
Accelerating DNN Inference with GraphBLAS and
the GPU

Xiaoyun Wang
Department of Computer Science
University of California, Davis

Davis, California 95616
Email: xiywang@ucdavis.edu

Zhongyi Lin Carl Yang John D. Owens
Department of Electrical & Computer Engineering

University of California, Davis
Davis, California 95616

Email: {zhylin, ctcyang, jowens}@ucdavis.edu

Abstract—This work addresses the 2019 Sparse Deep Neu-

ral Network Graph Challenge with an implementation of

this challenge using the GraphBLAS programming model. We

demonstrate our solution to this challenge with GraphBLAST,

a GraphBLAS implementation on the GPU, and compare it

to SuiteSparse, a GraphBLAS implementation on the CPU.

The GraphBLAST implementation is 1.94⇥ faster than Suite-

Sparse; the primary opportunity to increase performance on the

GPU is a higher-performance sparse-matrix-times-sparse-matrix

(SpGEMM) kernel.

I. INTRODUCTION

The newest GraphChallenge (2019) targets inference using
large sparse deep neural networks. Neural networks are ubiq-
uitous in a wide range of modern machine learning workloads.
Inference is the process of using a trained network to evaluate
an input. The larger the network, the better the quality of the
evaluation; but network size is limited by the size of processor
memory. Thus an emerging area of focus is to prune the
network by removing network connections with small weights,
making the networks sparse and thus able to either achieve
similar accuracy and better performance with less memory
or superior accuracy and similar performance with the same
amount of memory as dense networks.
Dense networks are straightforward to parallelize as any

reasonable decomposition of the network across parallel pro-
cessors results in uniform workloads per processor. Sparsi-
fying the network will likely result in load imbalances across
processors, so implementing high-performance inference using
sparse networks is a more challenging task.
Our implementation treats the network as a graph and thus

can leverage the significant investment in high-performance
graph computation frameworks to address this problem. High-
performance graph frameworks are well-suited to address
parallel workloads with fine-grained load imbalance. Our
framework of choice is based on the GraphBLAS [5], an open
standard specification that expresses graph computation in the
language of linear algebra. The initial mapping of inference on
large sparse deep neural networks to the GraphBLAS was the
work of Kepner et al. [6], who demonstrated how the mathe-
matics of inference map to the GraphBLAS. The GraphChal-
lenge problem that we address here has some important
differences from their work—different matrix sizes, varying

layer counts, and a more specified testing methodology—but
the mathematics described by Kepner et al. is the core of our
implementation.
We compare against the “SuiteSparse” GraphBLAS imple-

mentation of Davis [1], implemented on a CPU. Davis imple-
mented this GraphChallenge problem, using his SuiteSparse
GraphBLAS backend, in the LAGraph algorithm suite [8].
(For the remainder of this paper, we will refer to this work as
“SuiteSparse”.)
Our contributions in this work are:
1) We implement the GraphChallenge problem on the GPU

using our “GraphBLAST” GraphBLAS backend [14].
2) We mitigate the problem of limited GPU memory us-

ing data parallelism. This allows us to complete the
GraphChallenge using a GPU with 12GB main memory
that would otherwise not be able to fit the 16 384- and
65 536-neuron models.

3) We perform a thorough performance comparison with
SuiteSparse and MATLAB baseline that indicates we
get a 1.94⇥ geomean (3.17⇥ peak) and 43.3⇥ geomean
(56.0⇥ peak) speedups respectively.

4) We highlight the importance of one specific form of
load-balancing: given sparse matrices Y and W , de-
ciding whether to perform the multiplication using the
matrices in CSR (compressed sparse row) format. We
note that on these datasets choosing the correct format
yields a 5.80⇥ geomean (175.5⇥ peak) speedup.

5) Our performance analysis shows the source of our
speedup over SuiteSparse: (1) parallelizing the filtering
out of zeroes from the activation matrix (SuiteSparse
does this sequentially), and (2) avoiding one level of
memory indirection by having rank promotion (i.e.,
Numpy-style broadcasting) that allows elementwise op-
erations between a matrix and a vector in which the
vector is replicated along either the row or column
direction.

II. ALGORITHM

Algorithm 1 shows the pseudocode of how each step of
the problem is mapped to operations in the GraphBLAST
implementation of the GraphBLAS. The implementation in
SuiteSparse is similar. The core of this algorithm is the

Algorithm 1 Pseudocode of the Sparse Deep Neural Network
Graph Challenge’s mapping to GraphBLAS.
Inputs:

• Y0, an MNIST image as a sparse matrix;
• W , a list of sparse weight matrices;
• b, a list of bias vectors;
• TrueCategories, a true category vector; and
• L, the number of layers

Output:

Categories (rows) in the final matrix with entries > 0

. Part 1: Evaluate DNN for all layers (timed)
for l from 0 to L� 1 do

. Maps to mxm with PlusMultipliesSemiring in
GraphBLAST.

Yl+1 � YlWl

. Maps to eWiseMult with plus binary operation.
Yl+1 � Yl+1 + bl
. Maps to eWiseMult with maximum binary operation.
Yl+1 � ReLU(Yl+1)
. (Optional) Filter out zeroes in Matrix Yl+1.
Yl+1 � rebuild(Yl+1, 0)
. Maps to eWiseMult with minimum binary operation.
Yl+1 � clip(Yl+1, 32)

end for

. Part 2: Identify categories in final matrix (timed)

. Maps to reduce with PlusMonoid.
C � Rowsum(YL)
. Maps to assign.
Categories � Boolean(C)

. Correctness checking (not timed).
Check correctness by comparing Categories with True-

Categories.

multiplication of the sparse inference weight matrix with the
input sparse feature matrix.
In Part 1, we map the sparse matrix multiplication of the

input matrix and the weight matrix to a matrix multiplication
operation. In GraphBLAST, this step is m⇥m with the semir-
ing PlusMultipliesSemiring. In SuiteSparse, this semiring is
specified with LAGraph_PLUS_TIMES. GraphBLAST does
not support allows in-place computation (i.e., Y = YW), so
we use Y for the input matrix and a second matrix Yswap for
the output matrix. At each step, after the m ⇥ m operation,
we swap Y and Yswap. The next steps are adding a bias and
applying a rectifier activation function (a “ReLU”), which
we implement as two eWiseMult operations with plus and
maximum binary operations. After the ReLU, we have a
Matrix::rebuild method that filters out the zeroes from matrix
Y . Finally, we clip ReLU values above 32 with another
eWiseMult operation using the minimum binary operation.
The result of Part 1 is the matrix Y . We compute the

sum of each row of this matrix Y with a reduce operation
with the PlusMonoid and store it into a sparse vector C. We
then extract the category pattern of C into a Boolean dense
vector, where each false entry corresponds to a zero value in
C and each true entry corresponds to a non-zero value. This
concludes the computation steps; we stop timing at this point,
then verify category correctness by extracting tuples of value
and index from this dense vector and verify correctness.

III. EXPERIMENTS

We compare three implementations of the GraphChallenge
benchmark:

• A single-threaded CPU MATLAB implementation, run-
ning on one core of a 2.2GHz 20-core Intel Xeon E5-
2698 v4 CPU;

• A 32-thread1 CPU GraphBLAS implementation on Suite-
Sparse, running on all cores of a 2.2GHz 20-core Intel
Xeon E5-2698 v4 CPU; and

• A GPU GraphBLAS implementation on GraphBLAST,
running on an NVIDIA Titan V. The sparse-matrix-times-
sparse-matrix kernel in GraphBLAST is currently im-
plemented using NVIDIA’s CUDA 10.0 and cuSPARSE
(10.0) sparse-matrix library [11].

On all implementations, both the input and output are stored
in the memory of the processor that is performing the compu-
tation. While it may be argued that the GPU implementation’s
data should begin and end in the CPU’s memory, we submit
that it is most likely that an inference operation would be
only one stage in a multi-stage pipeline that is increasingly
implemented entirely on the GPU (cf. NVIDIA’s RAPIDS
initiative), and thus our methodology likely represents the
common case. We note, however, that GraphBLAST’s overall
performance would decrease if it included the time to copy
input and output data between CPU and GPU.

A. Results
We record runtimes for both the matrix manipulation part

(Part 1 of Algorithm 1) and the identification of results greater
than zero part (Part 2 of Algorithm 1). Table I contains
the results for each implementation and Table II summa-
rizes the rate metric specified by the challenge (inputs ⇥
DNN connections/runtime). The runtimes of Part 1 are at least
3 orders of magnitude greater than Part 2 so we concentrate
on Part 1 runtimes in our analysis.
The amount of memory required to store the largest case

(65 536 neurons and 1920 layers) does not fit into our GPU’s
memory and hence our results do not include that case.
As expected, increasing the number of neurons or increasing

the number of layers increases the runtime roughly propor-
tionally for all implementations. We observe the following
geomean speedups on overall runtime:

• SuiteSparse over MATLAB: 21.84⇥
• GraphBLAST over MATLAB: 43.32⇥
• GraphBLAST over SuiteSparse: 1.94⇥
1For SuiteSparse, we ran all thread counts from 1 to 40 and found 32

threads was the fastest.

Fig. 1: Normalized runtime (SuiteSparse = 1) on various model sizes using SuiteSparse (SS) and GraphBLAST (GB).

B. Performance Analysis of Each Operation

In terms of the main matrix-matrix operation, we do not see
as marked a difference in performance.

a) Multiply with weights: In terms of matrix-matrix
multiplication, we use cuSPARSE’s “csrgemm2” routine [11].
Compared to SuiteSparse, we are between 1.13⇥ slower to
2.41⇥ faster. In the geomean, we are 1.34⇥ faster. Suite-
Sparse uses a multithreaded implementation of Gustavson’s
algorithm [1], [4].
As Figure 1 illustrates, in terms of the non-matrix-matrix

multiplication operations, we see a significant 9.79⇥–23.4⇥
(16.6⇥ geomean) speedup when compared with SuiteSparse.
There are several differences between our implementation and
SuiteSparse, which are outlined below:

b) Add bias: For adding the bias, SuiteSparse imple-
ments this addition as a matrix-matrix multiplication where the
activation matrix is multiplied by the bias vector b represented
as diagonal matrix diag(b). However, since SuiteSparse stores
sparse matrices in CSC format, this is equivalent as treating the
bias vector as a sparse vector in which the CSC col ptr array
corresponds to the sparse vector indices and the CSC values
array corresponds to the sparse vector values. This forces
an unnecessary layer of indirection that harms performance.
Instead of modeling this addition operation as a matrix-matrix
multiplication, we treat it as a GraphBLAS extension method,
namely an elementwise multiplication operation between the
activation matrix and the bias vector in which the vector is
broadcasted in Numpy fashion [12] (or rank-promoted [9])
into a matrix. Since the vector is dense, this allows avoiding
one layer of indirection into the vector indices. In terms of
adding bias, we attain a 50⇥–80.7⇥ (59.2⇥ geomean) speedup

over SuiteSparse. Even though this method is not currently in
the GraphBLAS standard, we provide evidence that Numpy-
style broadcasting is both a useful convenience method and
important for high performance.

c) Clipping at 32: For clipping at 32, SuiteSparse im-
plements the operation as an apply operation using a user-
defined unary operator ymax, which returns 32 if the input
is equal or above 32 and returns the input value if below 32.
Since this operation is user-defined, it cannot be inlined by the
SuiteSparse GraphBLAS shared library. Instead, we opt to use
the maximum binary operation together with an elementwise
multiplication between a matrix and a scalar value 32 that is
broadcasted into a matrix in Numpy fashion. The advantage
of such an operation is that by using a standard maximum

binary operation, the operation can be inlined in the inner
loop. In terms of clipping at 32, we attain a 27.6⇥–93.6⇥
(62.1⇥ geomean) speedup over SuiteSparse.

d) ReLU and filtering nonzeroes at each layer: For
performing the ReLU and filtering nonzeroes out, SuiteSparse
uses an extension method GxB select. What this operation
does is allow the user to pass in either a user-defined or
predefined SelectOp such as GxT GT ZERO. When given
an input matrix, this operation will return an output matrix
filled with only the input matrix elements that are greater than
zero. We do a similar operation called Matrix::rebuild, except
we implement this operation in less generality and in parallel.
Our rebuild operation takes 3 arguments: input and output
Matrix Y , zero element z, and descriptor. It is functionally
equivalent to the following two GraphBLAS operations:
1) eWiseMult with equality binary operator, and tests each

nonzero of the input matrix for equality with the zero

Neurons
Layers 1024 4096 16384 65536

Pa
rt
1 120 1.67632 4.85655 19.1996 79.8156

480 5.29933 17.6273 73.3141 335.672
1920 19.9119 68.7398 307.507

Pa
rt
2 120 0.000225136 0.0042545 0.00984867 0.0517773

480 0.00230621 0.00413536 0.010087 0.0903038
1920 0.00186198 0.00507398 0.0208721

(a) GraphBLAST, WTY T
0

Neurons
1024 4096 16384 65536

2.25538 16.4389 109.525 3002.55
7.44351 61.1379 430.739 58918.22
28.2826 235.94 3238.34

0.00030256 0.000316992 0.000494944 0.000179123
0.000295968 0.000306368 0.000494592 0.00531384
0.000303872 0.000307232 0.00105958

(b) GraphBLAST, Y0W

Neurons
Layers 1024 4096 16384 65536

Pa
rt
1 120 2.65 8.95 50.03 252.94

480 7.09 28.21 172.05 891.58
1920 24.86 106.08 712.79 3577.19

Pa
rt
2 120 0.00262717 0.00796638 0.0252706 0.115172

480 0.00224776 0.00426845 0.0269771 0.106592
1920 0.00181377 0.0073598 0.0297972 0.117601

(c) SuiteSparse, WTY T
0

Neurons
1024 4096 16384 65536

59.5722 243.8983 1034.8135 4470.8053
169.8355 750.7988 3416.2158 15283.4712
602.5248 3254.8743 13867.5775 60059.1867

0.008529 0.015045 0.063369 0.26472
0.004314 0.015823 0.064495 0.27719
0.004242 0.015132 0.061923 0.2704

(d) Matlab

TABLE I: Results, in seconds, for Part 1 and Part 2 runtimes as a function of the number of neurons and the number of layers
for GraphBLAST (both YW and WTY T), SuiteSparse, and Matlab.

Neurons
Layers 1024 4096 16384 65536

120 1.407⇥ 1011 1.943⇥ 1011 1.966⇥ 1011 1.892⇥ 1011
480 1.781⇥ 1011 2.141⇥ 1011 2.060⇥ 1011 1.799⇥ 1011
1920 1.896⇥ 1011 2.197⇥ 1011 1.964⇥ 1011

(a) GraphBLAST, WTY T
0

Neurons
1024 4096 16384 65536

1.046⇥ 1011 5.741⇥ 1010 3.447⇥ 1010 5.029⇥ 109
1.268⇥ 1011 6.174⇥ 1010 3.505⇥ 1010 1.025⇥ 109
1.335⇥ 1011 6.400⇥ 1010 1.865⇥ 1010

(b) GraphBLAST, Y0W

Neurons
Layers 1024 4096 16384 65536

120 8.903⇥ 1010 1.054⇥ 1011 7.545⇥ 1010 5.970⇥ 1010
480 1.331⇥ 1011 1.338⇥ 1011 8.776⇥ 1010 6.774⇥ 1010
1920 1.518⇥ 1011 1.423⇥ 1011 8.473⇥ 1010 6.754⇥ 1010

(c) SuiteSparse, WTY T
0

Neurons
1024 4096 16384 65536

3.960⇥ 109 3.869⇥ 109 3.648⇥ 109 3.377⇥ 109
5.557⇥ 109 5.028⇥ 109 4.420⇥ 109 3.952⇥ 109
6.265⇥ 109 4.639⇥ 109 4.355⇥ 109 4.023⇥ 109

(d) Matlab

TABLE II: Rate (inputs⇥ DNN connections/runtime) for GraphBLAST (both YW and WTY T), SuiteSparse, and Matlab.

element z. In this case, the zero element used is 0. Call
the temporary result Boolean matrix temp.

2) apply using structural complement of temp as mask, the
identity unary operator, and matrix Y as the input and
output.

In terms of implementation, our Matrix::rebuild operation is
composed of the following GPU kernels. It can be thought of
as an optimization of the above GraphBLAS operations when
apply’s unary operator is identity.
1) Flag array: Each thread writes 1 to the flag array if CSR

values array element equal to identity, otherwise 0.
2) Segmented reduce: Run on flag output using CSR

row ptr as segments, generates number of nonzeroes in
each row.

3) Prefix sum: Run on number of nonzeroes in each row,
generates new CSR row ptr.

4) Prefix sum: Run on flag array, generates indices to which

we need to scatter.
5) Stream compact: Each thread scatters to its index if the

flag output is equal to 1, else do nothing. This generates
the new CSR col ind and values arrays.

On ReLU and filtering out nonzeroes, we attain a 1.56–
9.55⇥ (5.44⇥ geomean) speedup over SuiteSparse.

C. Lessons Learned

a) Choice of YW or WTY T greatly impacts perfor-
mance: We can choose to implement the matrix multiplication
by performing either Y1 = Y0W + b or the transposed
variant Y T

1 = WTY T
0 + bT . As Figure 2 shows, this dataset

produces a lot of load imbalance in matrix Y0 (in blue) and
consequentially, the activation matrix that is formed. On the
other hand, WT (shown in red) is perfectly load-balanced,
because it has 32 nonzeroes in every row. Therefore one
optimization we can make is that if we use WT as the lefthand

Fig. 2: Nonzeroes per row in the activation matrix in each
layer of a 1024-neuron, 120-layer neural network with mul-
tiplications YiW and WTYi respectively. Darker shades of
blue indicate nonzeroes per row closer to median, while
lighter shades indicate nonzeroes per row at the 10th and 90th
percentile.

side matrix (Y T
1 = WTY T

0 + bT), we can ensure that WT as
the left matrix in matrix-matrix multiplication of every layer.
When both matrices are stored in CSR format, the per-

formance of matrix multiplication is in large part driven by
load imbalances imposed by the structure of the lefthand
side matrix. In the GraphChallenge problem, weight matrix
WT always has exactly 32 nonzeroes per row, so we see no
load imbalance and hence have better performance when we
use WT on the left. The geomean speedup of WT over Y
across all neuron/layer combinations is 5.80⇥, with speedups
increasing with larger neuron count (peak speedup is 175.5⇥
for the 65 536-neuron-480-layer case). If the weight matrices
had more variability with the number of nonzeroes per row, the
performance gap between having Y and W on the left would
narrow. Although SuiteSparse uses the CSC storage format in
which the righthand side matrix is the key determinant of load-
balancing, they perform Y1 = Y0W + b. Functionally, this is
equivalent as multiplying Y T

1 = WTY T
0 +bT in CSR storage,

so we speculate they are doing so for load-balancing reasons
as well.

b) Filtering nonzeroes at each layer: At the end of each
layer, the resulting matrix may have numerous zeroes. We
can choose to leave that matrix unchanged (and pay the extra
compute cost of computing on zeroes in the next layer) or
run a filter step at the end of each layer’s computation that
removes all nonzeroes. We find that the filter step results in
considerably higher performance (on one of our experiments,
for instance, it reduces overall runtime from 40 s to 2.25 s).
Figure 3 illustrates the impact of filtering out zeroes.

Without filtering out the nonzeroes, the activation matrix Yl

becomes dense after layer 4. However, if the zero entries are
filtered out during each layer, the activation matrix is kept
sparse and converges to 3% matrix fill.

0E]IV

1
EX
VM\

�JM
PP

6Y
RX
MQ

I�
�Q

W

�	

��	

��	

��	

���	

�

���

���

���

� � � � �� �� �� �� ��

1EXVM\�JMPP��VIFYMPH
 6YRXMQI��VIFYMPH
 1EXVM\�JMPP��RS�VIFYMPH
 6YRXMQI��RS�VIFYMPH

Fig. 3: Matrix fill ratio nnz
mn , where nnz is the number of

nonzeroes in the m⇥n activation matrix Yl after layer l; and
matrix-matrix multiplication runtime in milliseconds after each
layer of a 1024-neuron, 120-layer neural network with and
without filtering out zeroes using Matrix::rebuild. Note that
without filtering, all matrix entries rapidly become nonzero
and the runtime is much higher than the filtered case as a
result.

c) Pruning neurons: We observe that the values of
nonzeros in weights are all 0.0625 for all layers. We also
observe that the number of nonzeroes stops changing after
early layers, e.g., in the 1024-neuron, 120-layer case the
number of nonzeroes remains 1855488 since the 29th layer.
This inspires us that pruning the last layers might possibly
speedup the inference hurt the correctness of the results. The
following pruning scheme has been tried between the ReLU
step and the rebuild step: an amount of 40% of the number of
nonzeroes of random indices are generated using the cuRAND
library and values corresponding to these indices in the Y
matrix after layer 80 are zeroed out. We achieve 1.03⇥
speedup with 1024-neuron, 120-layer and 1.10⇥ with 16384-
neuron, 1920-layer. However, the feasibility of this approach is
due to the special characteristic of the given dataset. Without
further improvements this approach may not generalize well in
other similar contexts, which is beyond the scope of this paper,
and thus we decide not to present the results with pruning here.

d) Running larger datasets: The 65 536-neuron-1920-
layer case requires 38GB of storage, which significantly
exceeds the 12GB of DRAM on our Titan V. Scaling to such
a large dataset would require a different approach, almost
certainly exploiting model parallelism. Possibilities include
(a) loading a different subset of weights to the GPU, analogous
to an out-of-memory graph framework, or (b) sending the
intermediate computation to another GPU that holds a different
subset of layers, analogous to a multi-GPU graph framework.
We leave addressing this problem as future work.

e) Impact on GraphBLAS API: We implemented the
following extension to the GraphBLAS API, which the Graph-
BLAS community may wish to consider for further study
and possible additions to the standard. Rank promotion

(Numpy-style broadcasting): We see significant speed-up of
9.79⇥–23.4⇥ (16.6⇥ geomean) by using rank promotion on
elementwise operation to avoid the use of user-defined unary
operators and a layer of indirect memory access when doing
elementwise multiply between matrix and vector instead of
doing matrix-matrix multiplication with a diagonal matrix. In
addition, the Numpy-style broadcasting may be more natural
to Python users than needing to diagonalize a matrix in order
to do an elementwise multiply. It may be an important addition
in terms of convenience and performance to the GraphBLAS
specification.

IV. CONCLUSION

In this work we have demonstrated a high-performance im-
plementation of the 2019 Sparse Deep Neural Network Graph
Challenge using a GPU implementation of the GraphBLAS
standard. While our implementation shows a 1.94⇥ speedup
over the “SuiteSparse” CPU implementation of GraphBLAS,
the most important kernel in any implementation of this
challenge will be the SpGEMM operation, and we only show
a 1.34⇥ speedup over SuiteSparse on this kernel. In its
marketing materials, cuSPARSE claims a 2–5⇥ speedup over
CPU competitors, and the raw computational and memory
throughput of a GPU has a similar multiple over the CPU,
so we believe this kernel represents the most significant
opportunity to improve GPU performance. Recent GPU library
implementations, including bhSPARSE [7], nsparse [10], and
RMerge2 [3], have demonstrated significant speedups over
cuSPARSE, and may be well-suited for the matrix operations
we require in this challenge. cuSPARSE has the unenviable
task of running effectively on any sparse matrix and thus its
developers may have concentrated more on generality than
performance. Nonetheless we hope that a future version of
GraphBLAST—one that either implements its own kernels,
that leverages other research libraries, or that incorporates an
improved cuSPARSE—may be able to deliver higher perfor-
mance in the future without any changes to the implementation
of this graph challenge.
In terms of future work, we note that due to GPU memory

limitations, we were not able to run the 65 536-neuron-1920-
layer model, which would have required an estimated 38GB
memory to run while the Titan V GPU we had access
to only has 32GB memory. In order to run larger sparse
neural networks on GPUs, we will need to implement model
parallelism, which would be interesting to address within the
GraphBLAS specification. In this instance, the memory con-
sumption is largely taken up by the 1920 layers, each having
dimension 65 536⇥65 536 with ⇠2M nonzeroes. If each layer
were instead divided amongst 4 GPUs (e.g., layers 1–480
on GPU0, 481–960 on GPU1, 961–1440 on GPU2, 1441–
1920 on GPU3), then each GPU could do local computation
while only needing to communicate activations across GPUs
at layer boundaries 480, 960 and 1440. Ideally, this can be
combined with data parallelism in order to optimize the matrix
dimensions for performance [2], [13].

REFERENCES

[1] Timothy A. Davis. SuiteSparse:GraphBLAS: Graph algorithms in the
language of sparse linear algebra. Submitted to ACM Transactions on
Mathematical Software (TOMS), 2018. http://faculty.cse.tamu.edu/davis/
GraphBLAS files/toms graphblas.pdf. Accessed: 2019-05-01.

[2] Amir Gholami, Ariful Azad, Peter Jin, Kurt Keutzer, and Aydin Buluc.
Integrated model, batch, and domain parallelism in training neural
networks. In Proceedings of the 30th Symposium on Parallelism in
Algorithms and Architectures, SPAA ’18, pages 77–86. ACM, July 2018.

[3] Felix Gremse, Kerstin Küpper, and Uwe Naumann. Memory-efficient
sparse matrix-matrix multiplication by row merging on many-core
architectures. SIAM Journal on Scientific Computing, 40(4):C429–C449,
January 2018.

[4] Fred G. Gustavson. Two fast algorithms for sparse matrices: Multipli-
cation and permuted transposition. ACM Transactions on Mathematical
Software, 4(3):250–269, September 1978.

[5] Jeremy Kepner, Peter Aaltonen, David Bader, Aydın Buluç, Franz
Franchetti, John Gilbert, Dylan Hutchison, Manoj Kumar, Andrew
Lumsdaine, Henning Meyerhenke, Scott McMillan, Jose Moreira,
John D. Owens, Carl Yang, Marcin Zalewski, and Timothy Mattson.
Mathematical foundations of the GraphBLAS. In Proceedings of the
IEEE High Performance Extreme Computing Conference, HPEC 2016,
September 2016.

[6] Jeremy Kepner, Manoj Kumar, José E. Moreira, Pratap Pattnaik, Mauri-
cio J. Serrano, and Henry M. Tufo. Enabling massive deep neural
networks with the GraphBLAS. In Proceedings of the IEEE High
Performance Extreme Computing Conference, HPEC 2017, September
2017.

[7] Weifeng Liu and Brian Vinter. An efficient GPU general sparse matrix-
matrix multiplication for irregular data. In 2014 IEEE 28th International
Parallel and Distributed Processing Symposium, May 2014.

[8] Tim Mattson, Timothy A. Davis, Manoj Kumar, Aydın Buluç, Scott
McMillan, Jose Moreira, and Carl Yang. LAGraph: A community
effort to collect graph algorithms built on top of the GraphBLAS. In
Proceedings of the Workshop on Graphs, Architectures, Programming,
and Learning, GrAPL 2019, May 2019.

[9] Timothy G Mattson, Carl Yang, Scott McMillan, Aydin Buluç, and
José E Moreira. GraphBLAS C API: Ideas for future versions of
the specification. In IEEE High Performance Extreme Computing
Conference, HPEC 2017, pages 1–6, 2017.

[10] Yusuke Nagasaka, Akira Nukada, and Satoshi Matsuoka. High-
performance and memory-saving sparse general matrix-matrix multipli-
cation for NVIDIA Pascal GPU. In 2017 46th International Conference
on Parallel Processing, ICPP-2017, August 2017.

[11] M. Naumov, L. S. Chien, P. Vandermersch, and U. Kapasi.
CUSPARSE library: A set of basic linear algebra subroutines for
sparse matrices. In GPU Technology Conference, GTC 2010, 2010.
http://on-demand.gputechconf.com/gtc/2010/presentations/S12070-
Cusparse-Library-a-Set-of-Basic-Linear-Algebra-Subroutines-for-
Sparse-Matrices.pdf.

[12] Stefan Van Der Walt, S. Chris Colbert, and Gael Varoquaux. The NumPy
array: A structure for efficient numerical computation. Computing in
Science & Engineering, 13(2):22–30, March/April 2011.

[13] Minjie Wang, Chien-chin Huang, and Jinyang Li. Supporting very large
models using automatic dataflow graph partitioning. In Proceedings
of the Fourteenth EuroSys Conference, EuroSys ’19, pages 26:1–26:17,
March 2019.

[14] Carl Yang, Aydın Buluç, and John D. Owens. Graphblast: A high-
performance linear algebra-based graph framework on the gpu. 2019.

