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Quantum algorithm for spectral projection by measuring an ancilla iteratively
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We propose a quantum algorithm for projecting a quantum system to eigenstates of any Hermitian operator,
provided one can access the associated control-unitary evolution for the ancilla and the system, as well as the
measurement of the controlling ancillary qubit. Such a Hadamard-test-like primitive is iterated so as to achieve
the spectral projection, and the distribution of the projected eigenstates obeys the Born rule. This algorithm can
be used as a subroutine in the quantum annealing procedure by measurement to drive the system to the ground
state of a final Hamiltonian, and we simulate this for quantum many-body spin chains.
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I. INTRODUCTION

The measurement postulate of quantum mechanics states
that when measuring an observable ô only its eigenvalues on

will be observed and the state of the system will be projected
to the corresponding eigenstate |on〉, for which ô|on〉 = on|on〉,
immediately after the measurement. Furthermore, the Born
rule prescribes the probability of such an outcome for an
initial quantum state |ψ0〉 as pn = |〈on|ψ0〉|2. Whether one
can derive the rule and hence remove it from the postulates of
quantum mechanics is still of fundamental interest [1]. From
the perspective of quantum information processing, general
construction of such spectral projection is also of practical
importance. For example, Ref. [2] constructs a quantum walk
approach to achieve this and emphasizes its utility in carrying
out a key step of the quantum simulated annealing (QSA)
algorithm for optimization problems [3]. The latter can be
used as an alternative to the adiabatic quantum computation
(AQC) [4,5]. In fact, the standard quantum phase estimation
(QPE) [6] and its variants [7–9] can also achieve approximate
spectral projection when the system is not in an eigenstate.

The QPE is crucial in many quantum information process-
ing applications [6], including factoring and, more relevant to
the present paper, the quantum-walk spectral measurement in
Ref. [2], as well as related methods for preparing a thermal
Gibbs state [10–13]. The standard QPE uses O(tg) controlled
unitary gates of the form c − U 2k

(for k = 0 to tg − 1) to
encode the tg binary digits of the phase value (in units of
2π ) and it requires O(t2

g ) gates in the inverse quantum Fourier
transform to retrieve the phase [6]. Regarding the accuracy of
QPE, in order to have the phase accurate in m binary digits
with the success probability of at least 1 − ε, the total number
of ancillary qubits needed is tg = m + log2(2ε + 1/2ε) [6].
In other words, using tg ancillary qubits allows the phase
value to be accurate in tg − log2(2ε + 1/2ε) binary digits.
The accuracy in the phase is thus limited by the number
of available ancillas employed in representing the value of
the phase, and when used as a spectral projection subroutine

the eigenstate the system is projected by the QPE to is only
approximate. The unitary U may be implemented by e−iô�t ,
and in the QPE the power in the unitary U needs to go as large
as 2tg−1; equivalently, the timing �t needs to be made accurate
to 2k (for k = 0 to tg − 1). Maintaining the stability of U and
coherence of the quantum register when carrying out the QPE
is important for noisy intermediate-scale quantum processors.

Here, we apply a simple iterative approach to achieve
the spectral projection of an associated observable ô, and
in each step of the iteration only one ancilla is used as
the control to enact a unitary evolution (c−e−i�t ô) on the
system, conditioned on the ancillary state being |1〉. Then
only the ancilla is measured in the Pauli X basis. After a
sufficient number of steps have been carried out (see below),
the system is projected to an eigenstate of the operator ô. We
demonstrate by numerical simulations that our procedure can
lead to spectral projection by varying the parameter �t and
the ancilla’s state parameter.

To understand that repeated application of the primitive
eventually leads to spectral projection, we provide two per-
spectives. First, we show that on average the energy variance
of the system will decrease; see Eq. (13). If the energy
variance decreases to zero, then an eigenstate is reached.
Second, an intuitive picture of our procedure emerges: at
each step, the measurement of the ancillary qubit gives rise
to a random walk in the operator action, i.e., with either eQ̂0

or eQ̂1 acting on the system. The choice of which operators
depends on the measurement outcome; see Fig. 1 below. The
key notable difference from the conventional random walk is
that the outcome probability is state dependent. However, we
calculate the average random-walk action p0Q̂0 + p1Q̂1 per
step that is valid in the small �t limit, and find that it leads to a
map, see Eq. (19), that when repeated will drive the system to
an eigenstate. Both viewpoints validate that our procedure can
lead to spectral projection, as eigenstates have no energy (or
observable-value) variance and are fixed points of the iterative
procedure.

2469-9926/2020/101(3)/032339(17) 032339-1 ©2020 American Physical Society

https://orcid.org/0000-0003-4897-3410
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.101.032339&domain=pdf&date_stamp=2020-03-23
https://doi.org/10.1103/PhysRevA.101.032339


YANZHU CHEN AND TZU-CHIEH WEI PHYSICAL REVIEW A 101, 032339 (2020)

FIG. 1. Basic picture of our algorithm. (a) The primitive: one
ancilla is used as the control qubit for the control unitary, which
is jointly applied to the ancilla and the system, cU = |0〉〈0| ⊗ I +
|1〉〈1| ⊗ e−i�t ĥ, followed by a measurement on the ancilla in the X ≡
σ x basis. (b) Summary of the action on the input system state: |ψ ′

m〉 ∼
eQ̂m |ψ〉. This leads to a random-walk picture for the algorithm.

We emphasize that the time �t here, unlike in the QPE,
does not need to be exactly of the form 2k . Thus, in some
sense the protocol for spectral projection does not require
exact timing and can tolerate fluctuations and imprecision
in timing. In addition, the range of �t used need not span
over many orders of magnitudes related to the accuracy of the
QPE, i.e., max{�t}/ min{�t} can be much smaller than 2tg−1.
Moreover, the ancilla state does not need to be in the |±〉 state
right before the controlled unitary and it can be in almost any
pure state. As seen below, we can also used a fixed �t in our
procedure to achieve the spectral projection.

Given that spectral projection can be achieved, one imme-
diate question is what governs the distribution of the projected
eigenstates. For this we show that the distribution of this
eigenstate projection obeys the Born rule. Fundamentally, our
algorithm can be regarded as a procedure to achieve the effect
described in the measurement postulate. As an application,
we simulate the use of our spectral projection algorithm in
two spin-chain models, and demonstrate that ground states
at different transverse-field strengths can be successfully ob-
tained, when there is a gap in the Hamiltonian throughout the
parameter range of interest.

Our initial motivation for this paper comes from the in-
centive to devise a simple quantum version of the Lanczos
algorithm. An approach was recently proposed in Ref. [14]
by implementing an effective unitary evolution e−iheff �τ to
simulate the effect of imaginary-time evolution e−h�τ on a
quantum state. We wish to develop an alternative approach
that does not require the searching of the effective Hamilto-
nian heff . However, we could not make the procedure work
due to high-order effect, and we describe such a failed attempt
in the Appendix A. However, it was analyzing this that lead us
to the spectral projection algorithm and the understanding of
why the attempt failed.

The remainder of the paper is organized as follows. In
Sec. II we discuss a primitive that slightly generalizes the
Hadamard test by using a general ancillary state. By repeat-
ing this primitive a sufficient number of times, we argue

that it will project the system to an eigenstate. In Sec. III
we describe the approach to classically simulate the above
procedure and verify by simulations that it indeed leads to
an eigenstate or spectral projection algorithm. There, we use
random Hermitian matrices for illustration and also demon-
strate that such spectral projection obeys the Born rule for
the final distribution of projected eigenstates. In Sec. IV we
give illustrations of our spectral projection algorithm using
the quantum transverse-field Ising spin chain. In Sec. V we
discuss the effect of decoherence. In Sec. VI we illustrate
the use of our spectral projection algorithm in the quantum
annealing for two different spin chains. Finally, in Sec. VII,
we make some concluding remarks.

II. THE PRIMITIVE AND THE ALGORITHM FOR
SPECTRAL PROJECTION

The primitive that our algorithm is based on is similar to
the Hadamard test and will be described below. The algorithm
itself is a repeated application of such a primitive. We will
provide analysis to support that our algorithm can achieve
spectral projection.

A. The Hadamard test and the primitive

The basic idea of our approach is to entangle a system with
an ancilla qubit prepared in a certain state, and then measure
the ancilla in a chosen basis, similar to the so-called Hadamard
test. This is commonly used in many quantum information
processing protocols [6]. We will describe a slightly varied
primitive, in which the ancilla need not be in the |+〉.

Let the system be in an initial state |ψ〉 and an ancilla
in |A〉 = α|0〉 + β|1〉 with |α|2 + |β|2 = 1. We entangle the
ancilla (as the control) and the system (as the target) by
the controlled operation c − U ≡ |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ U ,
where U = exp (−iĥ�t ) is the unitary evolution under a
Hamiltonian ĥ within a duration �t . We then measure the
controlling ancillary qubit in the basis (|0〉 ± eiξ |1〉)/

√
2, with

the ± associated with the measurement outcome m = 0 or 1,
respectively. This is equivalent to measuring the observable
cos(ξ )σx + sin(ξ )σy on the ancilla. We shall see below that
we can take ξ = 0 without loss of generality, and thus the
measurement will correspond to the Pauli X basis, and the
primitive is illustrated in Fig. 1.

The measurement of the ancilla then collapses the system
to the un-normalized state:

|ψ ′
m〉 = 1√

2
[〈0| + (−1)me−iξ 〈1|][α|0〉|ψ〉 + β|1〉U |ψ〉]

= 1√
2

[α + (−1)me−iξβe−it̂�t ]|ψ〉, (1)

and the corresponding probability of obtaining the outcome m
is

pm = ||ψ ′
m||2 = 1

2 [1 + 2(−1)mRe(α∗βe−iξ 〈ψ |e−iĥ�t |ψ〉)].
(2)

Here we see that the phase factor e−iξ from the measurement
basis can be absorbed into the ancilla’s initial state parameter
β, and thus we can set ξ = 0 from now on without loss of
generality, resulting in the ancilla measurement to the fixed
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Pauli X, the eigenstates of which are simply |±〉 ≡ (|0〉 ±
|1〉)/

√
2.

1. Eigenstates are fixed points of the primitive

It is easy to see that for any eigenstate |Ej〉 with eigenen-
ergy Ej the postmeasurement state is still |Ej〉, but the proba-
bility of getting the mth outcome is

p j,m = 1
2 |α + (−1)mβe−iE j�t |2 (3)

= 1
2 [1 + 2(−1)mRe(α∗βe−iE j�t )]. (4)

The probabilities for “0” and “1” outcomes add up to
unity: p j,0 + p j,1 = 1. Moreover, their difference p j,0 −
p j,1 = 2Re(α∗βe−iE j�t ) = 2|αβ| cos(φ − Ej�t ) can be used
to determine Ej�t up to an overall sign and multiples of
2π , where α∗β = |αβ|eiφ . To uniquely determine Ej , one
can use a different set of (α, β ) and �t to obtain different
distributions for estimation. Note that in order to achieve op-
timal determination we can maximize |αβ|, which is achieved
when |α| = |β| = 1/

√
2 and corresponds to using an ancillary

state |A〉 = (|0〉 + eiφ|1〉)/
√

2. The choice of |+〉 is the typical
ancillary state in the Hadamard test.

Suppose we have two different energy eigenstates with
distinct energies Ej 
= Ek; generically the two distributions
are different, p j,m 
= pk,m, unless the choice of (α, β ) and
�t coincidentally makes Re(α∗βe−iE j�t ) = Re(α∗βe−iEk�t ).
Hence, by accumulating enough statistics, one can determine
whether the two eigenstates have the same energy or not. One
can use different “distance” measures, such as the relative
entropy to quantify the distinguishability. Quantities such as
the Chernoff bound can also be used to quantify the likelihood
of deviating from the average values and thus the degree
of distinguishability for a finite number of measurements
performed.

For the system’s initial state being |ψ〉 = ∑
j c(0)

j |Ej〉, then
the probability of getting outcome m in the ancilla’s mea-
surement can be shown to be p(0)

m = ∑
j |c(0)

j |2 p j,m, which is
a convex mixture of the extremal distributions pj,m from the
eigenstates. This means that the knowledge of the distribution
p(0)

m is not sufficient to infer uniquely the compositions of the
eigenstates. If we are given only a copy of |ψ〉 and if it is not
in an eigenstate, then it is not possible to estimate p(0)

m by any
measurement.

2. Energy change

First, we can ask how much the energy has changed after
one such primitive step: �E(m) ≡ 〈ψ̃ ′

m|ĥ|ψ̃ ′
m〉 − 〈ψ |ĥ|ψ〉,

where |ψ̃ ′
m〉 ≡ |ψ ′

m〉/√pm is the normalized postmeasure-
ment state. By using the expressions for the postmeasurement
state |ψ ′

m〉 (1) with ξ = 0 and the probability pm (2), we can
calculate �E(m) explicitly and arrive at (see Appendix B for
derivations)

�E(m) = 2(−1)m
(
Rh − 〈h〉R1

)
1 + 2(−1)mR1

(5)

where parameters R1 and Rh are defined as

R1 ≡ Re(α∗β〈ψ |e−iĥ�t |ψ〉), (6)

Rh ≡ Re(α∗β〈ψ |e−iĥ�t ĥ|ψ〉). (7)

In order to obtain some intuition of the above expression, we
can expand it to the first nonvanishing order. We find that for
Im(α∗β ) 
= 0 the lowest nonvanishing contribution occurs at
the first order in �t :

�E(m) = 2(−1)mIm(α∗β )

1 + 2(−1)mRe(α∗β )
〈�h2〉�t, (8)

where the expectation 〈· · · 〉 is evaluated with respect to
|ψ〉, e.g., 〈ĥ〉 ≡ 〈ψ |ĥ|ψ〉, and the 〈(�h)2〉 ≡ 〈ψ |ĥ2|ψ〉 −
〈ψ |ĥ|ψ〉2 is the energy variance of the state |ψ〉. Thus, gener-
ically the change in the energy after one step is proportional
to the energy variance before the application of the primitive.

We note that, however, when Im(α∗β ) = 0, the change in
energy is in the second order:

�E(m) = −Re(α∗β )(〈ĥ3〉 − 〈ĥ2〉〈ĥ〉)(�t )2

1 + 2(−1)mRe(α∗β )
. (9)

Of course, the exception is when Re(α∗β ) = ±1/2, which
corresponds to the case of the ancillary state being |±〉. In
the case of using |+〉 of the ancilla, the change in energy to
the first nonvanishing contribution is

�E =
{ 1

4 (〈ĥ3〉 − 〈ĥ2〉〈ĥ〉)(�t )2, m = 0
〈ĥ3〉
〈ĥ2〉 − 〈ĥ〉, m = 1

. (10)

The above two outcomes are switched, if the ancilla’s state
is |−〉.

It is interesting to observe that in general the energy will
always change if |ψ〉 is not an eigenstate, except when the
ancilla’s state satisfies Im(α∗β ) = 0 (e.g., in the |±〉 state) and
the system satisfies 〈ĥ3〉 − 〈ĥ2〉〈ĥ〉 = 0, then the energy will
not change.

B. The algorithm

The algorithm is simply a procedure that repeats the above
primitive many times. In each step, the ancilla parameters
(α, β ) and the duration �t can be different. In the following,
we provide argument to support that our algorithm indeed will
achieve spectral projection, by analyzing two quantities that
characterize the average effect, in terms of the energy variance
and the average action of a random walk.

Before we proceed to the analysis, we need to first ask
the following question: how do we know the algorithm has
produced a converged eigenstate? Assume that the system
converges to an eigenstate |Ej〉. Applying the c − U gate to
the ancilla (initially in α|0〉 + β|1〉) and the system leaves
the system intact but changes the relative phase in the an-
cilla: α|0〉 + βe−iE j�t |1〉. Following the idea in the so-called
eigenstate witness method [15], one can perform quantum
state tomography on the identically prepared ancillary qubit
after applying the control unitary. A single-qubit tomography
involves measurement in Pauli X, Y, and Z bases, as for a
general one-qubit mixed state ρa = (I + ∑

i=x,y,z riσi )/2 its
parameters can be obtained from measurement: ri = Tr(ρaσi ).
In our algorithm, we perform X measurement, but measure-
ment in Y can also achieve spectral projection, as we have
argued that the measurement phase ξ in |0〉 ± eiξ |1〉 was
conveniently absorbed in the ancilla parameter β. We can also
perform Pauli Z measurement, which will project the ancilla
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and the system to |0〉|ψ〉 or |1〉e−iĥ�t |ψ〉, and it does not
affect the spectral projection. If the state tomography shows
that it remains in a pure state, then the system must be in an
eigenstate and hence it is converged. One can use the purity
of the resultant ancillary state as a measure for convergence.
Moreover, from the tomography, the quantity Ej�t can also
be determined (up to multiple of 2π ). By using different sets
of �t , one can then uniquely determine Ej .

1. Perspectives from probability distribution

As we shall see below, successive coupling of individual
ancillas with the system and measurement on ancillas help
to drive the system to an eigenstate, therefore arriving at
the final distribution pm = p j∗,m for some j∗ labeling the
eigenstate |Ej∗ 〉. The procedure gives rise to a sequence of
0/1 outcomes, namely, a bit string 0, 1, 1, 0, . . . from the
ancillas’ measurement. From the perspective of probability
distribution, it starts with p(0)

m , and after successive application
of the primitive the distribution flows: p(0)

m → p(1)
m → · · · p(n)

m ,
and after n steps p(n)

m will be close to some p j∗,m. (In terms
of coins, there are n + 1 different coins.) We stress, however,
that in the process we cannot obtain the distributions p(k)

m from
measurement as we are given only one copy of the system, but
we only obtain a sequence of 0 and 1. From this sequence
we can only estimate the average probability of getting 0
and 1, i.e., pm. In the case of the eigenstates, such average
distribution can be used to distinguish whether two given
eigenstates have different energy or not (as the eigenstate
does not change, and hence the “coins” are identical, as we
have discussed previously). However, for an arbitrary initial
state of the system, does the knowledge of pm guarantee the
projection?

Given that our algorithmic procedure enables the projec-
tion to eigenstates (as argued and numerically demonstrated
below), then from the bit string and the knowledge of the
initial state of the system one can indeed infer the distributions
p(k)

m , as well as whether and what energy eigenstate is arrived
and what the corresponding eigenenergy is by direct clas-
sical simulations. However, for large system sizes, classical
simulations will not be possible. How do we argue that our
procedure indeed leads to spectral projection? How do we
explain that in the limit of long sequence pm will eventually
flow to an extremal or fixed-point distribution pj∗,m? In the
following, we provide two physically motivated approaches
to understand the spectral projection.

2. Energy variance

If the energy variance of a quantum state is zero, the state is
an energy eigenstate, i.e., VE (ψ ) = 0 ↔ ĥ|ψ〉 = E |ψ〉, where
VE (ψ ) ≡ 〈ψ |(�h)2|ψ〉 = 〈ψ |ĥ2|ψ〉 − 〈ψ |ĥ|ψ〉2. Thus, en-
ergy variance is an important indicator to how close the
state has converged to an eigenstate. Carrying out the prim-
itive yields the outcome “0” with probability p0 and the
normalized postmeasurement system state |ψ̃ ′

0〉 ≡ |ψ ′
0〉/

√
p0,

and the outcome “1” with probability p1 and the normalized
postmeasurement system state |ψ̃ ′

1〉/ ≡ |ψ ′
1〉/

√
p1. Given the

probabilistic nature due to measurement, it is thus natural to
consider the average change of the energy variance after one

step:

δVE ≡ [p0(〈ψ̃ ′
0|ĥ2|ψ̃ ′

0〉 − 〈ψ̃ ′
0|ĥ|ψ̃ ′

0〉2)

+p1(〈ψ̃ ′
1|ĥ2|ψ̃ ′

1〉 − 〈ψ̃ ′
1|ĥ|ψ̃ ′

1〉2)] − 〈ψ |(�h)2|ψ〉.
Since the expectation value of ĥ and its function such as ĥ2 are
conserved, the above change can be simplified to be

δVE = 〈ψ |ĥ|ψ〉2 − [p0〈ψ̃ ′
0|ĥ|ψ̃ ′

0〉2 + p1〈ψ̃ ′
1|ĥ|ψ̃ ′

1〉2]. (11)

By using the expressions for the postmeasurement state (1)
and the probability (2), we can calculate δVE explicitly and
arrive at (see Appendix B for derivations)

δVE = −4

1 − 4R2
1

(R1〈h〉 − Rh)2, (12)

where the two parameters R1 and Rh are defined previously as
in Eqs. (6) and (7), respectively. Given that |α∗β| � 1/2, the
parameter R1 satisfies R2

1 � 1/4. Thus, δVE � 0 and generi-
cally δVE < 0.

In order to obtain some intuition about δVE , we can expand
it in series of �t , and we find that when Im(αβ ) 
= 0 it is
nonvanishing at the second order:

δVE = − 4 Im(α∗β )2

1 − 4Re(α∗β )2
[〈ψ |(�h)2|ψ〉]2(�t )2. (13)

The factor c(α, β ) ≡ Im(α∗β )2/[1 − 4Re(α∗β )2] is maxi-
mized with a value 1/4 when β/α = eiφ and |α| = |β| =
1/

√
2. Such a choice represents a maximum “rate” of change

in the energy variance. Moreover, the change is also propor-
tional to the square of the energy variance of the system’s state
before carrying out the primitive.

We note that, however, when Im(α∗β ) = 0,

δVE = −Re(α∗β )2(〈ĥ3〉 − 〈ĥ2〉〈ĥ〉)2(�t )4

1 − 4Re(α∗β )2
, (14)

except when α = 1/
√

2 and β = ±1/
√

2, and the average
change in the energy variance is

δVE = − (〈ĥ3〉 − 〈ĥ2〉〈ĥ〉)2

4〈ĥ2〉 (�t )2. (15)

We observe that the quantity 〈ĥ3〉 − 〈ĥ2〉〈ĥ〉 has previously
appeared in the change of the energy (10).

The above analysis suggests that we should usually choose
ancillary parameters such that Im(α∗β ) 
= 0, except when
α = 1/

√
2 and β = ±1/

√
2, so as to make the average energy

variance decrease in O(�t2). If the energy variance continues
to decrease closely to zero, then an energy eigenstate is
approached. We remark that as demonstrated below it is not
necessary to use the same ancillary state and time duration
�t in every step of the procedure. Varying the ancilla’s state
away from |±〉 can be useful to avoid the system state getting
stuck in states that have 〈ĥ3〉 − 〈ĥ2〉〈ĥ〉 = 0. See also below in
Sec. IV for further discussions on this.

3. Random-walk approach

As the procedure outputs a pure state if the input is also
pure, a question arises as to how we can analytically under-
stand how the system is eventually driven to an eigenstate.
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Let us analyze the postmeasurement state |ψ ′
m〉 by expanding

it to the second order in �t :

|ψ ′
m〉 ≈ α + (−1)mβ√

2

[
1 + −iĥ�t − 1

2 (ĥ�t )2

1 + (−1)mα/β

]
|ψ〉.

We can rewrite the above equation to find the exponentiated
action on |ψ〉, i.e., |ψ ′

m〉 ∼ eP̂m |ψ〉, and ignore the overall
constant. As shown in Appendix B, we find that to the second
order in �t

P̂m = −iĥ�t − 1
2 (ĥ�t )2

1 + (−1)mα/β
+ 1

2

(ĥ�t )2

[1 + (−1)mα/β]2
. (16)

As P̂m is a polynomial of ĥ, one can separate it into two
commuting parts: one Hermitian and the other anti-Hermitian,
P̂m = (P̂m + P̂†

m)/2 + (P̂m − P̂†
m)/2 =: Q̂m + iR̂m. As the part

iR̂m is anti-Hermitian, its corresponding action eiR̂m is a
unitary, and it does not modify the relative weight in the
decomposition of energy eigenstates, so we can ignore it
when we consider eigenstate projection. Thus, we focus on
|ψ ′

m〉 ∼ eQ̂m |ψ〉, where Q̂m = (P̂m + P̂†
m)/2.

After a long sequence of iterations, we will have a long
product of operators eQ̂’s (which commute with one another)
acting on the initial state |ψ〉, such as

eQ̂1(α,β,�t )eQ̂0(α,β,�t )eQ̂1(α,β,�t ) · · · eQ̂0(α,β,�t ), (17)

which looks like a sequence of “random walk” using the
two operators in the exponent. However, the key difference
from a typical random walk is that there is a quantum
state that changes after every step and the probability of
moving to the left or right p0/1 is state dependent, as in
Eq. (2).

Here, as an approximation for the average action eQ̂(α,β,�t ),
which is valid in the limit �t → 0, we ignore the subsequent
state dependence and use the initial p0/1(ψ ) to calculate the
average in the exponent: p0(ψ ) · Q̂0 + p1(ψ ) · Q̂1, and we
arrive at∑

m=0,1

pmQ̂m = − Im(α∗β )2�t2

1 − 4Re(α∗β )2
[(ĥ − 〈ĥ〉)2 − 〈ĥ〉2]. (18)

Thus, the average one-step action gives rise to a map on the
system:

|ψ〉 → e−c(α,β )�t2(ĥ−〈ĥ〉)2 |ψ〉. (19)

The factor c(α, β ) � 0 is defined earlier and is maximized
with a value 1/4 when β/α = eiφ and |α| = |β| = 1/

√
2.

This represents the optimal choice of ancillary parameters to
maximize the converge rate, consistent with results presented
earlier.

The meaning of the above equation is that the procedure
tends to suppress components of eigenstates that have eigen-
values further away from hψ ≡ 〈ψ |ĥ|ψ〉. As one repeatedly
applies the primitive, the state |ψ〉 itself will change and
hence so will the expectation value 〈ψ |ĥ|ψ〉, with the latter

eventually approaching the energy eigenvalue and the system
state approaching the corresponding eigenstate. The random-
walk analysis gives similar conclusion as that by the change in
the average energy variance. We note that when Im(α∗β ) = 0
and the ancilla’s state not being |±〉 we need to carry out
the expansion to the fourth order, but we do not perform the
calculation here.

III. PROCEDURE FOR CLASSICAL SIMULATIONS

The primitive looks similar to the Hadamard test and
consists of a controlled-unitary action on the ancilla and the
system, as well as a subsequent measurement on the ancillary
qubit. Since the effect is to update the state vector of the
system, for classical simulations of this process, we only need
to compute two (un-normalized) wave functions |ψ (k)

m 〉 and
their norm squares p(k)

m ≡ 〈ψ (k)
m |ψ (k)

m 〉 at each step, say, kth,∣∣ψ (k)
m

〉 = 1√
2

[αk|ψ (k−1)〉 + (−1)mβkUk|ψ (k−1)〉], (20)

given the state, |ψ (k−1)〉, of the system from the end of the
previous step, the parameters αk and βk , and the unitary
Uk (�tk ) = e−i�tk ĥ.

One then decides to update the state |ψ (k)〉 = |ψ (k)
m 〉/√pm

by choosing m = 0 or 1 with probability p(k)
m . With a suitable

choice of {(αk, βk )} and {�tk}, the long-iterated state |ψ (k�1)〉
will converge to some eigenstate |En〉, as illustrated below.

Simulating this procedure for spectral projection also pro-
vides us a quantum-inspired classical algorithm to obtain
(randomly) excited states, the accuracy of which does not
depend on other lower-lying levels. The costly part is applying
e−iĥ�t to a state vector. However, for the purpose of a short-
range Hamiltonian, one can use the Trotter decomposition
and the individual e−iĥ j�t from ĥ = ∑

j ĥ j . Tensor-network
representations can also be useful.

To obtain the entire set of eigenstates, we need to simulate
the spectral projection as many times as the Hilbert-space
dimension. One can start with the system in an arbitrary
initial |ψ0〉 state. Run the procedure to obtain some eigenstate
|φ1〉, then subtract the portion of |φ1〉 from |ψ0〉, |ψ [1]〉 =
|ψ0〉 − 〈φ1|ψ0〉|φ1〉, and use the normalized version of |ψ [1]〉
as the input of the procedure. Repeat this until one exhausts
all the eigenstates that have nonzero overlap in |ψ0〉. For the
remaining eigenstates having zero overlap with |ψ0〉, we can
generate another random state and remove the components of
all previously found eigenstates and use the resultant state
as the input. In this way, we can eventually exhaust all
eigenstates. The benefit of this method is that the accuracy
of each eigenstate is independent of one another.

A. Simulation results: Illustrative examples

Let us illustrate the algorithm by considering the system
to be five-level, i.e., qudit with d = 5. We generate a 5 × 5
Hermitian matrix H5, with (H5)i j = (H5)∗i j = x + yi and x and
y uniformly sampled from the range [−1, 1] (except y = 0 for
the diagonal elements). Here we only display its elements in
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FIG. 2. The iteration procedure using various choices of �t (arbitrary unit) and φ. See the main text for detailed discussions of the four
types of choices I–IV. In (a) the energy is in an arbitrary unit and the values are recorded in the iteration; in (b) the energy variances (also in
arbitrary units) are recorded.

the diagonals and below:

H5 =

⎛
⎜⎜⎜⎜⎜⎝

−0.076 323 1

−0.513 28+0.073 275 9i 0.691 614

0.516 039+0.200 04i −0.884 252−0.248 885i −0.495 554

−0.379 429+0.303 255i 0.098 161 9−0.603 679i −0.484 382−0.134 895i 0.921 927

0.014 252 6+0.421 276i 0.635 987+0.081 791 1i −0.450 215−0.808 964i 0.6387+0.188 711i 0.736 562

⎞
⎟⎟⎟⎟⎟⎠,

(21)

the eigenvalues Ei of which, sorted from the smallest
to largest, are {−1.515 93,−0.700 576, 0.388 005, 1.0888,

2.517 93}. We also randomly generate a five-component nor-
malized vector to be the initial state:

|ψ0〉 = (0.506 424,−0.370 456 + 0.164 849i,−0.444 258

+ 0.194 814i,−0.037 288 8 − 0.334 39i,−0.475 495

− 0.067 103 5i)T . (22)

The state |ψ0〉 has an expected energy of −0.525 913, with
the probabilities |〈Ei|ψ0〉|2 in the five eigenstates being, re-
spectively,

{0.554 875, 0.072 925 6, 0.262 368, 0.008 411 86, 0.101 42}.
(23)

Next, we explore various combinations of (α, β ) and �t
in our classical simulations. Given that the optimal choice of
(α, β ) is such that |αβ| = 1/2, i.e., within the one-parameter
family (1, eiφ )/

√
2, we first discuss the choice of the phase

φ in this family. We have carried our a few simulations and
displayed the results in Fig. 2.

(I) Iterations with fixed �t and φ. With a sufficient num-
ber of iterations, even fixing �t = 1.0 and φ = 0 (i.e., the
standard Hadamard test), eigenstates can be reached with
increasing accuracy as the number of iterations increases. In
the simulations, we terminate the iteration once the energy
variance 〈(�h)2〉 has reached below 10−10. The specific ex-
ample run takes as long as 365 steps and converges to the
eigenenergy E3 = 0.388 005.

(II) Iterations with fixed �t but φ from a given set.
By fixing �t = 1.0 but choosing φ from kπ/4 (with k =

0, 1, . . . , 7), the specific example run takes 67 steps to con-
verge to the eigenenergy E2 = −0.700 576.

(III) Iterations with fixed �t but random choice of φ ∈
[0, 2π ). In the previous choice, φ is chosen from a set of
values, here we consider choosing φ randomly from [0, 2π ).
In the example run, it takes 68 steps to converge to the
eigenenergy E1 = −1.515 93.

(IV) Iterations with varying �t . In the previous three cases,
we do not need to change �t . But by allowing �t to vary,
the efficiency can be improved. For example, by recycling �t
from the set {100, 100/3, 100/32, 100/33, 100/34, 100/35}
and using random φ, it takes 43 steps to converge to the
eigenenergy E5 = 2.517 93.

We have also repeated the simulations using the above four
types of choices but for α = √

3/2 and β = eiφ/2, and the
results are shown in Fig. 3. We see that even without the
optimal ancillary parameters spectral projection can still be
achieved. The steps it take to converge are not significantly
larger than those using the optimal choice of the ancilla.

Let us compare our procedure to the QPE, in which the
control unitary needs to go as large a power as c − U 2tg−1

, in
order to gain accuracy in m binary digits, i.e., accurate up to
2−m, where m = tg − log2(2ε + 1/2ε) and 1 − ε is the lower
bound on the success probability of the QPE. To achieve the
same accuracy as 2−33 ≈ 10−10 in spectral projection by the
QPE, one needs the number of ancillary qubits tg to be more
than 33, and the power in U differs in magnitude by 233. In
contrast, the ratio of the largest �t to the smallest used in our
simulation (choice IV above) is only 35 ≈ 28. In the above
choices I–III, �t is fixed, but it takes more steps to converge
to the desired accuracy. In the QPE, the power of the unitary
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FIG. 3. The iteration procedure using various choices of �t (arbitrary unit) and φ similar to those in Fig. 2, except that α = √
3/2 and

β = 1/2 eiφ . See the main text for detailed discussions of the four types of choices I–IV. In (a) the energy values (arbitrary unit) are recorded
in the iteration; in (b) the energy variances (also in arbitrary units) are recorded.

U 2k
needs to be precise in order for the algorithm to work. The

procedure that we propose here does not require precise �t .
We have tested that the ability for the spectral projection does
not depend on the precise values of �t as above, and other
sequences can be used. For example, a different sequence is
used in Fig. 4 as an example by perturbing the previous set of
�t , and spectral projection is still achieved.

In all of the above simulations, in addition to the energy
value, the energy variance 〈(�h)2〉 is also recorded as the
procedure is carried out. We have seen that on average the
energy variance indeed decreases.

B. Distribution of eigenstates: The Born rule

Given that the iterations based on the primitive in Sec. II
lead to a procedure for projecting a system to eigenstates of a
Hermitian operator ĥ; here, we investigate the distribution of
eigenstates when this procedure is repeated many times. We
again take the H5 Hamiltonian (21) and the same initial state
(22) of the system and carry out simulations for our spectral
projection algorithm.

As seen from the results in Fig. 5 using 10 000 repetitions
of the procedure, the distribution of the eigenstates agrees
well with the Born rule, which predicts that the probability
of the nth eigenstate |En〉 is pn = |〈En|ψ0〉|2. That the Born
rule applies can be explained as followed. Since the controlled
unitary c − U = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ e−i�t ĥ commutes with
the Hamiltonian ĥ of the system, and hence with any eigen-
state projector |En〉〈En|. Therefore the expectation value of the
observable |En〉〈En| must be conserved and equals |〈En|ψ0〉|2.
Under the assumption and as observed above that the proce-
dure leads to eigenstate projection, then the distribution {qn}
of the projected eigenstates should remain the same as the
initial distribution, i.e., qn = |〈En|ψ0〉|2.

We note that there is nothing special about the Hamilto-
nian ĥ, and our proposed algorithm works for any Hermitian
operator. The Born rule will also apply. One may also regard
our procedure as a method to realize the statement in the
measurement postulate.
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FIG. 4. The iteration procedure using varying �t and random
φ. This corresponds to the choice IV in the main text. Here, �t is
chosen from the set {100, 100/3, 100/32, 100/33, 100/34, 100/35},
but perturbed by 1% of random fluctuations: �t → �t (1 + 0.01x)
with x ∈ [0, 1). There are four different runs but with the same initial
state of the system. In (a) the energy values are recorded in the
iteration; in (b) the energy variances are recorded. Both the energy
and its variance are displayed in arbitrary units.
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FIG. 5. Eigenstates distribution pn after the procedure (simula-
tions vs ideal Born rule). The Born rule predicts that pn = |〈En|ψ0〉|2.
The model under consideration is the H5 Hamiltonian in Eq. (21)
with the initial state in Eq. (22). The horizontal axis n labels the index
of eigenstates with eigenenergies (En) ordered from the lowest to the
highest. �t ∈ {100, 100/3, 100/32, 100/33, 100/34, 100/35} and φ

is chosen randomly each time in [0, 2π ), and for each �t value we
iterate five times. Each run is terminated when 〈(�h)2〉 < 10−10 and
if more iterations are needed when all values in the �t list are used
we recycle the �t list from the beginning. The statistics were obtain-
ing by averaging over 10 000 runs. The final distribution obtained
from the simulations is {0.5557, 0.0733, 0.2617, 0.0077, 0.1016}.

Number of iterations

In addition to the Born rule, we also investigate how
many iterations are needed to reach a desired accuracy, e.g.,
〈(�h)2〉 < 10−10. In the same simulation for the study of the
Born rule above, we also keep track of the number of iterations
in each run it takes to reach that accuracy. The results are
shown in Fig. 6 using histograms. As observed, the number
of required iterations is not narrowly peaked and this reflects
the randomness in the ancilla measurement outcome and the
state dependence in the outcome probability.

IV. SPECTRAL PROJECTION ALGORITHM APPLIED TO
THE TRANSVERSE-FIELD ISING MODEL

Here we consider physical models, such as the Ising model
in a transverse field (with the periodic boundary condition):

HTFI(g) =
Nq∑
i=1

[
gσ x

i σ x
i+1 − (1 − g)σ z

i

]
. (24)

Our parametrization is slightly different from that in the
literature. The spin-spin coupling strength is J = g (antifer-
romagnetic if J > 0) and the external field is B = (1 − g).
In Fig. 7, we take g = 0.5 (the critical point in the large Nq

limit), Nq = 5, and the initial state |ψ0〉 = | + − + −+〉 and
simulate the spectral projection procedure. The values of φ

are randomly chosen and those of �t are listed in the caption.
We see in Fig. 7 that spectral projection can be achieved with
accuracy of 10−10 by using �t that ranges less than three
orders of magnitude. To use the QPE for spectral projection,
it will require the unitary controlled by the ancilla to raise to
at least 232, which is far from practical at present.

We also compare the distribution of projected eigenstates
in the simulation with the ideal Born rule. In the case of
degeneracy, we assign the portion according to the overlap
square with these degenerate eigenstates. This again confirms
the Born rule of our spectral projection procedure in a spin
model.

The use of the ancillary state |A〉 = |±〉
In our simulations for the Ising model we have encountered

cases where the use of |±〉 in the ancillary state has caused the
system to flow to certain class of states which under further
iterations do not change the energy, despite that they were
not eigenstates. But we have not observed such phenomena
in the random Hamiltonian case explored earlier. This can be
explained by the expressions in Eq. (10), which shows that
when 〈ĥ3〉 − 〈ĥ2〉〈ĥ〉 = 0 the energy does not change to lowest
order in �t . This occurs when

|ψ〉 =
∑

i;Ei=−E

ai|Ei〉 +
∑

j;Ej=E

b j |Ej〉, (25)

as one can verify that

〈ĥ〉 =
⎛
⎝ ∑

j;Ej=E

|b j |2 −
∑

i;Ei=−E

|ai|2
⎞
⎠E , (26)

〈ĥ2〉 = E2, (27)

〈ĥ3〉 =
⎛
⎝ ∑

j;Ej=E

|b j |2 −
∑

i;Ei=−E

|ai|2
⎞
⎠E3, (28)

and, hence, the above condition is satisfied. The state does
change under the iteration, but not the magnitudes |ai|2
and |b j |2 (after proper normalization). In the case of the
transverse-field Ising model, there are eigenstates of opposite
energies, and thus it can happen that the system is driven to
states of the form (25). In our example from random Hermi-
tian matrices, there are no eigenstates of opposite energies.

V. EFFECT OF DECOHERENCE

Our method in general does not protect against decoher-
ence. Let us consider a simple depolarizing channel D(ρi ) =
(1 − ε)ρi + ε1i/2 and apply to every system qubit. Here we
assume the ancillary control qubit is relatively error free, and
this reminds us of the assumption in the so-called DQC1 quan-
tum computing model [16], where only one qubit is clean. Due
to the depolarizing channel, the state remains in the original
undecohered state with a probability approximately (1 − ε)Nq ,
where Nq is the number of qubits in the system, but the
remaining portion 1 − (1 − ε)Nq can contribute substantially
to the energy change and its variance. If the decoherence
is applied at each step, then our procedure will have an
error of order at least 1 − (1 − ε)Nq ≈ Nqε for small ε at
each step of the iteration. This is confirmed in our numerical
simulations, as shown by the record of energy variance in
Fig. 8.

However, we imagine a contrived scenario that the de-
polarizing channel acts only, e.g., every 30 steps. Then the
procedure can achieve better accuracy in between two strikes
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FIG. 6. Histograms of the number of iterations to reach an eigenstate with an accuracy 〈(�h)2〉 < 10−10.

of the decoherence. This is illustrated in Fig. 9. The “disrup-
tions” due to decoherence are visible, especially in terms of
the upward jump in the energy variance in Fig. 9(b). If there
can be a sufficient number of iteration steps carried out before
decoherence takes place, then the system can converge close
to an eigenstate. Of course, the depolarizing channel takes
the system out of the eigenstate and the subsequent iterative
spectral projection procedure may take the system towards
another eigenstate. Since the decoherence process does not

commute with the system’s Hamiltonian, our procedure in the
presence of decoherence may serve at best as a robust way
of finding arbitrary eigenstates, rather than a robust way of
spectral projection.

VI. SPECTRAL PROJECTION AS A SUBROUTINE IN THE
QUANTUM ANNEALING ALGORITHM

We begin by describing the idea of quantum annealing
and related algorithms. One of the first proposed quantum
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FIG. 7. Example simulations on spectral projection for the five-qubit transverse-field Ising model. (a, b) Traces of energy and its variance
in arbitrary units, respectively. There are three different runs (but with the same initial state of the system). Each run is terminated
when 〈(�h)2〉 < 10−10. The phase parameter φ in the ancilla state is chosen randomly at each step and �t is chosen from the set
{100, 100/3, 100/32, 100/33, 100/34, 100/35} and each �t repeated five times. The iterations continue by recycling the �t set until the
desired precision is met. (c) The bottom panel compares the distribution of projected eigenstates in 10 000 simulation runs with the ideal Born
rule.

annealing methods is to use the imaginary-time Schrödinger’s
equation proposed by Finnila et al. [17]. The one that is
close to the modern AQC [4,5] is proposed by Kadowaki and
Nishimori [18], where the Hamiltonian is the combination
of the time-independent Ising model and a time-dependent
transverse field. The evolution of the quantum state was
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FIG. 8. Energy variance (in arbitrary units) in presence of deco-
herence. We apply the depolarizing channel at each step of the itera-
tion, with two different ε = 10−3 and 10−6. Two runs are performed
for each respective ε. The Hamiltonian is the transverse-field Ising
model with g = 0.5. It is seen that the energy variance is larger than
5ε. There are 204 steps in each run.

discussed in terms of the real-time Schrödinger’s equation
that takes the system in the ground state of the large-field
limit towards that of the zero-field limit. The AQC similarly
has a Hamiltonian H (g) that interpolates between a simple
Hamiltonian H (g = 0) with an easily prepared ground state
|G(0)〉 and the final Hamiltonian H (g = 1) that encodes the
solution of certain problems in the ground state of H (g = 1).
Provided the minimum gap of H (g) is not too small, then
evolving under the Hamiltonian via a suitable path g(t ) will
take the initial ground state very close to the final ground state
at the end of the evolution,

|�(T )〉 = T̂ e−i
∫ T

0 H (g(t ))dt |G(0)〉, (29)

where T̂ indicates that the integration is time ordered, and T
is the total time duration.

The key idea of the QSA by Somma et al. [3] is to exploit
the quantum Zeno effect and replace the unitary evolution
by measurement in the eigenbasis of H (gi ), in a successive
sequence of discrete gi (0 < g1 < g2 < · · · < gT = 1). If the
overlap of successive ground state |〈G(gk )|G(gk+1)〉| � 1 −
μ2 is sufficiently close to unity, then by the quantum Zeno
effect the final state after the whole sequence of measurement
should be very close to the final ground state |G(g = 1)〉. The
standard QPE and a randomization procedure were proposed
in Ref. [3] to achieve the measurement approximately. Below,
we use our spectral projection algorithm for the measurement
in the QSA and perform classical simulations for two different
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FIG. 9. Energy (top) and energy variance (bottom), similar to
the simulations in Fig. 8, except that ε = 0.01 and the depolarizing
channel applies only every 30 steps, starting at step 1 and ending at
step 181. There are 204 steps in each run of the three runs. Both the
energy and its variance are displayed in arbitrary units.

Hamiltonians, and we loosely refer to this also as quantum
annealing.

A. Transverse-field XzY model

Here, we consider a different spin chain [19] than the Ising
model:

HXzY (g, r) =
Nq∑
i=1

[
−g

(
1 + r

2
σ x

i−1σ
z
i σ x

i+1

+ 1 − r

2
σ

y
i−1σ

z
i σ

y
i+1

)
− (1 − g)σ z

i

]
. (30)

One reason of choosing this transverse-field XzY model is
because, for the qubit number Nq being odd, there is a crossing
in the lowest few energy levels when the parameter g is varied;
see, e.g., Fig. 10. But for Nq being even there is a small
gap above the ground state (for finite Nq). Therefore, it is
interesting to compare the two different cases (but in the same
model) for the quantum annealing. In our simulations, we will
take r = 0.5.
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FIG. 10. Application of our spectral projection algorithm in the
quantum annealing as the subroutine. The figures display the energy
(in arbitrary units) after projecting to the eigenstates vs g for the
transverse-field XzY model at r = 0.5, i.e., HX zY (g = 0, r = 0.5)
for (a) N = 5 qubits and (b) N = 6 qubits. The curves represent
eigenenergies as a function of g. The procedure starts with two
different initial states: (1) [(blue) dots that start on the lowest curve]
the ground state |00000〉 of HX zY (g = 0, r = 0.5) and (2) [(red)
dots that start on the top curve] the highest-energy state |11111〉
of HX zY (g = 0, r = 0.5). All the energy levels of HX zY (g, r = 0.5)
are also shown by solid curves. (a) Due to energy-level crossings,
the ground state transits to a higher excited state after the crossing,
and the highest-energy state transits to a lower-energy state after an
associated crossing. Quantum annealing does not work if there is any
level crossing. (b) Due to the existence of a respective small gap, the
initial ground state ends up at the final ground state and the initial
highest-energy state ends up also at the final highest-energy state.

We begin with the initial state either as the ground state
or the highest-energy state of HXzY (g = 0, r = 0.5) and run
the simulations for the quantum annealing with our spectral
projection algorithm as a subroutine. The projection subrou-
tine works by performing 180 times the primitive in Sec. II,
thereby approximately projecting the system to eigenstates of
HXzY ( j�g, r = 0.5), where in this simulation �g = 0.05 and
j successively goes from 1 to 20, reaching g = 1 at the end.
We see, in Fig. 10(a) with Nq = 5, that the quantum annealing
does not work as there is an energy-level crossing and the
state of the system follows its path smoothly in the energy
space crossing the lowest-energy curve, and similarly for the
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FIG. 11. Application of our spectral projection algorithm in the
quantum annealing as the subroutine for the transverse-field Ising
model HTFI(g). The figure shows the energy (in arbitrary units) after
projecting to the eigenstates vs g for the five-qubit [top panel (a)]
and six-qubit [bottom panel (b)] transverse-field Ising model. The
procedure starts with two different initial states: (1) [(blue) dots that
start on the lowest curve] the ground state |00000〉 of HTFI(g = 0)
and (2) [(red) dots that start on the top curve] the highest-energy
state |11111〉 of HTFI(g = 0).

initial highest-energy case. However, the quantum annealing
indeed does work when there is a gap throughout the range of
g (except at the end) for the Nq = 6-qubit case in Fig. 10(b).

B. Transverse-field Ising model

Here, we return to the transverse-field Ising model (24) and
perform the quantum annealing with our spectral projection
as a subroutine. The ground state at g = 0 is unique and is
given by |0⊗Nq〉. But the ground states at g = 1 are doubly
degenerate, and they are |+⊗Nq〉 and |−⊗Nq〉. Similar to the
previous section, we examine small system sizes with Nq = 5
and 6, shown in Fig. 11. Given that there is small gap in both
cases, the quantum annealing works.

In the above simulations we have used the e−iĥ�t with-
out decomposing it into Trotter terms. In order to simulate
larger systems, we separate the Hamiltonian into two parts:
He(g) and Ho(g) for even and odd bonds, where terms in
He commute with one another and similarly for the terms
in Ho. Thus we can apply a Trotter-Suzuki decomposition

(a)

Nq=14

Nq=16

Nq=18

Nq=20

Nq=22

0.2 0.4 0.6 0.8 1.0
g

−25

−20

−15

−10

Energy

(b)

Nq=14

Nq=18

Nq=22

0.2 0.4 0.6 0.8 1.0
g

10−11

10−7

0.001

Variance

FIG. 12. Application of our spectral projection algorithm
in the quantum annealing as the subroutine that carries out the
measurement to project to eigenstates [3]. (a) The top figure
shows the energy (in arbitrary units) after projecting to the
eigenstates vs g. Different colors represent different qubit numbers
Nq = 14, 16, 18, 20, and 22. The procedure starts with the ground
state |00 · · · 0〉 of HTFI(g = 0). (b) The bottom figures shows the
energy variance (in arbitrary units) at each step of projection
(showing only for Nq = 14, 18, and 22 for illustration), which can
be used as a figure of merit for the error in the energy. Generally,
the variance is the largest around g = 0.5, which is the critical
point of the model in the thermodynamic limit. The curves are
drawn to connect dots and to guide the eye. There are in total
210 steps in each projection run. The parameter �t is chosen
from the list with number of repetitions shown in the parentheses:
[0.01(×10), 0.1(×10), 0.03(×50), 0.01(×100), 0.003(×40)] The
ancillary state is chosen as (α = 1/

√
2, β = eiφ/

√
2) with φ chosen

randomly in [0, 2π ).

to e−i(Ho+He )�t ≈ e−iHo�t e−iHe�t . This simulates the scenario
that in the quantum circuit one can apply simultaneously the
commuting terms of the controlled version of e−iHo�t and
subsequently those of e−iHe�t . In our classical simulations, we
use a fourth-order Trotter-Suzuki decomposition [20,21] for
e−i(Ho+He )�t :

e−i(Ho+He )�t ≈ e−ia1Ho�t e−ia1He�t

× eia2He�t eia2Ho�t e−ia3Ho�t e−ia3He�t e−ia3He�t

× e−ia3Ho�t eia2Ho�t eia2He�t e−ia1He�t e−ia1Ho�t ,

(31)
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FIG. 13. The effect of decoherence on the quantum annealing.
We use the contrived scenario that the decoherence with ε = 0.01
occurs at every 31th step in our spectral projection subroutine, where
the primitive is run for 180 steps. We use the five-qubit transverse-
field Ising model HTFI(g) and carry out three different runs. The
energy (a) [top] and its variance (b) [bottom] are shown as g is
varied. Both the energy and its variance are displayed in arbitrary
units. The initial state is the ground state |00000〉 of HTFI(g = 0).
The final grounds are doubly degenerate and are | + − + −+〉 and
| − + − +−〉.

where a1 = (2 + √
2)/4, a2 = −a1, and a3 = (1 +√

2)/2.
As seen in Fig. 12 with Nq = 114, 16, 18, 20, and 22, the

annealing proceeds at initializing the state at the ground state
of HTFI(g = 0), which is |00 . . . 0〉. Then the spectral projec-
tion is applied successively at g = j�g for j = 1, 2, . . . , 40
and �g = 0.025 (with the primitive being run 210 times in
each projection procedure), ending at g = 1 at the end of
the annealing. The final energy after the anneal is seen to
be close to the final ground-state energy, which is −Nq. The
accuracy in this case can be increased by making the �g
smaller and total number of iteration steps larger. The energy
variance is generally the largest around g = 0.5, and this is
expected as, in the thermodynamic limit, there is a second-
order quantum phase transition at gc = 0.5, and it is known
that the gap closes as O(1/N ) when g approaches gc from
below. As g approaches 1, the ground state becomes doubly
degenerate.

C. Effect of decoherence in the annealing

Here, we take into account the decoherence effect in our
spectral projection and discuss how it affects the quantum
annealing. In general, our algorithm does not project against
decoherence, as discussed in Sec. V, and hence the resulting
quantum annealing will be worse than the noise-free case. The
degree of inaccuracy depends on the error rate ε. We use, as
an illustration, the contrived scenario discussed above that the
decoherence with ε = 0.01 occurs at every 31th step in our
spectral projection subroutine, in which the primitive is run
for 210 steps. We test this on the five-qubit transverse-field
Ising model HTFI(g) and the results of three different runs
for the quantum annealing are shown in Fig. 13. As opposed
to the noise-free case, there is some probability (depending
on the noise rate and strength) that the final state may end
up far from the final ground state. But there is also some
probability that the final state is close to the final ground
state. Developing noise-protecting spectral projection is thus
a desirable goal that can yield a noise-protecting quantum
annealing algorithm.

VII. CONCLUDING REMARKS

We have proposed a quantum algorithm for projecting
to eigenstates of any Hermitian operator, provided one can
access the associated control-unitary evolution and measure-
ment of the controlling ancilla qubit. The procedure is iterative
and the distribution of the projected eigenstates obeys the
Born rule. It is robust against imprecision in timing. But it
has only limited resilience against decoherence; the iterative
procedure takes the system towards eigenstates, even after
the influence of decoherence such as a depolarizing. It has
no capability of error correction or prevention. We view our
method as a simpler algorithm to project the system into
eigenstates of a Hermitian observable than the standard QPE
and it can also be used to extract eigenvalues. We compare our
spectral decomposition to the standard QPE and an iterative
version in Table I. Our algorithm can be used as a subroutine
in the quantum annealing procedure by measurement [3] to
drive to the ground state of a final Hamiltonian. We have
performed simulations that demonstrate the utility of our
algorithm. We note that a previously proposed scheme of
ground-state cooling quantum computation also uses ancilla
measurement for the cooling [22]. Our scheme uses ancilla
measurement for the spectral projection and the way it is used
in the QSA is similar to the quantum Zeno effect. It will
be useful to develop a noise-protecting spectral projection.
A proof-of-principle demonstration of our spectral projection
algorithm on currently available quantum computers will also
be desirable.

Postselection allows projection to the ground state, but the
probability for obtaining the desired postselected outcome
is exceedingly small. The algorithm that we have attempted
for the imaginary-time evolution suffers some problems that
make it not practical; see Appendix A. The fact that we end
up with a spectral projection that obeys the Born rule seems
to indicate that we may need to go beyond the primitive used
in this paper to achieve an imaginary-time evolution quantum
algorithm, as done in Ref. [14]. But whether imaginary-time

032339-13



YANZHU CHEN AND TZU-CHIEH WEI PHYSICAL REVIEW A 101, 032339 (2020)

TABLE I. Comparison of the standard QPE [6], the iterative QPE (iQPE) [9], and our spectral projection algorithm (SPA). QFT stands for
quantum Fourier transform. Both the QPE and iQPE have fixed accuracy set by the choice of highest power in U 2k

and during the procedure the
highest power cannot be changed; the QPE is fixed by the total number of ancillas and the iQPE needs to fix the highest power in the beginning
of the procedure. Both the QPE and iQPE require precise execution of c − U 2k

for all k < tg. On the other hand, our SPA uses c − e−iĥ�t and
the range of �t can be fixed, but the accuracy can still be improved by running more iterations. Our SPA does not require �t to be exact 2k ,
and in fact it can be somewhat arbitrary. The drawback of our SPA is that the number of required iterations for achieving a fixed accuracy can
vary from run to run.

Methods Projection capability Phase estimation capability Accuracy limitation

QPE Yes Yes No. of ancillas and power in c − U 2k
; requires QFT

iQPE Yes Yes Power in c − U 2k
; requires no QFT

SPA Yes Yes No. of iterations; requires no QFT

evolution can be achieved without using an effective Hamilto-
nian is an interesting question to consider.

In order to classically simulate our spectral projection
algorithm, it generally takes exponential time in the number of
qubits of the system, as one needs to compute e−iĥ�t |ψ〉. Thus,
it will be interesting if such a procedure can be carried out in
a quantum computer for system sizes beyond the capability of
classical simulations. This might be a useful playground for
demonstrating quantum advantage.
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APPENDIX A: A FAILED ATTEMPT TO CONSTRUCT AN
ADAPTIVE PROCEDURE FOR IMAGINARY-TIME

EVOLUTION

We have considered a primitive similar to the Hadamard
test, except using an ancillary state of α|0〉 + β|1〉. The con-
trolled unitary gate is of the form c − e−iĥ�t . We consider the
postmeasurement state of the system up to the first order in
�t :

|ψ ′
m〉 ≈ 1√

2
[α + (−1)mβ]

[
1 − (−1)mi�t

α/β + (−1)m
ĥ

]
|ψ〉. (A1)

Our motivation here is to achieve the nonunitary action
e−ĥ�τ on |ψ〉, which, to first order, is [1 − ĥ�τ ]|ψ〉. Let us
choose to make it work for the m = 0 outcome by requiring
that

α

β
= −1 + ir, where r ∈ R, (A2)

and then the nonunitary action is achieved, i.e., the effective
action on the system is (ignoring normalization)

|ψ ′
0〉 ≈ [1 − ĥ�t/r]|ψ〉, (A3)

obtaining an effective time step �τ = �t/r in the imaginary-
time evolution. To satisfy Eq. (A2), α and β can be taken as

α(r) = −1 + ir√
2 + r2

, β(r) = 1√
2 + r2

, (A4)

and the probability for each outcome (without approximation)
is

pm = 1

2
+ (−1)m

2 + r2
(−Re〈ψ |U |ψ〉 + r Im〈ψ |U |ψ〉). (A5)

The Pauli X measurement on the ancilla can be realized by
first applying the Hadamard gate H before measuring in the
standard Z basis; see Fig. 1.

However, for the outcome “1,” the system will be collapsed
to an undesired state, to the first order in �t :

|ψ ′
1〉 ≈

[
1 − i

2

r2 + 4
ĥ�t + r

r2 + 4
ĥ�t

]
|ψ〉. (A6)

The second term is not harmful, as by applying to the post-
measurement state the “correcting” unitary

Ucorr = exp

(
i

2

r2 + 4
ĥ�t

)
, (A7)

the system becomes

|ψ ′
1〉 ≈

[
1 + r

r2 + 4
ĥ�t

]
|ψ〉, (A8)

to the first order in �t . We note that this additional step is not
necessary as it only modifies the relative phases of different
eigencomponents, but not the amplitudes.

The second term inside the bracket of Eqs. (A8) and (A3)
represents the step size of a random walk in the exponent of an
action e−ĥ�τi on a quantum state |ψ〉, where �τ0 = �t/r and
�τ1 = −�t/(r + 4/r) for the two respective measurement
outcomes “0” and “1”; see Fig. 1(b) for illustration. The
corresponding probabilities (A5) are approximately

p0(ψ ) ≈ r2

r2 + 2

(
1

2
− hψ�t

r

)
, (A9a)

p1(ψ ) ≈ r2

r2 + 2

(
1

2
+ hψ�t

r

)
+ 2

r2 + 2
, (A9b)

where hψ ≡ 〈ψ |ĥ|ψ〉 is the average energy for the state |ψ〉
of the system prior to this iteration. The dependence of p’s on
the system state |ψ〉 prevents us from getting a closed-form
expression for the outcomes of a long sequence of iterations.

By postselecting the “0” outcome in the primitive and by
repeating this one n times we can achieve exponential decay
to the ground state, via

e−n�t ĥ/r |ψ〉. (A10)
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Imaginary-time evolution is employed in many classical nu-
merical methods, such as the iTEBD method for ground states
[23]. However, for our quantum procedure the desired branch
of having all “0” outcomes occurs with an exponentially small
probability, so it is not very useful in practice.

Instead of postselection, one may perform an additional
operation if the undesired outcome “1” occurs. We have
attempted such an idea but we did not succeed. What is
described below is such a failed attempt. Let us define one
iteration to be the process from entangling the system with
an ancilla to measuring the ancilla and possibly correcting
with the unitary if needed. If the first step yields the “0” out-
come, then one arrives at the desired imaginary-time evolution
Eq. (A3). We ask what one can do if one obtains the “1”
outcome and arrives at a state in Eq. (A8). We can proceed
with a second iteration by choosing a different parameter r′.
The desired outcome “0” after this iteration would put the
system in the state[

1 + r

r2 + 4
ĥ�t − ĥ

�t

r′

]
|ψ〉. (A11)

If we choose r′ such that 1/(r + 4/r) − 1/r′ = −1/r, i.e.,

r′ = r

2

r2 + 4

r2 + 2
, (A12)

then the outcome “0” leads to the desired imaginary-time
evolution Eq. (A3).

However, if instead the measurement still gives the unde-
sired outcome of “1,” we need to correct it further by repeating
the iteration until outcome “0” is obtained by choosing the
parameter rn+1 in the (n + 1)th round via

rn+1 = rn
(
r2

n + 4
)

2r2
n + 4

, (A13)

and we terminate the iteration when the “0” outcome is
obtained. Then the desired one-step imaginary-time evolution
will give

[1 − ĥ�t/r1]|ψ〉. (A14)

This procedure is summarized in Fig. 14.
However, this procedure suffers from the occurrence of

long sequences of “1” outcomes, as our simulations show. As
a rough estimate by dropping the first-order contribution, the
probability of n successive “1” outcomes is

p(n) ≡
n∏

j=1

p( j)
1 ≈ rn+1

r1
, (A15)

which does not decay exponentially. Figure 15 shows the
values of rn with r1 = 1. One can start with a larger r1 so
as to get a smaller ratio of rn/r1, but the scaling is still not
exponentially small.

FIG. 14. The diagram that illustrates the attempted algorithm for
implementing one Trotter imaginary-time step.

20 40 60 80 100
n

0.2

0.4

0.6

0.8

1.0

rn

FIG. 15. The first 100 values of rn, starting with r1 = 1.

APPENDIX B: SOME DERIVATIONS

1. Energy change

Let us list the postmeasurement state,

|ψ ′
m〉 = 1√

2
[α + (−1)mβe−it̂�t ]|ψ〉, (B1)

and the probability that it occurs,

pm = 1
2 [1 + 2(−1)mRe(α∗βe−iξ 〈ψ |e−iĥ�t |ψ〉)] (B2)

= 1
2 [1 + 2(−1)mR1], (B3)

where it is convenient to define R1 and a related Rh:

R1 ≡ Re(α∗β〈ψ |e−iĥ�t |ψ〉), (B4)

Rh ≡ Re(α∗β〈ψ |e−iĥ�t ĥ|ψ〉). (B5)

Thus the change in energy is

�E(m) = 1

pm
〈ψ ′

m|ĥ|ψ ′
m〉 − 〈ψ |ĥ|ψ〉 (B6)

= 〈ĥ〉 + 2(−1)mRe
(
α∗β〈ψ |e−iĥ�t ĥ|ψ〉)

1 + 2(−1)mR1
− 〈ĥ〉 (B7)

= 2(−1)m
(
Rh − 〈h〉R1

)
1 + 2(−1)mR1

. (B8)

Then, expanding the above expression in series of �t is
straightforward.

2. Change in average energy variance

In the main text, we have the expression for the average
energy variance:

δVE = 〈ψ |ĥ|ψ〉2 −
∑

m=0,1

〈ψ ′
m|ĥ|ψ ′

m〉2

pm
(B9)

= 〈ĥ〉2 −
∑

m=0,1

(〈ĥ〉 + 2(−1)mRh)2

2 + 4(−1)mR1
. (B10)
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By expanding the square and explicitly summing over m, we
obtain

δVE = −4

1 − 4R2
1

(R1〈h〉 − Rh)2. (B11)

Then, expanding the above expression in series of �t is
straightforward.

3. Average Q̂ action

By expanding the postmeasurement state |ψ ′
m〉 to the sec-

ond order in �t , we have

|ψ ′
m〉 ≈ α + (−1)mβ√

2

[
1 + −iĥ�t − 1

2 (ĥ�t )2

1 + (−1)mα/β

]
|ψ〉.

The goal is to make the above equation to the exponentiated
form |ψ ′

m〉 ∼ eP̂m |ψ〉 correct to the second order. Naturally, P̂m

will contain the second term in the square bracket. But we also
need to take into account other contributions to the second

order. So we can set

P̂m = −iĥ�t − 1
2 (ĥ�t )2

1 + (−1)mα/β
+ X̂ (�t )2. (B12)

Expanding eP̂m , we have to the second order

1 + −iĥ�t − 1
2 (ĥ�t )2

1 + (−1)mα/β
+ X̂ (�t )2 − 1

2

(ĥ�t )2

[1 + (−1)mα/β]2
,

which should equal

1 + −iĥ�t − 1
2 (ĥ�t )2

1 + (−1)mα/β
.

Therefore, we obtain

P̂m = −iĥ�t − 1
2 (ĥ�t )2

1 + (−1)mα/β
+ 1

2

(ĥ�t )2

[1 + (−1)mα/β]2
. (B13)

From this, it is straightforward to obtain Q̂m = (P̂m + P̂†
m)/2

and perform the sum
∑

m=0,1 pmQ̂m. In the end, we arrive at

∑
m=0,1

pmQ̂m = − Im(α∗β )2�t2

1 − 4Re(α∗β )2
[(ĥ − 〈ĥ〉)2 − 〈ĥ〉2]. (B14)

Then, expanding the above expression in series of �t is
straightforward.
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