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The cyto- and genotoxic potencies of disinfection by-products (DBPs) have been evaluated in published
literature by measuring the response of exposed Chinese hamster ovary cells. In recent publications,
DBP concentrations divided by their individual toxicity indices are summed to predict the relative toxicity
of a water sample. We hypothesized that the omission or inclusion of certain DBPs over others is
equivalent to statistical sampling bias and may result in biased conclusions. To test this hypothesis, we
removed or added actual or simulated DBP measurements to that of published studies which evaluated
granular activated carbon as a treatment to reduce the relative toxicity of the effluent. In several
examples, it was possible to overturn the conclusions (i.e., activated carbon is detrimental or beneficial in
reducing toxicity) by preferentially including specific DBPs. In one example, removing measured

haloacetaldehydes caused the predicted cytotoxicity of a treated sample to decrease by up to 47%,
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Accepted 12th December 2019 reversing the initial conclusion that activated carbon increased the toxicity of the water. We also discuss

measurements of statistical error, which are rarely included in publications related to predicted toxicity,
but strongly influence the outcomes. Finally, we discuss future research needs in the light of these and
other concerns.
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Environmental significance

Recent publications have divided concentration measurements by published cyto-and genotoxicity indices to produce a predicted toxicity metric. This meth-
odology is valuable to determine the relative importance of measured DBPs in a sample. However, using published datasets we show here that statistical
uncertainty and sampling bias inherent to predicted toxicity impact the conclusions of studies in which water quality is compared between samples or treatment
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processes. The conclusions here are important to future regulatory consideration, where predicted toxicity is being considered as a metric to compare treatment
technologies which may result in action that is thought to be protective of public health but is detrimental.

Introduction

Disinfection by-products (DBPs) form from reactions of inor-
ganic or organic matter with disinfectants during water treat-
ment. The most abundant species by mass in drinking water are
trihalomethanes (THMs) and haloacetic acids (HAAs), which are
currently regulated by the United States Environmental
Protection Agency (EPA).' THMs and HAAs are formed to
a greater extent by free chlorine than chloramines.” Therefore,
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many treatment plants have switched from free chlorine to
chloramination to reduce the formation of THMs and HAAs.>*
While lower concentrations of the regulated THMs and HAAs
form during chloramination than chlorination, certain other
DBPs form to a greater extent.>® Therefore, there are tradeoffs in
DBP formation from use of different disinfectants and
researchers have focused recent efforts on determining which
DBPs are the most important to mitigate formation of to limit
the risk to human health.*”

Some DBPs elicit cyto- and genotoxic responses and the
“potency” (i.e., the LCs, or concentration required to achieve an
effect in 50% of the cells) of roughly 100 individual DBPs has
been assessed by multiple in vitro and in vivo assays.**° The most
comprehensive data set uses Chinese hamster ovary (CHO) cells
and the published potencies serve as a unique and valuable
dataset for comparing the potency of DBPs and of classes of
DBPs.*” The published potencies have also been used to calcu-
late “predicted toxicity” (i.e., the measured concentration of an
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individual DBP is divided by the published potency to calculate
the relative toxicological contribution of each DBP, which are
then summed). Predicted toxicity is part of an ever-evolving
approach to understanding the human health impact of DBPs
and has been used in studies to evaluate treatment process
efficacy.”” This approach is particularly attractive for labs
without biological assay capabilities.

It was recently postulated that granular activated carbon
(GAC) treatment may increase the toxicity of disinfected water,
despite an overall removal of organic matter, based on the
observation that GAC does not remove bromide, which may
result in higher concentrations of brominated DBPs."® Bromi-
nated DBPs are generally more potent than their chlorinated
analogues based on results from the CHO comet assay. As
hypothesized, in rapid small-scale column tests, predicted
toxicity increased due to an increase in brominated DBP
formation, in particular, dibromoacetonitrile (DBAN). However,
genotoxicity was also directly assayed with the SOS Chromotest
and unlike predicted toxicity, the measured genotoxicity was
consistently reduced with GAC treatment and tracked well with
removal of bulk organic carbon. Of the 30 DBPs measured prior
to and following GAC treatment, DBAN accounted for ~53% of
the predicted toxicity and it was suggested that further GAC
studies focus on HANSs, particularly brominated HANs. The
conclusion that HANs are the drivers of risk for disinfected
water samples has only emerged in the past few years, but has
been pervasive among predicted toxicity publications.'*'71820-3¢

Previously published studies focusing on predicted toxicity
typically measured 30 to 40 DBPs, but a more recent study
measured 70.>>** The team found that the overall mass of 70
DBPs decreased across GAC, but the number of brominated
DBPs, including DBAN, increased. Because brominated DBPs
are generally more potent than chlorinated DBPs as measured
by the comet assay,' it was expected that the predicted toxicity
would also increase, following other published studies, despite
the overall reduced mass concentration of DBPs. Instead, the
investigators found that the predicted toxicity decreased. The
authors did not definitively reconcile the opposing conclusions
of this research and other published literature, but we attribute
the discrepancy to differences in number and speciation of
measured DBPs.

Both the published literature and the more recent research
discussed above conclude that DBAN precursors are poorly
removed by GAC, thus DBAN contributed similar amounts of
predicted toxicity before and after GAC."'***** However, by
measuring a greater number of DBPs compared with prior
studies and including precursors that are well removed by GAC,
specifically dibromoacetamide and bromochloroacetamide, the
more recent study effectively diluted the weight of DBAN in the
predicted toxicity calculation. This highlights how published
literature may have unintentionally biased the toxicity calcula-
tions by including a comparatively potent DBP that preferen-
tially forms in conditions that GAC selects for, while neglecting
to measure DBPs that are effectively mitigated by GAC. Although
inclusion of other DBPs reduced this bias, it is possible that
other toxic DBPs which were not measured or remain uniden-
tified could have altered the conclusion. Thus, we find the
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competing conclusions in the literature to be an excellent
example of how predicted toxicity can be difficult to interpret.

We and others have suggested that the overall variability in
conclusions across studies and assays is caused by the inherent
uncertainty associated with this method of risk attribution.
First, DBPs that are not measured or have not yet been discov-
ered or assayed for toxicity might substantially contribute to the
predicted toxicity, even at low concentrations, given that DBPs
have toxic potencies that span greater than six orders of
magnitude (i.e., sampling error or sampling bias).*> Second,
a typical suite of DBPs measured in advanced analytical publi-
cations (~30 to 70 DBPs) are representative of only ~30% of the
overall DBPs as measured by adsorbable organic halides
(AOX),***> which still does not account for DBPs that do not
contain halogen atoms. Third, measures of uncertainty are
infrequently published, making comparisons difficult to inter-
pret. Finally, published potencies are derived from individual
DBP exposures, which ignore agonistic or antagonistic effects of
mixtures.*® Although these limitations are well known among
experts in the field and discussed conceptually throughout
perspective and review publications,*® they are infrequently
discussed in publications in which predicted toxicity is applied,
potentially because they are only reviewed broadly, and there is
no published demonstration of their potential impacts.

Although the impact of agonistic and antagonistic effects
may be extremely important, for brevity, we limited the objec-
tive of this manuscript to demonstrating the impact of the
number of DBPs measured and the statistical uncertainty on the
reported toxicity in surface water datasets, although our
conclusions may be extended to other water sources. First, we
removed groups of DBPs from published datasets to determine
if the conclusions regarding the efficacy of GAC changed
dependent on the number of DBPs measured. The removal of
groups of DBPs was not focused on a specific subset of DBPs; we
evaluated the theoretical removal of all groups of DBPs indi-
vidually. Second, we aggregated published haloacetamide
(HAcAm) data and inserted the aggregates into datasets from
publications that assessed GAC treatment but did not measure
HAcAms (i.e., we simulated the measurement of additional
DBPs) and compared the conclusions from the publications to
hypothetical datasets. We chose to supplement the datasets
with HAcAms because they are relatively potent, measured
frequently enough for there to be data available, and because
HAcAms can be formed by hydrolysis of HANs.** Finally, we
discuss measurements of summative error, which are absent in
many publications, and comment on the potential impacts of
discounting rigorous statistical analysis. Because many DBPs
are not genotoxic, published predicted toxicity literature tends
to focus on predicted cytotoxicity rather than genotoxicity. We
also focus on cytotoxicity because the greater dataset available,
but discuss genotoxicity where possible.

Methods

CHO cell DBP potencies were obtained from two publications®*
and a personal correspondence.* DBP potencies are determined
by exposing CHO cells to multiple concentrations of an individual
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DBP and measuring either cell death (cytotoxicity) or DNA damage
(genotoxicity). Predicted toxicity was calculated by dividing
measured concentrations of DBPs by their respective geno- or
cytotoxic potency (LCs, [cytotoxicity], or 50% tail DNA or midpoint
of DNA tail moment [genotoxicity]), resulting in a unitless toxicity
(see Table S17 for toxic potencies). DBP concentrations from pre-
and post-GAC treatment were from multiple publications (see
Table S21 for background on the treatments).'"®*?* HAcAm
concentrations were derived from two publications that measured
HAcAms before and after GAC treatment at a total of 18 drinking
water treatment plants (Table 1, pre-GAC concentrations in Table
S31).2*” The GAC influent water samples were either not oxidized,
or pre-oxidized with varying oxidation techniques (chlorine,
chloramine, ozone, NaMnO,, KMNO,, see Table S27), represent-
ing a broad array of pre-oxidation conditions. HAcAms measured
in the GAC effluent samples in both the data that was aggregated
from and supplemented to were primarily chlorinated, except two
samples, which were chloraminated (WTP D and WTP E in Fig. 1
and 2).

In cases where a HAcAm was not detected, a concentration
equal to half the provided MDL was assumed. DCAM, DBAM,
BCAM, and TCAM were measured post-GAC by Stanford et al.,*
and therefore the toxic potencies provided in the third column
of Table 1 (mean of both datasets) are averages of both data sets.
In one instance, Stanford et al.,* four HAcAms were measured
in the additional dataset and therefore the original data from
the publication was used, with only two HAcAms supplemented
from Table 1. In the study by McKie et al.** DBAN was not
measured, thus, in addition to supplementing the HAcAm data
from Kosaka et al.,”” the average of sixteen samples after GAC
treatment from Krasner et al'® and Stanford et al*® were
included (5.12 £ 3.39 nM DBAN, Table S41). DCAM is not
genotoxic and thus was not included in genotoxicity. We are
unaware of additional sources of HAcAm occurrence data in
drinking water facilities with GAC treatment.

Results and discussion

Simulating the omission of specific DBP subsets in published
data

We removed groups of DBPs from published data sets to
demonstrate that omission of specific analytes can alter the
conclusion of the analysis. We discuss in detail only one
example here, but additional data aggregated from publications
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are provided in the ESI,T and similar conclusions follow (Fig. S1:
panels 2 and 4, and Fig. S2: panels 1 and 2.31). In Fig. 1, we
show the contribution of individual DBPs to predicted toxicity
from the initial data set. In panel 4, we show that predicted
cytotoxicity decreased 20% across GAC (22 000 bed volumes
[BV]) when HAcAms were included in the initial measurements.
However, removal of HAcAms (pink compounds) from the data
(i.e., simulating measurement of fewer compounds) results
instead in a 6% increase in predicted cytotoxicity after GAC
treatment. Similarly, in panel 3, GAC treatment reduced the
predicted cytotoxicity by 13% to 4%. However, had HALSs (purple
compounds) been omitted from the analysis, the initial
untreated sample would have been predicted to be 5% to 14%
more cytotoxic than the GAC treated samples, at the two BV
sampled (shown with HALs as the top bars in Fig. S3At for
clarity). Finally, in panel 6, GAC treatment increased the pre-
dicted cytotoxicity by 15% to 19%, mostly due to increased
formation of chloroacetaldehyde. Omission of HALs, including
chloroacetaldehyde, caused the predicted toxicity to decrease
across GAC by 47% to 28% (also shown in Fig. S3Bt with CAL as
the top stacked bar for clarity).

Removal of other DBPs in these three panels or in panels 1, 2,
5, and 7 resulted in changes to the magnitude of the predicted
toxicity change, but generally no change to the initial conclu-
sion, that GAC reduced the toxicity profile of the samples. Thus,
omission of specific classes of DBPs does not always change the
interpretation of the data and the magnitude of the changes
presented here are a relatively small percent contribution to the
toxicity profile of the samples. Given that observed reductions
or increases in predicted toxicity across the GAC are relatively
small in most cases, we caution that without rigorous statistical
analysis, conclusions as to the benefit or cost of a treatment
process are not appropriate. Additionally, in some cases, the
conclusion that a technology results in better or worse water
quality is dependent on which DPBs were measured, which is
troublesome considering the investment required to implement
such technology in water treatment systems.

The contribution from THMs' predicted toxicity are relatively
small compared to those of other DBPs. Total THMs contrib-
uted 0.2% to 2.4% of predicted cytotoxicity to each water sample
without the addition of the simulated HAcAms (Fig. 1). THMs
do not elicit a genotoxic response, and therefore did not impact
predicted genotoxicity. HAAs contributed 0.2% to 23% of pre-
dicted cytotoxicity, which was generally less than other classes

Table1 Post-GAC HAcAm concentrations derived from two publications. Data from Kosaka et al.*” is the average from 6 treatment plants and

Stanford et al.,? from 12 treatment plants

Mean of both datasets

Mean concentration from Kosaka et al.>” (nM) Mean from Stanford et al.>> (nM) (nM)
DCAM 1.69 £ 0.54 22.47 £ 30 12.08 £ 10.3
DBAM 2.61 +1.7 7.84 £ 3.3 5.23 £2.6
BCAM 2.13 +£ 0.55 8.34 £ 5.2 5.23 £ 3.1
TCAM 0.62 3.08 £ 0.9 1.85 £ 1.2
CAM 1.43 £ 0.50 Not measured 1.43 £ 0.50
BAM 1.57 £ 1.06 Not measured 1.57 £ 1.06
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Fig.1 Components of predicted cytotoxicity for data from Stanford et al.?* and Cuthbertson et al.** (same data in both publications). Pink colored
compounds are HAcAms. Left-most bar in each panel is pre-GAC predicted cytotoxicity, other bars are GAC effluent samples. Only 41 DBPs are
shown, rather than the 70 that were measured, because 29 DBPs were not detected. Compound abbreviations are provided in Table S11 and raw
data provided in Table S5.1 Panels 3, 4, and 6 are instances where omission or inclusion of specific DBPs or groups of DBPs may cause an
inversion of the conclusion that GAC treatment was beneficial or detrimental.

of measured DBPs. HAAs dominated genotoxicity in some
samples, but not in others (Fig. S4f). The US EPA currently
regulates THMs and HAAs, but these species did not contribute
appreciably to predicted toxicity in the cases here or in other
publications.>**® We believe this is an especially useful appli-
cation of predicted toxicity; to compare the relative importance
of individual compounds or classes of DBPs in a single sample,
but not between samples or treatment groups. Finally, to
interpret such data as an indication that a certain class of DBPs
should be subject to regulation instead of or in addition to
THMs and HAAs is likely an overextension of the data (i.e.,
THMSs are probably not important in the given data, but it is not
known whether DBAN is important, only that it is more
important than THMs [see Importance of DBAN]).

Incorporation of unmeasured DBPs

We initially supplemented aggregated HAcAm data from 18
WTPs (Table 1) into the same pre- and post-GAC example
dataset because the number of DBPs measured is relatively
comprehensive. We chose to supplement the datasets with
HAcAms because they are relatively potent, measured frequently
enough for there to be data available, and because HAcAms can
be formed by hydrolysis of HANs.**

HAcAms were measured in some of the treatment plants and
we supplemented the data for other plants or added specific

This journal is © The Royal Society of Chemistry 2020

HAcAm compounds to those that did not measure all six
HAcAms. The supplemented HAcAm data contributed an
average of 51% =+ 31% of the predicted toxicity for pre-GAC data
and an average of 38% =+ 23% for post-GAC data (Fig. 2). Pre-
dicted cytotoxicity decreased across GAC for five of the seven
cases, and the addition of HAcAm data (pink bars) did not
change this conclusion. However, in panel 4, the initial dataset
without HAcAms indicates that the predicted toxicity of the GAC
effluent initially decreased across GAC (3000 BV), but then
increased to greater than the pre-GAC sample (22 000 BV),
suggesting that GAC caused the total predicted toxicity of the
treated sample to be greater than the untreated sample. Much
of this can be attributed to the increase in tribromoacetonitrile
(TBAN) formation. However, with the simulated measurement
of HAcAms (i.e., addition of aggregated data), the predicted
toxicity of the GAC treated samples tends to increase with
increasing GAC use, but does not exceed the predicted toxicity
of the pre-GAC sample, suggesting that GAC decreased the
predicted toxicity of the water relative to the untreated sample.
This is attributable to a decreased weighting of TBAN due to
a greater number of compounds measured.

In panel 2, predicted toxicity decreased relative to the
untreated sample despite a large increase in TBAN and inde-
pendent of the addition of HAcAms. However, had an additional
sample been taken at a later point in time, predicted toxicity
may have increased because of the large increase in TBAN

Environ. Sci.. Processes Impacts, 2020, 22, 708-718 | 711
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Fig.2 Components of predicted cytotoxicity for data from Stanford et al.?*> and Cuthbertson et al.** (same data in both publications). Pink colored
compounds are either measured HAcAms from the study or supplemented HAcAms derived from the mean concentrations at 18 WTPs (Table
1).2537 Left-most bar in each panel is pre-GAC predicted cytotoxicity, other bars are GAC effluent samples. Only 41 DBPs are shown, rather than
the 70 that were measured, because 29 DBPs were not detected. Compound abbreviations are provided in Table S1} and raw data provided in
Table S5.1 All panels are supplemented with CAM and BAM data from Table 1. Additionally, panels 1 and 2 are supplemented with TCAM data,
panel 3 is supplemented with DBAM and TCAM data, panel 5 is supplemented with DBAM and BCAM data, panel 6 is supplemented with DBAM
data, and panel 7 is supplemented with DBAM, BCAM, and TCAM data. Panels 2 and 4 are instances where inclusion of supplemented HAcAms
may have significantly impacted conclusions. Conclusions from other panels are impacted to a lesser extent.

across GAC and decreasing DBP precursor removal across GAC
over time. Amending aggregated HAcAm data would reduce the
impact of TBAN and potentially result in decreased predicted
toxicity. In panel 6, predicted cytotoxicity increased indepen-
dent of the inclusion of HAcAms, but does so to a lesser extent
when HAcAms are amended. Again, the relative changes
observed here are small and only in select instances, but the
impacts on decision making are substantial if the results are
assumed to be statistically significant.

In another published dataset in which a relatively small
number of DBPs was measured (N = 15), predicted genotoxicity
increased slightly across biologically active GAC (e.g., biofiltra-
tion) partially due to increased CAA formation (Fig. 3, panels 4
through 8). However, including simulated HAcAm data caused
predicted toxicity to decrease by 52% to 75% across the bio-
filters. The publication also measured absorbable organic
halogens (AOX) and SOS genotoxicity via the SOS Chromotest
and found strong correlations between SOS genotoxic response
and AOX, THMs, and HAAs, and particularly strong correlation
between THMs and SOS genotoxic response after biofiltration
(R* = 0.97). It is well recognized that THMs and HAAs are not
likely to be the primary toxicological drivers based on their
potency and occurrence, but they may be well correlated for
specific assays. One additional published data set is provided in
the ESIT and simulated addition of HAcAms follows the

712 | Environ. Sci.: Processes Impacts, 2020, 22, 708-718

conclusions here but is not discussed in depth for brevity
(Fig. S5,7 panels 1 and 2.3).

Importance of DBAN

Because of its extraordinarily high toxicity index, detecting DBAN
at the detection limit, typically between 0.2 pg L™ (ref. 27) and 1
pg L™ 8 results in a contribution of 3.5 x 10”*t0 1.8 x 107> to
predicted cytotoxicity, the same order of magnitude as the total
predicted toxicity for most drinking water samples. Because of
this, a large number of publications have implicated DBAN as the
primary driver of toxicity,'”***** and therefore we also examined
the importance of DBAN before and after the addition of aggre-
gated HAcAm data, which also have relatively high toxicity
indices, but are not always measured alongside HANSs. In Fig. 4,
we show the contribution of DBAN to the overall predicted
cytotoxicity in sampling events from three publications with
varying treatment processes and source waters. The addition of
HAcAms to the post-GAC samples caused a 10% to 63% percent
decrease in the contribution of DBAN to predicted cytotoxicity for
two studies.'®*® DBAN associated toxicity in the third study
decreased to a lesser extent because four of the six HAcAms were
measured in the initial study, which diluted the effect of adding
additional HAcAms. However, inclusion of two additional
HAcAms (i.e., CAM and BAM) reduced the percent contribution

This journal is © The Royal Society of Chemistry 2020
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Fig.3 DBP components of predicted genotoxicity from McKie et al.*® Red colored compounds are supplemented HAcAms (see Table S37). Left-
most bar in each panel is pre-GAC, other bars are post-GAC. Panels 1-3 represent samples from Lake Ontario taken in three different months.
panels 4—8 are samples from the Otonabee River taken from five separate sampling events. Only 9 DBPs are shown, rather than the 15 that were
measured, because 6 DBPs were not detected or do not have published genotoxic indices. Compound abbreviations are provided in Table S17
and raw data provided in Table S6.1 Panels 4 through 8 are strongly influenced by the inclusion of haloacetamides while panels 1 through 3 are

driven by BAA.

of DBAN to predicted cytotoxicity by an additional 2% to 4%. In
Fig. S6,7 we show the percent contribution from DBAN to pre-
dicted genotoxicity, which generally agrees with the conclusions
presented for cytotoxicity. Although this exercise might seem
intuitive, we note here that increasing the number of total
compounds measured will diminish the relative contribution of
DBAN to predicted toxicity. Therefore, the conclusion that DBAN
drives overall toxicity may be an artifact of (1) the number of
DBPs measured, and (2) the relative toxic potency of DBAN.

Statistical methods in summed calculations

Like any measurement, predicted toxicity has some statistical
uncertainty. There is uncertainty in both the measurement of
a DBP's concentration, and the measurement of its toxic
potency. However, the standard deviation of the predicted
toxicity is not reported, or is in some cases reported incorrectly,
potentially leading to a misunderstanding of the measure-
ment's precision.

Regarding the DBP concentration, during quantification of
compounds at low pg L' or low ng L™, relative standard
deviation (i.e., standard deviation divided by the mean) of 20%
is generally considered acceptable, and some highly genotoxic
to CHO cell DBPs regularly occur at or near their limit of
quantification (e.g., DBAN). One way to reduce the measure-
ment error is through replicate measurement. However, repli-
cate measurement only accounts for measurement error. If the
goal is to compare water treatment processes, it is necessary to
measure replicate samples from the experiment to account for
both experimental and measurement error. This becomes cost

This journal is © The Royal Society of Chemistry 2020

prohibitive, and many data are reported with only measurement
replication, rather than experimental.

Regarding measurement of toxic potency, CHO cytotoxicity
and genotoxicity assays are considered relatively precise among in
vitro bioanalytical assays. For example, Wagner and Plewa' used
a bootstrap method to estimate a relative standard error of 12%
for the cytotoxic potency of chloroacetamide. While it is possible
to estimate the standard error of the toxic potency of a DBP using
the raw data and a bootstrap method, this descriptive statistic has
not been published for the majority of DBPs tested with the CHO
comet assays. Nevertheless, the toxic potencies measured by these
assays also have some uncertainty which should be considered
when using them to compare DBPs or water samples.

Multiplying two uncertain values increases the overall stan-
dard error. Treating the DBP concentration and its geno- or
cytotoxic potency as independent random variables, the stan-
dard error of their product is:

SAxB = \/(SAZ +XA2)(SBZ + XBZ) — XAZXBZ (1)

where A is the DBP molar concentration, B is the toxic potency
(1/LCs or 1/50% DNA tail moment), s is standard error, and X is
mean DBP concentration or mean bootstrap output. For
example, for a DBP with concentration measurement relative
standard error of 20% and with geno- or cytotoxic potency
relative standard error of 12%, the toxicity-weighted concen-
tration standard error is 23.4%. The assumption of indepen-
dence is valid in this case because there is no relationship
between the result of a toxicity assay on a DBP and that DBP's
concentration in a sample collected years and miles apart.

Environ. Sci.. Processes Impacts, 2020, 22, 708-718 | 713
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Fig. 4 Contribution of DBAN to predicted cytotoxicity of GAC treated samples in which HAcAms were not measured (published data) or with
addition of aggregated HAcAm data, indicating that inclusion of additional HAcAms decreases the significance of DBAN. Orange data is from
Krasner et al.,*® (Table S6t) green data is from McKie et al.,*® (Table S61) and blue data is from Stanford et al.?®> and Cuthbertson et al.3* (Table S5%)
Stanford et al.?* and Cuthbertson et al.3* measured several HAcAms, others were supplemented. The pilot plants included DCAM, DBAM, and
BCAM, WTP A included DCAM and BCAM, and WTP B included DCAM, DBAM, BCAM, and TCAM. McKie et al.*® did not measure DBAN; the mean
GAC effluent DBAN concentrations from Krasner et al.,*® Stanford et al.?® and Cuthbertson et al.** are presented. Error bars for data including
HAcAms (filled bars) are derived from the standard deviation of HAcAm data from Kosaka et al.*” and the HAcAms measured in Stanford et al.?®
and Cuthbertson et al.3* (DCAM, DBAM, BCAM, TCAM). Error bars for data without HAcAms (open bars) are derived from the publications. Raw

data provided in Table S7.F

When adding random variables, the relative standard error
decreases, but to an extent that depends on how much one
variable dominates the equation. The standard error for the
sum of independent random variables is:

i=n
S(Z\+Zy A Zy) = (ZSZ"2> (2)
i=1

where 7 is the number of variables summed and Z,, Z,, etc. are

=

the variables summed. Consider a hypothetical scenario in
which a water sample has 30 detected DBPs, each of which has
a relative standard error of 20% for the product of DBP
concentration and toxic potency. If each DBP contributes to the
predicted toxicity equally, the overall relative standard error is
just 3.7%. This low relative standard error is because it is
unlikely that all 30 DBPs would have been low estimates in
a single sample (assuming independence), and any one extreme
value by a single DBP represents a low percentage of the total
predicted toxicity. However, if a single DBP contributes 50% of
the index (e.g., DBAN) and the other 29 detected DBPs
contribute equally to the other 50%, the overall relative stan-
dard error is 10.2%. Additionally, the concentration of multiple
DBPs measured in a sample may not be completely indepen-
dent, since the same factors that might dilute, concentrate, or

714 | Environ. Sci.: Processes Impacts, 2020, 22, 708-718

contaminate the measurement of one DBP could also affect the
others. Considering covariance, eqn (2) becomes:

. 23 cov(Z;,Z)
R N D ”K# (3)
i=1

where N is sample size. Note that a large sample size is needed
to provide a reliable estimate of the covariance between each
DBP and the number of covariance terms is N x (N — 1)/2
(hundreds or even thousands for 30+ DBPs), meaning calcu-
lating covariance may not be practical under typical sampling
campaigns. But, considering covariance, the true overall stan-
dard error of the predicted toxicity could be somewhat higher
than calculated by eqn (2).

As an example of how rigorous analysis of error may alter
interpretation, we examine one study in which it was observed
that pre-chlorination of surface water before GAC resulted in
a lower predicted cyto- and genotoxicity than GAC alone.”® The
predicted cyto- and genotoxicity were reduced 17% and 16%,
respectively, if pre-chlorination was applied before the GAC. In
Fig. 5 we show the predicted cyto- and genotoxicities with error
bars assuming a relative standard error of 12% for all DBP toxic
potencies and 15% for all DBP concentrations. Based on these
assumptions and eqn (1) and (2), the relative standard errors of
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Fig. 5 Predicted toxicities of a pilot plant treating surface water with
GAC with and without chlorination before GAC, including measure-
ments of error, which are not frequently presented. (A) Cytotoxicity
and (B) genotoxicity. Water quality and treatment details are in Stan-
ford et al.*® HAA = haloacetic acids (non-iodinated), HACAm = hal-
oacetamides, HAL = haloacetaldehydes, HAN = haloacetonitriles, HK
= haloketones, HNM = halonitromethanes, |-HAA = iodinated halo-
acetic acids, I-THM = iodinated trihalomethanes. THM = trihalo-
methanes (non-iodinated).

the predicted cyto- and genotoxicities are 10.3% and 10.6%,
respectively, before treatment with GAC. After GAC treatment,
the relative standard errors of the predicted cyto- and geno-
toxicities are 9.3% and 9.9%, respectively. Although in this
case a change across GAC is statistically significant, the pre-
dicted toxicities with and without pre-chlorination are within
two standard errors of each other, and thus not statistically
significant (p-value > 0.05). Large experimental replication
would have been required to reduce the standard error and
verify a change in predicted toxicities of this magnitude. Given
that descriptive statistical measures of variance are not gener-
ally available and that there is complex interplay between
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standard errors, small changes in predicted toxicities should be
interpreted with caution.

Conclusions and future research needs

Predicted toxicity has been used previously to show that regu-
lated DBPs (THMs and HAAs) contribute much less to the
overall toxicological profile of a treated water sample than other
DBPs that are present at significantly lower concentrations (i.e.,
DBAN tends to contribute more to toxicity than THMs and
therefore is likely to be more important). This is a function of
individual DBPs toxicity index and its concentration. Predicted
toxicity is a valuable tool for determining primary contributors
to DBPs among the DBPs measured, and is one of many
approaches for determining the potential public health effects
of DBPs. But we show here that the uncertainties inherent to the
method render it challenging and requiring careful interpreta-
tion for comparing treatment processes (i.e., GAC treated water
is more or less toxic than untreated water). Comparisons
between treated and untreated samples using predicted toxicity
may be biased towards measured DBP species that have both
high toxicity indices in CHO cell assays and precursors that are
unaffected by the treatment being studied. Other methods exist
to compare toxicity between samples, such as bioassays, but
they also have limitations. Primarily that they require extraction
of the DBPs to produce a sample that is concentrated enough to
produce a response, and the extraction step causes the loss of
most volatile DBPs, and likely some unknown DBPs. Further,
there are many bioassays that measure various endpoints and it
is not yet known which is the most relevant in capturing the
human health impacts of DBPs.

In the short term, further research is needed to viably
advance predicted toxicity and other toxicity measurements to
determine the benefits of a water treatment technology. Addi-
tional research to determine how well predicted toxicity and
CHO cell toxicity are correlated with other whole mixture
bioassays (e.g., SOS Chromotest) would be valuable and would
determine if cost effective and quick assays are representative of
overall toxicity. Continuation of the discovery of DBPs and their
respective toxic potency will continue to improve our under-
standing of the importance of specific DBPs. If it were possible
to measure all DBPs and their toxicity indices, predictive toxicity
would no longer be subject to sampling bias, but this is not
possible in the short term, and likely will not be in the long term
either, and therefore we must accept that certainty may not be
within our grasp. However, better availability and use of metrics
of statistical certainty and uncertainty would help to definitively
determine if technologies are effective in reducing overall
toxicity.

Another short-term goal for DBP researchers should be to
assess the role of agonism or antagonism in DBP mixtures,
which may be achieved by comparing the predicted toxicity of
a clean mixture to that of its actual toxicity to CHO cells.*®
Predicted toxicity assumes that the toxicity of each DBP is
additive and ignores the possibility of agonistic or antagonistic
effects. Toxicity is generally additive if each compound is toxic
through a different mechanism. However, prevailing evidence
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suggests that DBPs are genotoxic though indirect DNA damage
and products of oxidative stress (i.e., similar mechanisms)."*****

Toxicity threshold values should also be incorporated into
predicted toxicity, because some DBPs could be below
a threshold concentration at which they would pose no cytotoxic
risk. DBPs that are directly genotoxic by chemically reacting
with DNA theoretically have no toxicity threshold.** However,
DBPs that are indirectly carcinogenic through cytotoxicity or
oxidative stress are expected to have toxicity thresholds below
which they pose zero risk.*” Ideally, a DBP that is detectable but
below this threshold should be excluded from any metric of
total DBP risk. Lowest observed effect levels have been pub-
lished for the CHO genotoxicity and cytotoxicity assays on
DBPs,”* and could be used to exclude DBPs below these
concentrations.

A long-term goal may be to assess the differences in toxic
response between hamster ovary cells or other bioassays and
target human organs. For example, some DBPs are only toxic
after hepatic metabolism and liver S9 activation has been
developed to act as a surrogate.**™** We must accept that both
the long- and short-term goals presented here are significant
challenges, and that obtaining perfection may not be attainable
in the near future. However, we believe that overcoming the
challenges presented will help to guide and understand the
implications of future regulatory action.
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