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Detecting early warning signals of long-term water supply vulnerability 
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A B S T R A C T   

Adapting water resources systems to climate change requires identifying hydroclimatic signals that reliably indicate long-term transitions to vulnerable system states. 
While recent studies have classified the conditions under which vulnerability occurs (i.e., scenario discovery), there remains an opportunity to extend such methods 
into a dynamic planning context to design and assess early warning signals. This study contributes a machine learning approach to classifying the occurrence of long- 
term water supply vulnerability over lead times ranging from 0 to 20 years, using a case study of the northern California reservoir system. Results indicate that this 
approach predicts the occurrence of future vulnerabilities in validation significantly better than a random classifier, given a balanced set of training data. Accuracy 
decreases at longer lead times, and the most influential predictors include long-term monthly averages of reservoir storage. Dynamic early warning signals can be 
used to inform monitoring and detection of vulnerabilities under a changing climate.   

1. Introduction 

Climate change requires water supply planners to navigate signifi
cant uncertainty in future precipitation projections, which in many re
gions disagree on the magnitude and direction of change (Hallegatte, 
2009). Much of this uncertainty centers on extreme drought and flood 
events, which are expected to become more frequent and severe in the 
coming decades (Trenberth et al., 2014; Polade et al., 2017). In general, 
this uncertainty prevents the optimal planning of adaptations and re
quires innovative approaches such as bottom-up vulnerability assess
ment, a key feature of robust planning frameworks (Lempert and Collins, 
2007; Wilby and Dessai, 2010; Herman et al., 2015). Bottom-up methods 
focus on identifying the conditions under which vulnerability occurs, 
using either a wide range of plausible scenarios (e.g., Bryant and Lem
pert, 2010) or scenario narratives driven by local decision contexts 
(Rounsevell and Metzger, 2010; Carlsen et al., 2013). This classification 
problem, known as scenario discovery (Lempert et al., 2008), has 
benefitted from the application of a variety of statistical methods (Hadka 
et al., 2015; Kwakkel, 2015; Quinn et al., 2018). The main outcome of 
scenario discovery methods is a trained classifier capable of mapping 
uncertain scenario properties to a binary outcome—vulnerable or 
not—for each scenario aggregated over time. 

However, a related question remains less explored: under climate 
uncertainty, can system vulnerabilities be detected in advance? This is 
highly relevant to dynamic planning approaches, where adaptations are 
taken over time in response to observed and projected information 

(Haasnoot et al., 2013; Zeff et al., 2016; Hui et al., 2018; Fletcher et al., 
2019). It also relates to the challenge of anticipating tipping points in 
environmental systems (Scheffer et al., 2009, 2012). In the case that 
robust planning proves too costly (e.g., Borgomeo et al., 2018), dynamic 
planning may increase the effectiveness and appropriateness of adap
tations, both preventing over-investments in unnecessary infrastructure 
and lessening the severity of vulnerabilities if detection methods are 
sufficiently accurate. Dynamic planning approaches have in common 
the need to design a policy mapping information to actions, which could 
include either observations or predictions of vulnerable states (Herman 
et al., 2020). While the use of observations to trigger adaptations has 
been explored in detail by bottom-up methods such as scenario discov
ery and Dynamic Adaptive Policy Pathways (Haasnoot et al., 2013), 
there remains significant opportunity to study the second case by pre
dicting the occurrence of vulnerable states dynamically—in other 
words, by designing statistical early warning signals for adaptation. 

The process of designing early warning signals first requires the se
lection of informative feature (predictor) variables. Due to the dynamic 
aspect of the problem, this includes both the type of variable as well as 
the timescale, aggregation window, and statistical transformation: for 
example, the 30-year moving average of annual reservoir inflow (Raso 
et al., 2019a). Feature selection can affect both efficiency and accuracy, 
and choosing informative features can leverage both human expertise 
and statistical techniques (Dietterich, 2002). This concept is analogous 
to input variable selection in the water resources field (Guyon and Eli
sseeff, 2003; Galelli et al., 2014), which has been widely used to support 
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reservoir policy search (e.g., Giuliani et al., 2015). However, the longer 
timescales involved in the climate adaptation problem create additional 
challenges: it may be more difficult to separate signal from noise (Hegerl 
and Zwiers, 2011; Hawkins and Sutton, 2012), and the decisions that the 
features are meant to inform are often irreversible (Raso et al., 2019b). 

This challenge is closely related to the choice of signposts for adap
tation policies, which are evaluated based on their relevance, credibility, 
and legitimacy (Haasnoot et al., 2018). Relevance refers to the predic
tive skill of a monitoring system in observing long-term trends amid 
short-term variability. Analysis of predictive skill has focused on both 
Type I errors, representing over-investment, as well as Type II errors, 
representing under-investment (Rosner et al., 2014; Stephens et al., 
2018; Raso et al., 2019). The goals of credibility and legitimacy reflect 
the fact that monitoring systems must inform human decisions within a 
broader context of objectives, actions, and spatiotemporal scales among 
multiple actors and institutions (Hermans et al., 2013, 2017). The 
interpretability of early warning signals is therefore critical, and may be 
supported by the parsimony of signpost variables, as well as the 
completeness of the sources of uncertainty considered (Raso et al., 
2019a). In total, these goals for a monitoring system may reflect a 
tradeoff between predictive skill and interpretability that is widely 
recognized in statistical modeling. For example, while several studies 
have considered adaptations triggered by linear threshold values (Hal
legatte et al., 2012; Walker et al., 2013; Robinson and Herman, 2019), 
such signals could also be represented by more complex functions, 
potentially incorporating multiple variables on different timescales 
(Herman and Giuliani, 2018; Nayak et al., 2018). This study considers 
the potential for nonlinear multivariate classifiers to address this prob
lem, recognizing that improvements in predictive skill will likely be met 
with a decrease in interpretability. 

To address this challenge, this study frames the design and testing of 
early warning signals under climate change as a machine learning 
classification problem, using observations of human and hydrologic 
variables to predict the binary occurrence of future water supply 
vulnerability in a systems model. The goal is to detect vulnerability 
without knowledge of future forcing, which would be required in a 
forward simulation of the system. Specifically, this paper addresses the 
following research questions to investigate the utility of the proposed 
method:  

1. Can machine learning classification techniques predict long-term 
vulnerability of a water resources system in advance, and are these 
predictions significantly better than random?  

2. How is the accuracy of the prediction affected by the lead time and 
vulnerability threshold?  

3. Can the interpretability of the classifiers be assessed and improved 
using feature importance, i.e., can the feature set be simplified while 
retaining accuracy to support real-world applications? 

The proposed methodology is intended as a tool to support adaptive 
planning under a changing climate, specifically by using these early 
warning signals to inform monitoring and detection of vulnerabilities. 

2. Methods 

A flowchart of models and datasets used in this experiment is shown 
in Fig. 1. The experiment is demonstrated using a case study of the 
northern California reservoir system, a large network of storage and 
conveyance infrastructure designed primarily to move winter precipi
tation from north to south to support summer irrigation. The largest 
consumptive use is represented by the 7.9 million acres of irrigated 
farmland (generating $100 billion annually in agricultural production), 
followed by urban use by California’s 39.7 million residents (Johnson 
and Cody, 2015). This system complexity yields many options for 
adaptation, but is complicated by the fact that it is managed by hundreds 
of distinct agencies, utilities, and districts, making coordination difficult 

(Hanak and Lund, 2012). While the effects of climate change on average 
precipitation in California remain uncertain, projections agree on in
creases in the frequency of both wet and dry extremes, as well as the 
increased likelihood of these extremes occurring sequentially (Swain 
et al., 2018), placing more stress on the long-term planning and oper
ation of water supply storage. 

2.1. Data sources 

Precipitation and temperature data are taken from an ensemble of 
downscaled CMIP5 projections publicly available from the U.S. Bureau 
of Reclamation (Brekke et al., 2014). This daily timestep dataset con
tains hydrologic projections (streamflow and snowpack) for multiple 
point and gridded locations created by routing precipitation and tem
perature through the Variable Infiltration Capacity (VIC) hydrologic 
model (Liang et al., 1994). Ensemble projections are available for 31 
global climate models (GCMs) and four RCPs as shown in Supplemental 
Table S1. Fig. 2 shows the locations of streamflow (11), snowpack (4), 
and precipitation and temperature (3) gages used. 

2.2. Simulation model 

The Operation of Reservoirs in California (ORCA) model (Cohen 
et al., Accepted) is used to simulate the operation of the northern Cali
fornia reservoirs under all 97 CMIP5 climate scenarios on a daily time
step over the period 2000–2100. Given the input data shown in Fig. 2, 
the model simulates the operations of Shasta, Oroville, and Folsom 
reservoirs, which are located respectively on the Sacramento, Feather, 
and American Rivers. In addition to reservoir management, the model 
also simulates the operations of South-of-Delta exports (via pumping) 
from the Sacramento-San Joaquin Delta to meet urban and agricultural 
demands via the Central Valley Project (CVP) and State Water Project 
(SWP), while also meeting environmental flow and salinity re
quirements for the Delta. For the purposes of this study, the supply 
reliability of Delta exports is the key model output that determines 
system vulnerability. The model has been found to adequately repro
duce historical operations of the system on a daily timestep, with 
Nash-Sutcliffe Efficiency above 0.9 for reservoir storage. Model code and 
documentation can be found at https://github.com/jscohen4/orca. 
More details about the origin, use, and locations of each type of data 
described above can be found in Supplemental Table S2. 

2.3. Feature and target data 

The classification problem is to predict system vulnerability at a 
certain lead time, given a set of feature variables. Vulnerability is 
determined based on the 30-year moving average of the supply 

Fig. 1. Methods flowchart. In the first step, a reservoir simulation model is used 
to develop the feature and target data for all years throughout the century in all 
climate scenarios. In the second step, these samples are used to train and test 
machine learning classifiers for early warning of system vulnerability. 
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reliability of water exports from the Delta, a metric that reflects a focus 
on identifying long-term trends rather than a single drought period. This 
metric is based on meeting the target demand for a certain fraction of 
monthly timesteps. Vulnerability occurs when the 30-year average 
supply reliability falls below a chosen threshold, resulting in a single 
binary target metric for classification. While this approach does not 
distinguish between different magnitudes of vulnerability, we adopt this 

binary classification following the standard for scenario discovery 
methods in the water resources field. This study tests a range of possible 
threshold values to understand the impact on classifier performance, 
recognizing that vulnerability definitions in practice are determined by 
decision makers. The threshold value plays a key role in determining the 
balance of positive and negative classifications in the training set. 

The feature variables used to classify future vulnerabilities each year 
include time series of the hydrologic variables shown in Fig. 2, as well as 
several internal states of the simulation model. These variables are 
aggregated to annual and monthly values using either the mean, 
maximum, or sum. They are then translated into moving averages and 
standard deviations using timescales of 10, 20, 30, 40, and 50-year 
rolling windows. This differentiation by timescale and statistic is con
ducted to improve the ability of the machine learning methods to detect 
important trends in the data (Ahmed et al., 2010). Given that many of 
the moving windows share overlapping data, several of the features are 
expected to be correlated. A summary of feature variables is shown in 
Table 1. 

2.4. Machine learning methods 

Several classification methods are selected (Table 2) to learn from 
the annual and monthly data to classify water supply reliability as 
vulnerable (below a chosen threshold) or not vulnerable (above a chosen 
threshold) at lead times of 0, 1, 5, 10, and 20 years. These methods were 
chosen from the many classification methods available in the open 
source scikit-learn library (Pedregosa et al., 2011; Scikit-Learn, 2019) 
based on their widespread use and demonstrated effectiveness for 
nonlinear problems. By examining the performance of each classifier 
against the others and a random classifier, which serves as a baseline, 
application-specific insights can be drawn about the similarity of their 
performance and the likelihood of misclassifications. The random clas
sifier guesses proportional to the ratio of possible outcomes with an 
accuracy equal to the square of the ratio of possible outcomes. 

All methods in Table 2 are implemented using default parameter 
settings from the scikit-learn library. It is recognized that these parameter 
choices can significantly impact the performance, and that a meta-level 
analysis would be needed to determine the optimal parameter settings. 

Each of the classification methods follows the same prediction 
structure: 

Fig. 2. Locations in northern California of the CMIP5 hydroclimatic projections 
used in this study, which include precipitation, temperature, streamflow, and 
snowpack (Brekke et al., 2014). Snowpack and precipitation values are spatially 
averaged over their respective basins (outlined in white), while streamflow and 
temperature data are taken at point locations. Water exports from the 
Sacramento-San Joaquin Delta (black arrow) are delivered throughout the 
southern half of the state for urban and agricultural uses. The supply reliability 
of these water deliveries are the focus of potential future vulnerability 
considered in this study. 

Table 1 
Summary of feature variables, including how they were aggregated, their timescales, their transformations, and the lead times applied to them. A total of 500 features 
are considered. Each feature variable encompasses 9603 observations (99 years of data x 97 scenarios).  

Variables Summary Aggregations Timescales Transformations 

Temperature (min, mean, max), Storages, X2 Salinity Mean Monthly and 
Annually 

10, 20, 30, 40, 50 (-year 
windows) 

Rolling mean, Rolling standard 
deviation 

Streamflow, Precipitation, Demand, Pumping, Outflows, Inflows, 
Shortages 

Sum Monthly and 
Annually 

10, 20, 30, 40, 50 (-year 
windows) 

Rolling mean, Rolling standard 
deviation 

Snowpack Max Monthly and 
Annually 

10, 20, 30, 40, 50 (-year 
windows) 

Rolling mean, Rolling standard 
deviation  

Table 2 
Summary of classification methods tested in this study.  

Method How classification is determined 

K-Nearest Neighbors Majority vote of the K nearest points in the training set 
Logistic Regression Fit a logistic function to binary data; round prediction to 0 or 1 
SVM (3rd Degree) Fit a decision boundary using cubic polynomial kernels for each point 
Random Forest (Breiman, 2001) Train ensemble of decision trees, use majority vote as the prediction 
Multi-layer perceptron Fit an arbitrary nonlinear decision boundary with a multi-layer neural network 
AdaBoost (Freund and Schapire, 

1996) 
Ensemble of classifiers that trains new copies iteratively by increasing the weights of incorrectly classified points. Default estimator is decision 
tree. 

Naïve Bayes Maximum likelihood classification using Bayes’ theorem assuming normality and independent features given the output class. 
Random Guesses proportional to the ratio of possible outcomes  
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FðXtÞ¼ f Vulnerable; Ptþlead < threshold
Not Vulnerable; Ptþlead > threshold  

where F is the fitted function embedded in each of the classification 
methods, using the features Xtto evaluate the function and make pre
dictions. If the prediction, P, at the specified lead time is less than the 
threshold, the instance is classified as vulnerable; otherwise, the 
instance is classified as not vulnerable. The classification methods in 
Table 2 differ primarily in the family of functions used to represent F. 
More recently developed algorithms are denoted with citations in 
Table 2, while the other fundamental methods can be referenced in 
Hastie et al. (2009). Importantly, this classification approach is not 
meant to emulate the reservoir system model itself. It is predicting based 
on a combination of hydrologic and system observations whether it is 
likely to be on a trajectory toward a long-term vulnerable state. 

2.5. Experimental design 

Next, each method is fit to the training data (lagged predictors and 
binary targets) and re-evaluated against held-out validation data, using 
a repeated leave-one-out approach. From the ensemble of CMIP5 sce
narios, one scenario is held out for testing while the classifier is trained 
on the remaining 96 scenarios. The process is then repeated for all 
scenarios. This design provides several benefits: the evaluation scenario 
is hidden from the classifier during training; the temporal structure of 
the data is preserved, which prevents biased training or testing with 
either too many values from the beginning or the end of the century; and 
it represents the realistic case in which the future hydrologic forcing is 
unknown (e.g. to evaluate in a systems model) but where recent ob
servations can be used to make a statistical prediction. In the next sec
tion, all results will be reported in the validation stage, using the 
ensemble of leave-one-out experiments to estimate confidence intervals 
for the prediction accuracy. 

In summary, this experiment tests seven classification methods, five 
lead times ranging from 0 to 20 years, vulnerability thresholds ranging 
from 0.60 to 0.86 (the full range in which both positive and negative 
classifications are possible), and three numbers of features (5, 10, and 
500) as described in the following paragraph. In each of these cases the 
machine learning method classifies each prediction as either a true 
positive (TPiðtÞ), false positive (FPiðtÞ), false negative (FNiðtÞ), or true 
negative (TNiðtÞ). The primary metrics used to analyze classifier accu
racy are the true positive and negative ratios, which are the fraction of 
possible positive/negative outcomes that are correctly predicted. The 
number of possible outcomes in each class is determined by counting the 
occurrences in the test set. The results from each of the combinations are 

evaluated against the baseline to test the null hypothesis that the ac
curacy of the machine learning classifiers is no better than random. If the 
null hypothesis is rejected (p < 0.05), then the accuracy of the machine 
learning classifiers is significantly better than random. We consider this 
the absolute minimum standard to evaluate the practical utility of the 
approach. 

Finally, the original set of feature variables is too large for some of 
the classifiers to converge. The set is reduced using feature importance 
scores, determined based on the frequency of occurrence of each feature 
in a Random Forest of 10,000 trees (a default method from the scikit- 
learn library), with more occurrences corresponding to a higher impor
tance. The 500 features with the highest importance scores are used in 
the training step. Before training, all feature and target data are scaled to 
unit variance. Additional cases are considered in which the feature set is 
reduced to 5 and 10 features, again based on the importance scores from 
the Random Forest method. 

Fig. 3 shows conceptually how a classifier attempts to predict at 
every time step whether the long-term water supply reliability of the 
system will be vulnerable (below the threshold) or not vulnerable 
(above the threshold) at a given lead time, which in this example is 10 
years. Time t þ L is the year the scenario becomes vulnerable, and only 
the five most informative features are shown. The gray dotted lines show 
information that is not available to the classification methods when they 
are making a prediction at time t years. The long-term vulnerability is 
always based on the 30-year trailing average water supply reliability, 
regardless of the lead time at which the prediction is made. 

3. Results 

3.1. Classifier accuracy as a function of threshold value 

The ability to detect early warning signals of water supply vulnera
bility depends in part on how frequently these events occur in the 
training data, which is controlled by the threshold value, as well as the 
strength of the climate change signal relative to noise in each of the 
scenarios. Fig. 4 compares true positive and true negative ratios for 
vulnerability thresholds between 0.6 and 0.86 for a fixed lead time of 
five years. Each classification method contains the median, 10th, and 
90th percentiles across the ensemble of leave-one-out experiments. The 
performance of a random classifier is included as a benchmark (black 
line), which always guesses proportional to the ratio of possible out
comes with an accuracy of the ratio squared. While all methods perform 
similarly, the Naïve Bayes Classifier shows a slight advantage, with only 
one median value below 0.8 for both true positives and true negatives. 

Depending on the ratio of possible positives and negatives (dotted 

Fig. 3. Conceptual overview of the classification problem carried out each year. Time t þ L is the year the scenario becomes vulnerable, and the classification 
methods are attempting to predict that occurrence at a lead time of L ¼ 10 years using the available feature information. 
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line), imbalance in the training data may lead to low rates of true clas
sifications, with the best performance near the center of the range of 
possible thresholds (0.4–0.6). This is reflected with the benchmark 
random classifier, showing that at unbalanced ratios (thresholds below 
0.66 or greater than 0.84), some methods fail to perform better than 
random. Understanding the effects of the training set imbalance can 
inform whether true positive or true negative classifications are more 
likely to be accurate, a well-known challenge for machine learning 
methods. In water resources applications, the choice of the vulnerability 
threshold is left to the decision maker and cannot be selected arbitrarily 
to ensure an accurate classifier. However, a decision maker may choose 
a different classifier threshold to balance the tradeoff between false 
positives and false negatives to increase the effectiveness of the early 
warning signal in a real-world institutional context. This analysis un
derscores that if vulnerabilities are rare among the set of climate pro
jections tested, then by definition it will be difficult to train a machine 
learning model to predict them, and that the estimates of prediction 
accuracy should be accompanied by confidence intervals to improve 
their interpretability for stakeholders. 

In addition, while the median true positive and true negative ratios 

suggest substantial improvement over the random classifier benchmark, 
the 10th percentiles indicate the lower range of performance across the 
validation ensemble, and in particular sometimes fail to outperform the 
random classifier. The 90th percentile markers generally show an ac
curacy of 1.0 excepting some classifiers for thresholds below 0.70 (for 
true positive ratios) and above 0.84 (for true negative ratios). We return 
to the question of statistical significance in Section 3.3. Fig. 4 only shows 
the true positive and true negative ratios for a single lead time (5 years). 
Similar figures for other lead times can be found in Supplemental 
Fig. S1. 

3.2. Classifier accuracy as a function of lead time 

Accuracy was also evaluated across lead times for a fixed threshold of 
0.76 (Fig. 5). In general, the median accuracy ratios decrease with lead 
time, with the exception of the true positive ratio for the AdaBoost 
classifier. The confidence intervals (triangles) suggest that all classifiers 
generally outperform the random classifier, except for the true negative 
ratios at a 20-year lead time, suggesting a lack of skill at the lower end of 
the validation ensemble. The spread of the confidence intervals 

Fig. 4. (A) True positive and (B) true negative ratios for different vulnerability thresholds (0.6–0.86) for the classification methods for a 5-year lead time. The median 
of the validation ensemble is shown as a solid line, while the 10th and 90th percentiles are shown in colored triangles corresponding to each method. The random 
classifier benchmark is shown in black, and the ratios of possible positive and possible negative classifications are shown as dotted lines on each subplot. 

Fig. 5. The median (A) true positive and (B) true negative ratios compared to lead times for a threshold of 0.76 for all of the classification methods. The benchmark 
showing the accuracy of a random classifier is shown in black on each subplot. Colored markers show the 10th and 90th percentiles for each of the methods based on 
the leave-one-out ensemble testing. 

B. Robinson et al.                                                                                                                                                                                                                               



Environmental Modelling and Software 131 (2020) 104781

6

increases with lead time, though this observation is most apparent for 
the true negative ratios. The 90th percentiles of all distributions fall at or 
near an accuracy of 1.0 across all lead times. Finally, the true positive 
ratio of the random classifier (black) increases with longer lead times 
due to the increase in possible positive outcomes further ahead in the 
century. The practical implication of this is to raise the standard of 
performance needed for the other algorithms to outperform the random 
benchmark at longer lead times. 

3.3. Statistical significance 

To determine whether to reject the null hypothesis that the accuracy 
of a machine learning classifier is equal to that of a random classifier, the 
p-values for all combinations of lead times and thresholds must be 
examined. By rejecting the null hypothesis, the alternative hypothesis 
(the accuracy of the machine learning classifier is better than a random 
classifier) will be accepted. The null hypothesis will be rejected for a 
particular combination of lead time and threshold value with p � 0.05. 

Fig. 6 shows a heatmap of p-values for true positives and true neg
atives as a function of both lead time and threshold value for the 
Random Forest classifier. Similar heat maps showing results for the 
other classifiers can be found in Supplemental Figs. S2 through S7. The 
p-values are determined by the percentile of the leave-one-out distri
bution that falls below the accuracy of the random classifier, indicating 
the likelihood of the classifier performing worse than random. For many 

combinations of threshold and lead time, the classifier performs signif
icantly better than random (p � 0.05). Fig. 6 also suggests that threshold 
values have a larger impact on accuracy than lead times, likely driven by 
the ratio of possible positive to possible negative classifications. Only a 
narrow range of threshold values (0.70–0.76) exists in which both the 
true positive and true negative classifications are significantly better 
than random for all lead times. 

3.4. Feature importance 

To reduce the number of features used to classify vulnerability, the 
importance of each feature must be determined. The top five features for 
each lead time are shown below (Table 3), ranked in the order of 
importance. The most important feature for all lead times is the 30-year 
moving average of Oroville reservoir storage, which appears as either 
the first or second ranked feature for each of the lead times. The 30-year 
average of Shasta Storage is the second most common feature in Table 3. 
However, for a 20-year lead time, the most important feature is the 
annual maximum air temperature at Folsom Dam, which likely reflects 
the longer-term temperature trends associated with climate change. The 
most common months in the important features are July, August, and 
June, which are the drier months in California and have the potential to 
carry important signals in a water system in which intra-annual water 
storage is vital. These influential features are also highly correlated with 
each other (see Supplemental Fig. S8). 

Fig. 6. Heatmap for the Random Forest classifier, showing (A) true positive and (B) true negative p-values corresponding to each lead time and each threshold value. 
All p-values less than or equal to 0.05 are highlighted in yellow, which indicate the conditions for which the Random Forest classifier outperforms the random 
classifier. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 3 
The five most important features for each lead time. Each feature is labeled first by the month, M, it corresponds to (ANN for annual, M01 for January, M02 for 
February, etc.), then by the rolling window (10, 20, 30, 40, or 50-year windows) used to calculate the metric (AVG for average, SD for standard deviation), and finally 
by the location and type of feature (e.g., Oroville Storage).  

Rank 0-yr Lead 1-yr Lead 5-yr Lead 10-yr Lead 20-yr Lead 

1 M07 30-yr AVG 
Oroville Storage 

M07 30-yr AVG 
Oroville Storage 

M07 30-yr AVG 
Oroville Storage 

M07 20-yr AVG 
Oroville Storage 

ANN 10-yr AVG 
Folsom Tmax 

2 M06 30-yr AVG 
Shasta Storage 

M08 30-yr AVG 
Oroville Storage 

M07 20-yr AVG 
Oroville Storage 

M08 20-yr AVG 
Oroville Storage 

M08 20-yr AVG 
Oroville Storage 

3 M08 30-yr AVG 
Oroville Storage 

M07 30-yr AVG 
Shasta Storage 

M07 30-yr AVG 
Shasta Storage 

M07 20-yr AVG 
Shasta Storage 

ANN 10-yr AVG 
Folsom Tavg 

4 M07 30-yr AVG 
Shasta Storage 

M06 30-yr AVG 
Shasta Storage 

M08 30-yr AVG 
Oroville Storage 

M06 20-yr AVG 
Shasta Storage 

M07 20-yr AVG 
Oroville Storage 

5 M11 30-yr AVG 
Total Shortage 

ANN 30-yr AVG 
Total Shortage 

ANN 20-yr AVG 
Folsom Storage 

M09 20-yr AVG 
Folsom Storage 

ANN 20-yr AVG 
Folsom Tmax  
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The finding that summer reservoir storage dominates the ability to 
detect early warning signals is not surprising, but also is not obvious. 
The target prediction is not water supply vulnerability in a given year, 
but rather a long-term trend in the 30-year average water supply reli
ability. This result suggests that the role of reservoir storage in inte
grating different aspects of the hydrologic cycle also make it a good 
indicator for future change, provided that the system operations remain 
the same as assumed in this study. This can also be interpreted in light of 
the storage-to-inflow ratios of each reservoir, which are approximately 
0.80, 0.93, and 0.43 for Shasta, Oroville, and Folsom reservoirs, 
respectively. 

Fig. 7 shows the effect of reducing the number of features used with 
the machine learning methods given a threshold of 0.76 and a 5-year 
lead time, where the number of features are prioritized according to 
their relative importance using the random forest method (Table 3). 
Across all methods, the true negative ratios are higher (above 0.95 from 
5 to 10 features and above 0.9 for 500 features) than the true positive 
ratios (ranging between 0.8 and 0.95 for all features). In general, most 
ratios have a slight increase in performance from 5 to 10 features. Per
formance does not show significant changes between 10 and 500 fea
tures except for the Logistic Regression true negative ratio, which falls 

from about 1.0 to 0.9. The 10th percentiles range from 0.57 to 0.76 for 
the true positive ratios and range from 0.45 to 0.6 for the true negative 
ratios, both outperforming the random classifier. Overall, these results 
imply that the number of features can be reduced from 500 to 5 with 
only small reductions, if any, in the true positive and true negative ra
tios, due to the high correlation among features with overlapping rolling 
windows. In general, feature importance can be linked to the signal-to- 
noise ratio of each feature: variables that change more slowly, such as 
the storage of large reservoirs or the annual temperature, likely provide 
more reliable signals than observations with a more variable response to 
climate forcing. The reduced complexity of this problem will improve 
opportunities for practical application. Feature reduction figures for 
lead times of 0, 1, 10, and 20 years can be found in the supplemental 
material (Fig. S9). 

3.5. Accuracy over time 

The previous results consider the true positive and true negative 
ratios for different parameters, aggregated over the entire century. Fig. 8 
shows the true positive and true negative ratios as they change over the 
century for classifiers trained on the full time period using a threshold of 

Fig. 7. Comparing the change in median (A) true positive and (B) true negative ratios to the number of features used for the classification methods for a 5-year lead 
time and a threshold of 0.76. The 10th and 90th percentiles are shown as triangles to better represent the distribution of the results, and a benchmark showing the 
accuracy of a random classifier is in black. 

Fig. 8. The ratio of (A) true positives and (B) true negatives for each of the classification methods throughout the 21st century for a 5-year lead time and a threshold 
of 0.76. A benchmark showing the accuracy of a random classifier is in black. 
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0.76 and a 5-year lead time (see Supplemental Fig. S10 for 0, 1, 10, and 
20 -year lead times). The random benchmark classifier for each year is 
also shown. In general, the true positive ratios become more accurate 
throughout the century, while the true negative ratios become less ac
curate. Importantly, the classifier is not being retrained over time, only 
applied to new data, which explains the decreasing true negative rate. A 
higher true positive ratio later in the century means that it is easier to 
correctly make a vulnerable (positive) classification later in the century, 
when many of the features show stronger climate change signals. Most of 
the methods perform better than the random classification benchmark, 
except for some true positive ratios before 2040 and some true negative 
ratios before 2020. 

In summary, results suggest that the machine learning classifiers 
outperform the random classifier benchmark for most lead times under 
thresholds with a balanced ratio of training outcomes, for a reduced set 
of features, and for most years throughout the century. The classifica
tions generally do not show statistically significant differences in per
formance (Figs. 4, 5 and 7), though this finding may not generalize to 
other applications. Additionally, only a few influential features (mostly 
reservoir storage variables and their transformations) are responsible for 
the predictions. This may indicate that the reservoir storage values are 
able to uniquely aggregate input information given that the other fea
tures are either influencing, or influenced by, reservoir storage. 

4. Discussion 

These experiments have analyzed the predictive skill of machine 
learning classifiers trained to detect future water supply vulnerabilities 
under climate change. The analysis has therefore considered several of 
the goals of a monitoring system (Haasnoot et al., 2018) by exploring 
how the reliability and observability of early warning signals change at 
different levels of timeliness and vulnerability. However, the remaining 
goals of credibility and legitimacy have not been quantified here, and it 
is recognized that the use of machine learning classifiers rather than 
linear thresholds will hinder the interpretability of this approach for 
stakeholders. The attempt to improve interpretability in this study de
pends on feature importance (Table 2) to prune the set of input vari
ables, which may support the parsimony of a monitoring system (Raso 
et al., 2019b). Additionally, the logic of the dominant features is 
demonstrated within the context of the system: reservoir storage in
tegrates hydrologic and demand dynamics over time, and therefore 
provides the most reliable signal of vulnerability. Interpretability may 
be further improved by monitoring a continuous variable from the 
classifier (such as the class probability) rather than the binary predic
tion, which might provide a more reliable signal of change similar to the 
p-value detection method proposed by Haasnoot et al. (2018). In gen
eral, explainability is a rapidly advancing area of machine learning 
(Doshi-Velez and Kim, 2017; Xie et al., 2020) that will likely yield de
velopments to support environmental systems analysis in the coming 
years. 

Classifier skill strongly depends on the extent to which the training 
data reflects the range of possible future scenarios. This is true of any 
machine learning problem, and arises in two key aspects of this study. 
First, unbalanced training data cause difficulty in classifying positive 
and negative outcomes. This may be amplified by relatively small 
sample sizes in the training set, with significant implications for water 
resources planning under climate extremes. The second challenge, more 
specific to this problem, is that of deep uncertainty in the climate sce
narios. It is entirely possible that the future hydrology will depart 
significantly from the training data due to a combination of model un
certainty, emissions scenarios, and natural variability. This study em
ploys a leave-one-out training and validation strategy to partially 
account for potential bias by testing whether the classifier can generalize 
to (1) other realizations of a similar uncertainty characterization, and 
(2) other GCM and RCP combinations with different uncertainty char
acterizations. However, good out-of-sample performance is perhaps less 

reassuring here than in typical machine learning problems relying on 
large datasets with well-characterized uncertainty. A more complex 
validation approach could consider alternate ensembles generated with 
different climate models, or expert judgment of bias in the training data. 
As in any study of deeply uncertain futures, the findings are contingent 
on the inherently subjective design of the training and validation 
experiments. 

This study is only partially linked to a specific decision context: it 
aims to analyze the range of timescales and vulnerability thresholds over 
which reliable prediction of water supply vulnerability might be 
possible. A real-world decision context would also include the adapta
tions to be selected when detection occurs (a subject of ongoing work), 
as well as the necessary timescales for each. For example, water con
servation and regulation may benefit from information on annual or sub- 
annual lead times, while infrastructure may require a decade or more. 
The findings are also specific to the range of uncertainty demonstrated in 
the water supply projections for this system, which are quite large
—nearly 50% change in mean annual flows by the end of the century, 
arising from a combination of GCM and emissions uncertainty. Even so, 
we do not achieve a complete representation of all sources of uncertainty 
in the early warning system (Raso et al., 2019a), particularly the 
endogenous uncertainties arising from changes to system operations or 
water demand. Additionally, we do not attempt to evaluate how stake
holders learn from monitoring information in their decision making 
process (Hermans et al., 2013), or the extent to which stakeholders with 
different problem framings (Hermans et al., 2017; Quinn et al., 2018) 
may find the early warning signals convincing within their system of 
organizational decision-making (Haasnoot et al., 2018). Much inter
esting work remains at this intersection of statistical modeling and 
policymaking for “wicked” problems that by definition do not lend 
themselves to straightforward prediction (Rittel and Webber, 1973; 
Kwakkel et al., 2016). 

5. Conclusions 

This paper contributes a methodology for detecting early warning 
signals of water supply vulnerabilities under climate change using ma
chine learning, demonstrated on a case study of the northern California 
reservoir system. Among the many goals of a monitoring system (rele
vance, credibility, and legitimacy) proposed by Haasnoot et al. (2018), 
this study has primarily focused on relevance, represented by the pre
dictive skill of detecting future change. Results indicate that the classi
fication methods generally outperform a benchmark random classifier, 
though the factor most strongly influencing this result is the balance of 
the training data determined by the vulnerability threshold. In addition, 
the overall classification accuracy decreases with larger lead times. To 
improve the interpretability and parsimony of the resulting classifiers 
(Raso et al., 2019b), the feature set can be reduced with minimal impact 
on accuracy due to high correlation between features at short lead times. 
The features most strongly influencing the predictions are long-term 
averages of summer reservoir storage, which demonstrates predictive 
power in the ability of storage to integrate different aspects of the hy
drologic cycle. 

With further work to analyze the credibility and legitimacy of this 
approach in a real-world decision context with significant human and 
institutional uncertainties (Hermans et al., 2013, 2017), this approach 
could be implemented as a tool to support water resources planning 
under climate uncertainty. An additional limitation is the assumption 
that the system infrastructure and operations remain unchanged 
throughout the century; the trained classifiers are expected to become 
less accurate over time as a result of endogenous adaptation, a topic of 
ongoing work. However, even when ensemble climate projections sug
gest substantial uncertainty in future hydrology, this approach can help 
to identify what signals should be monitored to inform adaptation. 
While this study has developed vulnerability classification methods in 
line with previous work on scenario discovery, future work will consider 
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regression methods to identify the magnitude of failure as well. Addi
tional research will focus on integrating these dynamic vulnerability 
classifications with an adaptive infrastructure planning problem, where 
early warning signals can be used directly to trigger decisions. This 
analysis will provide insights into the benefits of predicting vulnera
bilities along with the consequences of inaccurate classifications, 
including the costs of unnecessary adaptations and the regrets of fore
going beneficial ones. 
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