HYPHA: A Framework based on Separation of Parallelisms to
Accelerate Persistent Homology Matrix Reduction

Simon Zhang!, Mengbai Xiao!, Chengxin Guo'?, Liang Geng!?, Hao Wang!, Xiaodong Zhang!
IDepartment of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
2School of Information, Renmin University of China, China
3Department of Computer Science and Engineering, Northeastern University, China
{zhang.680, xia0.736, guo.1384, geng.161, wang.2721}@osu.edu, zhang@cse.ohio-state.edu

ABSTRACT

Persistent homology (PH) matrix reduction is an important tool for
data analytics in many application areas. Due to its highly irregular
execution patterns in computation, it is challenging to gain high
efficiency in parallel processing for increasingly large data sets.

In this paper, we introduce HYPHA, a HYbrid Persistent Ho-
mology matrix reduction Accelerator, to make parallel processing
highly efficient on both GPU and multicore. The essential founda-
tion of our algorithm design and implementation is the separation
of SIMT and MIMD parallelisms in PH matrix reduction compu-
tation. With such a separation, we are able to perform massive
parallel scanning operations on GPU in a super-fast manner, which
also collects rich information from an input boundary matrix for
further parallel reduction operations on multicore with high effi-
ciency. The HYPHA framework may provide a general purpose
guidance to high performance computing on multiple hardware
accelerators.

To our best knowledge, HYPHA achieves the highest perfor-
mance in PH matrix reduction execution. Our experiments show
speedups of up to 116x against the standard PH algorithm. Com-
pared to the state-of-the-art parallel PH software packages, such
as PHAT and DIPHA, HYPHA outperforms their fastest PH matrix
reduction algorithms by factor up to ~2.3x.

CCS CONCEPTS

» Mathematics of computing — Mathematical software per-
formance; Computing methodologies — Parallel algorithms;
« Computer systems organization — Heterogeneous (hybrid)
systems.

1 INTRODUCTION

It is important to find and understand the shape of data in multiple
dimensions, which is a major research theme of Topological Data
Analysis (TDA) [10]. In TDA, the concept of persistent homology
can be applied. In addition to providing topological, or qualitative
understanding of data, it offers metrically stable and efficiently com-
putable measurements with comparative and analytical insights.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICS ’19, June 26-28, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6079-1/19/06....$15.00
https://doi.org/10.1145/3330345.3332147

69

[o] 1]2(3]a]s]6]
1 B 1 1
11
2 1 1
5 4 .
4] 1
0 2 E
a

Figure 1: (a) A simplicial 2-dimension complex composed
of 6 simplices. The points 0, 1, 2 are 0-simplices, the line-
segments 3, 4, 5 are 1-simplices, and the triangle 6 is a 2-
simplex. (b) The corresponding boundary matrix. In the ma-
trix, a column representing a simplex is encoded by the sim-
plices in its boundary, e.g., the triangle 6 has the boundary
composed of line-segments 3, 4, and 5.

Because of'its rigorous mathematical foundation and computing fea-
sibility, this type of data analytics has been widely used in various
areas, including sensor networks [14], bioinformatics [13], manifold
learning [33] [35], deep learning [26] and many others [34].

As data analytics tasks have become increasingly intensive in
both scale and computing complexity, researchers have made efforts
to develop fast persistent homology algorithms. There are several
open source software packages of persistent homology, e.g. JavaPlex
[1], PHAT [6], and Dionysus [32], DIPHA [5], Ripser [3], and Eirene
[25]. The core algorithm of these software packages is the matrix
reduction on simplices. Fig. 1 (a) shows a simplicial 2-dimension
complex; and accordingly, Fig. 1 (b) shows its boundary matrix. Fig.
1 also illustrates how to construct a boundary matrix 0 for a simpli-
cial complex. Another rule for construction of a boundary matrix
is that a column representing a simplex can only be encoded by the
simplices with smaller column indices. As a result, the boundary
matrix is an upper triangular matrix. For any column j of 9, low(j)
is defined as the greatest row index i that d[i, j] is nonzero. In the
case that column j is composed of all zeros, low(j) is -1. We will
use low(j) and low(d[j]) interchangeably. In Fig. 1 (b), we can find
low(9[0]), low(d[1]), low(d][2]) are -1, low(d[3]) and low(d[4]) are
2, low(9[5]) is 1, and low(9[6]) is 5. The matrix reduction is to add
column i to column j, if low(i) = low(j) and i < j. Here, the column
addition executes the exclusive or (XOR) on corresponding entries
of two columns. The matrix reduction will end once the low(-) is
injective on the nonnegatives, i.e., for all i and j that low(i) # —1
and low(j) # —1, if i#j, then low(i) # low(j).

A basic sequential matrix reduction algorithm (more details in
Sec. 2.1) is straightforward and easy to implement. With a set of

https://doi.org/10.1145/3330345.3332147

ICS ’19, June 26-28, 2019, Phoenix, AZ, USA

S. Zhang et al.

OEDDOEE DRENDOEE DRpnnEa
AHEE BEE ABRE § B
§ i [

11 1 1
1|2 1 ala

11
1

B 5Ea

SR

n
il - |
a

ST

i [11 3
11 11
1 02

1 101

11 1

[P

[=ERE - |- | -]

e

B aEa

ﬂﬂﬂﬂﬂlﬂ

(a) standard

(b) w/ clearing

(c) w/ compression

Figure 2: (a): Standard matrix reduction on the example in Fig. 1, where pivots (2,3), (1,4), and (5,6) are found during the
execution. (b) With the clearing lemmas 1 and 2, the algorithm can zero column 5 of the boundary matrix after finding (5,6) as
a pivot. (c) With the compression lemma 3, the algorithm can zero rows 3 and 4 after finding pivots (2,3) and (1,4), respectively.

optimizations [6], such as cache utilization, adopting sparse matrix
format (e.g., Compressed Sparse Column (CSC)), using the binary
index tree [21], and others, the sequential algorithm is efficient
on CPU, especially for medium sized datasets (under 1 million
simplices).

Although the sequential execution on a powerful single core
CPU can leverage CPU high clock rate, large cache for fast data
accesses, and zero synchronization delay, the parallel and scalable
PH design is highly desirable. As datasets become increasingly large,
PH matrix reduction must be processed in parallel with advanced
architecture for high performance. As Moore’s Law [36] along with
the Dennard’s Scaling Law [18] are ending due to physical limits, to
further improve performance, computation needs to be accelerated
by additional advanced hardware devices, such as GPU. However,
existing parallel PH matrix reduction algorithms (Sec. 2.3), e.g.,
spectral sequence algorithm [20] and chunk algorithm [4], have the
following structural issues that may lead to suboptimal performance
and hence have hindered their wide usage in practice.

First, it is challenging to parallelize the matrix reduction, as
the algorithm itself is highly dependent in column additions. Only
the columns with the same low values can be added, and such
results can be obtained only during the execution at runtime. Sec-
ond, the additions on real-world datasets are highly skewed. For
all the datasets used in this work, we have observed 9.57% - 62.47%
columns do not have any additions, while 0.7% - 20.6% columns
get 50% column additions. However, existing parallel algorithms do
not take the irregularity into implementation consideration. With-
out distinguishing different computing natures of columns, these
parallel algorithms cannot process matrix reduction in a balanced
manner. Lastly but most importantly, we observe that existing par-
allel algorithms cannot fully utilize the power of two effective PH
optimizations, i.e., clearing [4, 11] and compression [4] (Sec. 2.2),
potentially producing a large number of unnecessary column ad-
ditions, and not fully exploiting SIMT (single instruction, multiple
threads) and MIMD (multiple instructions, multiple data) paral-
lelisms in the algorithms on advanced computing systems.

To address these issues, we propose HYPHA, a framework of
separation of SIMT and MIMD parallelisms to accelerate persistent
homology matrix reduction. We propose a read-only scanning phase
of the boundary matrix to quickly identify 0-addition columns and
collect rich information for the following matrix preprocessing and
parallel matrix reduction. With that, we can unleash the power
of clearing and compression to simplify the boundary matrix to
a smaller submatrix and then resolve the imbalance problem in

70

parallel matrix reduction. We separate SIMT and MIMD parallelisms
of matrix reduction and implement each phase onto their best-fit
hardware devices, i.e., the parallel scanning phase on GPU (SIMT),
the parallel column addition on multicore (MIMD), and the parallel
clearing on GPU (SIMT) and compression on multicore (MIMD).
Our contributions are three folds:

e We provide an anatomy of PH matrix reduction algorithms based
on large datasets, which provides insights into the separation of
two types of parallelisms and computation bottlenecks in order
to achieve high performance.

e We propose HYPHA, a framework based on separation of SIMT
and MIMD parallelisms to accelerate PH matrix reduction. It
includes a novel and effective scanning phase on GPU, a balanced
parallel column addition phase on multicore, and an enhanced
clearing and compression phase on both hardware devices.

e We carry out the experiments on a HPC cluster with GPUs and
compare HYPHA with two state-of-the-art PH software packages,
i.e., PHAT and DIPHA, on a set of real-world datasets. To our best
knowledge, HYPHA achieves the highest performance compared
with other solutions for PH matrix reductions at low cost.

2 BACKGROUND
2.1 Standard Matrix Reduction Algorithm

Alg. 1 shows the "original" or standard matrix reduction algorithm.
The algorithm processes the matrix column by column, from the
left to the right. Once a column R[j] is nonzero and low(R[j]) is
found modified in the lookup table L (not the initial value -1), the
algorithm knows there is another column R[i] on the left of R[j] and
low(R[i]) is equal to low(R[j]), and then adds R[i] to R[j]. Otherwise,
the algorithm updates the low(R[j])-th position of the lookup table
with the column number j, if R[j] is nonzero.

Fig. 2 (a) illustrates the process of matrix reduction on the bound-
ary matrix of Fig. 1 (b). The algorithm checks and skips columns 0,
1, and 2 one by one. On columns 3, the algorithm sets L[2] = 3, but
doesn’t change the boundary matrix. On column 4, the algorithm
finds low(R[4]) is 2 and L[2] is 3, and thus adds column 3 to col-
umn 4. The column addition updates the column 4 in the partially
reduced boundary matrix, as shown in the left sub-figure of Fig. 2
(a). After that low(R[4]) is changed to 1 and L[1] is set to 4. The
algorithm then checks column 5, and finds low(R([5]) is 1 and L[1]
is 4. The algorithm adds column 4 to column 5, zeroing column 5, as
shown in the right sub-figure of Fig. 2 (a). After processing column
6, there is no column which low position can be further changed.
The reduction is finished and the matrix is fully reduced.

HYPHA

Algorithm 1 The original matrix reduction algorithm

1: function (input: d, an n X n matrix)

2 R« > let R[i] denote the ith column of matrix R
3 L « [-1...-1]; L of length n

4 for j=0...n-1 do

5 while R[j] # 0 and L[low(R[j])] # —1 do

6 R[j] < R[j1 + RIL[Iow(R[jDII;

7 if R[j] # 0 then L[low(R[j])] < j

8 return R

Alg. 1 returns a reduced boundary matrix. In computing PH of
the given simplicial complex, we only pay attention to the "pivots"
of the reduced matrix. These pivots correspond to persistence pairs
of persistent homology [12]. A pivot is defined as the entry (low(j),
j) for any column j in the reduced matrix. In Fig. 2 (a), the pivots are
(2,3), (1,4), and (5,6). The matrix reduction algorithms may generate
different reduced boundary matrices for the same input, but the
pivots are identical. We will call a column j of a partially reduced
boundary matrix with (low(j),j) a pivot fully reduced.

2.2 Clearing and Compression

There are two effective optimizations for PH matrix reduction,
clearing and compression. Clearing [4, 11] can set a column to zero.
The original clearing lemma is stated as follows:

LeEmMA 1. If (i,j) is a pivot (low(j), j) of a fully reduced column j,
then column i can be zeroed. [11]

The intuition behind the original clearing lemma (Lemma 1)
is that every index is either a creator or destroyer index (each
simplex either creates or destroys/zeros a homology class). Pivots
(c,d) always have c, a creator index and d, a destroyer index. Thus
if a column index is a creator index, it cannot have a pivot in its
column and thus must be a zero column in the fully reduced matrix.

Lemma 1 has an extension as follows:

LEmMA 2. For any nonzero column j, not necessarily fully reduced,
column low(j) can be zeroed. [4]

We will use Lemma 2, the extension of Lemma 1 when referring
to clearing. Clearing always zeroes the column low(j) on the left
of column j of one dimension smaller. Fig. 2 (b) illustrates how
the algorithm processes the boundary matrix with clearing. For
applying clearing, the matrix reduction needs to process columns
from higher dimension simplices to lower dimension simplices [11].
In Fig. 2 (b), the algorithm starts from the highest simplex, i.e., 2-
simplex (column 6), and finds the pivot (5,6). With clearing (Lemma
2), the algorithm directly zeros column 5. After that, the algorithm
processes 1-simplices (columns 3, 4, 5) from the left to the right, and
finds column 4 can be reduced by adding column 3. The algorithm
stops after processing the 0-simplices (columns 0, 1, 2), which are
zero columns. Without clearing (Fig. 2 (a)), the algorithm calls the
column addition twice, one on column 4 and the other on column
5. With clearing, the algorithm doesn’t need the column addition
on column 5.

Compression [4] is another technique to optimize PH matrix
reduction, which can set a row to zero with the lemma as follows:

71

ICS ’19, June 26-28, 2019, Phoenix, AZ, USA

LEmMMA 3. For any given pivot (i,j), row j can never have a pivot in
it. Thus row j can be zeroed. [4]

The reasoning behind compression is similar to clearing. How-
ever, compression zeros a row of index higher dimension instead
of lower dimension. Fig. 2 (c) shows how the algorithm processes
the boundary matrix with compression (Lemma 3). When the algo-
rithm identifies (2,3) is a pivot, it zeros row 3. And after the column
addition on row 4, the algorithm finds (1,4) is a pivot and then zeros
row 4.

Clearing and compression are not fully utilized in existing PH
software packages. First, clearing (lemma 2) can be applied in a
column-wise parallel manner, without dimension ordering restric-
tion, and without column addition dependency. This technique
has not been used in existing software implementations, including
in existing parallel algorithms. The sequential algorithm in Fig.
2(b), as mentioned in [11] is the way clearing is applied in spectral
sequence, see 2.3, for example.

Second, a new study [30] introduces a new lemma that can be
used for compression as follows:

LEMMA 4. Ifa column j has an entry (i,j) that is a leftmost nonzero
in its row i, then column j must eventually have a pivot. [30]

In Fig. 2(c), compression sets column 4 to zero after finding
the pivot (1,4) with one column addition. However, Lemma 4 tells
us the algorithm can directly zero row 4 without identifying the
pivot, because of the leftmost non-zero entry (1,4)1. This lemma
provides us with an opportunity to zero rows as early as possible
and eliminate more unnecessary column additions. However, it has
not been considered by existing PH software packages.

2.3 Spectral Sequence Algorithm

Of the parallel algorithms for PH matrix reduction, Spectral Se-
quence [39] is considered as basic. Since the boundary matrix is
the upper triangular matrix, if the N X N boundary matrix is di-
vided into multiple M X M tiles/blocks (M < N), the tiles on the
same diagonal can be processed in parallel. As shown in Fig. 3 (a),
the boundary matrix is divided into ten 2 X 2 tiles. Because each
tile only depends on those tiles on the left and below, Spectral Se-
quence only needs four rounds to finish the process. In each tile,
the algorithm can process columns following the standard matrix
reduction algorithm, with or without clearing and compression. If
the low(j) of column j is found beyond the range of the current tile,
the algorithm will continue processing column j with the upper tile
in the next round.

Having inspired by the studies of wavefront loops [7, 27, 43], we
identify several limitations for Spectral Sequence-based PH matrix
reduction. First, the number of tiles that can be processed in parallel
decreases from the first round to the last round, leading to load
imbalance when scheduling one thread per tile as PHAT [6] does.
Second, in processing PH boundary matrices, the load imbalance is
also a concern. Because of the nature of sparsity and dependency,
the numbers of column additions between tiles are highly skewed
and cannot be determined in advance. Therefore, a new scheduling

IThis is because no column addition can zero a leftmost non-zero entry, e.g., (1,4) in
this case. The non-zero column (column 4) eventually has a pivot, and it can trigger
compression due to Lemma 3.

ICS ’19, June 26-28, 2019, Phoenix, AZ, USA

" -

B oag
B oaa

Figure 3: Two examples of Spectral Sequence-based PH ma-
trix reduction on the boundary matrix in Fig. 1. The bound-
ary matrix is divided into multiple tiles, and the tiles on the
same diagonal can be processed in parallel. (a) uses 2 x 2
tiles, and four rounds are needed for the matrix reduction.
(b) uses 6 x 6 tiles 2, and two rounds are needed.

0-adds. non-tail-adds. tail-adds.
Dataset # of cols. (% of cols.) (% of cols.) (% of cols.)
high_genus_extended ~ 2.76 x 10° 48.78 49.52 1.70
mumford 2.37 x 10° 9.57 81.85 8.58
torus 5.58 X 10° 50.03 49.27 0.70
18-sphere 1.05 x 10° 50.00 29.40 20.60
saddle_orbit_64 2.05 x 10° 62.47 32.70 4.83

Table 1: The number of columns of various data sets and
their addition distribution.

mechanism is needed for load balance. Most importantly, such a
tile-based parallel pattern may limit the power of clearing and
compression. Assuming the boundary matrix is divided into 6 X 6
tiles, as shown in Fig. 3 (b) , there are three tiles in total. Two tiles
are processed in the first round and one in the second round. The
algorithm can only set column 5 to zero by applying clearing in the
tile processed in the second round; while at that moment, column
5 has been set to zero in the first round by calling column addition.
In this case, the power of clearing is not utilized. Although PHAT
[6] can mitigate it by processing each tile multiple times and one
dimension at each time (from higher to lower) for enabling clearing,
this method aggravates the load imbalance with additional memory
access overhead. Therefore, a new parallel framework is needed to
unleash the power of clearing too.

3 ANATOMY OF PH MATRIX REDUCTION

The running time of a PH matrix reduction is dominated by col-
umn additions. To better understand its computational nature, we
analyze the column-wise addition distribution for various datasets
in the standard algorithm. We count the number of additions for
all columns, and with a thorough analysis, we want to understand
column addition patterns throughout the matrix.

We look into the torus dataset from the PHAT benchmark datasets
[6] as an example. After the PH matrix representing the torus is
fully reduced and all statistical numbers have been collected, we
sort the columns according their column-wise XORs and accumu-
late the number of XORS (column additions). The result is presented
in Fig. 4(c), where the x-axis is the column fraction and the y-axis is
the accumulated addition fraction. The curve with marks represents

Zwe only draw one 6 X 6 tile to save the limited page space.

72

S. Zhang et al.

the columns unchanged throughout the calculation (column frac-
tion from 0 to 0.5). The solid curve represents the top columns (by
column addition count) taking up 50% of all additions; the dashed
curve represents the remaining columns. From the experiment, two
facts are observed when computing persistence pairs for this torus:
1) about half columns are inherently stable, and 2) half of all addi-
tions are performed over a very small portion of columns. Thus, we
define tail-addition columns to be the smallest set of columns that
account for more than 50% of the column additions needed to reduce
the boundary matrix. Furthermore, we define 0-addition columns
to be columns that do not require column additions. We thus have
a partition of three types of columns as 0-addition columns, non-
tail-addition columns, and tail-addition columns, respectively. The
tail phenomenon is an example of a Pareto principle [37] (e.g. 50%
of total column additions are due to 1.7% of the columns). The tail
phenomenon is also observed in daily Google production systems,
where high latency service to a small percentage of customers could
dominate overall service performance at large scale [17].

To investigate if the observed characteristics are general, the
experiments are extended to other datasets. Some of the datasets
are also from the PHAT benchmark datasets and the others are
topologically synthesized. The statistical results are also shown
in Figure 4 (a), (b), (d), and (e) and the numbers are presented in
Table 1. We observe that for most datasets, there are ~ 50% 0-
addition columns (except that mumford presented in Figure 4 (b)
contains only 9.57% 0-addition columns). Furthermore, half of all
additions concentrate on at most ~20% columns. In an extreme case,
the tail-additions happen on only 0.7% columns (torus).

The observed facts shed light upon the structural differences of
PH matrix additions. The large portion of 0-addition columns can
be massively processed in SIMT mode on GPU. A small percentage
of tail-addition columns indicates that sequential algorithms on a
powerful single core are still attractive. For the remaining non-tail-
additions, MIMD processing on multi-core can be very efficient. Our
anatomy study has motivated us to separate additions of various
types of columns as a foundation to achieve high performance.
Topological origins of tail-addition columns: The computing
for tail-addition columns is the bottleneck to PH matrix reduction.
We find that most tail-addition columns (see table 2) are creator
columns (columns that are zero when fully reduced and topolog-
ically correspond to simplices that generate cycles, e.g. column
5 in Figure 1). This is because the columns that usually take the
most time to reduce are columns that need to be completely zeroed,
requiring many column additions. This also explains the power of
the clearing lemma, since it can be used to zero all paired creator
columns.

Besides using the clearing lemma, tail-addition columns can be
handled by employing compression (Sec. 4.3), introducing paral-
lelism (Sec. 4.4), computing cohomology for special cases (Sec. 4.3),
or using efficient data structures such as bit-tree-pivot column from
PHAT([6] (lowering instruction counts). We are able to employ all
of these techniques in HYPHA.

4 THE HYPHA FRAMEWORK

In this section, we introduce our framework, HYPHA, a HYbrid
Persistent Homology matrix reduction Accelerator. We first present

HYPHA ICS ’19, June 26-28, 2019, Phoenix, AZ, USA
0-additions -~ non-tail-additions tail-additions —
s 1 1 1 1 1
808 0.8 0.8 0.8 0.8
w
S 0.6 0.6 0.6 0.6 0.6
g 0.4 04 0.4 0.4 04
s 0.2 0.2 0.2 0.2 0.2
Q
R Ofpec 0:
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
Column Fraction Column Fraction Column Fraction Column Fraction Column Fraction
(a) high_genus_extended (b) mumford (c) torus (d) 18-sphere (e) saddle_orbit 64

Figure 4: The column addition distribution in various datasets. high_genus_extended is from the PHAT benchmark datasets.
mumford comes from a 4-skeleton of the Rips filtration with 50 random points from the Mumford dataset [29]. torus comes
from an alpha shape filtration [22] defined on 10,000 points sampled from the torus embedded in R>. 18-sphere comes from
a synthesized simplicial complex of a 19-dimensional single simplex with its interior removed. saddle_orbit_64 comes from a
cubical complex generated from a 3D image using a 64> sub-region.

Dataset # of tail-adds. cols. (% of tail-adds. cols. that are creator)
high_genus_extended 4.69 x 107 90.98
mumford 2.03 X 10° 100.00
torus 3.92x 103 99.97
18-sphere 2.16 X 10° 100.00
saddle_orbit_64 9.89 x 10% 99.98

Table 2: The topological origin of tail-adds. columns, show-
ing the percentage of tail-adds. columns that are creator
columns

an overview of HYPHA by comparing it with existing work, and
then we go over each phase of HYPHA in detail.

4.1 Overview

Fig. 5 compares HYPHA with existing work in the format of a finite
state machine. Fig. 5 (a) introduces the framework in existing PH
software packages, which is algorithm independent, being either
sequential or parallel. The framework starts from the column ad-
ditions of standard algorithm to update the boundary matrix and
the lookup table. Once the lookup table is updated, clearing and/or
compression is triggered to zero corresponding columns and rows
in the boundary matrix. This process stops at the column addition
phase when there is no column that can be changed.

Boundary matrix Boundary matrix

Lookup table &
Leftmost 1s,

Column
Addition++
(multicore)

Clearing &
Compression ++
(multicore)

Column
Addition

Clearing &
Compression

Scanning
(GPU)

Lookup table Lookup table

(a) The framework in existing work

(b) The framework in this work (HYPHA)

Figure 5: The frameworks of existing work and HYPHA.

In contrast, the HYPHA framework includes three phases involv-
ing the states in Fig. 5 (b). The GPU-scan is the start phase to find
0-addition columns and leftmost 1s. Due to the SIMT execution
pattern in this phase, we implement it on GPU in a highly efficient
manner. Following that is the clearing and compression phase on
multicore CPU to eliminate rows and columns labeled by GPU on
multicore. Different with the existing framework that starts from
the column additions of the standard algorithm in order to trigger
clearing and compression, our framework identifies indices to clear

73

and compress immediately from GPU scan for leveraging its results.
With the identified leftmost 1s and the 0-addition columns, the
clearing and compression phase can potentially eliminate much
more unnecessary additions (details in Sec. 4.3). The third phase
is the matrix reduction phase. This is reduction of the submatrix
determined after the clearing and compression phase. In this phase,
we can enhance the parallel spectral sequence algorithm on mul-
ticore with a multi-level scheduling mechanism for load balance
(details in Sec. 4.4).

4.2 GPU-scan Phase

By observing the standard algorithm Alg. 1, we determine that a
column is a 0-addition column if its lowest 1 is the leftmost 1 in its
row, since there is no column to the column’s left that can be added
to it. Furthermore, a leftmost 1 implies its column cannot be zeroed,
even if that column is reducible in the algorithm (Lemma 4). This
provides us with an opportunity to apply compression on multicore
later.

Searching the leftmost 1s is challenging. Launching individual
threads for each row and recording the first-met 1 with multi-
threading on CPU are hardly expected to be efficient since the scan
operation itself is simple yet the scale is massive. Compared to
millions of columns in a boundary matrix, commonly only tens
of CPU cores can be found in a machine. Such a SIMT execution
model [44] motivates us to employ GPU accomplishing the task,
on which the number of cores is two orders of magnitude higher.

It is worth noting that due to sparsity, a boundary matrix is
usually stored in a CSC format. To efficiently find out leftmost 1s at
each row over CSC, the GPU-scan algorithm in Alg. 2 includes three
steps. In our algorithm, a column that is deemed fully reduced by
GPU-scan is defined as a stable column; otherwise, it is an unstable
column. Thus, stable columns are 0-addition columns and columns
with all zeros are stable (including columns zeroed by clearing). In
Alg. 2, we use stable to mark the columns identified as stable and
the unstable column indices are aggregated in u. Alg. 2 also sets up
two arrays for the following phase, i.e., Left that stores the column
indices of leftmost 1s, indexed by row, and Lookup as the lookup
table that records the pivots of stable columns.

Alg. 2 initializes global data structures on the GPU side, moves
the boundary matrix from CPU to GPU, and launches the kernels

ICS ’19, June 26-28, 2019, Phoenix, AZ, USA

Algorithm 2 GPU-scan algorithm

1: procedure GPU_Scan(d)
2: Left — {oo}

3 Lookup « {-1}

4 stable «— {0}

5: u—~0
6
7
8
9

n « 0.num_cols
dim3 blks(BLK_SIZE, 1, 1)
dim3 grds(ceil_div(n, BLK_SIZE), 1, 1)
: set_leftmost<<<grds, blks>>>(d, Left, stable)
10: set_lookup<<<grds, blks>>>(9, Left, Lookup, stable)
11: set_unstable<<<grds, blks>>>(stable, u)
12: return Left, Lookup, u
13: function __global _ set_leftmost(d, Left, stable)
14: gid: global thread idx
15: if gid < n then

16: if d|gid].length = 0 then

17: stable[gid] « 1

18: else

19: for rid < 0 to d[gid].length — 1 do

20: Left[rid] <« atomicMin(Left[rid], gid)
21: function __global__ set_lookup(d, Left, Lookup, stable)
22: Input: low(-) comes with 9

23: if gid < n then

24: if low(gid) # —1 and Left[low(gid)] = gid then
25: Lookup[low(gid)] « gid

26: stable[gid] « 1

27: stable[low(gid)] « 1

28: function __global__ set_unstable(stable, u)
29: if gid < n then

30: if stable[gid] = 0 then

31 U U Ugtomic {gid}

one by one. The set_leftmost kernel is responsible for searching
the leftmost 1s in the boundary matrix and writing them into Left.
At this step, the zero columns are also identified and their ids are put
into stable. The set_lookup kernel setups Lookup: if the lowest
1 of a column is the leftmost 1 at that row, the entry is a pivot
and is put into Lookup. We also apply the clearing lemma to zero
the low(gid), as shown in Line 27. The last step of set_unstable
excludes stable columns identified in the prior steps and prepares
the unstable column arrayj, i.e., u, for the following phases.

Fig. 6 shows how our algorithm works over the example matrix
in Fig. 1 (b), in which the numbers in red color are the updated
values in this phase. Our algorithm collects three kinds of metadata
used for accelerating the following column additions. First, the left-
most 1s indicate which rows could be zeroed before the calculation.
Second, the lookup table keeps track of pivots. Third, we keep track
of unstable columns in u The lookup table itself can be used to
speed up the column addition by applying multiple additions in
parallel. Additionally, knowing which columns are unstable can
reduce the number of memory accesses in the following phases, by
performing the iterations over the unstable columns instead of the
whole boundary matrix.

74

S. Zhang et al.

Phase 1
Left: [3,4, 3,6, 6,6, »]
Lookup: [-1,-1,-1,-1,-1,-1,-1]
stable: [1,1,1,0,0,0,0]
u: (]

Lookup: [-1,-1,-1,-1,-1,-1,-1]
stable: [0,0,0,0,0,0,0]
u: []

Phase 3
Left: [3,3,4, 6,6, 6, 0]
Lookup: [-1,-1, 3,-1,-1,6,-1]
stable: [1,1,1,1,0,1,1]
u: [4]

Phase 2
Left: [3, 4, 3, 6, 6, 6,]
Lookup: [-1,-1, 3,-1,-1, 6, -1]
stable: [1,1,1,1,0,1,1]
u:[]

Boundary matrix

Figure 6: GPU scans an example boundary matrix.

Data transmission: Employing GPU to scan the boundary matrix
introduces additional data transmissions. The complete boundary
matrix has to be moved to GPU before the kernel launch, and the
scanning results need to be sent back as well. We hide the CPU-
GPU data transmission in the file system I/O. When the program
reads the boundary matrix from the disk to the main memory, an
individual thread is launched to migrate the progressively read
data blocks to GPU. With this technique, copying the boundary
matrix incurs little overhead. Compared to the boundary matrix,
the scanning results are much smaller. The insignificant overhead
of GPU to CPU data transmission can be ignored.

4.3 Clearing and Compression Phase

The key idea of both clearing and compression is that if a pivot
(i, j) has been found, persistence pairs like (x, i) and (j, x) will never
exist, where x could be any index other than i and j. As a result, dis-
covering a pivot (i, j) means we can safely zero column i (clearing)
and row j (compression).

Algorithm 3 Clearing

1: procedure CLEAR(R)

2: for cid « 0 to R.num_cols-1 do > parallelizable
3 if low(cid) # -1 then
4 Rllow(cid)] « 0

The metadata collected in the GPU-scan phase provides us with
an opportunity to apply both techniques for preprocessing the
boundary matrix before the final matrix reduction phase on multi-
core. The pivots in the lookup table and the positions of leftmost 1s
spreads in all dimensions. Although we have already identified the
columns that we can zero by GPU, we must write the results to a
boundary matrix on CPU side (recall the GPU-scan does not write
to the matrix). Thus we first apply clearing in parallel on multicore
to affect the boundary matrix at little extra cost. Define a submatrix
as a matrix restricted to a subset of rows and columns. Knowing
the stable columns, this results in an n X (n — s) submatrix to reduce
where n is the number of columns and s is the number of stable
columns. Then we apply compression to it, further eliminating d+s’
rows where d is the number of unique finite entries in Left, and s’
is the number of nonzero stable columns.

Every column of the form low(j) for any column j can be zeroed
by Lemma 2. Any elements in the Left other than oo indicates the
rows to be zeroed, e.g., we can set all entries at row 3 to 0 if Left[2] =

HYPHA

3, where 2 is arbitrary. Furthermore, if the compression changes a
stable column into the state containing only the lowest 1 but all
zeros at the other rows, we can safely set all entries to that lowest
1’s right as zero. This technique has the same effect as a column
addition from stable columns to unstable columns without actually
performing the column addition. During compression, we utilize
all meta data of destroyer indices (columns that must eventually
have a pivot) and known pivots from GPU-scan by clearing out
all compressible rows while adding stable columns to all unstable
columns, zeroing out the right of a stable pivot. Our implementation
is based on [4] but involves a memoized row-based depth first search
for compressible indices and uses Lemma 4.

Algorithm 4 Find compressible indices

1: procedure FIND-COMPRESSIBLE(R, C, Left, Lookup, u)

2 > The array C records if a row can be compressed
3 for cid € udo > parallelizable
4 for rid € R[cid] do

5 SEARCH(rid)

6: function SEARCH(rid)

7: if C[rid]=COMPRESSIBLE then

8: return true

9 else if C[rid]=INCOMPRESSIBLE then

10: return false

11: if rid € Left then

12: C[rid]«<—COMPRESSIBLE

13: return true

14: else if Lookup(rid] > —1 then

15: for k € R[Lookup[rid]] excluding rid do
16: if SEARCH(k) = false then

17: C[rid] < INCOMPRESSIBLE
18: return false

10: C[rid] < COMPRESSIBLE

20: return true

21: else

22: C[rid] « INCOMPRESSIBLE

23: return false

The compression algorithm we employ is composed of two stages.
FIND-COMPRESSIBLE(:) checks entries of the unstable columns
and marks which ones are COMPRESSIBLE. An entry will be com-
pressed if 1) its row index is a column index containing any leftmost
1, or 2) there is a stable column to its left having all nonzero entries
above it compressible. With these two conditions, more indices in
addition to the ones identified by the columns with leftmost 1s are
compressible. So we introduce a temporary array C to record these
compressible row indices. APPLY-COMPRESSION(:) is the proce-
dure which actually zeros the compressible rows (excluding pivots)
and zeros all entries to the right of (low(j),j), for j a stable column
found by GPU and low(j) an incompressible row, by column addi-
tion. Both stages of our compression algorithms are implemented
with multithreading. Despite clearing and compression having been
widely adopted, to the best of our knowledge, we are the first em-
ploying both optimizations before the matrix reduction phase. This
may minimize the additions in later computation, especially for the
tail-addition columns.

75

ICS ’19, June 26-28, 2019, Phoenix, AZ, USA

Algorithm 5 Compression

1: procedure CoMPRESSION(R, Left, Lookup, u)
2 C «—{UNKNOWN}
3: FIND-COMPRESSIBLE(R, C, Left, Lookup, u)
4: APPLY-COMPRESSION(R, C, Left, Lookup, u)
5: procedure AppLY-COMPRESSION(R, C Left, Lookup, u)
6 for cid € udo > parallelizable
7: for rid € R[cid] in decreasing order do
8 pivotcol < Lookup[rid]
9: if pivotcol = —1 then
10: if C[rid]=COMPRESSIBLE then

11 Rlcid][rid] < 0

12: else if pivotcol < cid then

13: if C[rid]=COMPRESSIBLE then
14: R[cid][rid] « 0

15: else

16: R[cid] < R[cid] + R[pivotcol]

To check the effects of clearing and compression in HYPHA,
we count the column additions in our algorithm, CHUNK [4] and
TWIST [11]. Notice that TWIST and spectral sequence in PHAT end
up executing the same column additions, with SS in parallel and
TWIST sequentially. Furthermore, in TWIST only clearing is applied
while in CHUNK both optimizations are adopted. Our experimental
results over three datasets are presented in Figure 7, where the
x-axes are column fraction and the y-axes are accumulated column
additions. For the high_genus_extended dataset, we can observe
that HYPHA significantly lowers the scale of tail-addition columns
and has the least total column addition number (49.65M total col-
umn additions). For the mumford dataset, HYPHA and CHUNK
both removes a large portion of column additions compared to the
TWIST algorithm, where HYPHA requires 10.73M column addi-
tions, CHUNK requires 8.60M ones and TWIST requires 35.66M
ones before the boundary matrix has been fully reduced. For the 18-
sphere dataset, HYPHA eliminates all column additions via clearing
and compression while TWIST has 19 column additions. Although
CHUNK applies both optimization techniques, it still has 74.99K col-
umn additions. From the experiments, we can observe that HYPHA
is more likely to effectively remove column additions compared to
the existing algorithms, especially for the tail-addition columns.
Computing Cohomology: There is one further optimization for
special cases [3] besides clearing and compression that can be em-
ployed optionally in HYPHA, namely computing persistent coho-
mology. Computing persistent cohomology [16][15] for persistence
pairs can potentially result in speedup over directly computing
persistent homology with the boundary matrix. This is due to a
change in the set of creator columns, replacing the original dis-
tribution of tail columns of the boundary matrix. In matrix terms,
matrix reduction involves computing persistence with columns
representing the coboundaries instead of the boundaries. In PHAT
this is performed by constructing the anti-transposed matrix [15]
[6] and performing any equivalent PH matrix reduction algorithm
on the anti-transposed matrix. The clearing lemma can thus be
applied to reducing an anti-transposed matrix. Notice how apply-
ing clearing, Lemma 2, on the anti-transposed boundary matrix is

ICS ’19, June 26-28, 2019, Phoenix, AZ, USA

S. Zhang et al.

TWIST/tail — TWIST/non-tail - - TWIST/0-add. —&— CHUNK/tail CHUNK/non-tail HYPHA/tail-add. — HYPHA/non-tail - - HYPHA/0O-add. —¢

2 400M 40M 80K
ke
Z300Mm 30M 60K
<
c 40K
£ 200M
E / oM
S100m : 20K
5 10M //
é:) obe==oo s czisse—t" e A R S— 0

0.99 0.992 0.994 0.996 0.998 1 09 092 094 09 098 1 0.99 0.992 0.994 0.996 0.998 1

Column Fraction
(a) high_genus_extended

Column Fraction
(b) mumford

Column Fraction
(c) 18-sphere

Figure 7: The accumulated number of column additions in various datasets when using HYPHA, CHUNK and TWIST. SS and

TWIST have the same column addition distribution.

closely related to Lemma 4. In HYPHA, we are able to perform ma-
trix reduction on antitransposed boundary matrices to still find the
original persistence pairs via index transformation after reducing
the matrix.

4.4 Final Phase

For the matrix reduction stage on the extracted submatrix, we
choose either a sequential or parallel algorithm. Parallel algorithms
do not necessarily outperform sequential ones, considering the high
computational dependency among columns and the long computa-
tion chain for very few columns, i.e., the tail-addition columns. In
our design, the sequential algorithm is derived from the standard
algorithm with TWIST, and the parallel algorithm is based on the
spectral sequence algorithm but with a multi-level scheduling for
load balance. We call our parallel design as the spectral sequence
plus (SS+) algorithm, which is designed to handle imbalance column
additions to improve the classical spectral sequence (SS) algorithm.

In the SS algorithm, we observe that column additions usually
concentrate in a small portion of tiles. Scheduling one thread to
process one tile (tile-based scheduling) in the SS algorithm results
in imbalance workloads arranged to threads. Therefore, we design
our SS+ algorithm as follows: at the beginning of each round of
processing tiles along a diagonal, as long as we find the unstable
columns locate in only a small portion of tiles and the unstable
column number is much higher than the working thread number,
we schedule working threads to process unstable columns equally
(column-based scheduling); otherwise, we schedule one thread for
one tile. By dynamically switching the scheduling between tile-
and column-based, SS+ further improves the performance of matrix
reduction.

We implement our SS+ algorithm and compare it to the SS algo-
rithm from PHAT. We use two types of underlying data structures
to store the boundary matrix, vector-of-vector or bit-tree. Both of
them are implemented in PHAT. For vector-of-vector, a column is
represented as a vector of C++ and all columns are stored as the
elements of another vector. The bit-tree-based method uses the
vector-of-vector to store the boundary matrix, but an individual
column is transformed to a bit tree [21] when performing the col-
umn additions. We also test the performance of two algorithms

76

SS/bit-tree (=3 SS/vector-vector
10‘1 000 SS+/bit-tree 7] SS+/vector-vector
£
= 100
=)
=
g
10 NN\ V /
2 NN [/
N\
NN\~

w/ clearing w/o clearing

Figure 8: Running time in seconds of SS+ and SS algorithms
over dataset high genus_extended, w/ and w/o clearing, using
bit-tree or vector-of-vector as the underlying data structure.

with and without the clearing technique. The experimental results
on the real-world dataset high_genus_extended are presented in
Fig. 8, where the y-axis is the running time in seconds. The system
used for the experiment is presented in Section 5. The left and
right group of data are the performance results with and without
clearing, respectively. The pillars show the average performance
and the error bars are the standard deviation. We can see that in
all cases SS+ outperforms PHAT-SS algorithm. With clearing, SS+
completes the computation in 13.69s (bit-tree) and 46.15s (vector-
of-vector), as SS requires on average 15.20s (bit-tree) and 65.81s
(vector-of-vector), respectively. With clearing, SS+ can save 9.9%
and 29.9% execution time. Without clearing, the average running
time of SS+ are 131.58s (bit-tree) and 506.91s (vector-of-vector).
These are lower than the ones of SS, which are 167.04s (bit-tree)
and 738.19s (vector-of-vector). Without clearing, SS+ can save 21.1%
and 31.3% execution time.

Putting all the algorithms and mechanisms together, we have
developed HYPHA (Alg. 6), which is an implementation of the
framework in Fig. 5 (b). HYPHA starts from the GPU-scan to iden-
tify 0-addition columns and leftmost 1s. With collected results,
HYPHA immediately applies clearing and compression. In the final
phase, column addition is executed on multicore, with a parallel
mode or a sequential one. We use the SS+ or the original SS algo-
rithm for parallel, and the twist algorithm for sequential. Other

HYPHA

Algorithm 6 HYPHA

1: procedure HYPHA(input: 9, an n X n matrix)
2: Left, Lookup, u <~ GPU-SCAN(9) > after GPU-scan,
transfer metadata from GPU to CPU
R«9
CLEARING(R)
COMPRESSION(R, Left, Lookup, u)
MATRIX_REDUCTION_ALGORITHM(R, Lookup, u)
return R

>R is on CPU side

matrix reduction algorithms can also be embedded into the HY-
PHA framework to leverage the results of GPU-scan and enhanced
clearing/compression.

5 EXPERIMENTAL RESULTS

The experiments are carried out on a HPC cluster, where each node
is equipped with 2 Intel Xeon Gold 148 CPUs (40 cores in total),
running at 2.4 GHz clock rate, with a 32K L1 cache, a 1024K L2
cache, and shared 28160K L3 cache. There is also a Tesla V100 GPU
with 16 GB device DRAM installed in each node.

We compare HYPHA with state-of-the-art parallel software pack-
ages, including PHAT [2] and DIPHA [5]. PHAT provides different
implementations of PH matrix reduction on a single node, while
DIPHA is a distributed implementation for multiple nodes. We label
these implementations as PHAT-TWIST, PHAT-SS, PHAT-CHUNK,
and DIPHA, and ours as HYPHA-TWIST and HYPHA-SS for sequen-
tial and parallel, respectively. Tab. 3 shows a high-level comparison
of functionalities. For the parallel ones, PHAT-CHUNK, PHAT-
SS, DIPHA, and HYPHA-SS follow the 2D tile partitioning; and
PHAT-CHUNK and HYPHA-SS can also partition data by columns.
HYPHA-TWIST is marked with the column partitioning because
of the parallel preprocessing steps, e.g., GPU-scan. The table also
shows only HYPHA has the enhanced compression (denoted with
two check marks), and only HYPHA-SS has different scheduling
policies for load balancing, as discussed in Sec. 4.4.

5.1 GPU-scan Throughput in HYPHA

We first compare the throughput of stable column discovery (includ-
ing those identified by the clearing lemma) of HYPHA GPU-scan
with the throughput of identifying (sequentially scanning through)
the set of 0-additions columns in TWIST (including those zeroed by
clearing). Specifically, for both GPU-scan and TWIST we measure
the number of discovered fully reduced columns divided by the
time it takes to process them. This should be a fair comparison since
GPU-scan discovers a very similar set of 0-additions columns as
TWIST. We calculate the normalized throughput in Figure 9, where
time for GPU-scan includes memory copy time and destroyer index
discovery time. HYPHA GPU-scan shows its high efficiency. On the
dataset 18-sphere, we observe the highest improvement: HYPHA
GPU-scan has a factor of 106.11x throughput improvement for iden-
tifying fully reduced columns. On the 18-sphere all but 1 column
(more than a 1 million columns) are labeled stable by HYPHA in
milliseconds. Best utilizing the massive parallelism provided by
GPU, we are able to boost the performance of our scan algorithm.
It is certainly worth performing GPU-scan to find metadata of the

77

ICS ’19, June 26-28, 2019, Phoenix, AZ, USA

HYPHA/stable column GPU-scan =1
5103 TWIST/0-additions column sequential scan
a
I 2
1o
[N
c A
10
£ . \
S 3
- ﬁﬂ H H ﬂ
N / /

high genus extended mumford torus 18-sphere saddle orbit 64

Figure 9: HYPHA GPU-scan vs. TWIST 0-additions sequen-
tial scan throughput, for fully reduced columns, normalized
to the throughput of TWIST 0-additions column scanning,.

input boundary matrix such as 0-additions columns. We will next
measure full matrix reduction time to get a complete picture of the
overall performance.

5.2 Overall Performance Comparisons

We evaluate the overall performance of HYPHA by comparing with
PHAT and DIPHA. Following the same experimental setup [5], we
run DIPHA on up to 40 nodes, and launch one MPI process on one
core of each node. In this case, the large cluster is much more expen-
sive than our light facility of single node of 40 cores with GPU, and
more importantly, DIPHA can utilize more cache space than others.
In this experiment, we collect the computation time for various
algorithms and measure speedup with respect to the standard PH
matrix reduction algorithm (Alg. 1) in PHAT. The results are pre-
sented in Fig. 10, which shows the HYPHA framework achieves the
best performance across all datasets. In high_genus_extended, torus,
and saddle_orbit_64, HYPHA (HYPHA-TWIST or HYPHA-SS) can
achieve 116.01x, 97.38x, and 86.52x speedups, respectively; which
are almost two orders of magnitude. For mumford and 18-sphere, the
HYPHA framework can still speedup the PH matrix reduction by a
factor of 5.01x and 14.16x over the standard algorithm. Among the
algorithms of PHAT, the best one depends on the datasets. PHAT-
TWIST outperforms the other two algorithms in torus (52.61x),
18-sphere (5.96x) and saddle_orbit_64 (37.32x) while PHAT-SS and
PHAT-CHUNK are the best ones in high_genus_extended (53.24x)
and mumford (4.27x), respectively. DIPHA is not necessarily faster
than the standard algorithm implemented in PHAT for the datasets
mumford and 18-sphere, due to the overhead of MPI communication.
For high_genus_extended, torus, and saddle_orbit_64, DIPHA run-
ning on 40 nodes achieves 16.11x, 33.02x, and 82.56x speedups. Over-
all, HYPHA outperforms the fastest algorithms of PHAT and DIPHA
in various datasets by a factor of up to 2.38x (vs. PHAT-TWIST in
18-sphere), 2.18x (vs. PHAT-SS in high_genus_extended), 1.85x (vs.
PHAT-TWIST in torus), 1.17x (vs. PHAT-CHUNK in mumford), and
1.05x (vs. DIPHA-40nodes in saddle_orbit_64), respectively.

We profile an example case to understand the sources of the per-
formance gain by HYPHA. Figure 11 presents a breakdown of run-
ning time of HYPHA-TWIST over the dataset high_genus_extended,
normalized to PHAT-TWIST. In this experiment, we individually
measure the running time for Pre-processing + 0-additions, non-tail-
additions and tail-additions, which have been identified as typical
computation tasks of PH algorithms in Section 3. By taking advan-
tage of the powerful GPU scanning, HYPHA-TWIST takes 51.10%

ICS ’19, June 26-28, 2019, Phoenix, AZ, USA S. Zhang et al.
PH Implementation | Sequential | Parallel Cf(’)firtltl(;glzlge]S;ZZ]; s[chcegﬂii?; Multi-node | GPU-scan | Clearing | Compression
PHAT-TWIST v v
PHAT-SS v v v v
PHAT-CHUNK v v v v v v
DIPHA M v v v v
HYPHA-TWIST v v v v v v
HYPHA-SS v v v v v v v VY%

Table 3: High-level comparisons of HYPHA with PHAT and DIPHA. Two check marks indicate that HYPHA has the enhanced
compression, which eliminates more boundary matrix entries.

less time to processing 0-addition columns and other pre-processing
operations. Furthermore, such pre-processing significantly allevi-
ates the computation burden for the later steps. Figure 11 also shows
that for non-tail-additions and tail-additions, 65.28% and 66.45%
computations are removed, respectively.

5.3 Discussion

Having made algorithmic and systems efforts in a holistic way, we
show that the conventional "one-size-fits-all" approach does not of-
ten win. This is because to process PH matrix reduction on a MIMD
parallel computer or on a powerful single core machine would not
fully exploit rich but two different types of parallelisms exhibited in
algorithms, and would not utilize advanced and hybrid devices of
both GPU and multicore. Although parallel processing community
has impressive accomplishments of solving challenging problems
on GPU, an immediate question would be "why not execute the
whole PH matrix reduction on GPU?".

There are several reasons for not recommending using GPU
alone. First, as the analysis of Sec. 3 shows, the column addition
patterns are highly irregular. For the tail-columns, the data depen-
dency forces the additions to be sequential: only after adding one
column and updating the lowest position of the tail-column, we
can continue adding the next column until the last one. We have
traced the additions on each column of dataset torus, and identified
the highest number of sequential additions on a single column is
~62000. Compared with the execution performance of a matrix
reduction on a single core of CPU, the performance on GPU is
underperformed. Second, the column addition needs the runtime
memory management to resize buffer, because the addition may add
or delete non-zeros on columns. For torus that has at most 3 non-
zeros in each column at the beginning, the algorithm changes the
number of non-zeros of columns to near hundreds and to even tens
of thousands at runtime. Although there are several GPU libraries
for dynamic graphs and matrices [9, 24, 38, 42] we can leverage,
the overhead of buffer resize on GPU is still too high in PH matrix
reduction. Therefore, HYPHA puts the scan phase on GPU and
leaves the highly skewed, dependent, and dynamic column addition
phase on multicore.

6 SEPARATION OF PARALLELISMS UNDER
AMDAHL’S LAW

Amdahl’s law quantifies the speedup of a program with a fraction
of work (f) to be accelerated in parallel by a factor of S as follows:

1

SP(f.8) = ———
a-f+k

78

. Under this framework, for a hybrid system with GPU and multi-
core, the speedup is:

1
Sphy(fgy fmy Sga Sm) =

= fy—fm)+ E+ L2

, where fg, fm are the fractions of work for GPU and multicore,
respectively; Sy and Sy, are the acceleration factors on the fractions
of work fg, fm, respectively. Since our hybrid system only consists
of two components, fg + fin = 1. Thus,

Sg X Sm

fg X Sm + fm X Sy

- Fig. 12 plots the curve of SPy,, that monotonically increases with
respect to fy over [0,1] from Sy, to Sy. Notice as long as Sy, and
Sg are both > 1, then SPhy > 1. Assuming Sg > Sp, the maximum
speedup is S; when we are able to effectively execute an application
only by GPU; and the minimum speedup is Sy, without involvement
of GPU.

Although Fig. 12 quantifies execution of an application based
on separation of SIMT and MIMD parallelisms conceptually by
showing the trajectory of the performance improvement, it may
not be able to fully characterize the HYPHA framework. The reason
is as follows. Amdahl’s Law models the SIMT acceleration (S4) and
MIMD acceleration (S;,) independently and the total performance
improvement is proportional to the contributions from the two
accelerations, namely in fractions of f; and fr;. In HYPHA, the
SIMT and MIMD parallelisms are separated and the execution is
independent on GPU and multicore, respectively. However, the GPU
scanning is not only fast, but also makes a careful preparation to
significantly improve the efficiency of the next two stage reductions.
This type of communicative and collaborative computation (see
Figure 11) may not be modeled by Amdahl’s Law.

SPhy =

7 RELATED WORK

There are several PH software packages to date. Our work focuses
on reducing an arbitrary boundary matrix (PH matrix reduction).
We selected PHAT and DIPHA to compare against since they in-
volve state of the art efficient parallel algorithms for PH matrix
reduction. We briefly overview several other relevant software
efforts.

Javaplex [1] is a commonly used software for PH computation
due to the breadth of tools it offers for its users. Javaplex is not
state of the art in terms of computing performance. Dionysus [32]
is a python interfaced C++ library for PH computation. It does not
offer any parallelism that we know of. It is faster than Javaplex. It
is known to be slower than PHAT and thus we do not compare

HYPHA ICS ’19, June 26-28, 2019, Phoenix, AZ, USA
e10°
c HYPHA-TWIST C3 PHAT-TWIST PHAT-CHUNK DIPHA-20nodes
T HYPHA-SS PHAT-SS DIPHA-40nodes DIPHA-10nodes
o
5 o102 7 N
o = — ~—
2 < g I N
© / /
% 5101 N g N ; N . g
© © W i g
() c AN g A /| [\ AN g
© / /
3 ‘N D / AN / /
wn (|,_)100 i / g ; % N
< % g \ / N &
E N / / N\ / /
high_genus_extended mumford torus 18-sphere saddle_orbit_64

Figure 10: The speedups of various algorithms over the standard PH reduction algorithm implemented in PHAT.

PHAT-TWIST EXJ
HYPHA-TWIST B

ime
- s

Tim.
oo oo
N A OO

Tail-additions

Norm. Running

Pre-processing + 0-additions Non-tail-additions

Figure 11: The time breakdown of HYPHA-TWIST running
over the dataset high_genus_extended, normalized to PHAT-
TWIST.

with it. PHAT [6] is a CPU library written in C++. It offers two
potentially parallel algorithms: spectral sequence and chunk [4].
PHAT has efficient data structures for column additions. DIPHA
[5] is a distributed computing software that can handle very large
data sets (in the billions). Ripser is a time and memory efficient soft-
ware that computes Vietoris Rips persistence barcodes (persistence
pairs) from distance matrices sequentially. Ripser performs very
well with its two (there are atleast four) optimizations: clearing [11]
and cohomology [15]. There are many datasets (any dataset that
is not a filtered Vietoris rips complex) that ripser cannot compute
with and so we do not compare with ripser. Eirene [28] uses Morse
reduction [31] for an arbitrary filtration to simplify the boundary
matrix. GUDHI [40] is a TDA C++ library for computing, amongst
many things, the persistent cohomology of certain complexes such
as rips or alpha complexes via compressed annotation matrices
[8], [19]. In addition, GPU has been used in computational geom-
etry applications, including 3D triangle meshes, [14], and Jaccard
similarity for cross-comparing spatial boundaries of segmented
objects [41].

Best utilizing the device memory in GPU is an important topic.
Efforts for high throughout have been made to dynamically allocate
memory [23] and to batch the indexing operation in key value
stores [45].

8 CONCLUSION

The high performance of HYPHA is achieved by an effective sepa-
ration of SIMT and MIMD parallelisms, which enables us to make
the following three algorithmic and system efforts. First, reduction
operations are parallelized in both SIMT and MIMD modes, and
executed on the best suitable device of GPU or multicore.

79

SPhy —
g Sq ///’y////
S
@
8 Sm
n
0 0.2 0.4 0.6 0.8 1

fg: Proportion of work on GPU

Figure 12: this illustrates Amdahl’s law on a hybrid system’s
speedup by both GPU and multicore.

Second, the metadata data structures such as the lookup table
that are a byproduct of the GPU scan further improves the effi-
ciency of matrix preprocessing and parallel processing, lowering
the computing complexity. Finally, HYPHA cuts data transmission
overhead by overlapping the data loading to GPU with the same
operations on the multicore side, and reduce the data movement fre-
quency by significantly reducing the number of column additions.
Our efforts make HYPHA win both performance and hardware cost
(especially compared to a distributed algorithm like DIPHA).

Although HYPHA is developed for PH matrix reduction, it is a
framework for high performance computing of irregular execution
and data access patterns on hybrid systems. Our methodology of
understanding structural issues of algorithms and their mappings
to advanced architecture based on a holistic anatomy of a targeted
application aims for general-purpose hardware and software design.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their insightful
comments and suggestions. We would also like to acknowledge our
colleagues, who work in the fields of topological data analysis and
high performance computing, for their reading of the manuscript:
Chao Chen, Tamal Dey, Gregory Henselman, Rodrigo Mendoza-
Smith, P. Saddayapan, and Yusu Wang; and thank Guangming Tan
and Erlin Yao for the helpful discussions on accelerating irregular
algorithms. This work has been partially supported by the National
Science Foundation under grants CCF-1513944, CCF-1629403, and
CCF-1718450 as well as an IBM scholarship.

ICS ’19, June 26-28, 2019, Phoenix, AZ, USA

REFERENCES

(1] Henry Adams and Andrew Tausz. 2011. Javaplex tutorial.
Google Scholar (2011).

[2] IST Austria. 2017. PHAT (Persistent Homology Algorithm
Toolbox), v1.5. Retrieved 01/22/2019 from https://bitbucket.
org/phat-code/phat

[3] Ulrich Bauer. 2018. Ripser: efficient computation of Vi-

etoris—Rips persistence barcodes. Retrieved 01/22/2019 from

https://github.com/Ripser/ripser

Ulrich Bauer, Michael Kerber, and Jan Reininghaus. 2014. Clear

and compress: Computing persistent homology in chunks.

In Topological methods in data analysis and visualization III.

Springer, 103-117.

Ulrich Bauer, Michael Kerber, and Jan Reininghaus. 2014. Dis-

tributed Computation of Persistent Homology. In Proceedings

of the Meeting on Algorithm Engineering & Expermiments. So-
ciety for Industrial and Applied Mathematics, Philadelphia,

PA, USA, 31-38.

Ulrich Bauer, Michael Kerber, Jan Reininghaus, and Hubert

Wagner. 2017. Phat-persistent homology algorithms toolbox.

Journal of symbolic computation 78 (2017), 76-90.

Mehmet E. Belviranli, Peng Deng, Laxmi N. Bhuyan, Rajiv

Gupta, and Qi Zhu. 2015. PeerWave: Exploiting Wavefront

Parallelism on GPUs with Peer-SM Synchronization. In Pro-

ceedings of the 29th ACM on International Conference on Su-

percomputing (ICS ’15). ACM, New York, NY, USA, 25-35.

https://doi.org/10.1145/2751205.2751243

(8] Jean-Daniel Boissonnat, Tamal K Dey, and Clément Maria.
2013. The compressed annotation matrix: An efficient data
structure for computing persistent cohomology. In European
Symposium on Algorithms. Springer, 695-706.

[9] Federico Busato, Oded Green, Nicola Bombieri, and David A
Bader. 2018. Hornet: An efficient data structure for dynamic
sparse graphs and matrices on gpus. In 2018 IEEE High Perfor-
mance extreme Computing Conference (HPEC). IEEE, 1-7.

[10] Gunnar Carlsson. 2009. Topology and data. Bull. Amer. Math.
Soc. 46, 2 (2009), 255-308.

[11] Chao Chen and Michael Kerber. 2011. Persistent homology

computation with a twist. In Proceedings 27th European Work-

shop on Computational Geometry, Vol. 11.

David Cohen-Steiner, Herbert Edelsbrunner, and Dmitriy Mo-

rozov. 2006. Vines and vineyards by updating persistence in

linear time. In Proceedings of the twenty-second annual sympo-

sium on Computational geometry. ACM, 119-126.

[13] Yuri Dabaghian, Facundo Mémoli, Loren Frank, and Gunnar
Carlsson. 2012. A topological paradigm for hippocampal spa-
tial map formation using persistent homology. PLoS computa-
tional biology 8, 8 (2012), €1002581.

[14] Vin De Silva and Robert Ghrist. 2007. Coverage in sensor
networks via persistent homology. Algebraic & Geometric
Topology 7, 1 (2007), 339-358.

[15] Vin De Silva, Dmitriy Morozov, and Mikael Vejdemo-
Johansson. 2011. Dualities in persistent (co) homology. Inverse

Problems 27, 12 (2011), 124003.
[16] Vin De Silva, Dmitriy Morozov, and Mikael Vejdemo-

Johansson. 2011. Persistent cohomology and circular coordi-
nates. Discrete & Computational Geometry 45, 4 (2011), 737-
759.

(6]

(12]

80

S. Zhang et al.

[17] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale.
Commun. ACM 56, 2 (2013), 74-380.
Robert H Dennard, Fritz H Gaensslen, V Leo Rideout, Ernest
Bassous, and Andre R LeBlanc. 1974. Design of ion-implanted
MOSFET’s with very small physical dimensions. IEEE Journal
of Solid-State Circuits 9, 5 (1974), 256—268.
Tamal K Dey, Fengtao Fan, and Yusu Wang. 2014. Computing
topological persistence for simplicial maps. In Proceedings of
the thirtieth annual symposium on Computational geometry.
ACM, 345.
Herbert Edelsbrunner and John Harer. 2010. Computational
topology: an introduction. American Mathematical Soc.
Peter M. Fenwick. 1994. A New Data Structure for Cumulative
Frequency Tables. Softw. Pract. Exper. 24, 3 (March 1994), 327-
336.
Kaspar Fischer. 2000. Introduction to alpha shapes. Depart-
ment of Information and Computing Sciences, Faculty of Science,
Utrecht University 17 (2000).
Isaac Gelado and Michael Garland. 2019. Throughput-oriented
GPU memory allocation. In Proceedings of the 24th Symposium
on Principles and Practice of Parallel Programming. ACM, 27—
37.
Oded Green and David A Bader. 2016. cuSTINGER: Supporting
dynamic graph algorithms for GPUs. In High Performance
Extreme Computing Conference (HPEC), 2016 IEEE. IEEE, 1-6.
[25] Gregory Henselman and Robert Ghrist. 2016. Matroid filtra-
tions and computational persistent homology. arXiv preprint
arXiv:1606.00199 (2016).
Christoph Hofer, Roland Kwitt, Marc Niethammer, and An-
dreas Uhl. 2017. Deep learning with topological signatures. In
Advances in Neural Information Processing Systems. 1634-1644.
Kaixi Hou, Hao Wang, Wu-chun Feng, Jeffrey S Vetter, and
Seyong Lee. 2018. Highly Efficient Compensation-based Paral-
lelism for Wavefront Loops on GPUs. In 2018 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE,
276-285.
Alan Hylton, Janche Sang, Greg Henselman-Petrusek, and
Robert Short. 2017. Performance enhancement of a computa-
tional persistent homology package. In 2017 IEEE 36th Interna-
tional Performance Computing and Communications Conference
(IPCCC). IEEE, 1-8.
Ann B Lee, Kim S Pedersen, and David Mumford. 2003. The
nonlinear statistics of high-contrast patches in natural images.
International Journal of Computer Vision 54, 1-3 (2003), 83-103.
[30] Rodrigo Mendoza-Smith and Jared Tanner. 2017. Parallel
multi-scale reduction of persistent homology filtrations. arXiv
preprint arXiv:1708.04710 (2017).
[31] Konstantin Mischaikow and Vidit Nanda. 2013. Morse theory
for filtrations and efficient computation of persistent homol-
ogy. Discrete & Computational Geometry 50, 2 (2013), 330-353.
[32] Dmitriy Morozov. 2017. Dionysus Software. Retrieved
01/22/2019 from http://www.mrzv.org/software/dionysus/
[33] Partha Niyogi, Stephen Smale, and Shmuel Weinberger. 2008.
Finding the homology of submanifolds with high confidence
from random samples. Discrete & Computational Geometry 39,

(18]

[19

—

[20

—

[21]

[26

—_

[27

—

—
(3]
[

[t

(29]

https://bitbucket.org/phat-code/phat
https://bitbucket.org/phat-code/phat
https://github.com/Ripser/ripser
https://doi.org/10.1145/2751205.2751243
http://www.mrzv.org/software/dionysus/

HYPHA

1-3 (2008), 419-441.

[34] Nina Otter, Mason A Porter, Ulrike Tillmann, Peter Grindrod,
and Heather A Harrington. 2017. A roadmap for the compu-
tation of persistent homology. EPY Data Science 6, 1 (2017),
17.

[35] Rahul Paul and Stephan K Chalup. 2017. A study on vali-
dating non-linear dimensionality reduction using persistent
homology. Pattern Recognition Letters 100 (2017), 160-166.

[36] IPresent. 2000. Cramming more components onto integrated
circuits. Readings in computer architecture 56 (2000).

[37] William J Reed. 2001. The Pareto, Zipf and other power laws.
Economics letters 74, 1 (2001), 15-19.

[38] Mo Sha, Yuchen Li, Bingsheng He, and Kian-Lee Tan. 2017.
Accelerating Dynamic Graph Analytics on GPUs. Proc. VLDB
Endow. 11, 1 (Sept. 2017), 107-120.

[39] Edwin H Spanier. 1989. Algebraic topology. Vol. 55. Springer
Science & Business Media.

[40] The GUDHI Project. 2015. GUDHI User and Reference Man-
ual. GUDHI Editorial Board. http://gudhi.gforge.inria.fr/doc/
latest/

[41] Kaibo Wang, Yin Huai, Rubao Lee, Fusheng Wang, Xiaodong
Zhang, and Joel H. Saltz. 2012. Accelerating Pathology Image

81

ICS ’19, June 26-28, 2019, Phoenix, AZ, USA

Data Cross-comparison on CPU-GPU Hybrid Systems. Proc.

VLDB Endow. 5, 11 (July 2012), 1543-1554.

Martin Winter, Daniel Mlakar, Rhaleb Zayer, Hans-Peter Sei-

del, and Markus Steinberger. 2018. faimGraph: High Perfor-

mance Management of Fully-dynamic Graphs Under Tight

Memory Constraints on the GPU. In Proceedings of the Interna-

tional Conference for High Performance Computing, Networking,

Storage, and Analysis (SC °18). IEEE Press, Piscataway, NJ, USA,

Article 60, 13 pages.

Michael Wolfe. 1986. Loops skewing: The wavefront method

revisited. International Journal of Parallel Programming 15, 4

(1986), 279-293.

[44] Yuan Yuan, Rubao Lee, and Xiaodong Zhang. 2013. The Yin
and Yang of processing data warehousing queries on GPU
devices. Proceedings of the VLDB Endowment 6, 10 (2013),
817-828.

[45] Kai Zhang, Kaibo Wang, Yuan Yuan, Lei Guo, Rubao Lee, and
Xiaodong Zhang. 2015. Mega-KV: a case for GPUs to maximize
the throughput of in-memory key-value stores. Proceedings of
the VLDB Endowment 8, 11 (2015), 1226-1237.

[43

—_

http://gudhi.gforge.inria.fr/doc/latest/
http://gudhi.gforge.inria.fr/doc/latest/

	Abstract
	1 Introduction
	2 Background
	2.1 Standard Matrix Reduction Algorithm
	2.2 Clearing and Compression
	2.3 Spectral Sequence Algorithm

	3 Anatomy of PH matrix reduction
	4 The HYPHA Framework
	4.1 Overview
	4.2 GPU-scan Phase
	4.3 Clearing and Compression Phase
	4.4 Final Phase

	5 Experimental Results
	5.1 GPU-scan Throughput in HYPHA
	5.2 Overall Performance Comparisons
	5.3 Discussion

	6 Separation of Parallelisms Under Amdahl's Law
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

