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ABSTRACT

Adapting water resources systems to climate change requires identifying hydroclimatic signals that reliably indicate long-term transitions to vulnerable system states.
While recent studies have classified the conditions under which vulnerability occurs (i.e., scenario discovery), there remains an opportunity to extend such methods
into a dynamic planning context to design and assess early warning signals. This study contributes a machine learning approach to classifying the occurrence of long-
term water supply vulnerability over lead times ranging from 0 to 20 years, using a case study of the northern California reservoir system. Results indicate that this
approach predicts the occurrence of future vulnerabilities in validation significantly better than a random classifier, given a balanced set of training data. Accuracy
decreases at longer lead times, and the most influential predictors include long-term monthly averages of reservoir storage. Dynamic early warning signals can be
used to inform monitoring and detection of vulnerabilities under a changing climate.

1. Introduction

Climate change requires water supply planners to navigate signifi-
cant uncertainty in future precipitation projections, which in many re-
gions disagree on the magnitude and direction of change (Hallegatte,
2009). Much of this uncertainty centers on extreme drought and flood
events, which are expected to become more frequent and severe in the
coming decades (Trenberth et al., 2014; Polade et al., 2017). In general,
this uncertainty prevents the optimal planning of adaptations and re-
quires innovative approaches such as bottom-up vulnerability assess-
ment, a key feature of robust planning frameworks (Lempert and Collins,
2007; Wilby and Dessai, 2010; Herman et al., 2015). Bottom-up methods
focus on identifying the conditions under which vulnerability occurs,
using either a wide range of plausible scenarios (e.g., Bryant and Lem-
pert, 2010) or scenario narratives driven by local decision contexts
(Rounsevell and Metzger, 2010; Carlsen et al., 2013). This classification
problem, known as scenario discovery (Lempert et al., 2008), has
benefitted from the application of a variety of statistical methods (Hadka
et al., 2015; Kwakkel, 2015; Quinn et al., 2018). The main outcome of
scenario discovery methods is a trained classifier capable of mapping
uncertain scenario properties to a binary outcome—vulnerable or
not—for each scenario aggregated over time.

However, a related question remains less explored: under climate
uncertainty, can system vulnerabilities be detected in advance? This is
highly relevant to dynamic planning approaches, where adaptations are
taken over time in response to observed and projected information
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(Haasnoot et al., 2013; Zeff et al., 2016; Hui et al., 2018; Fletcher et al.,
2019). It also relates to the challenge of anticipating tipping points in
environmental systems (Scheffer et al., 2009, 2012). In the case that
robust planning proves too costly (e.g., Borgomeo et al., 2018), dynamic
planning may increase the effectiveness and appropriateness of adap-
tations, both preventing over-investments in unnecessary infrastructure
and lessening the severity of vulnerabilities if detection methods are
sufficiently accurate. Dynamic planning approaches have in common
the need to design a policy mapping information to actions, which could
include either observations or predictions of vulnerable states (Herman
et al., 2020). While the use of observations to trigger adaptations has
been explored in detail by bottom-up methods such as scenario discov-
ery and Dynamic Adaptive Policy Pathways (Haasnoot et al., 2013),
there remains significant opportunity to study the second case by pre-
dicting the occurrence of vulnerable states dynamically—in other
words, by designing statistical early warning signals for adaptation.
The process of designing early warning signals first requires the se-
lection of informative feature (predictor) variables. Due to the dynamic
aspect of the problem, this includes both the type of variable as well as
the timescale, aggregation window, and statistical transformation: for
example, the 30-year moving average of annual reservoir inflow (Raso
et al., 2019a). Feature selection can affect both efficiency and accuracy,
and choosing informative features can leverage both human expertise
and statistical techniques (Dietterich, 2002). This concept is analogous
to input variable selection in the water resources field (Guyon and Eli-
sseeff, 2003; Galelli et al., 2014), which has been widely used to support
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reservoir policy search (e.g., Giuliani et al., 2015). However, the longer
timescales involved in the climate adaptation problem create additional
challenges: it may be more difficult to separate signal from noise (Hegerl
and Zwiers, 2011; Hawkins and Sutton, 2012), and the decisions that the
features are meant to inform are often irreversible (Raso et al., 2019b).

This challenge is closely related to the choice of signposts for adap-
tation policies, which are evaluated based on their relevance, credibility,
and legitimacy (Haasnoot et al., 2018). Relevance refers to the predic-
tive skill of a monitoring system in observing long-term trends amid
short-term variability. Analysis of predictive skill has focused on both
Type I errors, representing over-investment, as well as Type II errors,
representing under-investment (Rosner et al., 2014; Stephens et al.,
2018; Raso et al., 2019). The goals of credibility and legitimacy reflect
the fact that monitoring systems must inform human decisions within a
broader context of objectives, actions, and spatiotemporal scales among
multiple actors and institutions (Hermans et al., 2013, 2017). The
interpretability of early warning signals is therefore critical, and may be
supported by the parsimony of signpost variables, as well as the
completeness of the sources of uncertainty considered (Raso et al.,
2019a). In total, these goals for a monitoring system may reflect a
tradeoff between predictive skill and interpretability that is widely
recognized in statistical modeling. For example, while several studies
have considered adaptations triggered by linear threshold values (Hal-
legatte et al., 2012; Walker et al., 2013; Robinson and Herman, 2019),
such signals could also be represented by more complex functions,
potentially incorporating multiple variables on different timescales
(Herman and Giuliani, 2018; Nayak et al., 2018). This study considers
the potential for nonlinear multivariate classifiers to address this prob-
lem, recognizing that improvements in predictive skill will likely be met
with a decrease in interpretability.

To address this challenge, this study frames the design and testing of
early warning signals under climate change as a machine learning
classification problem, using observations of human and hydrologic
variables to predict the binary occurrence of future water supply
vulnerability in a systems model. The goal is to detect vulnerability
without knowledge of future forcing, which would be required in a
forward simulation of the system. Specifically, this paper addresses the
following research questions to investigate the utility of the proposed
method:

1. Can machine learning classification techniques predict long-term
vulnerability of a water resources system in advance, and are these
predictions significantly better than random?

2. How is the accuracy of the prediction affected by the lead time and
vulnerability threshold?

3. Can the interpretability of the classifiers be assessed and improved
using feature importance, i.e., can the feature set be simplified while
retaining accuracy to support real-world applications?

The proposed methodology is intended as a tool to support adaptive
planning under a changing climate, specifically by using these early
warning signals to inform monitoring and detection of vulnerabilities.

2. Methods

A flowchart of models and datasets used in this experiment is shown
in Fig. 1. The experiment is demonstrated using a case study of the
northern California reservoir system, a large network of storage and
conveyance infrastructure designed primarily to move winter precipi-
tation from north to south to support summer irrigation. The largest
consumptive use is represented by the 7.9 million acres of irrigated
farmland (generating $100 billion annually in agricultural production),
followed by urban use by California’s 39.7 million residents (Johnson
and Cody, 2015). This system complexity yields many options for
adaptation, but is complicated by the fact that it is managed by hundreds
of distinct agencies, utilities, and districts, making coordination difficult
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Fig. 1. Methods flowchart. In the first step, a reservoir simulation model is used
to develop the feature and target data for all years throughout the century in all
climate scenarios. In the second step, these samples are used to train and test
machine learning classifiers for early warning of system vulnerability.

(Hanak and Lund, 2012). While the effects of climate change on average
precipitation in California remain uncertain, projections agree on in-
creases in the frequency of both wet and dry extremes, as well as the
increased likelihood of these extremes occurring sequentially (Swain
et al., 2018), placing more stress on the long-term planning and oper-
ation of water supply storage.

2.1. Data sources

Precipitation and temperature data are taken from an ensemble of
downscaled CMIP5 projections publicly available from the U.S. Bureau
of Reclamation (Brekke et al., 2014). This daily timestep dataset con-
tains hydrologic projections (streamflow and snowpack) for multiple
point and gridded locations created by routing precipitation and tem-
perature through the Variable Infiltration Capacity (VIC) hydrologic
model (Liang et al., 1994). Ensemble projections are available for 31
global climate models (GCMs) and four RCPs as shown in Supplemental
Table S1. Fig. 2 shows the locations of streamflow (11), snowpack (4),
and precipitation and temperature (3) gages used.

2.2. Simulation model

The Operation of Reservoirs in California (ORCA) model (Cohen
et al., Accepted) is used to simulate the operation of the northern Cali-
fornia reservoirs under all 97 CMIP5 climate scenarios on a daily time-
step over the period 2000-2100. Given the input data shown in Fig. 2,
the model simulates the operations of Shasta, Oroville, and Folsom
reservoirs, which are located respectively on the Sacramento, Feather,
and American Rivers. In addition to reservoir management, the model
also simulates the operations of South-of-Delta exports (via pumping)
from the Sacramento-San Joaquin Delta to meet urban and agricultural
demands via the Central Valley Project (CVP) and State Water Project
(SWP), while also meeting environmental flow and salinity re-
quirements for the Delta. For the purposes of this study, the supply
reliability of Delta exports is the key model output that determines
system vulnerability. The model has been found to adequately repro-
duce historical operations of the system on a daily timestep, with
Nash-Sutcliffe Efficiency above 0.9 for reservoir storage. Model code and
documentation can be found at https://github.com/jscohen4/orca.
More details about the origin, use, and locations of each type of data
described above can be found in Supplemental Table S2.

2.3. Feature and target data

The classification problem is to predict system vulnerability at a
certain lead time, given a set of feature variables. Vulnerability is
determined based on the 30-year moving average of the supply
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Fig. 2. Locations in northern California of the CMIP5 hydroclimatic projections
used in this study, which include precipitation, temperature, streamflow, and
snowpack (Brekke et al., 2014). Snowpack and precipitation values are spatially
averaged over their respective basins (outlined in white), while streamflow and
temperature data are taken at point locations. Water exports from the
Sacramento-San Joaquin Delta (black arrow) are delivered throughout the
southern half of the state for urban and agricultural uses. The supply reliability
of these water deliveries are the focus of potential future vulnerability
considered in this study.

reliability of water exports from the Delta, a metric that reflects a focus
on identifying long-term trends rather than a single drought period. This
metric is based on meeting the target demand for a certain fraction of
monthly timesteps. Vulnerability occurs when the 30-year average
supply reliability falls below a chosen threshold, resulting in a single
binary target metric for classification. While this approach does not
distinguish between different magnitudes of vulnerability, we adopt this

Table 1
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binary classification following the standard for scenario discovery
methods in the water resources field. This study tests a range of possible
threshold values to understand the impact on classifier performance,
recognizing that vulnerability definitions in practice are determined by
decision makers. The threshold value plays a key role in determining the
balance of positive and negative classifications in the training set.

The feature variables used to classify future vulnerabilities each year
include time series of the hydrologic variables shown in Fig. 2, as well as
several internal states of the simulation model. These variables are
aggregated to annual and monthly values using either the mean,
maximum, or sum. They are then translated into moving averages and
standard deviations using timescales of 10, 20, 30, 40, and 50-year
rolling windows. This differentiation by timescale and statistic is con-
ducted to improve the ability of the machine learning methods to detect
important trends in the data (Ahmed et al., 2010). Given that many of
the moving windows share overlapping data, several of the features are
expected to be correlated. A summary of feature variables is shown in
Table 1.

2.4. Machine learning methods

Several classification methods are selected (Table 2) to learn from
the annual and monthly data to classify water supply reliability as
vulnerable (below a chosen threshold) or not vulnerable (above a chosen
threshold) at lead times of 0, 1, 5, 10, and 20 years. These methods were
chosen from the many classification methods available in the open
source scikit-learn library (Pedregosa et al., 2011; Scikit-Learn, 2019)
based on their widespread use and demonstrated effectiveness for
nonlinear problems. By examining the performance of each classifier
against the others and a random classifier, which serves as a baseline,
application-specific insights can be drawn about the similarity of their
performance and the likelihood of misclassifications. The random clas-
sifier guesses proportional to the ratio of possible outcomes with an
accuracy equal to the square of the ratio of possible outcomes.

All methods in Table 2 are implemented using default parameter
settings from the scikit-learn library. It is recognized that these parameter
choices can significantly impact the performance, and that a meta-level
analysis would be needed to determine the optimal parameter settings.

Each of the classification methods follows the same prediction
structure:

Summary of feature variables, including how they were aggregated, their timescales, their transformations, and the lead times applied to them. A total of 500 features
are considered. Each feature variable encompasses 9603 observations (99 years of data x 97 scenarios).

Variables Summary  Aggregations Timescales Transformations
Temperature (min, mean, max), Storages, X2 Salinity Mean Monthly and 10, 20, 30, 40, 50 (-year Rolling mean, Rolling standard
Annually windows) deviation
Streamflow, Precipitation, Demand, Pumping, Outflows, Inflows, Sum Monthly and 10, 20, 30, 40, 50 (-year Rolling mean, Rolling standard
Shortages Annually windows) deviation
Snowpack Max Monthly and 10, 20, 30, 40, 50 (-year Rolling mean, Rolling standard
Annually windows) deviation
Table 2

Summary of classification methods tested in this study.

Method

How classification is determined

K-Nearest Neighbors

Logistic Regression

SVM (3rd Degree)

Random Forest (Breiman, 2001)

Multi-layer perceptron

AdaBoost (Freund and Schapire,
1996)

Naive Bayes

Random

Majority vote of the K nearest points in the training set

Fit a logistic function to binary data; round prediction to 0 or 1

Fit a decision boundary using cubic polynomial kernels for each point

Train ensemble of decision trees, use majority vote as the prediction

Fit an arbitrary nonlinear decision boundary with a multi-layer neural network

Ensemble of classifiers that trains new copies iteratively by increasing the weights of incorrectly classified points. Default estimator is decision

tree.

Maximum likelihood classification using Bayes’ theorem assuming normality and independent features given the output class.

Guesses proportional to the ratio of possible outcomes
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F(X) = { Vulnerable, P, jqq < threshold
Not Vulnerable, P,,j.qq > threshold

where F is the fitted function embedded in each of the classification
methods, using the features X;to evaluate the function and make pre-
dictions. If the prediction, P, at the specified lead time is less than the
threshold, the instance is classified as vulnerable; otherwise, the
instance is classified as not vulnerable. The classification methods in
Table 2 differ primarily in the family of functions used to represent F.
More recently developed algorithms are denoted with citations in
Table 2, while the other fundamental methods can be referenced in
Hastie et al. (2009). Importantly, this classification approach is not
meant to emulate the reservoir system model itself. It is predicting based
on a combination of hydrologic and system observations whether it is
likely to be on a trajectory toward a long-term vulnerable state.

2.5. Experimental design

Next, each method is fit to the training data (lagged predictors and
binary targets) and re-evaluated against held-out validation data, using
a repeated leave-one-out approach. From the ensemble of CMIP5 sce-
narios, one scenario is held out for testing while the classifier is trained
on the remaining 96 scenarios. The process is then repeated for all
scenarios. This design provides several benefits: the evaluation scenario
is hidden from the classifier during training; the temporal structure of
the data is preserved, which prevents biased training or testing with
either too many values from the beginning or the end of the century; and
it represents the realistic case in which the future hydrologic forcing is
unknown (e.g. to evaluate in a systems model) but where recent ob-
servations can be used to make a statistical prediction. In the next sec-
tion, all results will be reported in the validation stage, using the
ensemble of leave-one-out experiments to estimate confidence intervals
for the prediction accuracy.

In summary, this experiment tests seven classification methods, five
lead times ranging from O to 20 years, vulnerability thresholds ranging
from 0.60 to 0.86 (the full range in which both positive and negative
classifications are possible), and three numbers of features (5, 10, and
500) as described in the following paragraph. In each of these cases the
machine learning method classifies each prediction as either a true
positive (TP;(t)), false positive (FP;(t)), false negative (FNi(t)), or true
negative (TN;(t)). The primary metrics used to analyze classifier accu-
racy are the true positive and negative ratios, which are the fraction of
possible positive/negative outcomes that are correctly predicted. The
number of possible outcomes in each class is determined by counting the
occurrences in the test set. The results from each of the combinations are

Environmental Modelling and Software 131 (2020) 104781

evaluated against the baseline to test the null hypothesis that the ac-
curacy of the machine learning classifiers is no better than random. If the
null hypothesis is rejected (p < 0.05), then the accuracy of the machine
learning classifiers is significantly better than random. We consider this
the absolute minimum standard to evaluate the practical utility of the
approach.

Finally, the original set of feature variables is too large for some of
the classifiers to converge. The set is reduced using feature importance
scores, determined based on the frequency of occurrence of each feature
in a Random Forest of 10,000 trees (a default method from the scikit-
learn library), with more occurrences corresponding to a higher impor-
tance. The 500 features with the highest importance scores are used in
the training step. Before training, all feature and target data are scaled to
unit variance. Additional cases are considered in which the feature set is
reduced to 5 and 10 features, again based on the importance scores from
the Random Forest method.

Fig. 3 shows conceptually how a classifier attempts to predict at
every time step whether the long-term water supply reliability of the
system will be vulnerable (below the threshold) or not vulnerable
(above the threshold) at a given lead time, which in this example is 10
years. Time t + L is the year the scenario becomes vulnerable, and only
the five most informative features are shown. The gray dotted lines show
information that is not available to the classification methods when they
are making a prediction at time t years. The long-term vulnerability is
always based on the 30-year trailing average water supply reliability,
regardless of the lead time at which the prediction is made.

3. Results
3.1. Classifier accuracy as a function of threshold value

The ability to detect early warning signals of water supply vulnera-
bility depends in part on how frequently these events occur in the
training data, which is controlled by the threshold value, as well as the
strength of the climate change signal relative to noise in each of the
scenarios. Fig. 4 compares true positive and true negative ratios for
vulnerability thresholds between 0.6 and 0.86 for a fixed lead time of
five years. Each classification method contains the median, 10th, and
90th percentiles across the ensemble of leave-one-out experiments. The
performance of a random classifier is included as a benchmark (black
line), which always guesses proportional to the ratio of possible out-
comes with an accuracy of the ratio squared. While all methods perform
similarly, the Naive Bayes Classifier shows a slight advantage, with only
one median value below 0.8 for both true positives and true negatives.

Depending on the ratio of possible positives and negatives (dotted
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Fig. 3. Conceptual overview of the classification problem carried out each year. Time t + L is the year the scenario becomes vulnerable, and the classification
methods are attempting to predict that occurrence at a lead time of L = 10 years using the available feature information.
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Fig. 4. (A) True positive and (B) true negative ratios for different vulnerability thresholds (0.6-0.86) for the classification methods for a 5-year lead time. The median
of the validation ensemble is shown as a solid line, while the 10th and 90th percentiles are shown in colored triangles corresponding to each method. The random
classifier benchmark is shown in black, and the ratios of possible positive and possible negative classifications are shown as dotted lines on each subplot.

line), imbalance in the training data may lead to low rates of true clas-
sifications, with the best performance near the center of the range of
possible thresholds (0.4-0.6). This is reflected with the benchmark
random classifier, showing that at unbalanced ratios (thresholds below
0.66 or greater than 0.84), some methods fail to perform better than
random. Understanding the effects of the training set imbalance can
inform whether true positive or true negative classifications are more
likely to be accurate, a well-known challenge for machine learning
methods. In water resources applications, the choice of the vulnerability
threshold is left to the decision maker and cannot be selected arbitrarily
to ensure an accurate classifier. However, a decision maker may choose
a different classifier threshold to balance the tradeoff between false
positives and false negatives to increase the effectiveness of the early
warning signal in a real-world institutional context. This analysis un-
derscores that if vulnerabilities are rare among the set of climate pro-
jections tested, then by definition it will be difficult to train a machine
learning model to predict them, and that the estimates of prediction
accuracy should be accompanied by confidence intervals to improve
their interpretability for stakeholders.

In addition, while the median true positive and true negative ratios

suggest substantial improvement over the random classifier benchmark,
the 10th percentiles indicate the lower range of performance across the
validation ensemble, and in particular sometimes fail to outperform the
random classifier. The 90th percentile markers generally show an ac-
curacy of 1.0 excepting some classifiers for thresholds below 0.70 (for
true positive ratios) and above 0.84 (for true negative ratios). We return
to the question of statistical significance in Section 3.3. Fig. 4 only shows
the true positive and true negative ratios for a single lead time (5 years).
Similar figures for other lead times can be found in Supplemental
Fig. S1.

3.2. Classifier accuracy as a function of lead time

Accuracy was also evaluated across lead times for a fixed threshold of
0.76 (Fig. 5). In general, the median accuracy ratios decrease with lead
time, with the exception of the true positive ratio for the AdaBoost
classifier. The confidence intervals (triangles) suggest that all classifiers
generally outperform the random classifier, except for the true negative
ratios at a 20-year lead time, suggesting a lack of skill at the lower end of
the validation ensemble. The spread of the confidence intervals

TP/TN Ratios, Threshold = 0.76
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Fig. 5. The median (A) true positive and (B) true negative ratios compared to lead times for a threshold of 0.76 for all of the classification methods. The benchmark
showing the accuracy of a random classifier is shown in black on each subplot. Colored markers show the 10th and 90th percentiles for each of the methods based on

the leave-one-out ensemble testing.
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Fig. 6. Heatmap for the Random Forest classifier, showing (A) true positive and (B) true negative p-values corresponding to each lead time and each threshold value.
All p-values less than or equal to 0.05 are highlighted in yellow, which indicate the conditions for which the Random Forest classifier outperforms the random
classifier. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

increases with lead time, though this observation is most apparent for
the true negative ratios. The 90th percentiles of all distributions fall at or
near an accuracy of 1.0 across all lead times. Finally, the true positive
ratio of the random classifier (black) increases with longer lead times
due to the increase in possible positive outcomes further ahead in the
century. The practical implication of this is to raise the standard of
performance needed for the other algorithms to outperform the random
benchmark at longer lead times.

3.3. Statistical significance

To determine whether to reject the null hypothesis that the accuracy
of a machine learning classifier is equal to that of a random classifier, the
p-values for all combinations of lead times and thresholds must be
examined. By rejecting the null hypothesis, the alternative hypothesis
(the accuracy of the machine learning classifier is better than a random
classifier) will be accepted. The null hypothesis will be rejected for a
particular combination of lead time and threshold value with p < 0.05.

Fig. 6 shows a heatmap of p-values for true positives and true neg-
atives as a function of both lead time and threshold value for the
Random Forest classifier. Similar heat maps showing results for the
other classifiers can be found in Supplemental Figs. S2 through S7. The
p-values are determined by the percentile of the leave-one-out distri-
bution that falls below the accuracy of the random classifier, indicating
the likelihood of the classifier performing worse than random. For many

Table 3

combinations of threshold and lead time, the classifier performs signif-
icantly better than random (p < 0.05). Fig. 6 also suggests that threshold
values have a larger impact on accuracy than lead times, likely driven by
the ratio of possible positive to possible negative classifications. Only a
narrow range of threshold values (0.70-0.76) exists in which both the
true positive and true negative classifications are significantly better
than random for all lead times.

3.4. Feature importance

To reduce the number of features used to classify vulnerability, the
importance of each feature must be determined. The top five features for
each lead time are shown below (Table 3), ranked in the order of
importance. The most important feature for all lead times is the 30-year
moving average of Oroville reservoir storage, which appears as either
the first or second ranked feature for each of the lead times. The 30-year
average of Shasta Storage is the second most common feature in Table 3.
However, for a 20-year lead time, the most important feature is the
annual maximum air temperature at Folsom Dam, which likely reflects
the longer-term temperature trends associated with climate change. The
most common months in the important features are July, August, and
June, which are the drier months in California and have the potential to
carry important signals in a water system in which intra-annual water
storage is vital. These influential features are also highly correlated with
each other (see Supplemental Fig. S8).

The five most important features for each lead time. Each feature is labeled first by the month, M, it corresponds to (ANN for annual, MO1 for January, M02 for
February, etc.), then by the rolling window (10, 20, 30, 40, or 50-year windows) used to calculate the metric (AVG for average, SD for standard deviation), and finally

by the location and type of feature (e.g., Oroville Storage).

Rank 0-yr Lead 1-yr Lead 5-yr Lead 10-yr Lead 20-yr Lead

1 MO07 30-yr AVG MO07 30-yr AVG MO7 30-yr AVG MO07 20-yr AVG ANN 10-yr AVG
Oroville Storage Oroville Storage Oroville Storage Oroville Storage Folsom Tpax

2 MO06 30-yr AVG MO8 30-yr AVG MO07 20-yr AVG MO8 20-yr AVG MO8 20-yr AVG
Shasta Storage Oroville Storage Oroville Storage Oroville Storage Oroville Storage

3 MO8 30-yr AVG MO07 30-yr AVG MO7 30-yr AVG MO07 20-yr AVG ANN 10-yr AVG
Oroville Storage Shasta Storage Shasta Storage Shasta Storage Folsom T,y

4 MO7 30-yr AVG MO06 30-yr AVG MO8 30-yr AVG MO06 20-yr AVG MO07 20-yr AVG
Shasta Storage Shasta Storage Oroville Storage Shasta Storage Oroville Storage

5 M11 30-yr AVG ANN 30-yr AVG ANN 20-yr AVG MO09 20-yr AVG ANN 20-yr AVG

Total Shortage Total Shortage

Folsom Storage Folsom Storage Folsom Ty«
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Fig. 7. Comparing the change in median (A) true positive and (B) true negative ratios to the number of features used for the classification methods for a 5-year lead
time and a threshold of 0.76. The 10th and 90th percentiles are shown as triangles to better represent the distribution of the results, and a benchmark showing the

accuracy of a random classifier is in black.

The finding that summer reservoir storage dominates the ability to
detect early warning signals is not surprising, but also is not obvious.
The target prediction is not water supply vulnerability in a given year,
but rather a long-term trend in the 30-year average water supply reli-
ability. This result suggests that the role of reservoir storage in inte-
grating different aspects of the hydrologic cycle also make it a good
indicator for future change, provided that the system operations remain
the same as assumed in this study. This can also be interpreted in light of
the storage-to-inflow ratios of each reservoir, which are approximately
0.80, 0.93, and 0.43 for Shasta, Oroville, and Folsom reservoirs,
respectively.

Fig. 7 shows the effect of reducing the number of features used with
the machine learning methods given a threshold of 0.76 and a 5-year
lead time, where the number of features are prioritized according to
their relative importance using the random forest method (Table 3).
Across all methods, the true negative ratios are higher (above 0.95 from
5 to 10 features and above 0.9 for 500 features) than the true positive
ratios (ranging between 0.8 and 0.95 for all features). In general, most
ratios have a slight increase in performance from 5 to 10 features. Per-
formance does not show significant changes between 10 and 500 fea-
tures except for the Logistic Regression true negative ratio, which falls

from about 1.0 to 0.9. The 10th percentiles range from 0.57 to 0.76 for
the true positive ratios and range from 0.45 to 0.6 for the true negative
ratios, both outperforming the random classifier. Overall, these results
imply that the number of features can be reduced from 500 to 5 with
only small reductions, if any, in the true positive and true negative ra-
tios, due to the high correlation among features with overlapping rolling
windows. In general, feature importance can be linked to the signal-to-
noise ratio of each feature: variables that change more slowly, such as
the storage of large reservoirs or the annual temperature, likely provide
more reliable signals than observations with a more variable response to
climate forcing. The reduced complexity of this problem will improve
opportunities for practical application. Feature reduction figures for
lead times of 0, 1, 10, and 20 years can be found in the supplemental
material (Fig. S9).

3.5. Accuracy over time

The previous results consider the true positive and true negative
ratios for different parameters, aggregated over the entire century. Fig. 8
shows the true positive and true negative ratios as they change over the
century for classifiers trained on the full time period using a threshold of

TP/TN Ratios, Lead Time = 5 Years, Threshold = 0.76

Legend
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Fig. 8. The ratio of (A) true positives and (B) true negatives for each of the classification methods throughout the 21st century for a 5-year lead time and a threshold

of 0.76. A benchmark showing the accuracy of a random classifier is in black.
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0.76 and a 5-year lead time (see Supplemental Fig. S10 for 0, 1, 10, and
20 -year lead times). The random benchmark classifier for each year is
also shown. In general, the true positive ratios become more accurate
throughout the century, while the true negative ratios become less ac-
curate. Importantly, the classifier is not being retrained over time, only
applied to new data, which explains the decreasing true negative rate. A
higher true positive ratio later in the century means that it is easier to
correctly make a vulnerable (positive) classification later in the century,
when many of the features show stronger climate change signals. Most of
the methods perform better than the random classification benchmark,
except for some true positive ratios before 2040 and some true negative
ratios before 2020.

In summary, results suggest that the machine learning classifiers
outperform the random classifier benchmark for most lead times under
thresholds with a balanced ratio of training outcomes, for a reduced set
of features, and for most years throughout the century. The classifica-
tions generally do not show statistically significant differences in per-
formance (Figs. 4, 5 and 7), though this finding may not generalize to
other applications. Additionally, only a few influential features (mostly
reservoir storage variables and their transformations) are responsible for
the predictions. This may indicate that the reservoir storage values are
able to uniquely aggregate input information given that the other fea-
tures are either influencing, or influenced by, reservoir storage.

4. Discussion

These experiments have analyzed the predictive skill of machine
learning classifiers trained to detect future water supply vulnerabilities
under climate change. The analysis has therefore considered several of
the goals of a monitoring system (Haasnoot et al., 2018) by exploring
how the reliability and observability of early warning signals change at
different levels of timeliness and vulnerability. However, the remaining
goals of credibility and legitimacy have not been quantified here, and it
is recognized that the use of machine learning classifiers rather than
linear thresholds will hinder the interpretability of this approach for
stakeholders. The attempt to improve interpretability in this study de-
pends on feature importance (Table 2) to prune the set of input vari-
ables, which may support the parsimony of a monitoring system (Raso
et al,, 2019b). Additionally, the logic of the dominant features is
demonstrated within the context of the system: reservoir storage in-
tegrates hydrologic and demand dynamics over time, and therefore
provides the most reliable signal of vulnerability. Interpretability may
be further improved by monitoring a continuous variable from the
classifier (such as the class probability) rather than the binary predic-
tion, which might provide a more reliable signal of change similar to the
p-value detection method proposed by Haasnoot et al. (2018). In gen-
eral, explainability is a rapidly advancing area of machine learning
(Doshi-Velez and Kim, 2017; Xie et al., 2020) that will likely yield de-
velopments to support environmental systems analysis in the coming
years.

Classifier skill strongly depends on the extent to which the training
data reflects the range of possible future scenarios. This is true of any
machine learning problem, and arises in two key aspects of this study.
First, unbalanced training data cause difficulty in classifying positive
and negative outcomes. This may be amplified by relatively small
sample sizes in the training set, with significant implications for water
resources planning under climate extremes. The second challenge, more
specific to this problem, is that of deep uncertainty in the climate sce-
narios. It is entirely possible that the future hydrology will depart
significantly from the training data due to a combination of model un-
certainty, emissions scenarios, and natural variability. This study em-
ploys a leave-one-out training and validation strategy to partially
account for potential bias by testing whether the classifier can generalize
to (1) other realizations of a similar uncertainty characterization, and
(2) other GCM and RCP combinations with different uncertainty char-
acterizations. However, good out-of-sample performance is perhaps less
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reassuring here than in typical machine learning problems relying on
large datasets with well-characterized uncertainty. A more complex
validation approach could consider alternate ensembles generated with
different climate models, or expert judgment of bias in the training data.
As in any study of deeply uncertain futures, the findings are contingent
on the inherently subjective design of the training and validation
experiments.

This study is only partially linked to a specific decision context: it
aims to analyze the range of timescales and vulnerability thresholds over
which reliable prediction of water supply vulnerability might be
possible. A real-world decision context would also include the adapta-
tions to be selected when detection occurs (a subject of ongoing work),
as well as the necessary timescales for each. For example, water con-
servation and regulation may benefit from information on annual or sub-
annual lead times, while infrastructure may require a decade or more.
The findings are also specific to the range of uncertainty demonstrated in
the water supply projections for this system, which are quite large-
—nearly 50% change in mean annual flows by the end of the century,
arising from a combination of GCM and emissions uncertainty. Even so,
we do not achieve a complete representation of all sources of uncertainty
in the early warning system (Raso et al., 2019a), particularly the
endogenous uncertainties arising from changes to system operations or
water demand. Additionally, we do not attempt to evaluate how stake-
holders learn from monitoring information in their decision making
process (Hermans et al., 2013), or the extent to which stakeholders with
different problem framings (Hermans et al., 2017; Quinn et al., 2018)
may find the early warning signals convincing within their system of
organizational decision-making (Haasnoot et al., 2018). Much inter-
esting work remains at this intersection of statistical modeling and
policymaking for “wicked” problems that by definition do not lend
themselves to straightforward prediction (Rittel and Webber, 1973;
Kwakkel et al., 2016).

5. Conclusions

This paper contributes a methodology for detecting early warning
signals of water supply vulnerabilities under climate change using ma-
chine learning, demonstrated on a case study of the northern California
reservoir system. Among the many goals of a monitoring system (rele-
vance, credibility, and legitimacy) proposed by Haasnoot et al. (2018),
this study has primarily focused on relevance, represented by the pre-
dictive skill of detecting future change. Results indicate that the classi-
fication methods generally outperform a benchmark random classifier,
though the factor most strongly influencing this result is the balance of
the training data determined by the vulnerability threshold. In addition,
the overall classification accuracy decreases with larger lead times. To
improve the interpretability and parsimony of the resulting classifiers
(Raso et al., 2019b), the feature set can be reduced with minimal impact
on accuracy due to high correlation between features at short lead times.
The features most strongly influencing the predictions are long-term
averages of summer reservoir storage, which demonstrates predictive
power in the ability of storage to integrate different aspects of the hy-
drologic cycle.

With further work to analyze the credibility and legitimacy of this
approach in a real-world decision context with significant human and
institutional uncertainties (Hermans et al., 2013, 2017), this approach
could be implemented as a tool to support water resources planning
under climate uncertainty. An additional limitation is the assumption
that the system infrastructure and operations remain unchanged
throughout the century; the trained classifiers are expected to become
less accurate over time as a result of endogenous adaptation, a topic of
ongoing work. However, even when ensemble climate projections sug-
gest substantial uncertainty in future hydrology, this approach can help
to identify what signals should be monitored to inform adaptation.
While this study has developed vulnerability classification methods in
line with previous work on scenario discovery, future work will consider
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regression methods to identify the magnitude of failure as well. Addi-
tional research will focus on integrating these dynamic vulnerability
classifications with an adaptive infrastructure planning problem, where
early warning signals can be used directly to trigger decisions. This
analysis will provide insights into the benefits of predicting vulnera-
bilities along with the consequences of inaccurate classifications,
including the costs of unnecessary adaptations and the regrets of fore-
going beneficial ones.
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