T(t) is undefined (missing points) that cannot be interpolated are not considered in
these error calculations.

Data Availability All code and data used in this study is available on Github (https://github.
com/brobinson3/Testing_Thresholds).

Vulnerable

Vulnerable

Not
Vulnerable

Not
Vulnerable

Actual

Predicted

True Positive
(correct)

True Negative
(correct)False Negative

False Positive

Fig. 4 Confusion matrix defining
classification outcomes for the
vulnerability threshold experiment.
True positives and true negatives
are classified correctly; false
positives and false negatives are
classified incorrectly
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3 Results

3.1 Thresholds for Individual River sites

Figure 5 shows ensemble streamflow projections with vulnerability thresholds identified for

four selected river sites. These time series represent the normalized moving average flow, ~QMA.

The vulnerability threshold (red) represents the value of ~QMA below which at least 60% of the
streamflow projections are considered vulnerable by the end of the century. The black line
shows the historical observed streamflow for comparison. Thresholds and historical data often
show the same trends within the same basins. For instance, most rivers in the California Basin
have missing threshold values for the first few decades of the century because their vulnerable
scenarios cannot be separated reliably from non-vulnerable scenarios with the required model
agreement (Fig. 5d). The ensemble spread by the end of the century is also similar across rivers
within the same basin. For example, the American River (Fig. 5d) shows an ensemble spread
of ±40% in the average streamflow by year 2100 compared to the historical mean, a substantial
degree of uncertainty that is shared by other rivers in the California Basin.

Some rivers, such as the Columbia River (Fig. 5c), have historical flows that have already
crossed below the vulnerability threshold. Following the logic of this threshold-based planning
approach, this would indicate that long-term streamflow may be substantially reduced compared
to historical streamflow, potentially resulting in water supply disruptions or less hydropower

a b

c d

Fig. 5 Examples of the vulnerability threshold results for selected river sites. (a) The Colorado River near
Cameo. (b) The Missouri River at Fort Peck Dam. (c) The Columbia River at Priest Rapids Dam. (d) The
American River at Folsom Dam. The red line indicates the vulnerability threshold, and the black line shows the
observed historical average for comparison
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generation. However, without further statistical analysis, it is impossible to say whether this
observed change in the average streamflow truly signals a long-term trend, or is only an anomaly
that will eventually return to the long-term historical mean. In other words, a scenario crossing
below the threshold could be a false positive. Similarly, a scenario remaining above the threshold
could be a false negative—a scenario that should be classified as vulnerable, but is not. If such
thresholds, or signposts, are to be used to trigger management actions, their reliability in correctly
identifying vulnerable scenarios must be tested more rigorously.

3.2 Classification error rates

Figure 6 shows how the rates of classification errors change throughout the century using the leave-
one-out testingmethodology described in Sections 2.2–2.3. The errormetrics are computed for each
year and averaged across the 91 river sites. Figure 6a contains the true positive and false negative
rates, which are the two possible outcomes for vulnerable scenarios and therefore sum to 100%.
Similarly, Fig. 6b contains the true negative and false positive rates, which also sum to 100%.

False negative rates are high at the beginning of the century (roughly 80%) and remain high
until the end of the century, dropping to 20% by 2075. However, the false positive rates are
comparatively low, peaking at about 10%. High false negative rates mean that the classification
of a river as Bnot vulnerable^ does not provide much information, as it is likely a false
negative. On the other hand, low false positive rates suggest that vulnerable classifications are
likely correct. From a decision-making standpoint, the implications of both false positives and
false negatives are important. If thresholds are used to trigger an irreversible decision, such as
an infrastructure investment, it is important to be sure that it signifies a future vulnerability
before taking action to secure water supply. High false positive rates would make it difficult to
justify any action based on a vulnerable classification. High false negative rates, by contrast,
indicate that many vulnerable scenarios are not being identified, which could lead to a water
shortage situation for which planners have not prepared. Balancing the tradeoff between false
negative and false positive rates remains an important decision for stakeholders.

The model agreement, m, was assigned a default value of 60% to demonstrate the
threshold-based planning approach. The sensitivity of this choice was tested using model
agreement values between 40 and 80%, the results of which are also shown in Fig. 6. The

a
b

Fig. 6 Classification error rates from leave-one-out testing, averaged over all river sites for different values of the
model agreement, m. Percentage of (a) true positives and false negatives, and (b) true negatives and false
positives identified for multiple model agreements using a 50-year moving window. True positives and true
negatives are correctly classified (green), while false positives and false negatives are incorrectly classified (red)
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choice of model agreement reflects a tradeoff between false negative and false positive error
rates; when one increases, the other decreases. The value of m essentially sets the end-of-
century false positive rate, because it specifies the required fraction of vulnerable scenarios that
must fall below the threshold. Increasing m decreases the false positive rates but increases the
false negative rates, while decreasing m has the opposite effect. This choice offers a degree of
freedom for decision makers to specify each of the error rates, depending whether false
positives or false negatives are of greater concern for a particular planning problem. Figure 6
also suggests important implications for when during the century certain classifications can be
trusted, according to this scenario ensemble. Positive (vulnerable) classifications are reliable
throughout the century, while negative (not vulnerable) classifications only become reliable
much later.

While the error rates associated with different levels of model agreement in Fig. 6 generally
do not cross, one exception is the second half of the century for the false positive and true
negative rates (Fig. 6b). The more stringent model agreements (70% and 80%) spike above
others (50% and 60%) before returning to the original order at the very end of the century. This
occurs because the more stringent model agreement values lead to many more missing points
in the beginning of the century than other model agreements, which artificially deflates the
false positive rates. In the second half of the century, there are fewer missing points and more
error classification data, driving the false positive rates closer to their real values. The second
half of the century would then be more accurately reflecting the error metrics of the more
stringent model agreements (70% and 80%) than the beginning of the century when their error
rates are artificially low. The supplemental Fig. S3 shows a graph of the missing points through
time.

In addition to the model agreement, the second parameter that could affect the results is the
window size for the moving average used in the threshold-setting approach. The moving
window size represents how quickly the classification responds to new observations of annual
streamflow: A classification based only on the most recent 5 years of data will likely be noisy
and unreliable, while a very large window of 100 years might respond too slowly to identify an
emerging trend. A default value of 50 years was assumed in the initial set of experiments. To
test the sensitivity of this assumption, the window size was varied between 20 and 60 years
using a model agreement of 60%. Figure 7 shows the classification error rates resulting from
these experiments. The 20- and 30-year moving window sizes show much more noise in the

a
b

Fig. 7 Classification error rates for different moving average window sizes. Percentage of (a) true positives and
false negatives, and (b) true negatives and false positives identified for multiple window sizes using a 60%model
agreement
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error rates than the larger window sizes because classifications will change more frequently
through time when the moving average is taken over fewer years. Shorter window sizes also
show a delayed decrease in the false negative rate, possibly due to the high amount of noise
present in those window sizes. The 60-year window size has the lowest rate of false negatives
for the second half of the century, suggesting that a long-term average that responds more
slowly to new observations might be preferred if the rate of false negatives is to be reduced.
The 50-year window size appears to have lower false negative rates than the 60-year window
size in the first half of the century and provides consistently low false positive rates compared
to the other window sizes, justifying the original choice of the 50-year moving average.

3.3 Spatially distributed error characteristics

Figures 6 and 7 show the results of this testing framework in terms of the dynamics of
classification error rates through time. Because the dataset of climate projections used in
this study includes many river sites, these results can be further explored to identify
regional patterns in the error metrics. Figure 8 explores two characteristics of the
classification errors at each site, chosen to reflect decision-relevant problems. First,
Fig. 8a shows the year that the false negative rate drops below 50% for each river. In
years preceding those shown in Fig. 8a, there is greater than a 50% chance that any
negative (not vulnerable) classification is incorrect. False negative rates greater than 50%
are particularly significant for a binary classification problem, because this indicates that
the classification of negative (not vulnerable) scenarios is worse than random chance.
After this point, negative classifications for each river are expected to become more
accurate, a result observed in Figs. 6 and 7. Many of the river sites shown in Fig. 8a have
false negative rates above 50% until at least 2050, which calls into question the utility of
this particular threshold-based vulnerability classification scheme to confidently identify
scenarios as not vulnerable in the near term.

While the testing framework has identified unacceptably high false negative rates for this
experiment, the comparatively low false positive rates suggest one way that this approach to
threshold-based vulnerability classification might be useful. Scenarios with normalized
average streamflow crossing below the vulnerability threshold are highly likely to be those
from thevulnerable set,Sv,with an error rate typicallybelow10%even in thenear-term.Given
these low error rates for positive (vulnerable) classifications, water planners may want to
knowhowsoon this threshold crossingmayoccur. Ideally, the thresholdcrossingwouldoccur
well in advance of when the normalized streamflow falls below the end-of-century vulner-

ability threshold (i.e., ~QMAi tð Þ < ~QMA0:10 for this study). This advancewarningwould allow
time to build infrastructure or change policies to prevent unwanted, costly outcomes.
Figure 8b shows the average year that the vulnerable scenarios first cross below the threshold
for each river, resulting in correct positive vulnerability classifications. Similarities can be
seen within regions, with the Colorado Basin having the earliest average crossing years.
Combined with the generally low false positive rates observed in Figs. 6 and 7, this result
suggests that reliable positive (vulnerable) classifications can be obtained for many of these
river sites before 2040. This spatial analysis reveals the extent to which the classification
performance identified with this framework is consistent within regions. In an idealized
centralized planning context, this would enable investments in infrastructure or revised
operating rules to be targeted spatially as well as in time.
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4 Discussion and conclusion

This study presents a framework for testing the ability of adaptation thresholds to dynamically
identify vulnerable scenarios within ensemble projections. To demonstrate the testing method,
an illustrative approach to defining dynamic thresholds has been developed, using ensemble

a

b

Fig. 8 (a) Year when false negative rate drops below 50% (i.e., random chance). (b) The average year of the first
threshold crossing of vulnerable scenarios for each site, resulting in correct positive classifications
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projections of streamflow through the end of the century. The results of this experiment show
that in general, these thresholds are able to classify vulnerable scenarios in advance, with low
false positive rates (< 10%). However, the false negative rates remain high for many rivers
until the second half of the century, becoming better than random chance after roughly 2060.
This reduces confidence in these particular near-term adaptation thresholds and highlights the
tradeoff observed in many threshold-based decision methods between triggering unnecessary
action or failing to identify potential vulnerabilities until later in the century. Because false
positive rates remain relatively low, positive classifications can reliably be used to trigger
action to protect water supply. However, the uncertainty due to high false negative rates makes
it difficult to define a river as not vulnerable until very late in the century. Given the low rate of
false positives, a possible metric of interest for planning is the average year the vulnerable
scenarios first cross below the threshold. These years ranged from as early as 2010 to as late as
2080 and showed a similar range of years within hydrologic regions.

Assigning thresholds for different rivers depends on the choice of model agreement, m, and
the window size used to update the observed average streamflow. Testing the sensitivity of these
parameter assumptions shows that when model agreements are more stringent, false negative
rates are higher and false positive rates are lower. Therefore, choosing a value of the model
agreement parameter controls the tradeoff between false positives and false negatives. Addition-
ally, smaller window sizes (< 40 years) are more susceptible to noise in the climate projections
and exhibit higher classification error rates than larger window sizes. The tradeoff between false
negatives and false positives, and its relationship to parameter choices, would be of importance
to decision makers tasked with determining infrastructure investments. In practice, this frame-
work could be used to test planning thresholds developed with more advanced techniques,
including optimization (Kwakkel et al. 2015) or data assimilation (e.g., Hui et al. 2018). By
estimating the rates of incorrect classifications, decision makers would be able to make informed
decisions regarding the choice of planning thresholds. False negatives could mean waiting too
long to respond to observed trends; false positives might lead to unnecessary (and costly) actions.
Though the thresholds developed in this study are only illustrative, some of the rivers analyzed in
this paper exhibit long-term trends in observed mean flows that have already dropped below
these thresholds, such as the Columbia River (Fig. 5). This crossing may be an indicator of a
long-term reduction in flows, possibly causing a disruption in water supply or hydropower
generation, though statistics suggest that it may be too early to tell.

The results of this paper show that combining ensemble projections with planning thresholds
for climate adaptation can offer new and important insights to how thresholds can be created
and tested. However, any application of climate model projections comes with limitations.
GCM-based ensembles cannot represent the full range of climate possibilities; they only
represent the lower bound of uncertainty (Stainforth et al. 2007). In the specific case of
streamflow, this uncertainty is amplified by downscaling and hydrologic modeling (Wilby
andDessai 2010). Recognizing this uncertainty, this study treats the projections as the full range
of possible futures and investigates the impacts of uncertainty on vulnerability classification.
The leave-one-out cross-validation method also assumes that each scenario in the ensemble is
independent, even though some scenarios are derived from the same RCPs or GCMs, and may
be correlated. It may be possible to expand the ensemble of scenarios with synthetic streamflow
generation designed to mimic the statistics of climate change projections (e.g., Borgomeo et al.
2015; Herman et al. 2016). As an additional limitation, the definition of Bvulnerability^ as the
lowest 10% of mean annual streamflow is not based on the specific water supply needs of the
river basins considered here. Instead, it is intended that water planners using this methodology
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would substitute system-specific definitions of vulnerability for the end of the century, poten-
tially involving multivariate criteria. Finally, while this experiment focused on detecting
changes in the long-term average streamflow, it could be expanded to account for changes in
flood or drought frequency or changes in seasonal timing of runoff, effects of climate change
that have already been observed and are projected to continue.

Testing the classification accuracy of adaptive planning thresholds using GCM ensembles
has provided key insights into how to characterize the reliability of thresholds through time to
trigger climate change adaptation. The leave-one-out cross-validation was instrumental in this
approach, by treating individual ensemble members as potential realizations of the future.
Positive and negative classifications show very different error rates for the illustrative thresholds
used in this study, and the average timing of positive (i.e., vulnerable) classifications is region-
dependent. Several alternate versions of this study could be pursued with the understanding that
most adaptations would not require more than a decade to implement. One approach would be
to identify vulnerable scenarios every 10 years and reset the threshold accordingly, or to
compute classification accuracy 10 years before each scenario becomes vulnerable. Because
this study only defined vulnerability based on end-of-century streamflows, the error rates at
roughly 2090 could be emphasized. However, an analysis focused so far in the future would
likely not be helpful to decision makers compared to an extended study that redefines
vulnerable scenarios dynamically. Future research will consider the relationship between
classification accuracy and other hydrologic variables in each river basin, such as annual flow,
river classification, and regional climate to attempt to understand how these variables affect the
assignment of planning thresholds and their error rates. This methodology could also be
expanded to other climate adaptation problems such as sea level rise or flood risk, in which
planned actions would be linked to dynamically updated observations of other variables.
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