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The nonzero spectral gap of the original two-dimensional Affleck-Kennedy-Lieb-Tasaki (AKLT) models has
remained unproven for more than three decades. Recently, Abdul-Rahman et al. (arXiv:1901.09297) provided
an elegant approach and proved analytically the existence of a nonzero spectral gap for the AKLT models on the
decorated honeycomb lattice (for the number 7 of spin-1 decorated sites on each original edge no less than 3). We
perform calculations for the decorated square lattice and show that the corresponding AKLT models are gapped if
n > 4. Combining both results, we also show that a family of decorated hybrid AKLT models, whose underlying
lattice is of mixed vertex degrees 3 and 4, are also gapped for n > 4. We develop a numerical approach that
extends beyond what was accessible previously. Our numerical results further improve the nonzero gap ton > 2,
including the establishment of the gap for n = 2 in the decorated triangular and cubic lattices. The latter case is
interesting, as this shows that the AKLT states on the decorated cubic lattices are not Néel ordered, in contrast

to the state on the undecorated cubic lattice.

DOLI: 10.1103/PhysRevB.100.094429

I. INTRODUCTION

Affleck, Kennedy, Lieb, and Tasaki (AKLT) constructed a
one-dimensional spin-1 chain whose Hamiltonian is rotation-
invariant in the spin degree of freedom [1], but it has a spectral
gap above the unique ground state, in contrast to the spin-1/2
antiferromagnetic Heisenberg model. This provided strong
support for Haldane’s conjecture [2,3] regarding the relation
between the spectral gap and spin magnitudes in quantum
magnetism. They also generalized the construction to two
dimensions [4], and showed, in particular, that the spin-spin
correlation function of the ground-state wave function decays
exponentially in the honeycomb and the square lattice models.
The uniqueness of the ground state in these models was
further analyzed by Kennedy, Lieb, and Tasaski [5]. There
have been a few useful techniques for showing the uniqueness
of the ground state and gap [5-7], which work well in one
dimension, but the proof of the nonzero spectral gap has
not been established for either of the two two-dimensional
(2D) AKLT models, even more than three decades after their
construction.

Haldane’s conjecture on the spectral property of isotropic
chains of integer spins complements the result of Lieb,
Schultz, and Mattis (LSM) on the properties of chains of
half-odd spins. Their result states that there exists an excited
state with energy degenerate with the ground state in the
thermodynamic limit [8]. That is, the system is either gapless
or it has degenerate ground states. This LSM theorem was
generalized to higher dimensions [9,10] with each unit cell
having half-integer total spin, and the ground state, in addition
to the possibility of being gapless or degenerate, can also be a
gapped spin liquid that does not break the symmetry. Recently,
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due to the tremendous progress on topological phases, the
LSM theorem has been reexamined in new perspectives, such
as symmetry-protected topological (SPT) phases, crystalline
symmetry, anomaly, and boundary [11-18]. For example, it
was conjectured that all LSM-like theorems can be understood
from lattice homotopy [11], and this was very recently gener-
alized to develop a topological theory of LSM theorems in
quantum spin systems [19].

Unexpectedly, 2D AKLT states have recently emerged as
a resource for universal quantum computation (QC) in the
framework of the measurement-based quantum computation
(MBQC) [20-23]. The spin-3/2 AKLT state on the hon-
eycomb lattice was first shown to provide the appropriate
entanglement structure for universal QC [24,25], a result sub-
sequently generalized to other trivalent lattices [26]. Before
the demonstration of the computational universality of the
spin-2 AKLT state on the square lattice [27], a few deco-
rated lattice structures (with mixed vertex degrees) and the
corresponding AKLT states were first considered in Ref. [28].
A partial picture of quantum computation universality in the
family of AKLT states is as follows. Any AKLT state residing
on a two- or three-dimensional frustration-free regular lattice
(no loop with an odd number of sites) with any combination of
spin-2, spin-3/2, spin-1, and spin-1/2 that is consistent with
the lattice. Higher-spin systems are mainly not included due
to technicalities [27].

Regarding the gap, tensor network methods were employed
and the value of the gap in the thermodynamic limit was
estimated [29,30]. A recent breakthrough in the analytic proof
was made by Abdul-Rahman et al. [31], who considered a
family of decorated honeycomb lattices and proved that the
corresponding AKLT models are gapped for the number n of
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FIG. 1. Illustration of lattices. Some are decorated, namely (a),
(d), (e), (), (g), and (i), with additional sites added to underlying lat-
tices. Underlying lattices of (a)—(d) are trivalent; underlying lattices
of (e)—(h) are four-valent; the underlying lattice of (i) is of mixed
vertex degrees of 3 and 4.

decorated sites being greater than 2; see, e.g., Fig. 1(a). The
associated AKLT states, according to the results of Ref. [28],
are also universal for MBQC, and hence they are also of inter-
est, as the nonzero gap implies that preparation of these states
via cooling is useful. Additional progress in analytics has also
been made by Lemm, Sandvik, and Yang on hexagonal chains
[32], where the quasi-1D AKLT models are also gapped.

We note that the results of Ref. [31], as argued below,
apply directly to other trivalent lattices with decoration, such
as the square-octagon (4, 82), the cross (4,6,12), and the star
(3, 12%) [Figs. 1(b), 1(c) and 1(d), respectively]. Although
the AKLT Hamiltonians are frustration-free, some features
in generalized measurement display some frustration, e.g., on
the star lattice [26]. The decoration renders the frustrated star
lattice nonfrustrated and removes the frustration features in
the measurement. AKLT states on all these decorated lattices
are also universal for MBQC [26,28].

Here we prove analytically that AKLT models on 2D
decorated square lattices possess a nonzero spectral gap for
n > 4, where n is the number of spin-1 decorated sites added
to each original edge [see, e.g., Figs. 1(e) and 1(f)]. This result
also implies, in addition to the decorated kagome and (3,4,6,4)
lattices [Figs. 1(g) and 1(h)], that decorated 3D diamond
lattices host AKLT models with a nonzero spectral gap. AKLT
states on the 3D diamond lattice and the associated decorated
ones are also universal [27,28], and the significance is that
these 3D resource states are likely to provide fault tolerance
similar to the 3D cluster state [33]. Moreover, proving the
spectral gap and knowing its value will be crucial in state
preparation and validation protocols.

Using the results from both the decorated honeycomb and
square lattices, we also show that AKLT models on decorated

FIG. 2. Illustration of local structure of decorated lattices: (a) the
decorated honeycomb and (b) the decorated square lattice, both with
n=2.

lattices whose underlying lattice is of mixed vertex degrees 3
and 4 are also gapped for n > 4. We also provide a numerical
approach that allows us to study the parameters that bound the
gap for n > 1, previously thought inaccessible. Our numerical
results further improve the nonzero gap to n > 2, including
the establishment of the gap for n = 2 in the decorated trian-
gular and cubic lattices, i.e., those whose underlying lattices
have vertex degree 6. We also provide much improved lower
bounds on the spectral gap for some of the AKLT models.
The structure of the remaining paper is as follows. In Sec. II
we first review methods used in Ref. [31]. Then in Sec. III
we perform the same detailed calculations for the AKLT
models on the decorated square lattices. In Sec. IV we make
some comments on the other decorated lattices. In Sec. V we
describe our numerical methods, which improve all the above
gappedness scenarios to n > 2. Finally, in Sec. VI we make
some concluding remarks.

II. REVIEW OF PRIOR METHODS AND RESULTS

Here we briefly review the key points that enable the
proof of the spectral gap for AKLT models on the decorated
honeycomb lattice in Ref. [31]; see Fig. 1 for one such
illustration with n = 1, as well as other lattices. We will try to
use the same symbols as in Ref. [31] as much as possible, but
they may have some slight differences. Consider an original
lattice A (e.g., honeycomb or square lattice) and its decorated
version A™ in which each edge of A has been decorated with
n spin-1 sites. Let £, denote the edge set of the decorated
lattice. The AKLT model Hamiltonian defined on A™ is

H[/\\(I;LTZ Z Pe[Z(eVZ]’ (D)

eeé‘/\(”)

where PE(©/2) s a projection onto the total spin s = z(e)/2
subspace of the two spins linked by the edge e, and z(e)
denotes the sum of the coordination numbers (i.e., vertex
degrees z, and z;) of the two spins a and b linked by edge e.

Instead of directly using the AKLT Hamiltonian, Ref. [31]
first considers a slightly modified one:

Hy =Y h,=Y Y PEo2 )

veA veA ecy,

where £, is the AKLT Hamiltonian on the set Y, of (zn + 1)
vertices of the decorated lattice A™, z is the coordination
number (z = 3 for the honeycomb), and &y, denotes the edges
connecting vertices in Y; see Fig. 2 for illustration. It has a
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few terms in HYK'" missing, i.e., those terms on the edges
containing the last spin-1 site on edge e € Y, and the next site
v’ € A. So we have an inequality

Hyo" < Hy < 2H{w™. 3)

However, instead of Hy, Ref. [31] also considers a slight
modification

Hyw =) P, @)

veA

where P, is the orthogonal projection onto the range of h,.
The kernel of P, is the ground space of h,, i.e., kerP, = kerh,,.
Then it is shown that

VY -~ ~
S Ham < HYE < 1y | Hpw, ®)

where yy is the smallest nonzero eigenvalue of A, (or equiv-
alently the spectral gap of the small system Y,) and |A,]|
is the usual operator norm of 4, (or equivalently the largest
eigenvalue of h,, since A, is non-negative).

The strategy is to prove Hyw is gapped. By squaring Hpw,
we find that

~ ~ 1
(Hyo ) = Hyo + 5 D (PP + PuPy) 6)
vFEW
2HA(n)+ Z (Pqu +Pva), (7)
(v,w)e€p

where for those v and w not on the same edge, P,P, is
non-negative and is dropped, resulting in the last inequality.
The last summation is over pairs of vertices (v, w) that belong
to the edge set £, , without double counting. If one can find the
minimum positive number n > 0 such that P,P, + P,P, >
—n(P, + P,), then

(Hyw)* = Hyo —=na Y (P+Py) ®)
(v,w)e€p
= _Znn)ﬁA(") = VHA(”)v )

where y = 1 — zn, (the subscript n is added to 1) and z is the
coordination number of the underlying lattice A (e.g., z =3
for the honeycomb and z = 4 for the square lattice). If y > 0,
then one proves that H,w has a spectral gap above the ground
state(s).

Therefore, most of the effort goes into finding 1 or an upper
bound. A relation that was used to this end in Ref. [31] is
Lemma 6.3 from Ref. [6] for a pair of projectors E and F':

EF +FE > —||[EF —E AF|(E + F), (10)

where E A F denotes the projection onto the joint subspace
EH N FH. When we apply this relation to (9), &, = |[EF —
E A F|| becomes an upper bound on n,, i.e., n, < &. In
particular, in Proposition 1 below, we determine that n,, = ¢,.
In Sec. V below we will additionally develop techniques to
compute 7, exactly.

Using the above-mentioned Lemma and employing tensor-
network approaches, the authors of Ref. [31] show elegantly
that

4 x3™" ( 16 x 372"

o< st 1_bLR(n)><1+bG<n>>, (n

Eg

I= & = L0041 - 106t

ix(WR)‘r

&
-

= & = (01— 10

FIG. 3. Illustration of local lattice structure and tensors for (a) the
honeycomb or any trivalent lattices and (b) square lattice or any
four-valent lattices. The solid purple dots represent virtual qubits.
The solid line between two neighboring qubits represents a maxi-
mally entangled state of the form |¢*) = (| 1) + | 4 4))/+/2. The
solid vertical bar denotes the operatorle =(IMHE =1L |)/ﬁ,
which maps |¢™) to a singlet, up to normalization. The tensors
T consist of WX and V’s inside the dotted square labeled by the
channel’s symbol Ey, and similarly the tensors TX consist of WX and
V’s inside the dotted square labeled by Eg.

where
b = —7" E; |l |ER], 12
c(n) (2R IELII I ERI (12)
8§ x 37"
br(n) = IELI, (13)
qr(n)
4 x 37"
br(n) = IERI, (14)
qr(n)
brr(n) = bp(n) + br(n) — bp(n) br(n). (15)

In the above expressions, E; is the quantum channel, or
equivalently the transfer matrix, obtained from the tensors
T* associated with the “left” set of vertices Y, \ Y, and Eg
(via tensors TX) is associated with the “right” set of vertices
Y, \ Y,. See also Figs. 2 and 3 for illustration. More precisely,
the channels are defined as follows:

EyB) =Y (T1)'BTE. Er(©) =Y TFC(TF)'. (16)
1 r

Note that by examining the derivations in Ref. [31], the
operator norms associated with ||E, || and || Eg| hold both for
the norm with respect to the C*-norm of B and C and for
that with respect to the Hilbert-Schmidt norm of matrices.
However, since the latter norm is larger for the former, the
former norm presents a better bound.

Moreover, two specific matrices are introduced: Q; =
E; (1) and Qg = Ej(p1) (p1 here equaling 1/2), and ¢, and
qr are their respective minimum eigenvalues. For the proof,
we highly recommend Ref. [31] to the readers.
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III. ANALYSIS OF THE SPECTRAL GAP

The spin-2 entity residing on each square lattice site is
composed of four virtual qubits projected onto their symmet-
ric subspace, and the mapping between the physical spin-2
degrees of freedom and the those in the symmetric subspace
is as follows:

Poym = [2) (MMM + 1 =2) (LI

1
FIDZEA I+ A AT+ (1D

1
FI= DN+ AT+ U GTD

1
%(WTHI F I AT (T
+ (M D,

where |m)’s are eigenstates of spin-2 S, operators with eigen-
value m’s. If we consider one square lattice site on the left,
then there are corresponding tensors for PL, which are

Py =111 Pa= UL

1 1
ST+ ZIDEAT T+ LT+ D

+10)

Py

1 1
Py = ZIMU T+ SO+ AT+ (LD,
1

~ V6

1
+ %' DT+ T+ D,

Because the AKLT state is formed from projecting virtual
singlet pairs via symmetric projectors, we obtain the local
tensors describing the spin-2 site on the left as W! = +/2KP;,

where K = (|1)({ | — [4)(1])/+/2, and they are given as
follows:

W=~ DML W =1L
1 1
Wi = ST = ST+ (1A + (11D,

I+ AT+ D

1 1
wh = —§| DL+ E' ML+ LT+ (D,
_ L

/6

1
+ %I DA (AT D,

See also Fig. 3(b) for an illustration of the local lattice
structure and the corresponding tensors. From these, one can
easily check that

Wy = DT+ T+ (D

S whwh) = ;]lcz, (17)
k

and one can define a quantum channel

E>B) = (WhH)'BWE. (18)

i

[We note that one could rescale WX’s so as to make the right-
hand side of Eq. (17) be 1, but we will not do that here.] One
also finds that

5 o
E> (1) = any—nf’/z, (19)
where ny:nf/ 2 is the projector to the three-qubit symmetric
subspace. At this point it is useful to introduce the two W
states used in quantum information so as to simplify the
notation

1

S

OO e I N e o IR D (20)

|w) 3
1
—3(I N H I+, 21

5

i)

The associated dual quantum channel is defined as E=7(B) =
> WEB(WE)T, which maps any three-qubit density matrix to
a one-qubit density matrix, and it can be written as (assuming
B is Hermitian for simplicity)

EZ"(B) = co(B)l + ¢x(B)o™ + ¢y(B)o” + c.(B)o®, (22)

where the four coefficients c; are
5
co(B) = g((MTlBIMN + (LB

5
+ 5 (wIBlw) + (@|B)), (23)

3
%((TTT |Blw) + (w[B[111))

O

x(B) = —

(W 1Blw) 4 (@|B[ 1)

1
— ;7 (wIB|®) + (]Blw)), (24)

&l

3
5 (111 Blw) — (w[B[111))

3
+ %(_uu |Blw) + (®[B] 1))

icy(B) =

1
+ 5 (wlB|@) — (@]B[w)), (25)
3
c:(B) = = (MBI — (L VIBH VD)

1
— g (wlBlw) — (@|Bl)). (26)

Similar to the decorated honeycomb case, E=(B) is in-
variant in permuting a, b, and ¢ in the special form B =
a ® b ® c, and this can be used to simplify some calculations.
Let us use the lower-case s to denote the spin-1/2 operators
s* = ¢"/2 and recall that p; = 1/2. One can then by direct
calculation show that

EZ(p1 ® p1 ® p1) = 301 (27a)
EZ'(s" ® 5" ®s") = —3s", (27b)
EZ'(s"®5' @s") = — ;" foru # v, (27¢)
EZ' (" ®@s"®@s")=0foru#v#w, (27d)
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(27¢)
(271)

E>'(p1 ®5" ®5") = 28up1,
EZ'(p1 ® p1 ® ") = — 25"

To proceed further, it is useful to introduce
ANM=1Qs"Qs"+5"®1®s"+s"®s"®1,  (28)

and by direct calculation one can rewrite Eq. (19) as

5 5
EZ () = —nfynf/z 3 (11 ®1®1 +

> oA ) (29)

U=x,y,z

which will allow us later to deduce E= from the actions of
(E=")" in Egs. (27) by fixing the overall scale.

It is convenient to express the channel and its dual in
the form of a matrix, sometimes called the superoperator
form or the Liouville formalism. Thus, any matrices, such
as o, that the channels act on will be written in terms of
vectors, such as |o)). Moreover, the inner product between
two such “vectors” becomes ({c|p)) = Tr(c " p). Note that in
this definition, ({1|p;)) = 1. Then exploiting the permutation
invariance of E=", one can employ the trick used in Ref. [31],
by using the action of the dual channel (E>)" in Egs. (27)
and fixing the overall scale via Eq. (29), to deduce the action
of E= and write it in the “superoperator” form as

(ol = Y Iss"s")

U=x,y,z

= =501 Q@ p1 ® p1))

5
+3 Xujupls"s"»

+ Is“p15")) + Is"s" p1) ) ({1

5
3 Z(|p1pls”>) + 1o15" 1)) + 15" p1o1))){(s"]
__ZZ(|SUUM +|svuv>>
U vFEu
+ 155" ) ((s"], (30)

where we have suppressed the ® symbols. It is also possible
to calculate E= directly from its definition in Eq. (18), but the
trick above helps us to express E= in terms of the sum of the
product forms for the superoperators.

From the results of Ref. [31], the channel E" along n
decorated spin-1 sites,

E'"B)=» V- -ViBV, .-V, 31
is calculated to be
n 2(_1)n u u
E" = ) el + =5 D IS, 32)

u

and thus the combined channel from the left is (see Fig. 3)
EL=(E"QE"QE"®)E~ (33)

5 —1)"
- §|m>><<p1| - X )
o DAL + 115 + 155 D) (o

5( 1);1
T 12x 30

(=1 g gy
T 331 ZZGS

U v#u
U)> + |SMSUS

Z(IS”M» + [Ls“1)) 4 [11s"))){(s"|

+ Is"s"s I (34)

5 —-1)"
= ST (pr] = (33,3 D Isss)) ("]

5 . 5( 1)"
+m;"‘ Mol = D

(_1)}1

T 331

1©){{s"], (35)

u

where A" was introduced in Eq. (28), and here we introduce
its vectorized form |A%)) = |Is"s*)) + [s“1s")) + |s“s"1)),
as well as |Q%)) = |s*11)) + |1s*1)) + |[11s*)) and |®")) =

Do 1578751)) + 157s"s7)) + [s"sVs?)).
Next, we consider the operator Q; = E; (1), and we obtain
it in the matrix form (instead of | - - - )))
O = > 111 + (36)
LT 6 x 32

One can diagonalize Q; and obtain its spectrum (noting
>, A" has eigenvalues £3/4)

5 5
=q—-F+ ——1 37
spec(Qy) {8 o } 37)
Therefore, the smallest eigenvalue g, of Q. is
5 5 (38)
=g gx3m

The transfer operator E;, is completely positive [34], since it is
constructed from Kraus operators via Egs. (18), (31), and (33),
or alternatively it can be checked by directly diagonalizing the
corresponding Choi matrix [34]. Hence, it is also 2-positive,
and from a Cauchy-Schwarz inequality for 2-positive maps
[35], we have that

IELIN = IEL(DII (39)
5

_— 40
8 x 321 (40)

5
= 0Ll = 3 +
From this we can calculate the associated by(n) =
8a(n)||EL||/qr and obtain

8 x 37"(1 +372m)

br(n) = 3 ,

(41)
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where a(n) = ||E" — |1)){{p1||| was previously obtained in
Ref. [31] to be 37"; but one can also calculate a(n) directly
from Eq. (32).

Next, we examine the channel coming from the right
square-lattice site. The on-site tensors are defined as W =

2v2(K ® K ® K)P,, and one finds that

Wy = _(W—Lz)T’ Wl = _(WzL)T’ (42)
wl = (wh)', wh = (wh)', (43)
WE = —(wh)'. (44)

From these, we see that E;~(B) = Y, (WF)'BWE is dual
to the channel E;", ie., Ex= = (E7 ). Therefore, using
the superoperator formalism, Ex = E € o (E"Q E" Q E") is
dual to E;, i.e., Eg = (E.)"; this shows that |Er| = ||EL]|.
Moreover, the operator Qg = Ex(01) = Er(p1) = Q1/2, and
therefore we have that the relation between the minimum
eigenvalues of Qg and Q is gg = g1 /2. We therefore obtain

br(n) = 4a(n)||Egll/qr = br(n), (45)
bo(n) = 4am)|EL |l I|E|l/(qLqr)
= Sa(m)|EL|I*/q;. (46)

The injectivity of the mappings I'g, ,_, and I'g for the corre-
sponding matrices B, C, D to the respective quantum states,

TG, . (B) = Z Te[BV, - Vi TEIDL ® Nt - .y i),
Lty eosin

T (€)= Y Te[CTRV, Vi Jlir i) @ [7)g.
il ..... i,,,r

TeD) =Y Te[DIRV, - Vi TFI) ® lir. .. in)

1,i's,r
®l7r)r,

depends on whether 1 — by /g(n) > 0 and 1 — bg(n) > 0, re-
spectively; see Ref. [31]. In the above equations, 7;* and
T;® denote tensors from the left and right sides, respectively;
|l); and |r)g are basis states for the left and right sides,
respectively; and V; denotes the tensor for one spin-1 site that
decorates the edge (n is the total number of such sites); see
Fig. 3. We have checked that I', . , I',_, , and I'¢ are injec-
tive for n > 2; see Figs. 4 and 5. From Ref. [31], b r(n) =
br(n) + bgr(n) — br(n)br(n) = 2by(n) — by (n)?, and it was
shown that the important quantity ¢, is upper bounded by

4a(n) . ( 4a(n)
V1 —brr(n) V1 —Dbrr(n)

2
g <dn) = ) (1 + bg(n)).

47

Here, if d(n) < 1/4 then the corresponding AKLT model has
a finite gap, whereas if d(n) > 1/4 it is undecided. Thus, we
have

2
) (1 +bg(n)).  (48)

() 4a(n) +< 4a(n)

S l=bem] - \1=be(n)
We can thus prove that the AKLT models on the decorated

square lattice are gapped with n > 4, as shown in Fig. 6. But
the analytics cannot say anything about n < 4.

1-by(n)
10 ° . L] L] °
L]
L]
05}
L A A A Lon
2 4 6 8 10
05}
FIG. 4. The function 1 — b;(n) vs n, which is an indicator of

injectivity the mapping I'; _¢, . Since bg(n) = by (n), this also applies
to FR—Cn .

Since d(n) is only an upper bound on ¢,,, we also performed
numerical calculations directly for ¢, for both the decorated
honeycomb and square lattice (as well as one with mixed
degrees), and we confirmed that for both n =2 and 3 the
AKLT models are also gapped. The numerical results are
shown in Table I. We describe our methods in Sec. V.

IV. COMMENTS ON OTHER LATTICES
A. Other trivalent lattices

Since the proof in the decorated honeycomb case [31]
only relies on the local structure of the two vertices on the
underlying lattice and the corresponding tensors (see Fig. 3
for illustration), a moment of thought will convince one that it
also holds exactly for other trivalent lattices with decoration
on their edges; see Fig. 1 for illustration of other lattices.
(However, this does not necessarily mean that the actual
values of the gap will be identical.) Therefore, for all trivalent
lattices, which can be of any dimensions, such as 3D, the
AKLT models on the corresponding decorated lattices will
also be gapped if n > 3 (using the results on the decorated
honeycomb in Ref. [31]), where again # is the number of spin-
1 sites added to decorate an edge. In fact, for each undecorated
edge, the number of decorated sites n, can be different, and

1-bg(n)
1F ° . . . .
L
L ]

L . . . L

2 . 4 6 8 10
-1}k
2t

L]

FIG. 5. The function 1 — bg(n) vs n, which is an indicator of
injectivity for the mapping I'g.
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d(n)-1/4
04 fe

03}
0.2}

01}

—01E[

-02¢ °

FIG. 6. The function d(n) — 1/4 vs n. It is an indicator of a
nonzero spectral gap if negative for the decorated square lattice.

the corresponding AKLT model will still be gapped as long as
n. > 3. Numerically, these bounds are improved to n > 2; see
below.

B. Other lattices of vertex degree 4

By the same token, since we have proven that the AKLT
models on the decorated square lattices are gapped if n > 4,
this will also hold for any other decorated lattices, whose
undecorated vertex degree is 4; see Figs. 1(g) and 1(h) for
illustration of such lattices. Numerically these bounds are
also improved to n > 2. AKLT states on the 3D diamond
lattice (also four-valent) and the associated decorations are
also universal [27,28], and the significance is that these 3D
resource states are likely to provide fault tolerance similar to
the 3D cluster state [33]. Therefore, the decorated diamond
lattices host AKLT models that are gapped for n > 2, and
the corresponding ground states are also universal and likely
provide topological protection for MBQC.

C. Other lattices of fixed vertex degree

We conjecture that for any lattices of fixed vertex degree,
the AKLT models on the corresponding decorated lattices will

TABLE L. ¢, for both the decorated honeycomb, square lattices,
and the lattice with mixed degrees 3 and 4 (with 10 digits of accuracy
presented). If €, < 1/3 for the decorated honeycomb case, then we
are sure that the corresponding AKLT model is gapped. For the
decorated square lattice and the mixed-degree one, if €, < 1/4, then
we are sure that the corresponding AKLT model is gapped. For the
decorated triangular lattice, if ¢, < 1/6, then we are sure that the
corresponding AKLT model is gapped. From this table, we conclude
that the AKLT models are gapped on all four types of decorated
lattices with n > 2.

deg. 3, e.g., deg. 4, e.g., mixed deg.
n  honeycomb square 3 and 4; Fig. 1(1) deg. 6
1 0.4778328889 0.5234369088 0.5001917602  0.6027622993
2 0.1183378500 0.1218467396 0.1200794787  0.1285855428
3 0.0384373228 0.0389033280 0.0386700977
4 0.0124460198 0.0124961718 0.0124710706
5 0.0041321990

be gapped, as long as 7 is large enough. This intuition comes
from the fact that for large n, it is essentially many long spin-1
AKLT chains incident on some vertices, which act as local
perturbations. For n sufficiently large, the perturbation is of
measure zero as n — 00. Of course, this is only an intuition,
rather than an actual proof.

D. Lattices of mixed vertex degrees

A natural extension to examine is those AKLT models
residing on decorated lattices whose undecorated ones are of
mixed vertex degrees. It is likely that they will be gapped as
long as n is sufficiently large.

Let us consider the lattice (i) in Fig. 1, whose underlying
lattice has mixed vertex degrees of 3 and 4. Take the left
original site to be of degree 3 and the right original site of
degree 4. We have to evaluate by (n), br(n), bg(n), Er, and
ER, and they can be obtained partly from the honeycomb case
and partly from the square lattice case,

8 x 371(1 + 3721

br(n) = b (n) = e D)
ba(n) = B0(n) = 2 317"_(13;372"), (50)
br(n) = by(n) + br(n) — by(Wbg(n),  (51)

IEL = |EFC| = 14372, (52)
IERI = |ER% = gu +37, (53)
ba(n) =8 x 37"|EL| |ErI/ (5 q3).  (54)

giC=1-37" g°= % - ﬁ. (55)

Thus, we obtain the corresponding function d(n) for the
mixed-degree lattice,

. 4 x 37" 43" \?
dm™* = + 14+b .
W= po (\/71 = bLR(n)> ( G(”zé)

We see that the AKLT models are gapped for n > 4 for the
decorated lattices, as checked in Fig. 7. Numerically these are
improved to n > 2; see Table I.

V. BASIS FOR NUMERICAL METHODS

Here we explain our numerical approach for producing
the values of g, in Table I, which was derived based on
Lemma 6.3 of Ref. [6]. The analytical results in the previous
sections provide only upper bounds on ¢g,, as inequalities
such as operator norms and Schwarz inequalities were used
in deriving, e.g., Eq. (11). As we have seen, the analytics
can only establish a nonzero gap for n > 4, but our numerical
evaluation of €, was able to push the gappedness to n > 2.

We begin by noting part (1) of the Lemma, which deter-
mines that

e=|EF —EAF| =|(1-E)1-F)
- A-E)And-F), (57
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d™ (n)-1/4
L
01F
L L : L n
3 4 5 6 7 8 9 10
-01F
-02} ¢
L ]
b4 ° . . .

FIG. 7. The function d™*(n) — 1/4 vs n. It is an indicator of
a nonzero spectral gap if negative for a decorated lattice, whose
underlying lattice has mixed degrees 3 and 4. One should evaluate
d™*(n) — 1/4 instead of d™*(n) — 1/3 to check the gappedness.

where E A F projects onto the intersection of images EH N
FH and, likewise, E V F projects onto the sum EH + FH, or
(EH* N FHY)L. From here on we will use E = 1 — P, and
F =1 — P, rather than their complements, which will prove
useful because P, and P,, are high-dimensional projectors and
their complements are low-dimensional.

Here we also review the findings that lead the source to
part (2) of the Lemma. In doing so, we will diverge from the
source by not quotienting out EH N FH and EH* NFH*
(i.e., setting EAF =0 and E V F = 00), as we ultimately
will be working partly within those spaces. We consider the
eigenvalue equation

(E+F)Y=(0-o)T. (58)

Clearly, as E and F are Hermitian operators whose eigen-
values belong to {0, 1}, the range of possible values of «
is [—1, +1]. Moreover, we note that « = —1 corresponds
exactly to the subspace EH N FH, whereas o = +1 cor-
responds exactly to the subspace EH* NFH'. The re-
maining eigenspaces must lie within the mutual orthogonal
complement of these spaces,

(EH* NFHY N (EHNFH)*
= (EH+FH)N(EHNFH)*
=EHNEHNFH)  +FHN(EHNFH)"
= Vg + Vp, (59)

noting that the explicit exclusion of EH N FH from Vg and
Vr means that the above sum is a direct sum.

Therefore, for o # +1, we can uniquely write ¥ = ¢ +
Y for ¢ € Vg and ¢ € V. In particular, we can rewrite
Eq. (58) as

(E+F)e+vy)=0-a)e+ V), (60)
and we arrive at

(@+EY)+ W +Fp)=(p—ap)+ @ —ay), (61)

which we can rewrite as

(EY +ap)=—F¢p+ay)=7. (62)

We see immediately that ¥ € EH N FH. Moreover, since
we have constructed Vg, Ve C (EH N FH)*, we immediately
have (0|¢) = (¢|y) = 0. Thus, we can take (J|E|y) for
example and apply E to both the right and left,

(PEWY) = —a(@|y) + (@9) = |9
= (@y) =0. (63)

That is, ¥ =0, and consequently, EY¥ = —a¢ and F¢ =
—ay.

From this we can directly compute
(EF +FE) o+ V)= —a(l —a)e+ V). (64

Such direct calculation also gives us EF + FE|gynry = 2
and EF + FE|gytnryt = 0. In particular, consideration of
individual eigenspaces gives us

EF + FE > —max({a} \ {I)(E + F). (65)

We will then follow the original proof of part (1) of the
Lemma in demonstrating the following:
Proposition 1. The inequality

EF +FE > —¢(E + F) (66)

is optimized by ¢ = max({a}\ {1}) = |[EF —E AF|. In
particular, 1 — ¢ is the least nontrivial eigenvalue of E + F.

The operator norm ||O]| is equivalent to the supremal
real value of (®|O|W) for unit W, ®; in particular, optimiz-
ing ® and ¥ implies that OV = ||O||® and [|O||¥ = OT®.
In finding W, we note that EF — E A F' vanishes on both
FH' and EHNFH; ie., ¥ is orthogonal to these spaces
and in particular ¥ € V. Likewise, the Hermitian transpose
vanishes on EH+ and EH N FH, so that we should find
(EF — E ANF)W¥ € Vg; in particular, ® € Vg. Noting (E A
F)V = (E AN F)® =0, we can thus write EFV = EV = ¢®
and (EF)T® = F® = gW. It follows that

(EF + FE)(W — ®) = (e — e)(¥ — )
=—¢(E+F) (¥ — D). (67)

Moreover for any eigenvector Y of E + F with eigenvalue
1 —«a € (0, 2), decomposed as above into ¢ + ¥, (EF — E A
F)Y = EFy = —a. In particular, this implies that |[EF —
E AF| > |al, as ¢ and ¢ have the same norm when o # 0:

(VIE|p) = —alple) = (Vle),
(UIFlp) = (Vlo) = —a(Pl¥) (68)

for @ # =£1; thatis, ¢ = max({a} \ {1}). |

Therefore, determining ¢ is equivalent to determining the
least nontrivial eigenvalue of E 4+ F. We now demonstrate
that we can simplify E + F and, by extension, reduce the
complexity of this calculation.

Consider a projector A, with the properties FA = AE = E
(i.e., AH D EH) and [A, F] = 0. (In particular, we will be
interested in a projector defined on the sites Yy, \ Y,,,.)

Proposition 2. For an eigenvector Y of E + F with eigen-
value | — o, ¢ {—1,0,4+1}, AT ="T.

As above, we write T = ¢ + ¢ with ¢ € Vg and ¥ € Vp,
so that Ev¥y = —a¢ and F¢ = —a); in particular, FEY =
a®y. Manifestly, Ap = ¢ as ¢ € E{; meanwhile, since
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o # 0 we can write
AY =a AFEY =a *FAEYy =« *FEy =v. N

We use A to project onto a lower-dimensional subspace
H'; that is, we take Uy : H — H’ for U/IUA =Aand U U] =
130. We set E' = UyEU, and F' = U,FU,. That E’ and F’
are projectors follows directly from the fact that £ and F
commute with A. Moreover, we have the following:

Proposition 3. ||[E'F'+ E' ANF'|| = |EF + E AF|.

We do this by examining the spectrum of E’ + F’, as in
Proposition 1. Since A commutes with E and F', we find that

(E + F)UY = (E 4+ F)U](UsUDY'
= A(E + F)U;Y = UJ(E' + F)Y',

that is, for any eigenvector Y’ of E' + F’, UXT’ is an eigen-
vector of E + F with the same eigenvalue. Put otherwise, the
spectrum of E’ + F’ is a subset of that of E + F. Then, by
Proposition 2, only the degeneracies of eigenvalues 0, 1, and
2 are affected; in particular, the least nontrivial eigenvalue is
preserved. |

We additionally note that, for a fourth projector B commut-
ing with E and A and satisfying FB = BF = F,B' = UABU;
satisfies the same hypotheses for F’ and E'. Decomposing
B = U;UB, UBUBT, = ly», we can therefore move to a still
smaller space H” = BH’ and perform our analysis on E” =
UBE/Ug and F" = UBF’U;. The method we use to efficiently
exploit these conclusions is as follows [36]:

(i) Determine E = 1 — P, as follows:

(a) Construct the tensor corresponding to the portion of
the AKLT state defined on Y,, containing both physical and
virtual indices (in the honeycomb-lattice case, 3n + 1 physical
and three virtual indices; in the square-lattice case, 4n + 1
physical and four virtual indices).

(b) Collect the physical and virtual indices in order to turn
the representation into a matrix ¥ € Hpnys @ Hyir.

(c) Using the singular-value decomposition ¥ = WsV'1
(written such that s is full-rank), it follows that E = WW .

(i) Taking Uz = W', we can repeat this process to define
isometries Ur on Y,,, Uy on ¥, \ ¥,y, and Ug on ¥y, \ V.

(ili) Write U} = UgU, and U} = UrU, (as it may be
prohibitively memory-intensive to represent even E and F in
full).

(iv) Then E” = U} U}, and F” = U; U} can be used to
extract ¢ by diagonalizing E” + F”.

We applied the above procedure to four different types of
lattices, and we found that the AKLT models are gapped for
n > 2 for the decorated lattices, as shown in Table I. This
includes those whose underlying lattices are of degree 6, such
as the triangular lattice and even the cubic lattice. The AKLT
model on the cubic lattice is interesting, as the ground state,
i.e., the AKLT state, is Néel ordered [37]. By decorating the
cubic lattice with a few spin-1 sites on every edge, the Néel
order is removed, as gapless Goldstone modes must be present
in the antiferromagnetic case. The results in Ref. [28] about
quantum computational universality for the AKLT family only
apply to lattices of vertex degrees equal to or less than 4. But
for these 3D decorated AKLT states, we suspect that they are
also universal for MBQC.

TABLE II. The local gap Ay(n) for hy., and the estimated
lower bound on the gap y (n) for decorated AKLT models, whose

underlying lattice, without decoration, has vertex degree 3 or 4.

Ay(n)
n fordeg.3

Ay(n)
for deg. 4

gap lower
bound y (n)

gap lower
bound y (n)

1 0.283484861
2 0.239907874
3 0.207152231

0.170646233
0.154737328  0.197934811

0.183265099

0.101463966

A. Lower bounds on the gap

The lower bound on the gap of the AKLT model on the
decorated honeycomb can be estimated via Eq. (5) and is
given by

sap(HST) > P (1 3, (69)
shown in Ref. [31]. The analytic bound of &3 < 0.2683 was
used, and together with yy(n = 3) & 0.2966 this yielded a
lower bound of gap as follows: gap(H L)) > 0.0289 for the
decorated honeycomb lattice. Of course, this can be improved
by using the numerical value for ¢;3 from Table I, and we
obtain gap(H L)) > 0.131199, which is four times more
than originally found.

An additional improvement can be made by using a slightly
different inequality from Eq. (5):

AyHyo < HRS™ < lhy |1 Hao, (70)

where Ay (n) is defined to be the smallest nonzero eigenvalue
of h;;v, which is similar to 4, in Eq. (2), but is instead
defined as

1
hy., = Z 5pe[’z(@/z] + ZPEIZ@/Z]» an
eegyv \gv e€é,

where &, denotes the set of edges incident on the site v on the
original, undecorated lattice. The inequalities of Eq. (70) arise
naturally due to the fact that

HYST ="k, (72)

veA

Thus the new lower bound on the gap is
gap(Hy'™) = y(m) = Ay()(1 —ze,),  (73)

where z is the appropriate coordination number from the
underlying lattice (one should take the largest one if the
lattice is of mixed degree). We show in Table II a few lower
bounds on the gap. For the decorated honeycomb example
considered above, the lower bound on the gap is improved
to gap(HAKE)) > 0.183265.

At this point, we would like to entertain the idea of extrapo-
lating the lower bound from n = 3 and 2 linearly ton = 1 and
0. Doing this, we would obtain gap(Hf(If}lT)) > 0.126209 6
(extrapolated) and gap(HAXLT) > 0.097 682 (extrapolated).
The latter value is interesting, as it is consistent with the
numerical gap value of the model on the honeycomb lattice
0.10, obtained in Ref. [29] using tensor-network methods. Of
course, there is no basis for why such an extrapolation should
be valid.
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VI. CONCLUDING REMARKS

We have followed the elegant approach by Abdul-Rahman
et al. [31] and proved analytically that the decorated square
lattices with n > 4 host AKLT models with a finite spectral
gap, similar to the results of the decorated honeycomb case.
Our numerical approach extends beyond what was accessible
previously and allows us to show that the AKLT models on
both decorated lattices are gapped even for n = 2 and 3. The
results of a nonzero spectral gap also hold for any other
decorated lattices of which the underlying lattices are of fixed
vertex degree 3 or 4. But we have also commented on other
lattices. In particular, using the results from both the decorated
honeycomb and square lattice, we also show analytically that
AKLT models on decorated lattices, where the underlying
lattice has mixed vertex degrees 3 and 4, are also gapped
for n > 4. This is improved numerically to n > 2. Regarding
the spectral gap for the AKLT models on the undecorated
honeycomb or square lattice, we also share the same view
as the authors of Ref. [31], i.e., to establish their spectral
gap will require a different and potentially novel approach.
However, some insight may be obtained if one can make
progress analytically on the cases of n = 1, 2 and in particular
whether the n = 1 case is gapped or not (and we strongly
suspect that it is).

Our numerical results also show the nonzero gap for
n = 2 in the decorated triangular and cubic lattices. Observing
the decaying trend of ¢, on n in the previous analysis, we
believe that the nonzero gap should exist for all n > 2. One
can carry out the analytic procedure for the degree-6 case.
The calculations are expected to be more tedious but likely
straightforward. Such a result is interesting for the cubic

lattice, as this shows that the AKLT states on the decorated
cubic lattices are not Néel ordered, in contrast to the state
on the undecorated cubic lattice. Naively, decoration using
spin-1 sites introduces more quantum fluctuations than those
from spin-3 sites and destroys the Néel order. In contrast, the
ground state of the spin-1/2 Heisenberg model on the cubic
lattice is antiferromagnetically ordered, despite the seemingly
larger quantum fluctuations from such low-spin magnitude
entities. The phenomena of the suppression of order, as well
as the other kind of suppression—of frustration, as mentioned
in the Introduction, may be of interest for further exploration.
AKLT models that have spin rotational symmetry but a
deformation that breaks the full SO(3) symmetry were con-
sidered, such as the deformed AKLT models in Refs. [38,39].
Can we employ a similar approach to prove the spectral
gap for the deformed models on the decorated lattices? It is
also possible that ideas from tensor networks can be useful,
such as those in Refs. [40,41]. Some deformed AKLT states
were also previously shown to provide a universal resource
for MBQC within some finite range of deformation [42,43].
These deformed models also have interesting phase diagrams
[38,39,43—45]. It is worth mentioning that some related 2D
Hamiltonians interpolating the AKLT and the cluster-state
models were also shown to have a finite spectral gap [41], but
the spectral gap in the exact AKLT limit is still not proved.
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