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A NOTE ON THE BILINEAR BOGOLYUBOV THEOREM:
TRANSVERSE AND BILINEAR SETS

PIERRE-YVES BIENVENU, DIEGO GONZALEZ-SANCHEZ, AND ANGEL D. MARTINEZ

ABSTRACT. Aset P C FxF} is called bilinear when it is the zero set of a family of linear
and bilinear forms, and transverse when it is stable under vertical and horizontal sums.
A theorem of the first author provides a generalization of Bogolyubov’s theorem to the
bilinear setting. Roughly speaking, it implies that any dense transverse set P C ;) x F)
contains a large bilinear set. In this paper, we elucidate the extent to which a transverse

set is forced to be (and not only contain) a bilinear set.

1. INTRODUCTION

A simple exercise shows that any nonempty subset A C F} that is closed under addition
is a linear subspace, that is, the zero set of a family of linear forms. Indeed, denoting as

usual
A+ A={a+b:(a,b) € A%},

this amounts to the claim that A+ A = A # () if and only if A is a subspace (and
analogously for A— A). Considering a large amount of summands, one will eventually get
span(A), the linear subspace generated by A. This may require an unbounded number of
summands as the dimension n or the prime p tends to infinity.

The following classical result states that a bounded number of summands already

suffices to produce a rather large subspace of span(A).

Theorem 1.1 (Bogolyubov). Let A C I} be a subset of density a > 0, that is, |A| = ap™.

Then 2A — 2A contains a vector space of codimension c(a) = O(a™?).

Bogolyubov’s original paper [2] deals with Z/NZ, but the ideas translate to finite F,-vector
spaces. Note that if A is a vector space, its codimension is log, a1, As a consequence,

!. Sanders [6] improved the bound in the statement to a nearly optimal

c(a) > log,a”
c(a) = O(log* a™'). Recently, bilinear versions of this result by the first author and Lé
[1] and, independently, Gowers and Mili¢evié¢ [3] have appeared. Let us now state this
bilinear Bogolyubov theorem. We need to introduce a piece of useful notation (cf. [1]).

Given a set A C IFZ X IFZ we define the vertical sum or difference as

AL A= {(@m £m) (2.9), (z,1) € A},
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H
The set A £ A is defined analogously but fixing the second coordinate. Then we define

¢y as the operation
v 1% 1%
A= (A+A) —(A+ A)

and ¢g similarly. The theorem proved in [1] is the following.

Theorem 1.2 (Bienvenu and Lé, [1]). Let 6 > 0, then there is ¢(§) > 0 such that the
following holds. For any A C ¥} x ¥} of density d, there exists Wi, Wy C F} subspaces of

codimension 1 and ry respectively and bilinear forms Qq,--- ,Q., on Wi x Wy such that
oy odr(A) contains
{(xay)ewlXW2:Ql(xay):”':Qra(l‘ay)zo} (1)

where max{ry,re, 3} < ¢(0).

The poor bound obtained in [1] and [3] was improved very recently by Hosseini and
Lovett [4] to the nearly optimal ¢(8) = O(log?® §-1), at the cost of replacing ¢y dn
by a slightly longer sequence of operations.

We call a set A C F)) xF} transverse if it satisfies A K A=A {i A = A. In connection
with the result above the following natural problem arose: characterise transverse sets.
Examples of transverse sets are what we call bilinear sets, that is, zero sets of linear
and bilinear forms as in (1). It is tantalizing to suspect that they are the only possible
examples. Theorem 1.2 only shows that any transverse set A of density « contains a
bilinear subset defined by c¢(«) linear and bilinear forms.

In this paper, we find transverse, non bilinear sets A C Fj x F}; for any (p,n) except
p = 2 and n = 2 where it is possible to list all transverse sets and check that they are
bilinear. In this direction, we provide an explicit counterexample for p = 3 and n = 2

and a non-constructive argument in general.

Proposition 1.3. Let P C F3 x F2 be the set of ((x1,2), (y1,92)) satisfying
T1Y; + 2ay; = 0
o1y + a3y2 =0

18 transverse but not bilinear.

Nevertheless, we show that transversity together with an extra largeness hypothesis
implies bilinearity for small characteristics. For any transverse set P C F} X I, let
P, ={y € F} : (z,y) € P} be the vertical fiber above x € F}. Notice that a non-empty

fiber is a subspace.

Theorem 1.4. Let P C F) x I be a transverse set such that P,. contains a hyperplane

for any x. Then it is bilinear provided that the prime p =2 or 3.



A NOTE ON THE BILINEAR BOGOLYUBOV THEOREM 3

We end the paper providing non constructive counterexamples.

Theorem 1.5. Let p be a prime and n a positive integer.

(i) For any prime p > 5 and dimension n > 2, there exists a transverse, non-bilinear
set P C ¥} x ¥} for which P,. contains a hyperplane for any x.
(it) For all but finitely many primes p and dimensions n, we can find transverse,

non-bilinear sets P C ) x ) where P,. is a space of dimension 1 for any x.

The paper is organized as follows. In Section 2 we study the explicit algebraic coun-
terexample. In Section 3 we provide a qualitative classification of transverse sets P for
which P,. contains a hyperplane; this entails a proof for Theorem 1.4 and the basis for

the proof Theorem 1.5, which can be finally found in Section 4.

2. PROOF OF PROPOSITION 1.3

Consider P C F2 x F% to be the set defined by the system (2). We want to show that

we cannot have

P:{(x,y) € Wy x W23Q1(x7y) = "':Qra(xay) :0}

for any subspaces Wy, W5 and any bilinear forms )y, - - - @), so by contradiction suppose
that it is the case.

The set P is easy to describe: indeed, if (z,y) € P, then either z;y; = xoys = 0 or
T1y1202ys # 0. Let

Py = {(21,29,y1,92) € F3 X F3 : 2191 = 0 and 2oy, = 0}
and
Py ={(z1,22,y1,92) € Fg X Fg cx1+ 2o =0and y; +y2 =0}

which is a subset of P and contains the set of points where x,y;22y, # 0 since 2? = 1
mod 3 provided z # 0 mod 3. Therefore P = By U P;.

1% H
Let us check that this set satisfies both conditions P + P = P and P + P = P.
H
By symmetry it is enough to check that P + P = P. The cases where the points
(21, 22,91, Y2), (2}, 2, y1,y2) are both in Py or P; are easily verified and if one is in Py and
the other in Py then (z; + )y? + (z9 + x4)y3 = 0 by the first equation in (2) and
(1 + 21)%y1 + (22 + 24) Y0 = 2(z12) 1 + Toahys) = 0

using the fact that either (xq, zo,y1,y2) or (27, 25, y1,y2) is in Fy.

The fact that P, C P shows that Wi, W, are at least one dimensional but this is not

enough. Indeed, suppose they are one dimensional, then W; and W5 should be precisely
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{(z1,22) : 21+ 22 = 0} and {(y1, y2) : v1 +y2 = 0} but, for example, (1,0,0,0) ¢ W x F3
and (0,0,1,0) ¢ F2 x W, and they belong to P. As a consequence Wi = Wy = F2. Let

us show that no bilinear form other than the trivial one can vanish on this P. Suppose

ny=<x1 l‘z)(au a12><y1>:0
Qo1 A22 Y2
for all (z,y) € P or, alternatively,

QY = a1 T1Y1 + a12T1Y2 + a21T2Y1 + A22T2Y2 = 0.

On P, C P, this equation boils down to
a1221Y2 + a21x2y1 = 0

but now (0,1,1,0),(1,0,0,1) € Py imply a;2 = as; = 0. On the other hand (1,2,1,2) € P,
imply ai; + age = 0. This implies that if P is a bilinear set then it must be the zero

1 0
set of () = 0 1 (or equivalently, —@). But this is impossible because (z,y) =
(1,1,1,1) ¢ P and yet zQy = 0. So the only option left is that P = F3 x F3 and this
is not the case either. As an aside, note that dim P,. is not constant on F2 \ {0}, so this

example is different from the generic ones mentioned in Theorem 1.5.

3. PROOF OF PROPOSITION 1.4

In this section, we prove Theorem 1.4 Let V; and V, be two IF-vector spaces, and we
slightly generalise the above discussion to transverse sets of V; x V5. Let P C Vi x V5 be
a set. Write P,. = {y € Vo : (z,y) € P} and P, = {x € V] : (z,y) € P} for the vertical
and horizontal fibers, respectively, borrowing the notation from [3]. We now characterise

transversity by some rigidity property of the map x +— P,..

Lemma 3.1. A set P C V; x Vy is transverse if, and only if, the map v — P,. satisfies
the following properties.

(i) For any x, the set P,. is the empty set or a subspace and P,. C Py..
(i) For any x # 0, the set P,. depends only on the class [v] € P(V1) = V" /T of x in
the projective space.

(73) If [2] is on the projective line spanned by [z] and |y], we have P,. D P,. N P,..

Proof. Let P C Vi x V5 be transverse. Let x € V). Because P —‘i/- P, we find that
P, .+ P,. = P,., so P,. is empty or a subspace. Similarly P, is empty or a subspace. Let
y € P,.. Then z € P, which implies 0 € P,, hence y € Fy., which proves the first point.
Further, (Az,y) € P for any A # 0 as well, thus y € P),.; this shows the second point. To
prove the third point, suppose without loss of generality that z = x + Ay for some \ € F,,.
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Let w € P,. N P,.. Thus both x and y belong to the subspace P.,, so that z € P, too,
which means that w € P,., concluding the proof.

We now prove the converse. Let a set P C Vj x V5 satisfy the three properties. The
first point means that P 1 P = P. The horizontal stability follows from the second and
third points. O

We will need another lemma. Recall the notation P(V)) = V*/F* for the projective
space of an F-vector space V. We will often omit the distinction between x € V and
its class [z] € P(V). It will be convenient to use the language of projective geometry, of
which we assume some basic facts, such as the fact that any two (projective) lines of a

(projective) plane intersect.

Lemma 3.2. Suppose that & : P(Vy) — P(V3) has the property that for any x,y, z in V3
such that z € span(z,y), we have £(z) € span(&(x),£(y)). Then £ is either constant or
mjective.

Proof. First we deal with the case where P(V}) is a projective line (i.e. dimV; = 2).
Suppose £ is not injective, thus there exists two non-collinear vectors = and y of V; such
that (x) = &(y). Now (z,y) is a basis of Vi, so for any z € P(V}), by the defining property
of &, we have £(z) = &(x) = &(y). So & is constant.

Now suppose dimV; > 3. We already know that £ is either injective or constant
on any projective line. Assume that overall ¢ is neither injective nor constant. This
means that there exist two distinct points x,y such that £(x) = £(y), and a third point
z satisfying £(z) # £(x). This implies that x,y, z are not (projectively) aligned, so they
span a projective plane. The reader may now wish to follow the proof on Figure 1. Take
a point w ¢ {y,z} on the line (yz) spanned by y and z. Because { is a bijection on
both lines (yz) and (zz), and the image of both lines under £ being the same namely
(&(y)&(2)), we can find w' ¢ {z, 2z} on (zz) such that {(w) = &(w') # &(x). Now consider
the intersection u = (ww’) N (zy) in the projective plane span(z,y,z). Then we have
E(u) = &(x) = &(y) # £(w), so that on the line (ww') the map £ is neither constant nor

injective, a contradiction. 0
Finally, we recall the fundamental theorem [5, Théoreme 7] of projective geometry.

Theorem 3.3. Suppose that & : P(Vy) — P(Vs) is injective and has the property that
for any z,y,z in Vi such that z € span(z,y), we have £(z) € span(&(x),&(y)) (i.e. it
maps points on a line to points on a line). Further, suppose that dim V) > 3. Then £ is a
projective map, that is, there ezists a linear injection f : Vi — Vi, such that £([z]) = [f(2)]
for any x € V7.

Here we require the field IF,, to be a prime field; on a non prime finite field [F,, we would

need to incorporate Frobenius field automorphisms.



6 P-Y. BIENVENU, D. GONZALEZ-SANCHEZ, AND A. D. MARTINEZ

FIGURE 1. Proof of Lemma 3.2.

Note that the result holds even if dim V; = 2 in the case where p = 2 or 3. Indeed,
the number of bijections between two projective lines is (p+1)!. On the other hand, since
there are (p? — 1)(p* — p) linear bijections between any two given planes, the number of
projective bijections is (p*> — 1)(p?> — p)/(p—1) = (p+ 1)p(p — 1). These two numbers are
equal when p € {2,3} which forces any bijection to be projective.

Now we state this section’s main result.

Proposition 3.4. Let P C V; x V5 be a transverse set. Suppose that codimy, P,. <1 for

any x € V1. Then one of the three alternatives holds.

(i) There exist a subset W C Vi which is empty or a subspace, and a hyperplane
H <Vj5, such that P=W x Vo, UV} x H.
(i) There ezists a bilinear form b on Vi x Vy such that P = {(x,y) € Vi x V, :
b(xz,y) = 0}.
(iii) We have p > 5 and the minimal codimension of a subspace W < Vi such that
W x Vo C P is exactly 2.

Observe that this implies Theorem 1.4, since the first two alternatives correspond to
bilinear sets. This is obvious for the second one. For the first one, if W is empty, it is
clear; otherwise, let aq,...,a; be linearly independent linear forms such that W is the

intersection of their kernels, and ¢ be a linear form that defines H. Then
P={(z,y) e i x Varay(2)l(y) = - - - = ax(2)l(y) = 0}.

One can check that one can not write P as in (1) with W; and W, other than V; and V,
and with r3 # k, and k& may tend to infinity with dim V;, while the density is bounded
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below by 1/p, but this is not a contradiction with Theorem 1.2, since P contains (but
may not be equal to) the Cartesian product V; x H. As for the last alternative, Theorem

1.5 (ii) indicates that it is not necessarily a bilinear set.

Proof. Without loss of generality suppose that F, = V5. Indeed, otherwise F,. is a
hyperplane H and Lemma 3.1 (i) shows that P = Vi x H. Let (z,y) — z -y be a bilinear
form of full rank on V; x Va. For ¢ € Vy let ¢ = {y € Vo : 2 - ¢ = 0}. The hypothesis
allows us to write P,. = &(z)t for some vector £(z) € V; that is defined uniquely up to
homothety. The proof consists in deriving rigidity properties for £ which will eventually
make it linear or constant.

With this new notation, the assumption just made implies that £(0) = 0. Further,
the second point of Lemma 3.1 means that &(x) depends only on [z] for  # 0 and the
third point of that lemma yields that whenever [z] is on the projective line spanned by x

and y, we have £(z) € span({(z),£(y)). Using Lemma 3.1 (7i7), one can see that the set
W:={xeV,:P. =V}

is a vector subspace. If W = Vj, we have P = V; x V5 so the first alternative holds.
Otherwise W # Vi. Let V] = Vi /W and observe that for any given x —y = w € W,
we have &£(z) € span(£(y), {(w)) = span(£(y)), that is, £(z) = &(y) up to homothety, so
that & descends to a map & : P(V;/W) — P(V,). Thus £ is a map P(V/) — P(V3) that
maps aligned points to aligned points. If codim W = 1, it follows that [{(z)] is a nonzero
constant vector ¢ for z € V \ W so the first alternative is true with H = ¢*. In the
following we assume that codim W > 2.

By construction & satisfies the hypothesis of Lemma 3.2, therefore it should be either
constant or injective. If &’ is constant on P(V}), we can take £(x) to be a nonzero constant
vector ¢ € Vs for all z € W+, while £(z) = 0 on W. Let H denote the subspace orthogonal
to ¢. Then P =W x V5, U V] x H, which is the first alternative. We suppose now that
¢’ is injective. If dim V/ = 2 and p > 5, the third alternative is true. Now suppose that
dim V/ > 3 or that dim V/ = 2 and p € {2,3}. Theorem 3.3 and the remark following it
imply that £ comes from an injective linear map V/ — V5, which we extend to a linear
map f: V] — Vs with kernel W. In the particular case p € {2,3} this proves proposition
1.4. Then P is the zero set of the bilinear form (z,y) — f(z) -y, which concludes the
proof of Proposition 3.4. U

4. PROOF OF PROPOSITION 1.5

First we introduce a new notation and a characterisation of bilinear sets. For a set
P C Vi x Vy satisfying Py. = V5 and Py = Vi, let Ann(P) be the subspace of the space
B(V1,V3) of bilinear forms on V; x V5 that consist of the forms that vanish on P. For a
set M C B(Vi,Vs), let Orth(M) be the (bilinear) subset V; x V4 where all the forms of
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z [(1,0,0)](0,1,0)|(0,0,1) | (1,1,0) | (1,0,1) | (0,1,1) | (1,1,1)
o(z) | (1,0,0) | (0,1,0) | (0,0,1) | (1,1,0) | (0,1,1) | (1,1,1)| (1,0,1)

FiGURE 2. Table defining the permutation o.

M vanish simultaneously. Thus in general P C Orth(Ann(P)), while the equality holds
if and only if P is a bilinear set.

Now we prove Theorem 1.5 (i), that is, we show that some transverse sets satisfying the
third alternative of Proposition 3.4 are not bilinear. Let W be a subspace of codimension
2 in Vi, Let V{ = Vi/W and & : P(V/) — P(V3) be a non-projective bijection onto a
projective line; as observed after Theorem 3.3, this is possible when p > 5 since there are
(p+1)! bijection between any two projective lines but only (p+1)p(p—1) projective maps
between them. Extend naturally £ to a map & : V; — V5 that induces £ by projection
and let P = J .y, {z} x &(x)*. Thanks to the characterization from Lemma 3.1, we see
that P is transverse.

Let b € Ann(P), one can write b(z,y) = f(x) -y where f is a linear map V; — V5
vanishing on W; thus it induces a linear map f': V] — V; satisfying f'(x) € span(¢'(x))
for x € V/\{0}. Recall that W has codimension two and therefore f has either rank 2, 1 or
0 respectively. In the first case f’ does not vanish on V/\ {0} and we get {'(x) = [f'(z)] for
any x # 0. As a consequence £’ is projective, which is false. The second possibility can be
ruled out too. Indeed, in this case the image of f"is aline £, i.e. a vector space of dimension
one. As a consequence {'([z]) will have the same constant value for any x € V/ \ ker f’
which contradicts the fact that it is injective by construction. The only possibility left
is f" = 0. This proves that Ann(P) = {0} and so Orth(Ann(P)) = V; x V5 # P, which
means that P is not bilinear, concluding the proof of Theorem 1.5 (i).

We now show Theorem 1.5 (ii). Here we think of V} and V5 as two n-dimensional
[F,-vector spaces. Recall the characterisation of transverse sets obtained in Lemma 3.1.
In particular, if P,. N P,. = {0} for any [z] # [y], the third property of that Lemma 3.1 is
vacuous. As a consequence the characterization of transverse sets it provides is easier to
satisfy. One can achieve this, for instance, by taking a bijection o : P(V}) — P(14) and

letting P be the transverse set

P, ={0} x V, U U span(z) x span(o(x))
w€P(V1)
where span denotes the linear span in V; or V5.
With the assistance of a computer, it is possible to find o such that P, # Orth(Ann(F,))
for small p and n. For instance, for p = 2 and n = 3 one can let ¢ be the permutation of
P(F3) = F3 \ {(0,0,0)} defined in Figure 2. The above characterization implies that P,

is not a bilinear set. Indeed, we find that
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000 000 0 01 0 01
Ann(P) = 000,00 1],100 1,10 0 O
000 100 010 110
so that Orth(Ann(P)) contains ((1,0,0),(0,1,0)), an element which does not belong to

P, so P is not bilinear.
For general p and n, the following non-constructive counting argument shows that
there exists a permutation ¢ such that P, is not bilinear. On the one hand, the number

of points in a projective space can be bounded from below, i.e.

pt—1 _1
P(Vi)| = >ptT.
B =2 2y

n—1\ P"*
pn—1! Z (pe )

transverse sets P,, where we used the inequality e™ > m™/(m!) valid for any positive
integer m. On the other hand, the number of subspaces M of B(V;, V3) can be bounded

Thus there are at least

from above as follows. The space of bilinear forms B(V}, V5) has dimension n? and contains
p"2 elements. The number of subspaces of dimension £ can be bounded by pk"Q. Recall
that there exists the same number of spaces of dimension k and n? — k so the total
number of subspaces can be bounded above by ZZio H{H C B(V4,Vs) : dim(H) = k}| <
nt/24n? 4

9P
pri-1

(n? +1)/2 is only counted once and the bound obtained is smaller than the one given) .

(if n is even this is clear and if it is odd the number of subspaces of dimension

Now we argue by contradiction. The absence of counterexamples would force (p,n > 2)

n—1

n—1\ P nt/24n? _
p <<l T Tl B
e p —1 15

which provides the contradiction we were seeking for n > ng(p). Indeed, we can take
no(p) = 11 for all p but this estimate can be improved if we allow p to be large enough

and for instance ngy(p) = 2 is enough for p > 13.
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