SEP-Graph: Finding Shortest Execution Paths for
Graph Processing under a Hybrid Framework on GPU

Hao Wang, Liang GengS, Rubao Lee*, Kaixi Hou¥, Yanfeng Zhang?, Xiaodong Zhang™*
fDepartment of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA,
wang.2721@osu.edu, geng.161@osu.edu, zhang@cse.ohio-state.edu
§Department of Computer Science and Engineering, Northeastern University, China, zhangyf@cc.neu.edu.cn
+United Parallel Computing Corporation, DE, USA, lirb@unipacc.com
9YDepartment of Computer Science, Virginia Tech, Blacksburg, VA, USA, kaixihou@vt.edu

Abstract

In general, the performance of parallel graph processing is
determined by three pairs of critical parameters, namely syn-
chronous or asynchronous execution mode (Sync or Async),
Push or Pull communication mechanism (Push or Pull), and
Data-driven or Topology-driven traversing scheme (DD or
TD), which increases the complexity and sophistication of
programming and system implementation of GPU. Existing
graph-processing frameworks mainly use a single combina-
tion in the entire execution for a given application, but we
have observed their variable and suboptimal performance.

In this paper, we present SEP-Graph, a highly efficient
software framework for graph-processing on GPU. The hy-
brid execution mode is automatically switched among three
pairs of parameters, with an objective to achieve the short-
est execution time in each iteration. We also apply a set of
optimizations to SEP-Graph, considering the characteristics
of graph algorithms and underlying GPU architectures. We
show the effectiveness of SEP-Graph based on our inten-
sive and comparative performance evaluation on NVIDIA
1080, P100, and V100 GPUs. Compared with existing and rep-
resentative GPU graph-processing framework Groute and
Gunrock, SEP-Graph can reduce execution time up to 45.8
times and 39.4 times.

CCS Concepts + Computing methodologies — Paral-
lel programming languages; « Software and its engi-
neering — Parallel programming languages; Massively par-
allel systems.

“Hao Wang and Liang Geng contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6225-2/19/02...$15.00
https://doi.org/10.1145/3293883.3295733

38

Keywords Graph Algorithms, GPU, Hybrid

1 Introduction

Graph analysis along with many data mining and machine
learning algorithms are playing important roles in differ-
ent disciplines of science, from social networks to Inter-
net of Things, from biology to bioinformatics, etc. The re-
search and development in this area have driven the de-
sign and implementation of parallel graph-processing frame-
works on multicore CPUs and distributed environments, e.g.,
Pregel [31], GraphLab [30], PowerGraph [16], PowerLyra
[9], GraphX [17], Ligra [42], Galois [36], Gemini [54], etc. On
the other hand, due to the massive parallelism, high memory
bandwidth, and energy-efficiency of GPU over CPU, GPUs
have also become important platforms for graph-processing
frameworks, e.g., Medusa [53], CuSha [25], Gunrock [46],
Groute [3], Frog [41], Gluon [10], etc.

Many aforementioned software frameworks adopt the
"think like a vertex" philosophy [31] to implement the vertex-
centric programming model. In this way, programmers im-
plement the computation on vertices, while the frameworks
implement communication between vertices along edge and
process vertices in parallel at runtime. In general, a parallel
graph-processing framework must consider three basic com-
ponents for the purpose of high performance and scalability.
First, the execution of a graph algorithm can be either in a
synchronous mode or in an asynchronous mode, a.k.a. Sync
and Async. In the sync mode, the whole execution of a pro-
gram is divided into multiple iterations. An explicit barrier
between two successive iterations is required to synchronize
the execution. A vertex can see the updates from others only
after the end of previous iteration. In contrast, the async
mode doesn’t need any explicit barrier. A vertex is allowed
to see the updates from others as soon as possible. Second,
the communication between vertices can be implemented
either in a push way or in a pull way. Once a vertex has
updates for destination vertices, the vertex can actively push
the updates to the destinations, or passively let the destina-
tion vertices pull the updates. Third, the vertex traversing
can use either a data-driven mechanism or a topology-driven
mechanism, a.k.a. DD and TD. DD distinguishes active ver-
tices from inactive vertices, and only those active vertices

https://doi.org/10.1145/3293883.3295733
https://www.acm.org/publications/policies/artifact-review-badging/#replicated
https://www.acm.org/publications/policies/artifact-review-badging/#reusable
https://www.acm.org/publications/policies/artifact-review-badging/#available

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

will be traversed. TD treats active and inactive nodes equally,
and all vertices will be traversed.

In practice on GPU, a combination of these three parame-
ters can be used in an implementation, aiming to best utilize
the massive parallelism of GPU and the high memory band-
width, to achieve load balancing and other high performance
goals. However, the combination variations may cause execu-
tion and performance dynamics, increasing the complexity
and sophistication of programming and system implementa-
tion for high performance. In addition, in each of the existing
systems [3, 25, 46, 53], a single and fixed combination is used
in the entire execution for a given application, which may
lead to variable and suboptimal performance. In order to
address our uncertainty and doubt, we have looked into the
execution of two graph-processing systems by tracing and
measuring the execution time at each iteration.

30 400

Groute —= Groute —=
Gunrock == | 350 Gunrock —- |
@25
E 300
[}
E20 A\ 250
z \ l
§15 N 200
3 N, 150 [t
& 10 st
w 100
5 \\" 50
0 foes. 0 mm
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45 50
Iteration # Iteration #
(a) pr-road (b) pr-kron

Figure 1. The execution time (in milliseconds) of PageRank from Gunrock
and Groute running on an NVIDIA 1080 GPU for different datasets.

Fig. 1 illustrates the per iteration execution time of PageR-
ank from Gunrock [46] and Groute [3] on an NVIDIA 1080
GPU. Both Gunrock and Groute are high-performance graph-
processing frameworks on GPUs. The major difference be-
tween them is Gunrock uses the sync model and Groute uses
the async model. Additionally, Gunrock PageRank adopts
Push for the communication and TD for vertex traversing
(Sync + Push + TD), while the equivalent of Groute adopts
Push and DD (Async + Push + DD). ! As shown in Fig. 1(a)
for the road_usa dataset, although requiring more iterations
to converge, Groute has better overall performance than
Gunrock (356.5 ms vs. 523.4 ms), due to much less execution
time in each iteration. However, in Fig. 1(b) for the kron
dataset, Gunrock shows better overall performance than
Groute (3346.8 ms vs. 3931.1 ms). These figures also show
that Gunrock has consistent execution time in each itera-
tion, because TD traverses all vertices in each iteration. In
contrast, Groute has significantly variable execution time,
primarily because DD maintains and updates the worklist
of active vertices in each iteration. DD also leads to higher

IThe asynchronous framework Groute has iterations, because its data-
driven model is implemented on top of a worklist for active vertices and
the worklist is updated by a GPU kernel function, as an implicit barrier. An
iteration corresponds to an update, and inside an iteration, a vertex can be
scheduled multiple times in an asynchronous way.

39

H. Wang et al.

execution time in the first several iterations of Groute, as
shown in Fig. 1(b).

We have shown a fixed combination in the entire exe-
cution may be problematic because execution time in each
iteration can be dramatically different. This motivates us
to develop an adaptive and hybrid software framework for
graph processing, where the execution mode is adaptively
and automatically changed with different combinations, aim-
ing for the best overall performance. We will first answer the
following two questions to lay a foundation for our system
framework.

e Can we find the root causes that lead to variable execution
time for a given graph algorithm and its dataset, consider-
ing the combinations of execution mode, communication
mechanism, and traversing scheme on GPUs?

o After we reveal the root causes and obtain the insights
to switch from one alternative to another one, can we
implement a lightweight mechanism to switch the solution
at runtime, for ensuring the system-level overhead will
not offset the benefit of hybrid?

In this paper, we present the design and implementation of
SEP-Graph, a highly efficient software framework for graph
processing on GPU. The hybrid execution mode is switched
among three pairs of parameters (Sync/Async, Pull/Push, and
DD/TD), with an objective to minimize the execution time
in each iteration. We also apply a set of optimizations to SEP-
Graph to optimize performance of algorithms, considering
the characteristics of graph algorithms and underlying GPU
architectures. We evaluate SEP-Graph with Gunrock and
Groute on three types of GPUs with a set of graph algorithms
and datasets. The experimental results show the effectiveness
of our framework.

2 Background
2.1 Sync vs. Async

Fig. 2(a) compares the different execution modes of Sync
and Async. In this figure, we assume thread 0 is scheduled
to process vertices 0, 1, 2; and thread 1 is responsible for
vertices 3, 4, 5. With Sync, the execution of a program is
divided into multiple iterations. To coordinate the multiple
threads and ensure the updates on vertices detectable at the
end of each iteration, the Bulk Synchronous Parallel (BSP)
mode [44] is usually adopted, introducing a barrier between
any two successive iterations. With Async, the update on a
vertex can be seen by others as soon as possible. As shown
in the bottom half of this figure, vertex 0 is scheduled twice
in the schedule sequence (0, 1, 0, 1) of thread 0, and the
updates are sent to vertex 4 twice. Note that, an algorithm
that can be executed synchronously may not be executed
correctly in the async mode. Several studies [15, 52] have
provided the theoretical foundations for the conditions that
sync graph algorithms can be transformed to async ones.
These studies guarantee each sync algorithm used in our

SEP-Graph

~,

@~0 O

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

Round 0

Round 1

Round 2

Y . Active

N e GO _@__@_@:' _@__cgg_@_e ©®o 990000 5D 0 e
9‘.@‘9 Thrcad0: .@.\,@ﬂ@"@ N0 Asy;:; @t\ :_;(D @ 009 009 009 dTr iverlz
QW PWVOV ww [H 0 0 00070007000 I

~~~~~~

(a) Sync vs. Async

~~~~~~

(b) Push vs. Pull

(¢) Data-driven vs. Topology-driven

Figure 2. Comparisons of Sync and Async, Push and Pull, and DD and TD. The left-most subfigure is the input graph dataset.

work has an async equivalent with a correctness proof. The
transformable problem of sync-to-async is out of the scope
of this paper.

There are two major reasons that Async is believed to
converge faster than Sync. First, since Async can propagate
the update of a vertex to its neighbors as soon as possible,
the most up-to-date updates can be used in computations
on neighbors. Second, because the fast worker threads can
move ahead without waiting for the stragglers, there is no
waiting cost. However, on GPUs, there are three structural
limits of Async. First, compared to Sync, where a vertex only
generates the update once in an iteration, Async can generate
updates of a vertex multiple times in a nondeterministic way,
incurring more irregular data communication. On GPUs,
this may significantly reduce the performance of memory
accesses. Second, although Async doesn’t require fast threads
to wait for the stragglers, this potential benefit may be offset
on GPU, because a group of GPU threads are intended to
execute the same code at the same time for high performance.
Third, Async may incur excessively stale computations [19],
because many up-to-date messages can make a computation
become stale soon. The redundant stale computations lead to
unnecessary computations and higher communication costs.

2.2 Push vs. Pull

Fig. 2(b) compares Push and Pull in graph processing. When
vertex 0 has the update for its neighbors, i.e., vertices 1, 3, 4,
vertex 0 can push updates to the neighbors; or let vertex 1,
3, 4 pull updates from vertex 0.

Push may lead to the write-write conflict on a destina-
tion vertex from multiple sources. For example, vertex 0 and
vertex 1 can write updates to vertex 4 simultaneously. Such
a write-write conflict exists in both Sync and Async mode.
In contrast, Pull doesn’t have the write-write conflict when
combined with Sync; while it has the read-write conflict
when combined with Async: when a source vertex is updat-
ing its local buffer for updates, a destination vertex is pulling
the update in the same address. Modern hardware architec-
tures provide instructions, e.g., Fetch-and-Add (FAA) and
Compare-and-Swap(CAS), to implement atomic read and
write. On CPUs, the variable performance of using atomics
in graph algorithms has been explored [4, 18, 54]. On GPUs,
the overhead of using Push and Pull is also discussed with a

40

few graph algorithms [1, 29]. Most GPU graph-processing
frameworks use Push for communication.

2.3 Data-driven vs. Topology-driven

Fig. 2(c) shows the process of vertex traversing in Breadth-
First Search (BFS) starting from vertex 0 when using DD and
TD, respectively. The shadowed cycles represent the active
vertices and the bright cycles represent those inactive. DD
will traverse vertex 0 in the first round, then vertices 1, 3, 4
in the second round, and vertices 2 and 5 in the third round;
while TD will traverse all vertices in each round no matter
they are active or inactive.

DD is usually implemented with a worklist- or queue-
based method. Some graph-processing frameworks with
Sync [25, 46, 53] use two worklists, one for active vertices
in the current round and the other for active vertices in
the next round. In each iteration, the active and inactive
worklists are swapped. The active vertices are also called
"frontiers” in some proposals using DD [29, 33, 47]. When
integrated with Async, DD only needs one worklist to store
active vertices. Each thread will independently manipulate
the worklist to dequeue a vertex and enqueue new discov-
ered vertices. However, such a combination of Async and DD
is opposite to the GPU preference, which prefers all threads
to do the same thing at the same time. As a result, a bet-
ter solution for GPUs is to schedule GPU threads together
for the worklist management and allow threads to execute
asynchronously between two times of worklist updates. We
adopt this method to combine Async and DD.

In contrary, TD doesn’t distinguish active vertices from
inactive ones, simplifying the implementation of systems.
Although TD has unnecessary computations on inactive ver-
tices, TD doesn’t always underperform, when compared to
DD. First, the performance of DD is affected by the overhead
of worklist management and the saved computation after
getting rid of inactive vertices. Second, the redundant com-
putation induced by TD may be offset by the large number
of GPU threads.

3 Rationale of Performance Dynamics

In this section, we design and implement two typical graph
algorithms by using different combinations of Sync or Async,
Push or Pull, and DD or TD with a set of optimizations
on GPU. Through analyzing the variable performance of

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

algorithms on different datasets, we provide the insights of
when a specific combination can obtain good performance.

3.1 Algorithms and Datasets

Based on their behaviors, graph algorithms can be put into
two categories [4]. Iterative algorithms try to derive some
properties of the whole graph and satisfy: (1) starting from all
vertices of the graph; (2) processing vertices in iterations un-
til some convergence condition is hit. PageRank and Triangle
Counting belong to this category. Traversal algorithms try
to derive some properties for a subgroup of graph and usually
require: (1) starting from one or few vertices; (2) processing
vertices along a direction until the end condition is hit. BFS
and SSSP belong to this category. We select PageRank and
SSSP to explore the reasons of variable performance.

PageRank: PageRank is an algorithm to rank websites
based on the number and quality of their links. Since the
original algorithm [7] cannot be executed correctly with
Async [52], we use the Delta-based PageRank [48, 52] that
has both sync and async implementations. This algorithm
allocates buffers PR; and AR; on a vertex j to record the
PR value and receive updates. The computation on a vertex
is to accumulate AR;. When AR; is added to PR, the delta
message d % (d is the damping factor and |N(j)| is the
outdegree of j) is sent to neighbors of j and AR; is reset to 0.
With Sync, a vertex will receive updates produced in the pre-
vious iteration, accumulate updates, and send delta messages
to neighbors. Async will do these steps independently.

SSSP: SSSP is an algorithm to find a shortest path from a
given vertex s to all other vertices j € V — {s} in the graph.
A-stepping SSSP [34] is a generalization of the Dijkstra’s
algorithm and the Bellman-Ford algorithm. A-stepping SSSP
allocates buffer Dj and AD; on a vertex j to record the current
shortest distance and the received smallest distance from its
neighbors. A vertex will send its current shortest distance
to the outgoing neighbors. The AD; of its neighbors will be
updated with the smallest received distance, and the D; of its
neighbors will be updated as D; = min{D;, AD;}. A-stepping
SSSP can be optimized by processing a set of vertices with
shortest distances (i.e., smallest D;) in a mini-batch (where
the batch size is A). The vertices with the updated shortest
distances are enqueued in the mini-batch, and the vertices
in the mini-batch are processed again and again until no
vertex’s D; changes. A-stepping SSSP can be implemented
synchronously where the synchronization is required after
a round of computation on each mini-batch; while in Async,
the threads process mini-batches independently. We use the
Near-Far optimization [11], which is a practical design of
A-stepping SSSP on GPU.

Datasets: We use road_usa and kron_21 datasets in the
experiments of this section. The former is a typical sparse
graph having the high diameter; while the latter is a graph
whose in- and out-degree obey the power-law distribution.

41

H. Wang et al.

3.2 Analysis of Iterative Algorithms

We analyze PageRank, a representative iterative algorithm,
by profiling all possible combinations of execution variables,
as shown in Fig. 3(a, b) and Fig. 4(a, b).

Data-driven or Topology-driven: Overall, TD outperforms
DD, because iterative algorithms often start from all vertices
and only a few vertices might satisfy convergence condi-
tions at the beginning stages. DD has the worklist/queue
management overhead. Such overhead cannot be offset by
removing the converged vertices in the first several itera-
tions when very few vertices can converge. This observation
holds for different datasets. Fig. 4 (a, b) show TD is always
preferred over DD when the execution mode and communi-
cation mechanism stay the same.

Push or Pull: The choice depends mainly on the graph
structure. For example, Push works well for high-diameter
graphs, e.g., road_usa, and Pull is better for scale-free graphs,
e.g., kron_21, when combined with Sync. For high-diameter
graphs, Push generates less overhead in its atomics and
shows consistently better performance, thanks to the rel-
atively low in/out degree of all vertices. In contrast, the high
in-degree vertices in scale-free graphs could form a bottle-
neck for such an atomic-based push mechanism. Pull, how-
ever, is favorable in this case by assigning working threads
to actively pull the updates from in-neighbors one by one
without the write-write conflict in Push. Note that the up-
dates should be synchronized; otherwise, the pull will cause
the read-write conflict.

Sync or Async: Async is slightly better than Sync, if they
exhibit the similar performance trends. One main reason is
the faster convergence speed of Async. Thus, in our hybrid
implementation for iterative algorithms, Async is given a
higher priority than Sync.

Considering all these factors, we choose "sync-pull-td",
"async-push-td", and "async-push-dd" as the candidates for it-
erative algorithms in our experiments, expecting the runtime
system can switch these methods adaptively and rapidly.

3.3 Analysis of Traversal Algorithms

We have the following observations for the representative
traversal graph algorithm SSSP.

Data-driven or Topology-driven: DD outperforms TD in
most cases, because DD matches the traversal nature of this
type of algorithm. Specifically, DD only tracks a small frac-
tion of vertices for high-diameter graphs.

Push or Pull: Push and Pull have their own best scenarios,
especially for the scale-free graph, as shown in Fig. 3(c). We
have to include both Push and Pull as the candidates for the
hybrid solution. The intuition of switching is related with
the number of current active vertices, the total out-edges of
current active vertices, and the number of untouched edges.

Sync or Async: By using DD, Async and Sync show similar
trends of performance dynamics, regardless of input graphs.

SEP-Graph

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

sync-push-dd —+— async-push-dd sync-push-td —— async-push-td —»— sync-pull-dd async-pull-dd —e— sync-pull-td async-pull-td —8—
140 300 " 16
- 20 120 14
(%) -0-0- 900 250
£
2 150, 100 / 12
E Seece 56855 200 10
= 80 #
£ 100 6 \ 150 8 /
3
o 6
2 2 \ 100 \
w 6-a-aeea 4
50!
= " ®~o-o00 50 l% 5 ﬁ sk
1 e—4\ /\Sedd M
0 S 0 ‘ 0 rodhe 0
3 10 30 100 3 10 30 100 10 30 100 1 10 100 1K 10K
Iteration # Iteration # Iteration # lteration #
(a) pr-kron (b) pr-road (c) sssp-kron (d) sssp-road

Figure 3. Execution time comparisons of PageRank and SSSP with 8 combinations running over road_usa and kron_21 datasets on an NVIDIA 1080 GPU.

sync-push-dd 1 async-push-dd
100K P od = Symetpuldd
m sync—pull-td async—pull-td
£ .
QE) 10K \\\\ ,
E N /
RT{E . - 0
k] i 7 é

pr—kron () pr-road (d) sssp—road

(a (c) sssp—kron

Figure 4. Accumulated execution time comparisons of PageRank and SSSP
with 8 combinations for Fig. 3.

One reason is the async implementation with DD on GPU. As
mentioned in Sec. 2.3, Async-DD needs to swap the worklists
for active vertices, as an implicit barrier. Another reason for
the close performance is the characteristics of traversal algo-
rithms. For example, SSSP traverses the graph along multiple
paths and updates distances along them. The threads work-
ing on the same path will touch the same vertices and do the
same computations, no matter in which implementation.

Considering all these observations, traversal algorithms
on GPU will benefit from Async-DD-based implementations
with Push and Pull hybrid for scale-free graphs. However,
for the high-diameter graph, as shown in Fig. 3 (d), the tra-
versal algorithm will execute over 10,000 iterations. That
indicates the GPU kernel fusion [45] and GPU utilization in
each iteration is more important for such scenarios.

4 System Design and Implementation
4.1 Overview of System Design

SEP-Graph is a runtime system that executes graph algo-
rithms in a hybrid way on GPU. From the point of view of
programmers, SEP-Graph is yet another vertex-centric pro-
gramming model. SEP-Graph provides a set of interfaces for
programmers. Once the programmer defines the necessary
computation function, communication function, and con-
vergence function on vertices, SEP-Graph can schedule the
program to be running on GPU in a hybrid way.

The core of SEP-Graph includes a hybrid engine running
on GPU and a controller running on CPU. Fig. 5 shows the
GPU part. At runtime, the controller running on CPU will
iteratively collect the monitoring data on GPU and switch
the execution path of a graph algorithm on GPU. The hybrid

42

engine on GPU includes the basic implementations of eight
execution paths of Sync or Async, Push or Pull, and DD
or TD. These implementations are built on top of built-in
sparse data structures, e.g., Compressed Sparse Row (CSR)
and Compressed Sparse Column (CSC). The runtime monitor
inside the hybrid engine monitors and records the changes of
parameters, e.g., the number of active vertices, the numbers
of accumulated in- and out-degree of active vertices, etc.
These parameters will be used in Alg. 1 and Alg. 2 by the
controller running on CPU to determine the execution path.
The hybrid engine also includes a set of optimizations to
optimize algorithm themselves and the mapping on different
GPU architectures.

Algorithm Implementation with SEP-Graph Interfaces

User-defined
Algorithm data (PR)| PR, Delta...

Runtime Monitoring

System-provided
Framework data |CSR, CSC, COO...
Three Core Components

DD /TD ‘

‘ Exec. time per iter. ‘ Push / Pull ‘ ‘

‘ Acc. in-degree ‘

‘ Acc. out-degree || Num. of active ver. ‘ ‘ Sync / Async ‘

GPU Optimizations
‘ CTA Scheduling H Kernel Fusion

Algorithm Optimizations

‘ Priority Scheduling ‘ ‘ Sort/Merge/Scan‘

‘WarpAppendingH In-register opt. ‘ Deduplication H Transposition ‘

Figure 5. Overview of SEP-Graph hybrid engine on GPU.

4.2 Programming Interfaces

Tab. 1 describes some programming interfaces of SEP-Graph
that programmers need to implement. In our model, each
vertex has two buffers: one is the value buffer of the vertex
and the other is the update(message) buffer of the vertex.
Programmers implement the functions InitValue() and
InitBuffer() to initialize this pair of buffers on each ver-
tex. For example, for PageRank, one can do "return 9;" in
InitValue() and "return (1 - ALPHA) ;" in InitBuffer(),
where ALPHA is the damping factor. The framework will
call these functions to initialize the graph at the beginning
of execution.

The computation function ComputeBuffer() is to com-
pute updates in the message buffer and apply to the value of
the vertex. For PageRank, one can do "buf = atomicExch
(buffer, 0);" and "xvalue += buf;". After that, one

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

Table 1. SEP-Graph Programming Interfaces

API [Summary

Initialization APIs

TValue Return an initial value for every vertices. If a vertex
InitValue(...) id is given, operate on a vertex.

TBuffer Return an initial value for the buffer on every vertices.

InitBuffer(...) If a vertex id is given, operate on a vertex.

Computation and Communication APIs

Pair<TBuffer, bool> Compute updates in the buffer and apply to the ver-
ComputeBuffer(...) tex. Return a new TBuffer for the communication.

Int Pass messages from the source to the destination, and
AccumulateBuffer() accumulate the update in the source buffer to the
destination. If the source and destination are not
given, operate on all vertices with their neighbors.

Convergence APIs

bool
IsActive(...)

Determine if vertices are converged or not (active
or inactive). If a vertex id is given, operate on a vertex.

should set the temporary variable "buf", as "buf = ALPHA
* buf / out_degree;", which will split the A value of a
vertex for neighbors; and return "buf" to the framework as
"return utils::pair<TBuffer, bool>(buf, true);".
After the computation function, the framework will use the
pull or push for the user defined communication function
AccumulateBuffer() to accumulate updates, as "atomic
Add(buffer, buf);". With Push, "buffer" is the message
buffer of each destination vertex and "buf" is the return value
of the current vertex; while with Pull, "buffer" is the message
buffer of the current vertex and "buf” is the return value of
each source vertex. No matter in which mode, one provides
the same implementation of this communication function
and the framework will handle the communication correctly.
Note that there is no data-race problem. First, the accesses
on the global variable "buffer" are atomic. Second, our shared
queue design guarantees only one thread is scheduled to pro-
cess one vertex once a time, and thus only that thread can
access the global variable "value". We also would like to men-
tion that instead of implementing one for each combination
of Sync or Async, Push or Pull, and DD or TD, users only
need to implement these interfaces once and the system will
call the corresponding low-level implementation at runtime.

4.3 Runtime Switch

We design two switching mechanisms for two types of graph
algorithms. Once a programmer points out the type of a
graph algorithm, SEP-Graph will run Alg. 1 for the iterative
type and Alg. 2 for the traversal type.

For iterative algorithms, any combination may lead to
the max efficiency in the next round. Therefore, we run the
candidates one by one at the beginning to get their exe-
cution time; and for the remaining rouds, we predict the
execution time and choose the one resulting in the shortest
execution time for the next iteration. Alg. 1 shows how SEP-
Graph makes decisions for iterative graph algorithms over
a graph G(V, E). The candidates are contained in GPUGA,
e.g., sync_push_dd(-), sync_pull_td(:), etc. outDegree(:) and
inDegree(-) calculate the out degree and in degree of a given
set of vertices, respectively. normalizeTime(-) attempts to
normalize the execution time of a given graph algorithm

43

H. Wang et al.

based on the statistics of active vertices A in current round,
and predictTime(-) predicts the execution time of next round
according to the normalized execution time and the statistics
of latest active vertices. It is worth noting that the imple-
mentations of normalizeTime(-) and predictTime(-) for high
accuracy vary towards different graph algorithms. For ex-
ample, a reliable implementation of normalizeTime(-) for a
DD-Push-based algorithm could be T" = m, where
t is the measured execution time over A, and predictTime(:)
can be implemented as T? = outDegree(A’) - T", where A’
is the active vertices for the next round. At the beginning of
Alg. 1, the active vertices A are composed of V. In the first N
rounds, SEP-Graph executes the available algorithms in turn
to initialize T". Until the program ends, which is indicated
by "isConverged(G) # true", SEP-Graph always predicts how
long a candidate needs for the next round based on the nor-
malized execution time T™ and the statistics of active vertices,
and selects the shortest one to execute. After each round, 17
is updated based on the real execution time.

Algorithm 1 SEP-Graph for iterative graph algorithms

1: procedure SEP-GRAPH-ITERATIVE(G(V, E))

2: Input: outDegree(-), inDegree(-), isConverged(-)

3: GPUGA « {sync_push_dd(-), sync_pull_td(-), . .. }
4 N < |GPUGA|

5: A<V

6 foriinl...N do

7 outcyr — outDegree(A)

8: incyr < inDegree(A)

9: > A is updated by GPUGA(-)

10: t « GPUGA;(G, A)
11: T' < normalizeTime(t, outcyr, ifcur,)

12: end for
13: while isConverged(G) # true do

14: outcyy < outDegree(A)

15: incyr < inDegree(A)

16: TP « predictTime(T"™, outcyr, incur)
17: i « indexOf(min(T?))

18: t « GPUGA;(G, A)

19: T' < normalizeTime(t, outcyr, incur)

20: end while
21: end procedure

For traversal algorithms, the framework only selects the
policy between Push and Pull with Async-DD (See the anal-
ysis in Sec. 3.3). Alg. 2 illustrates how the framework makes
the decision, in which vy is the source vertex in the input
graph G(V, E). @, B, y, and § are constants, and all of them are
predefined to assist making the determination. neighbor(:) is
the function to calculate all neighbors of a given set of ver-
tices. For a specific algorithm like SSSP, an edge is likely to
be visited more than once, so that E’ is scaled by a constant
y > 1L

This algorithm is initialized with Push, because there is
only one active vertex vs in the worklist, and no duplicate
messages are generated. Before the algorithm stops (there
are no active vertices in the worklist), the determination

SEP-Graph

will be made that if the current policy should switch to
the alternative. The best opportunity switching to Pull is
when the framework discovers the out degree of the ver-
tices in the worklist accounts for a large proportion of the
untouched edges, which is defined as £, a > 1. The basic
idea of switching from Push to Pull is that a large amount of
out-degree of the active nodes implies Push is likely to gen-
erate plenty of duplicate messages, while a small number of
untouched edges indicates relatively small overhead of using
Pull. Only if the active vertices lowers than a small number
represented by ﬁ where f > 1, the framework switches
back to Push without worrying the duplicate messages. This
idea of switching between Pull and Push is similar to the
direction-optimizing BFS [1]. Moreover, the switch only oc-
curs in a dense graph (with the scale-free characteristics);
and SEP-Graph always use Push for sparse graphs, if the

average edges to a vertex 1ot IV\ is less than a threshold 8.

Algorithm 2 SEP-Graph for traversal graph algorithms

1: procedure SEP-GRAPH-TRAVERSAL(G(V, E), v, a, B, v,)
2: Input: outDegree(+), neighbor(-)

3 GPUGA « {push(-),pull(-) }

4: A — {vs}

5: E «— |E| -y

6: policy <« push

7. if [< 5 then

8

v
GPUGA(G, A, policy)

9: else
10: while A # 0 do
11: > A is updated by GPUGA(")
12: GPUGA(G, A, policy)
13: if policy =push then
14: E’ « E’—outDegree(A)
15: if outDegree(A) > % then
16: policy « pull
17: end if
18: else if policy =pull and |A| < ‘Vl then
19: policy < push
20: end if
21: end while
22: end if

23: end procedure

4.4 Optimizations

A set of optimizations have been implemented in SEP-Graph.
We introduce three of them.

4.4.1 CTA Scheduling

SEP-Graph adopts Cooperative Thread Array (CTA) sched-
uling [23, 26] to ensure the load balance and improve the
data locality in the communication. When a working thread
pushes the update of a vertex to its out-neighbors or pulls
the updates from its in-neighbors, the out-degree and in-
degree may be significantly diverse, thus resulting in load
imbalance between GPU threads. This is observed in most

44

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

scale-free graphs. SEP-Graph uses a warp of threads or a
block of threads to keep balance: if the degree is larger than
the block size, the work on the vertex will be processed by a
CTA and via the shared memorys; if the degree is larger than
the warp size, the work will be processed by a warp and via
the register; and otherwise, threads will process different
vertices independently.

In addition, CTA scheduling can improve the data locality,
if thread blocks working on the same group of vertices are
scheduled on the same SM to share L1 cache. We can achieve
this goal by manipulating the CTA indices and leveraging
the round-robin manner of GPU hardware scheduling [28].
With it, SEP-Graph can obtain better data locality in the
push- and pull-based communication.

4.4.2 Warp Appending

Because multiple threads may write active vertices to the
shared queue for the next iteration, the atomic write is usu-
ally required and may harm the performance. The warp
appending [21] is used to reduce the number of atomic oper-
ations as below.

First, a warp of threads call the warp voting instruction
__ballot() and population counting instruction __popc()
to count the number of threads that have updates, i.e., active
vertices, and then call the data shuffle instruction __shf1()
to broadcast the counting result in the warp. Second, the
first thread of each warp coordinates to get the warp offset
in the shared queue via atomic operations. Third, threads
write their updates to the queue in parallel with the offsets.
This process is called iteratively until all updates are written
to the shared queue. We also notice that a recent study [43]
can reduce the overhead of atomics on GPU with the relaxed
atomics. We will investigate this new memory consistency
model and integrate it into our framework.

4.4.3 Priority Scheduling

Priority scheduling can optimize graph algorithms by priori-
tizing some vertices to be executed first after distinguishing
these vertices from others. In A-based PageRank, the condi-
tion to determine a vertex active or inactive is based on the
A value. Scheduling the vertices having larger A values first
can accelerate the convergence speed, since the A value is
decreased by the damping factor in the propagation.
SEP-Graph has different implementations of priority sched-
uling for iterative algorithms and traversal algorithms. The
difference is in the method of calculating a proper threshold.
Because iterative algorithms operate on the whole graph
through all iterations, the threshold of the priority schedul-
ing, e.g., the A value of PageRank, should consider all active
vertices. We use the random sampling to get current val-
ues of priority scheduling variable on sampled vertices, and
then calculate the threshold. In PageRank as an example, we
sample 1000 vertices, sort them on the A value, and use the

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

200th A value as the threshold. This method has been suc-
cessfully adopted by distributed graph-processing systems,
e.g., Maiter [52] and PowerSwitch [50], and has much less
overhead on GPU. Calculating the threshold for a traver-
sal algorithm is simpler, because we only need to consider
the traversed vertices along the path, instead of the whole
graph. For example, in A-stepping SSSP, we can pre-define a
value of distance as the threshold and put the active vertices
having shorter distances to the source to be scheduled first.

5 Evaluation

In this section, we evaluate SEP-Graph with four algorithms.
Besides PageRank and SSSP, other two algorithms are:

o Breadth-First Search (BFS): BFS traverses a graph from
a given source vertex, and outputs the hops from the source
to traversed vertices.

e Betweenness Centrality (BC): BC measures the central-
ity of a graph by calculating the centrality of each vertex.
The centrality of a vertex is the number of the shortest
paths that pass through the vertex. We use the algorithm
proposed by Brandes [6] due to its fast speed and general-
ity. In the evaluation, we compute the centrality of a given
vertex.

We compare SEP-Graph with two GPU graph-processing
frameworks. Gunrock (version 0.4) [14] is a sync-based frame-
work. In contrast, Groute [13] is an async-based framework.
We carry out our experiments on three types of compute
nodes.

The first server has an NVIDIA GTX 1080 GPU, which has
20 SMs (2560 CUDA cores) and 8 GB GDDR5 memory. This
server also has an Intel i7-3770K CPU running on 3.5GHz
(4 cores) and 32 GB memory. The second server has two
Intel Xeon E5-2680v4 CPUs running on 2.4GHz (28 cores in
total), 512 GB memory, and two NVIDIA P100 GPUs. Each
P100 GPU has 60 SMs (3840 CUDA cores) and 12 GB HBM2
memory. The third server has two Intel Xeon Gold 6136
CPUs running on 3.0GHz (24 cores in total), 256 GB memory,
and two NVIDIA V100 GPUs. Each V100 GPU has 5120m
CUDA cores and 16 GB HBM2 memory. The GPUs are con-
nected to the host via PCle Gen3 on all systems. The software
environments, e.g., CUDA, GCC, Linux kernel, etc., will be
introduced in the artifact evaluation. We compare SEP-Graph
with Gunrock and Groute on a single GPU on these systems.

Tab. 2 lists out the used datasets. "kron_g500-logn21",
"soc-LiveJournall", and "road_usa" are downloaded from the
Suite Sparse Matrix Collection [12], and "soc-orkut" and "soc-
twitter-2010" are downloaded from Network Data Reposi-
tory [40]. As mentioned earlier, "road_usa" is a typical high-
diameter graph. The threshold is set to 5, which means if
the average degree of a graph (#Edges/#Vertices) is smaller
than 5, the graph is detected as a high-diameter graph. We
also use this value for Gunrock and Groute for the fair com-
parison. Other graphs in the table are scale-free graphs. In

45

H. Wang et al.

the evaluations, we run each experiment multiple times and
report the average time, and the pre- and post-processing
time is excluded.

Table 2. The list of graph datasets

Name #Vertices #Edges Avg.Degree Max Degree
kron_g500-logn21 2.1IM 182.1M 86.7 213.9K
soc-LiveJournall 4.8M 68.9M 144 20.3K
soc-orkut 3M 1063M 354 27.5K
soc-twitter-2010 14.8M 265.0M 17.9 302.7K
road_usa 23.9M 57.7M 2.4 9

5.1 Comparisons On NVIDA 1080 GPU

Fig. 6 shows the performance comparisons of SEP-Graph,
Groute, and Gunrock on the node having an NVIDIA 1080
GPU. As shown in the figure, SEP-Graph is the winner, except
Gunrock BFS on the scale-free graphs.

5.1.1 PageRank

Fig .6(a) shows the performance comparisons of PageRank.
SEP-Graph can get up to 2.9x and 1.8x speedups over Groute
and Gunrock for scale-free graphs, both on kron; and obtain
1.9x and 2.5x speedups over Groute and Gunrock for the
high-diameter graph road_usa.

For this iterative algorithm, SEP-Graph runs Alg. 1 to
switch the execution path. The log file shows SEP-Graph
switches the execution path of PageRank from "sync-pull-td"
to "async-push-dd" for the scale-free graphs, including kron,
liveJournall, orkut, and twitter; and switch the path from
"async-push-td" to "async-push-dd" for the high-diameter
graph usa_road. On the contrary, the PageRank implementa-
tions of Groute and Gunrock always work on "async-push-
dd" and "sync-push-td", respectively. As mentioned earlier
in Fig. 3(a), compared to "sync-pull-td", neither "async-push-
dd" nor "sync-push-td” is a good candidate for the iterative
algorithm running on the scale-free graphs. First, compared
to Pull, using the atomic operation in Push leads to non-
negligible performance penalty on the scale-free graph. Sec-
ond, the overhead of worklist management makes DD not
suitable for the iterative algorithm, until most vertices of
the graph are converged. SEP-Graph can identify "sync-pull-
td" to be the best start in the inspection stage of Alg. 1,
and switch to "async-push-dd" when active vertices become
very few. On the high-diameter graph, SEP-Graph detects
"async-push-td" is best in the inspection and will switch to
"async-push-dd" in the final iterations.

Fig. 7 shows the switched execution path and execution
time of SEP-Graph PageRank on kron and usa_road, respec-
tively. The monitoring parameters, including the number
of active vertices, the number of in-degree of all vertices,
and the number of out-degree of active vertices, are also
shown in the figure at the switching points. As we choose
"sync-pull-td", "async-push-td", and "async-push-dd" as the
candidates for the iterative type algorithm, SEP-Graph will

SEP-Graph

Groute

16384 16384

Gunrock

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

SEP-Graph
2048

@ 8192 - 8192 §
g \
o 409 . § §? 4096
£ N
= 2048f §’ §g §é 2048 i
S N N N
= 1024} gé gv §g §§ 1024 K
4 N/ N NA N
Vol N . . I\
L N NP INIZ! N7 N L N N 7
ol (N N BN NN
sl WA W B B B | oL B BNp BN BN BNV
kronLiveJournaltorkut twitter ~ road kron LiveJournall orkut twitter road
(a) PR (b) SSSP

1024

1024

(IZ77777)

256

512}
64
256

128}

Vzz777772777777277777777777777;

[777772777777772777727 72727772}
S

7 z77777227777277777277777;
| NNNNNNNNNANNNNNNNNNNNY
[7777777777777777772
SRy

V772777277772777727)
S

[AR
[N

Vzzzzz7727272272)

64

g
(s

twitte!

=
@
S
)
o

kronLiveJournaltorkut twi

3

Figure 6. Performance comparisons of SEP-Graph with Groute and Gunrock on an NVIDIA GTX 1080 GPU.

200
Execution Path
Execution Time

Execution Path
Execution Time

574154
364165884
175824970

23047347

ASYNC-PULL-TD 180

115417248
57708624

SYNC-PULL-TD

160
ASYNC-PULL-DD 140
SYNC-PULL-DD 120
ASYNC-PUSH-TD

SYNC-PUSH-TD

Execution Time (ms)

ASYNC-PUSH-DD
\ 842240
364165884

178577611

SYNC-PUSH-DD

0
5 10 15 20 25 30 35 40 45 50
Iteration # Iteration #
(a) pr-kron (b) pr-road

Figure 7. SEP-Graph PageRank execution path on an NVIDIA 1080 GPU.

5 10 15 20 25 30 35

run the candidates one by one in the first three iterations, and
record the execution time per iteration (78 ms, 182 ms, 180
ms). At the end of third iteration, SEP-Graph observes "sync-
pull-td" has the shortest execution time, and then switch to it
at the forth iteration. At the end of each following iteration,
SEP-Graph updates the monitoring data and predicts the ex-
ecution time of these three methods. Because the execution
time of "sync-pull-td" and "async-push-td" is nearly stable
in the iterative algorithm, SEP-Graph only needs to predict
the execution time of "async-push-dd" with Alg. 1. As men-
tioned in Sec. 4.3, the predicted execution time of a Push-DD-
based iterative algorithm is linear with the number of out-
degree of active vertices. At the end of iteration 34, the pre-
dicted execution time of "async-push-dd" can be simplified as
its_inspect_timex(curr_out —degree/inspect_out —degree),
180 * (64970229 / 176622425) = 66.2 ms, which is smaller than
the inspection time of "sync-pull-td" and "async-push-td",
i.e.,, 78 ms and 182 ms. The execution path will switched
to "async-push-dd" after the iteration 34. We skip the de-
tailed analysis of switched execution path of PageRank on
usa_road in Fig. 7(b) for the space limitation.

5.1.2 Single-Source Shortest Path

Before running SSSP algorithms, we use the pre-processing
tool from Gunrock to assign the weight to each edge in the
graph. Like SEP-Graph, we also enable the priority schedul-
ing in Groute and Gunrock for their best performance.

In traversal algorithms, SEP-Graph running with Alg. 2
can switch the execution path between "async-push-dd"
and "async-pull-dd" for the scale-free graphs, and always
use "async-push-dd" for the high-diameter graphs. In con-
trast, Groute and Gunrock work on "async-push-dd" and
"sync-push-dd" for the entire execution of SSSP, respectively.

46

(c) BFS (d)BC
E'/ outD (A) 100M
outbegree E—
oM VI/1A] = fom
= | o =--
g S
had I ASYNC_PULL_DD =/
8 100K | 100K Z
o 10K} 110K —
-— —
3 ol L =
> 100} Frﬂ {100 =
~ 10F ===~ EE N S S
I r ASYNC_PUSH_DD 10
1 [l
0.1} 1
‘ ‘ ‘ ‘ 0.1
0 5 10 15 20 25
Iteration #

Figure 8. SEP-Graph SSSP execution path for the twitter dataset on an
NVIDIA 1080 GPU.

Although Gunrock provides a hybrid implementation us-
ing Push and Pull for BFS [39], so far it is not enabled for
other algorithms like SSSP. Fig. 6(b) shows the performance
comparisons of SSSP. For the scale-free graphs, SEP-Graph
can get up to 6.5x and 2.1x speedups over Groute and Gun-
rock on kron and orkut datasets, respectively. For the high-
diameter graph road_usa, SEP-Graph can deliver 1.1x and
39.4x speedups over Groute and Gunrock.

Fig. 8 illustrates the switching points of SEP-Graph SSSP
on twitter. In this figure, the y1 axis and y2 axis represent the
m and % along iterations. The black
solid line indicates the execution path between "async-push-
dd" (lower) and "async-pull-dd" (upper). The dash lines mean
the constants of « (green) and f (yellow), which are set to 15
and 2, respectively. During execution, SEP-Graph compares

m to « to determine if switching from push to pull
[V]

and compares Ta to B to determine if switching from pull to
push. The rules are shown in Alg. 2. We can clearly observe
that as W;R(A) (the green solid line) becomes lower than
«a at the end of the 5th round, and SEP-Graph changes to the
pull mode in the next iteration for higher performance. Once
% (the yellow solid line) is higher than f at the end of the
8th round, SEP-Graph switches back to the push mode in
the 9th round.

For the high-diameter graph road_usa, SEP-Graph uses
"async-push-dd" for the entire execution as Groute does.
The better performance of SEP-Graph comes from the op-
timizations of sorting and de-duplication in SEP-Graph for
the Push-DD mode, and the additional overhead of worklist

variation of

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

management in Groute for supporting multiple GPUs. The
significant overhead of Gunrock is related with the GPU
SM utilization and the kernel fusion. The kernel fusion in
Gunrock only fuses the advance operator and the filter oper-
ator in successive iterations [39], leading to multiple times
of kernel launch. While, in Groute and SEP-Graph, the SSSP
kernel is only launched once for the high-diameter graph.
The GPU SM utilization will be discussed in Sec. 5.2 with the
performance numbers on NVIDIA P100 and V100 GPUs.

5.1.3 Breadth-First Search

Fig. 6(c) shows the performance comparisons of BFS. SEP-
Graph has 7.0x speedup over Gunrock on the high-diameter
graph road_usa; while Gunrock has the best performance for
the scale-free graphs, having up to 2.4x speedup over SEP-
Graph. There are two major reasons for the best performance
of Gunrock. First, Gunrock optimizes the forward traversal of
BEFS by using bitmasks in the recent work [38], which is not
implemented in SEP-Graph yet. Second, because Gunrock
has implemented the Push and Pull optimization for BFS on
scale-free graphs, Gunrock BFS has the same execution path
of SEP-Graph. Therefore, compared to Gunrock, SEP-Graph
has additional overhead of running the switching algorithm,
which is relatively higher in BFS (3.8 56 ms, occupying 6%
to 20% of total execution time) than other algorithms.

Compared to Groute, SEP-Graph has up to 45.8x speedup
(kron) on the scale-free graphs, and very similar performance
on the high-diameter graph road_usa. This also indicates
the importance of Push and Pull hybrid for the traversal
algorithms on scale-free graphs.

5.1.4 Betweenness Centrality

The BC implementation includes two stages. The first stage
is to run the BFS algorithm from the source vertex, and the
second stage is a trace back that computes the centrality from
traversed vertices to the source. As Groute doesn’t provide
a BC implementation, we use the Groute BFS and the trace
back of SEP-Graph to implement Groute BFS. Therefore,
the BC performance comparisons between SEP-Graph and
Groute illustrates the same trend of BFS comparisons. Fig.
6(d) shows the SEP-Graph has 2.2x to 2.5x speedups over
Groute on the scale-free graphs, and very close performance
on the high-diameter graph road_usa. Compared to Gunrock,
SEP-Graph has 1.8x to 2.4x speedups on the scale-free graphs,
and 5.8x speedup on the high-diameter graph.

5.2 Comparisons on NVIDIA P100 and V100 GPU

We also conduct the same experiments on NVIDIA P100
and V100 GPUs, where the same trend of performance com-
parisons has been observed. On P100, SEP-Graph has up to
2.8x, 4.1x, 20.2x, and 2.6x speedups over Groute when run-
ning PageRank, SSSP, BFS and BC; and the speedup numbers
change to 1.6x, 12.7x, 2.4x and 2.1x when comparing to Gun-
rock. As Groute doesn’t support the newly released V100

47

H. Wang et al.

yet, so that we only measure the performance of Gunrock
and SEP-Graph on V100. The speedups of our framework
over Gunrock are 2.8x (PageRank), 8.4x (SSSP), 3.9x (BFS)
and 3.5x (BC).

We observe that compared to SEP-Graph and Groute, Gun-
rock exhibits more variable performance on different GPUs.
For example, for SSSP with the road_usa dataset, Gunrock
needs 8699.5 ms, 4216.4 ms, 1676.5 ms on the nodes having
1080, P100, and V100 GPUs, respectively; while SEP-Graph
needs 220.8 ms, 332 ms, and 199.9 ms. The significantly vari-
able performance of Gunrock is related with the numbers of
SMs of different GPUs. Once we set the grid size of Gunrock
on V100 to 20, which is the number of SMs of 1080, the exe-
cution time of Gunrock SSSP changes to 5955.8 ms. Another
reason is related with the kernel launch overhead. Once SEP-
Graph detects a high-diameter graph in a traversal algorithm,
SEP-Graph will launch the kernel once with "async-push-dd".
In contrast, Gunrock still launches the kernel multiple times.
For this case, Gunrock uses 6791 iterations to launch GPU
kernels. The kernel launch overhead and the consequent
throughput drop in the launch can not be ignored [37, 51].

6 Related Work

A lot of studies focus on accelerating a single graph algo-
rithm on GPU. Bisson et al. [5] use the sparse linear algebra
for implementing the PageRank algorithm on GPU, and fur-
ther optimize it by overlapping the kernel computation and
the data communication between CPU and GPU. Merrill et
al. [33] optimize BFS on GPU by using a fast scan implemen-
tation for the frontier computation and a multi-granularity
scheduling for load balancing. Liu and Huang [29] optimize
BFS on GPU by implementing the direction optimization [1].
Pan et al. [38] optimize BFS on multiple GPUs by combining
the direction optimization and the efficient data communi-
cation between multiple GPUs. Davidson et al. [11] propose
the Near-Far optimization for SSSP on GPU, which is a prac-
tical implementation of A-stepping SSSP. McLaughlin and
Bader [32] propose a hybrid betweenness centrality on GPUs,
which can switch between the work-efficient mode and edge-
parallel mode based on the change of vertex frontiers.
Many efforts have been devoted to the study of graph
algorithms on GPU. Che et al. [8] propose Pannotia, a GPU
benchmark suite for graph algorithms. They also conduct
the benchmark characterization on different GPUs. Wu et
al. [49] analyze the impact of GPU performance factors, e.g.,
synchronization, load balancing, etc., on graph algorithms.
Kaleem et al. [22] investigate several synchronization strate-
gies for graph algorithms on GPUs, and conclude there is
no "one-size-fits-all" solution for different datasets and GPU
architectures. Li et al. [27] propose the warp consolidation
to improve the data locality and reduce the synchroniza-
tion overhead on GPU. They show the effectiveness of this

SEP-Graph PPoPP ’19, February 16-20, 2019, Washington, DC, USA

Groute Gunrock SEP-Graph
8192 8192 512 N 1024
— N
A [| 4096 256 N
£ 400 . 128 | gg 512 I
() N 2048 7 3 NP
Ny L N7 N N7
E 2048 - §§ 1024 ~ 64 p gg ossl §? §g
< N] 32y I Y
g 1024 § N7 N 16} NN § N
sl b L N R / " \ -
w N/ N7E 7B N7 N NG NY 4t N7 . NG NG Np) N7 N7 1N
NA N7 N N4 N I ‘ NE N7 NI/ NIl 2 Sl N7 N/ N7 N N NY NG N/ N
s 7 BV B BV 1 S N7 IN7E N7 SV I I N7 S SV N7 N7 S/ A N N Y
kronLiveJournaliorkut twitter ~ road kron LiveJournall orkut twitter ~ road kron LiveJournall orkut twitter ~ road kronLiveJournaliorkut twitter ~ road
(a) PR (b) SSSP (c) BFS (d) BC

Figure 9. Performance comparisons of SEP-Graph with Groute and Gunrock on an NVIDIA Tesla P100 GPU.

Gunrock SEP-Graph

2048 2048 5 5 1024
—_ N |
2 § 1024 § 256 § 512 s
E 1024 N N N N
£ \ 512 \ 64 7 256 §
E 512 \ gg 256 § ; sg v N7
5 N N : N[16 9 NG| 128} A
S Np NA N N 2 "NY
g N /I Ng—\7 v N /|
3 255y NN 128 NG N Y N . N1 N
g \/EE Y N Ng N4 N2 NI S NG N
2 NN, Y N § NG N 4 7 N N1 N NI\
5 N N NA NN 64f o N NO NG g 7N N NN N
NG NG ND N N N NI NG N4 N 2 NI N N N NN
128N N2 N g NN NG N NN 2 N1 7 N N | el g4
VU N Y N T TN N Y Ny NN
N N W N Ne | LN NF N7 N N N4 N7 NF N NG NA N NG NP NP
kronLiveJournaltorkut twitter ~ road kron LiveJournall orkut twitter ~ road kron LiveJournall orkut twitter ~ road kronLiveJournaltorkut twitter ~ road

(a) PR (b) SSSP (c) BFS (d)BC
Figure 10. Performance comparisons of SEP-Graph with Groute and Gunrock on an NVIDIA Tesla V100 GPU.

technique on several graph algorithms. Nasre et al. [35] inves- algorithms with Sync or Async, Push or Pull, and DD or
tigate the impact of vertex traversing mechanisms on graph TD, to achieve the shortest execution time in each iteration.
algorithms on GPUs. Ben-Nun et al. [2] propose MAPS-Multi, There exist several CPU-based systems that can switch the
an automatic multi-GPU partitioning framework for differ- execution path of graph algorithms. Ligra [42] can switch
ent memory access patterns in graph algorithms. between Push and Pull, based on the density of active ver-

There are also graph-processing frameworks for single- tices. PowerSwitch [50] can switch between Sync and Async,
GPU, multi-GPU, and GPU clusters. Zhong et al. [53] propose based on the vertex computation throughput. Besides target-
Medusa, a BSP-model-based graph analytics framework on ing on a more complicated problem space (Sync or Async,
GPU. Khorasani et al. [25] propose CuSha, a GAS model- Pull or Push, and DD or TD) on GPU, SEP-Graph adopts an
based GPU graph-processing framework, focusing on resolv- inspection-execution method to determine when and how
ing the load imbalance and GPU underutilization problems. to switch, by monitoring a set of graph parameters. On GPU,
Khorasani et al. [24] propose the warp segmentation mecha- our method is more efficient than those systems that use a
nism to compact graph representations with the vertex re- single factor, i.e., the density of active vertices or the overall

finement method to extend CuSha to multiple GPUs. Wang et vertex throughput, to determine the switch.
al. [46] propose Gunrock, a synchronous graph-processing
system on single-GPU. Pan et al. [39] extend Gunrock to
multi-GPU with a set of optimizations, e.g., the kernel fusion
and direction optimizing traversal. Ben-Nun et al. [3] propose We present SEP-Graph, a highly efficient GPU graph pro-

7 Conclusion

Groute, an asynchronous graph-processing framework on cessing framework by adaptively switching execution path
multiple GPUs. Hong et al. [20] propose MultiGraph, which based on a selection in each of the three pairs of parameters,
uses multiple graph representations and trades off the data namely, Sync or Async, Push or Pull, and DD or TD. This ap-
movement and load balancing among GPU threads. Shi et al. proach is necessary to achieve the shortest execution time in
[41] propose Frog, another asynchronous graph-processing each iteration, and consequently and significantly improve
framework on GPU, which uses graph coloring to deter- overall performance. Our intensive experiments show the
mine the access sequence on neighbors of each vertex and high effectiveness of SEP-Graph.

alleviate the overhead of conflict in the push-base communi-
cation. Dathathri et al. [10] propose Gluon, a communication-

optimizing substrate for graph analytics on GPU clusters. Acknowledgments

Gluon allows programmers to write a graph algorithm in We would like to thank the anonymous reviewers for their

a shared-memory system, and automatically enables it on insightful comments and suggestions. This work has been

GPU clusters. partially supported by the National Science Foundation un-
Compared to these systems, SEP-Graph is a hybrid frame- der grants CCF-1513944, CCF-1629403, and CCF-1718450,

work on GPU that can switch the execution path of graph and by the National Natural Science Foundation of China

under grants 61672141 and 61433008.

48

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

References

(1]

—
S
=

(10]

(11]

Scott Beamer, Krste Asanovi¢, and David Patterson. 2012. Direction-
optimizing Breadth-first Search. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis (SC ’12). IEEE Computer Society Press, Los Alamitos, CA,
USA, Article 12, 10 pages.

Tal Ben-Nun, Ely Levy, Amnon Barak, and Eri Rubin. 2015. Mem-
ory Access Patterns: The Missing Piece of the multi-GPU Puzzle. In
Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC °15). ACM, New York, NY,
USA, Article 19, 12 pages.

Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali. 2017.
Groute: An Asynchronous Multi-GPU Programming Model for Irregu-
lar Computations. In Proceedings of the 22nd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP ’17). ACM,
New York, NY, USA, 235-248.

Maciej Besta, MichatPodstawski, Linus Groner, Edgar Solomonik, and
Torsten Hoefler. 2017. To Push or To Pull: On Reducing Communi-
cation and Synchronization in Graph Computations. In Proceedings
of the 26th International Symposium on High-Performance Parallel and
Distributed Computing (HPDC ’17). ACM, New York, NY, USA, 93-104.
Mauro Bisson, Everett Phillips, and Massimiliano Fatica. 2016. A cuda
implementation of the pagerank pipeline benchmark. In Proceedings of
the 2016 IEEE High Performance Extreme Computing Conference (HPEC
’16). IEEE, IEEE Computer Society, Washington, DC, USA, 1-7.

Ulrik Brandes. 2001. A faster algorithm for betweenness centrality.
Journal of Mathematical Sociology 25, 2 (2001), 163-177.

Sergey Brin and Lawrence Page. 1998. The Anatomy of a Large-
scale Hypertextual Web Search Engine. In Proceedings of the Seventh
International Conference on World Wide Web (WWW?7). Elsevier Science
Publishers B. V., Amsterdam, The Netherlands, The Netherlands, 107-
117.

Shuai Che, Bradford M Beckmann, Steven K Reinhardt, and Kevin
Skadron. 2013. Pannotia: Understanding irregular GPGPU graph ap-
plications. In Proceedings of the 2013 IEEE International Symposium on
Workload Characterization (IISWC ’13). IEEE, IEEE Computer Society,
Washington, DC, USA, 185-195.

Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. 2015. PowerLyra:
Differentiated Graph Computation and Partitioning on Skewed Graphs.
In Proceedings of the Tenth European Conference on Computer Systems
(EuroSys ’15). ACM, New York, NY, USA, Article 1, 15 pages.

Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex
Brooks, Nikoli Dryden, Marc Snir, and Keshav Pingali. 2018. Gluon: A
Communication-optimizing Substrate for Distributed Heterogeneous
Graph Analytics. In Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’18). ACM,
New York, NY, USA, 752-768.

Andrew Davidson, Sean Baxter, Michael Garland, and John D. Owens.
2014. Work-Efficient Parallel GPU Methods for Single-Source Shortest
Paths. In Proceedings of the 2014 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS ’14). IEEE Computer Society,
Washington, DC, USA, 349-359.

Tim Davis, Yifan Hu, and Scott Kolodziej. 2018. SuiteSparse Matrix
Collection. Retrieved 08/20/2018 from https://sparse.tamu.edu/
Groute Deveklopers. 2018. Groute: An Asynchronous Multi-GPU
Programming Framework. Retrieved 08/20/2018 from https://github.
com/groute/groute

Gunrock Developers. 2018. Gunrock: GPU Graph Analytics. Retrieved
08/20/2018 from https://github.com/gunrock/gunrock

Wenfei Fan, Ping Lu, Xiaojian Luo, Jingbo Xu, Qiang Yin, Wenyuan
Yu, and Ruiqi Xu. 2018. Adaptive Asynchronous Parallelization of
Graph Algorithms. In Proceedings of the 2018 International Conference
on Management of Data (SIGMOD ’18). ACM, New York, NY, USA,
1141-1156.

49

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

H. Wang et al.

Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Car-
los Guestrin. 2012. PowerGraph: Distributed Graph-parallel Computa-
tion on Natural Graphs. In Proceedings of the 10th USENIX Conference
on Operating Systems Design and Implementation (OSDI ’12). USENIX
Association, Berkeley, CA, USA, 17-30.

Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw,
Michael J. Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in
a Distributed Dataflow Framework. In Proceedings of the 11th USENLX
Conference on Operating Systems Design and Implementation (OSDI ’14).
USENIX Association, Berkeley, CA, USA, 599-613.

Samuel Grossman, Heiner Litz, and Christos Kozyrakis. 2018. Mak-
ing Pull-based Graph Processing Performant. In Proceedings of the
23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP ’18). ACM, New York, NY, USA, 246-260.
Qirong Ho, James Cipar, Henggang Cui, Jin Kyu Kim, Seunghak Lee,
Phillip B. Gibbons, Garth A. Gibson, Gregory R. Ganger, and Eric P.
Xing. 2013. More Effective Distributed ML via a Stale Synchronous
Parallel Parameter Server. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems - Volume 1 (NIPS’13).
Curran Associates Inc., USA, 1223-1231.

Changwan Hong, Aravind Sukumaran-Rajam, Jinsung Kim, and P
Sadayappan. 2017. MultiGraph: Efficient Graph Processing on GPUs. In
Proceedings of the 26th International Conference on Parallel Architectures
and Compilation Techniques (PACT °17). IEEE, IEEE Computer Society,
Washington, DC, USA, 27-40.

Kaixi Hou, Weifeng Liu, Hao Wang, and Wu-chun Feng. 2017. Fast
Segmented Sort on GPUs. In Proceedings of the International Conference
on Supercomputing (ICS ’17). ACM, New York, NY, USA, Article 12,
10 pages.

Rashid Kaleem, Anand Venkat, Sreepathi Pai, Mary Hall, and Keshav
Pingali. 2016. Synchronization trade-offs in gpu implementations of
graph algorithms. In Proceedings of the 2016 IEEE International Par-
allel and Distributed Processing Symposium (IPDPS ’16). IEEE, IEEE
Computer Society, Washington, DC, USA, 514-523.

Onur Kayiran, Adwait Jog, Mahmut Taylan Kandemir, and Chita Ran-
jan Das. 2013. Neither More nor Less: Optimizing Thread-level Paral-
lelism for GPGPUs. In Proceedings of the 22nd International Conference
on Parallel Architectures and Compilation Techniques (PACT ’13). IEEE
Press, Piscataway, NJ, USA, 157-166.

Farzad Khorasani, Rajiv Gupta, and Laxmi N. Bhuyan. 2015. Scalable
SIMD-Efficient Graph Processing on GPUs. In Proceedings of the 24th
International Conference on Parallel Architectures and Compilations
(PACT ’15). IEEE Computer Society, Washington, DC, USA, 39-50.
Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N. Bhuyan. 2014.
CuSha: Vertex-centric Graph Processing on GPUs. In Proceedings of
the 23rd International Symposium on High-performance Parallel and
Distributed Computing (HPDC ’14). ACM, New York, NY, USA, 239-
252.

Minseok Lee, Seokwoo Song, Joosik Moon, John Kim, Woong Seo,
Yeongon Cho, and Soojung Ryu. 2014. Improving GPGPU resource uti-
lization through alternative thread block scheduling. In Proceedings of
the 20th IEEE International Symposium on High Performance Computer
Architecture (HPCA-20). IEEE, IEEE Computer Society, Washington,
DC, USA, 260-271.

Ang Li, Weifeng Liu, Linnan Wang, Kevin Barker, and Shuaiwen Leon
Song. 2018. Warp-Consolidation: A Novel Execution Model for GPUs.
In Proceedings of the 2018 International Conference on Supercomputing
(ICS °18). ACM, New York, NY, USA, 53-64.

Ang Li, Shuaiwen Leon Song, Weifeng Liu, Xu Liu, Akash Kumar, and
Henk Corporaal. 2017. Locality-Aware CTA Clustering for Modern
GPUs. In Proceedings of the Twenty-Second International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’17). ACM, New York, NY, USA, 297-311.

https://sparse.tamu.edu/
https://github.com/groute/groute
https://github.com/groute/groute
https://github.com/gunrock/gunrock

SEP-Graph

[29] Hang Liu and H. Howie Huang. 2015. Enterprise: Breadth-first Graph
Traversal on GPUs. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (SC
’15). ACM, New York, NY, USA, Article 68, 12 pages.

[30] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo

Kyrola, and Joseph M. Hellerstein. 2012. Distributed GraphLab: A

Framework for Machine Learning and Data Mining in the Cloud. Pro-

ceedings of the VLDB Endowment 5, 8 (April 2012), 716-727.

Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehn-

ert, Illan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A

System for Large-scale Graph Processing. In Proceedings of the 2010

ACM SIGMOD International Conference on Management of Data (SIG-

MOD ’10). ACM, New York, NY, USA, 135-146.

[32] Adam McLaughlin and David A. Bader. 2014. Scalable and High Per-
formance Betweenness Centrality on the GPU. In Proceedings of the
International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC ’14). IEEE Press, Piscataway, NJ, USA,
572-583.

[33] Duane Merrill, Michael Garland, and Andrew Grimshaw. 2012. Scal-
able GPU Graph Traversal. In Proceedings of the 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP
’12). ACM, New York, NY, USA, 117-128.

[34] Ulrich Meyer and Peter Sanders. 2003. A-stepping: a parallelizable
shortest path algorithm. Journal of Algorithms 49, 1 (Oct. 2003), 114-
152.

[35] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. 2013. Data-
Driven Versus Topology-driven Irregular Computations on GPUs. In
Proceedings of the 2013 IEEE International Symposium on Parallel and
Distributed Processing (IPDPS ’13). IEEE Computer Society, Washington,
DC, USA, 463-474.

[36] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A Light-

weight Infrastructure for Graph Analytics. In Proceedings of the Twenty-

Fourth ACM Symposium on Operating Systems Principles (SOSP ’13).

ACM, New York, NY, USA, 456-471.

Sreepathi Pai and Keshav Pingali. 2016. A Compiler for Throughput

Optimization of Graph Algorithms on GPUs. In Proceedings of the 2016

ACM SIGPLAN International Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications (OOPSLA ’16). ACM, New

York, NY, USA, 1-19.

[38] Yuechao Pan, Roger Pearce, and John D Owens. 2018. Scalable Breadth-
First Search on a GPU Cluster. In Proceedings of the 2018 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS ’18). IEEE,
IEEE Computer Society, Washington, DC, USA, 1090-1101.

[39] Yuechao Pan, Yangzihao Wang, Yuduo Wu, Carl Yang, and John D
Owens. 2017. Multi-GPU graph analytics. In Proceedings of the
2017 IEEE International Parallel and Distributed Processing Symposium
(IPDPS ’17). IEEE, IEEE Computer Society, Washington, DC, USA, 479-
490.

[40] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Reposi-
tory with Interactive Graph Analytics and Visualization. In Proceedings
of the 29th AAAI Conference on Artificial Intelligence (AAAI ’15). AAAI
Press, Palo Alto, CA, USA, 4292-4293.

[41] Xuanhua Shi, Xuan Luo, Junling Liang, Peng Zhao, Sheng D1, Bing-
sheng He, and Hai Jin. 2018. Frog: Asynchronous graph processing on
GPU with hybrid coloring model. IEEE Transactions on Knowledge and
Data Engineering 30, 1 (Jan. 2018), 29-42.

[42] Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph Pro-

cessing Framework for Shared Memory. In Proceedings of the 18th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP °13). ACM, New York, NY, USA, 135-146.

Matthew D. Sinclair, Johnathan Alsop, and Sarita V. Adve. 2017. Chas-

ing Away RAts: Semantics and Evaluation for Relaxed Atomics on

Heterogeneous Systems. In Proceedings of the 44th Annual International

Symposium on Computer Architecture (ISCA ’17). ACM, New York, NY,

(31

—

(37

—

[43

—

50

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

USA, 161-174.

[44] Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation.
Commun. ACM 33, 8 (Aug. 1990), 103-111.

[45] Mohamed Wahib and Naoya Maruyama. 2014. Scalable Kernel Fusion
for Memory-bound GPU Applications. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis (SC ’14). IEEE Press, Piscataway, NJ, USA, 191-202.

[46] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy
Riffel, and John D. Owens. 2016. Gunrock: A High-performance Graph
Processing Library on the GPU. In Proceedings of the 21st ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’16). ACM, New York, NY, USA, Article 11, 12 pages.

[47] Yangzihao Wang, Yuechao Pan, Andrew Davidson, Yuduo Wu, Carl
Yang, Leyuan Wang, Muhammad Osama, Chenshan Yuan, Weitang
Liu, Andy T. Riffel, and John D. Owens. 2017. Gunrock: GPU Graph
Analytics. ACM Transactions on Parallel Computing 4, 1, Article 3 (Aug.
2017), 49 pages.

[48] Joyce Jiyoung Whang, Andrew Lenharth, Inderjit S Dhillon, and Ke-
shav Pingali. 2015. Scalable data-driven pagerank: Algorithms, system
issues, and lessons learned. In Proceedings of the 21st International
European Conference on Parallel and Distributed Computing (Euro-Par
’15). Springer, Berlin, Germany, 438-450.

[49] Yuduo Wu, Yangzihao Wang, Yuechao Pan, Carl Yang, and John D.
Owens. 2015. Performance Characterization of High-Level Program-
ming Models for GPU Graph Analytics. In Proceedings of the 2015 IEEE
International Symposium on Workload Characterization (IISWC ’15).
IEEE Computer Society, Washington, DC, USA, 66-75.

[50] Chenning Xie, Rong Chen, Haibing Guan, Binyu Zang, and Haibo Chen.
2015. SYNC or ASYNC: Time to Fuse for Distributed Graph-parallel
Computation. In Proceedings of the 20th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP ’15). ACM, New
York, NY, USA, 194-204.

[51] Jing Zhang, Ashwin M. Aji, Michael L. Chu, Hao Wang, and Wu-chun
Feng. 2018. Taming Irregular Applications via Advanced Dynamic
Parallelism on GPUs. In Proceedings of the 15th ACM International
Conference on Computing Frontiers (CF ’18). ACM, New York, NY, USA,
146-154.

[52] Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang. 2014. Maiter:
An asynchronous graph processing framework for delta-based accu-
mulative iterative computation. IEEE Transactions on Parallel and
Distributed Systems 25, 8 (Aug. 2014), 2091-2100.

[53] Jianlong Zhong and Bingsheng He. 2014. Medusa: Simplified Graph
Processing on GPUs. IEEE Transactions on Parallel and Distributed
Systems 25, 6 (June 2014), 1543-1552.

[54] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma.
2016. Gemini: A Computation-centric Distributed Graph Processing
System. In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation (OSDI’16). USENIX Association,
Berkeley, CA, USA, 301-316.

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

A Artifact Appendix
A.1 Abstract

This artifact contains all executable of SEP-Graph on github.
The shell scripts of running four graph algorithms and com-
paring to Gunrock and Groute are also included. The artifact
will report the execution time of the graph algorithms eval-
uated in the PPoPP’19 paper, which is entitled "SEP-Graph:
Finding Shortest Execution Paths for Graph Processing under
a Hybrid Framework on GPU".

A.2 Artifact check-list (meta-information)

o Algorithm: PageRank, Breadth-First Search, Single-Source Short-
est Path, Betweenness Centrality.

e Program: CUDA and C/C++ code

o Compilation: Use nvcc for CUDA kernels and use gcc and g++
for host code. The compilation flags, e.g., -O3, -std=c++11, etc.,
are set in CMakeLists.txt.

e Binary: One for each algorithm.

e Data set: Publicly available matrix market (.mtx) files.

¢ Run-time environment: The first server having NVIDIA GTX
1080 GPU is installed Ubuntu 18.04 with CMake 3.10.2, GCC
5.4.0, and CUDA 10.0. The second and third have NVIDIA Pascal
P100 GPU and NVIDIA Volta V100 GPU, respectively. Each has
CentOS Linux release 7.4.1708 with CMake 3.8.2, GCC 5.2.0, and
CUDA 9.1.

e Hardware: CUDA-capable GPUs with compute capability of
at least 3.5, e.g., NVIDIA GTX 1080, NVIDIA Pascal P100, and
NVIDIA Volta V100.

e Output: Program execution time in millisecond, and execution
path and execution time in each iteration of algorithms with
SEP-Graph.

e How much disk space required (approximately)?: 28 GB
(most for the datasets).

e How much time is needed to prepare workflow (approxi-
mately)?: 1 hour

e How much time is needed to complete experiments (ap-
proximately)?: 1.5 hour

e Publicly available?: Yes

o Code/data licenses (if publicly available)?: Apache License

e Archived?: Yes (The tarballs for the source code and artifact
evaluation are placed at Zenodo https://zenodo.org/, with the
DOIs 10.5281/zenodo.2008655 and 10.5281/zenodo.2008653).

A.3 Description

A.3.1 How delivered

SEP-Graph is an open source framework under Apache li-
cense version 2.0. It is hosted with the codes, build instruc-
tions, running scripts, and documentations at Github: https://
github.com/sep-graph. The tarballs are also placed at Zenodo
https://zenodo.org/, with the DOIs 10.5281/zenodo.2008655
and 10.5281/zenodo.2008653.

A.3.2 Hardware dependencies

SEP-Graph requires NVIDIA GPU with the compute capabil-
ity of no less than 3.5.

51

H. Wang et al.

A.3.3 Software dependencies

SEP-Graph has been tested on Ubuntu 18.04 and CentOS
Linux release 7.4.1708, and is expected to run correctly under
other Linux distributions. The tested CUDA versions include
CUDA 9.1 and 10.0. The tested GCC versions include GCC
5.2.0 and 5.4.0. The scripts in the artifact use Python 2.7.

A.3.4 Data sets

All datasets are either publicly available, including road_usa,
soc-LiveJournal, soc-orkut, and soc-twitter, or generated using
standard graph generation software, e.g., kron_g500-logn21.
Users can run a script provided in the artifact to download
these datasets (Check A.5 Experiment workflow for more
details).

A.4 Installation

To install, follow the instructions below:

o Clone the Git repository recursively from https://github.
com/sep-graph/ppopp19-artifact.git

| $ git clone --recursive \

\ https://github.com/sep-graph/ppoppl9-artifact.git
e Automatically build SEP-Graph by running the script
"setup_sep.py" under "./bin"

$ cd bin

$ export PATH=${CUDA_HOME}/bin:${GCC_PATH}/bin: $PATH

$ export LD_LIBRARY_PATH=${CUDA_HOME}/1ib64: \
${GCC_PATH}/1ib64: $LD_LIBRARY_PATH

$./setup_sep.py

(Optional) Manually build SEP-Graph with the command
lines below:

$ git clone --recursive \
https://github.com/sep-graph/ppoppl9-artifact.git

$ cd sep-graph

$ mkdir build && cd build

$ cmake .. -DCMAKE_CXX_COMPILER=${G++_PATH} \
-DCMAKE_C_COMPILER=${GCC_PATH} \
-DCUDA_TOOLKIT_ROOT_DIR=${CUDA_HOME?}
$ make -j 8

A.5 Experiment workflow
To run the experiments, follow the instructions below:
o Clone and build SEP-Graph as mentioned above. The SEP-

Graph’s executables are generated under "/path/to/
ppopp19-artifact/sep-graph/build".

o Prepare the datasets.

\ $ cd /path/to/ppoppl9-artifact/bin
| $./download.py

The "download.py" script will download datasets to "/path/
to/ppopp19-artifact/dataset”, including the .mtx and .gr
files for each dataset. Users can also download .mtx files
publicly and generate corresponding .gr files (Check A.7
Notes (1)).

https://zenodo.org/
https://github.com/sep-graph
https://github.com/sep-graph
https://zenodo.org/
https://github.com/sep-graph/ppopp19-artifact.git
https://github.com/sep-graph/ppopp19-artifact.git

SEP-Graph

e Run the script run_sep_${algo}.py for an algorithm:

‘ $ cd /path/to/ppoppl9-artifact/bin

| $./run_sep_${algo}.py

| $./run_all.py

${algo} can be pr, bfs, sssp, and be. Each "run_sep_${algo}.py"
script will run an algorithm with SEP-Graph and write its
output to a log file under "/path/to/ppopp19-artifact/log".
The script "run_all.py" calls "run_${arch}_${algo}.py" scripts
to run all algorithms with three frameworks respectively,
where ${arch} can be Gunrock, Groute, and SEP-Graph, and
report corresponding execution time in millisecond with
the CSV format, under "/path/to/ppopp19-artifact/output”.
These numbers are used in Figures 6-10 of the paper. Check
A.7 Notes (3) for the setup of Gunrock and Groute.

e (Optional) Users can run the executables of SEP-Graph
separately to check the detail of how SEP-Graph switches
the execution paths of an algorithm at runtime:

\ $ cd /path/to/ppoppl9-artifact/sep-graph/build

| ¢ ./hybrid_${algo} -trace \

\ -graphfile ${path-to-dataset.gr}
The executable will report the execution path and execu-
tion time in each iteration of an algorithm with SEP-Graph.

e (Optional) SEP-Graph has provided the validation func-
tionality to check the correctness of algorithms. Users
need to use "-check" as the command line parameter in
the script "run_sep_${algo}.py" to enable it.

A.6 Evaluation and expected result

The scripts under "/path/to/ppopp19-artifact/bin" are ex-
pected to report the total execution time of a graph algorithm.
The script "run_all.py" will also report the execution path and
runtime in each iteration of an algorithm with SEP-Graph, by
calling the executable under "/path/to/ppopp19-artifact/sep-
graph/build".

A.7 Notes

(1) A .gr file is generated from a .mtx file with the tool "graph-
convert" from the Galois project, which can be downloaded
from https://github.com/IntelligentSoftwareSystems/Galois/
tree/master/tools/graph-convert.

(2) The SEP-Graph binaries at "/path/to/ppopp19-artifact/
sep-graph/build" needs the command line parameters for the
tuning purpose, e.g., using "-wl_alloc_factor=0.4" for PageR-
ank when running "hybrid_pr". The scripts under "/path/to/
ppopp19-artifact/bin" have been configured properly.

(3) The script "setup_gunrock.py” and "setup_groute.py"
under "/path/to/ppopp19-artifact/bin” can setup Grunrock
and Groute. Alternatively, these two projects can be down-
loaded from github at https://github.com/gunrock/gunrock
and https://github.com/groute/groute. The Boost library ver-
sion 1.58.0 is used to run Gunrock in this paper.

"

52

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

https://github.com/IntelligentSoftwareSystems/Galois/tree/master/tools/graph-convert
https://github.com/IntelligentSoftwareSystems/Galois/tree/master/tools/graph-convert
https://github.com/gunrock/gunrock
https://github.com/groute/groute

	Abstract
	1 Introduction
	2 Background
	2.1 Sync vs. Async
	2.2 Push vs. Pull
	2.3 Data-driven vs. Topology-driven

	3 Rationale of Performance Dynamics
	3.1 Algorithms and Datasets
	3.2 Analysis of Iterative Algorithms
	3.3 Analysis of Traversal Algorithms

	4 System Design and Implementation
	4.1 Overview of System Design
	4.2 Programming Interfaces
	4.3 Runtime Switch
	4.4 Optimizations

	5 Evaluation
	5.1 Comparisons On NVIDA 1080 GPU
	5.2 Comparisons on NVIDIA P100 and V100 GPU

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Notes

