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• A shift from precipitative to irrigation
watering due to climate change is ex-
pected.

• The impact of treated wastewater con-
stituents on food crop growth was
assessed.

• Nanoparticles and xenobiotics do not
impact growth at typical concentra-
tions.

• Irrigation management to reduce salt
accumulation may be the most
impactful.
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The geographical and temporal distribution of precipitation has and is continuing to change with changing cli-
mate. Shifting precipitation will likely require adaptations to irrigation strategies, and because 35% of rainfed
and 60% of irrigated agriculture is within 20 km of a wastewater treatment plant, we expect that the use of
treatedwastewater (e.g., reclaimedwastewater) for irrigationwill increase. Treatedwastewater contains various
organic and inorganic substances that may have beneficial (e.g., nitrate) or deleterious (e.g., salt) effects on
plants, whichmay cause a change in global food productivity should a large change to treatedwastewater irriga-
tion occur.We reviewed literature focused on food crop growth inhibition or promotion resulting from exposure
to xenobiotics, engineered nanoparticles, nitrogen, and phosphorus, metals, and salts. Xenobiotics and
engineered nanoparticles, in nearly all instances, were detrimental to crop growth, but only at concentrations
much greater than would be currently expected in treated wastewater. However, future changes in wastewater
flow and use of these compounds and particles may result in phytotoxicity, particularly for xenobiotics, as some
are present in wastewater at concentrations within approximately an order of magnitude of concentrations
which caused growth inhibition. The availability of nutrients present in treatedwastewater provided the greatest
overall benefit, butmay be surpassed by the detrimental impact of salt in scenarioswhere either high concentra-
tions of salt are directly deleterious to plant development (rare) or in scenarios where soils are poorly managed,
resulting in soil salt accumulation.
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1. Introduction

A large fraction (69%) of global water withdrawals are used for agri-
culture (FAO, 2016) and the world is shifting towards irrigation rather
than relying on precipitation for agricultural production, especially as
the climate is becoming drier and more variable. Between 1961 and
2003, the amount of irrigated land approximately doubled, while the
proportion of agricultural lands watered with precipitation decreased
(Molden et al., 2007). Simultaneously, changes in spatiotemporal distri-
bution of precipitation have already reduced global maize and wheat
yields by 3.8% and 5.5%, respectively, between 1980 and 2008 (Lobell
et al., 2011). Without change to current irrigation distribution, maize,
wheat, and barley yields are expected to change by−14%, 1.6% (a slight
increase due to increased CO2 availability), and −1.8%, respectively, by
2030 (Tebaldi and Lobell, 2008). We expect that declining productivity
of some crops due to reduced precipitation will further drive increases
in irrigation over rainfed cultivation.

Re-purposing of wastewater treatment systems to produce water
suitable for irrigated agriculture could be both cost-effective and sus-
tainable because 35% of rainfed and 60% of irrigated croplands across
the globe are near wastewater treatment plants (i.e., either urban or
peri-urban, within 20 km of an urban area) (Thebo et al., 2014). Esti-
mates of current direct wastewater irrigation and projections of future
use are few and specific to certain regions (no global estimates avail-
able) (Jeroen et al., 2004; Scott et al., 2004). However, one recent
study showed that 65% of irrigated croplands downstream from urban
areas use urbanwastewater for irrigation, de facto, based on their catch-
ment wastewater flows (Thebo et al., 2017). Israel has been a leader in
thisfield of irrigationwith reclaimedwastewater, accounting for greater
than ~40% of agricultural water flows being derived from reclaimed
wastewater (Avgar, 2018).

We postulate that agricultural irrigation with wastewater will in-
crease globally, replacing decreasing and more variable precipitation,
due to urban proximity (i.e., wastewater availability) and the ever-
increasing need to increase food production as the global population in-
creases (Butt et al., 2005; Carleton and Hsiang, 2016; Haim et al., 2008).
However, treated wastewater contains constituents that are known to
inhibit plant growth, including salt and heavy metals, which may de-
crease yields. Treated wastewater also contains constituents that can
promote growth, including nitrogen (N) and phosphorus (P) and
other beneficial nutrients. The objective of this publication is to review
the relevant constituents of wastewater that impact plant growth in
the context of environmental change and increasing wastewater irriga-
tion. This review is intended to be encompassing of broad facets of the
impact of treated wastewater on crop growth, but primarily focuses
on xenobiotics and engineered nanoparticles because an abundance of
literature already exists related to nutrients, salt, and metals.
2. Xenobiotics' effects on crop growth

Various anthropogenic chemicals (referred to from the crop's per-
spective as xenobiotics) are present in wastewater (Ferrer and
Thurman, 2012; Hanigan et al., 2015). Some xenobiotics are released
to wastewater directly, such as hydrocarbons from industry, or per-
and polyfluorinated chemicals from textile washing (Schellenberger
et al., 2019). Others, such as pharmaceuticals, are released in human
urine or feces. Quantities of pharmaceutical releases to wastewater
vary widely between compounds and populations, but current data
generally indicate that a large proportion of consumed pharmaceuticals
are released to domestic wastewater. For example, two studies of the
metabolism of 42 and 212 pharmaceuticals indicate that humans ex-
crete, 67± 34% of the pharmaceuticalmass ingestedwithout alteration,
while the remainder is partially metabolized (Lienert et al., 2007a;
Lienert et al., 2007b).

Removal of xenobiotics by conventional wastewater treatment
plants occurs through sorption to the biosolids, chemical oxidation by
added disinfectants, and/or through abiotic/biotic reactions. The degree
of removal of xenobiotics in wastewater treatment plants is highly var-
iable and depends on the compound, treatment processes employed,
and oxidation-reduction conditions in those processes. Consequently,
xenobiotic concentrations in wastewater effluents range from below
detection limits (usually in the low ng/L range) to 100s of μg L−1

(Dickenson et al., 2011; Oppenheimer et al., 2011), and surface waters
that receive treated effluents have concentrations from below detection
limits up to 10s of μg L−1 (Dickenson et al., 2011; Ferrer and Thurman,
2012; Oppenheimer et al., 2011). Advanced treatment technologies
(e.g., activated carbon, membranes, and advanced oxidation) are effec-
tive at removing some xenobiotics to below detection limits, but are ex-
pensive and energy intensive, currently limiting their broad application
(Ganiyu et al., 2015; Homem and Santos, 2011; Roback et al., 2018).
2.1. Xenobiotic fate in agricultural systems

Irrigation with treated wastewater exposes crops to xenobiotics.
Translocation and accumulation in crop compartments are primarily af-
fected by xenobiotic physicochemical properties and soil sorption. Pub-
lished literature indicates that xenobiotics primarily accumulate in the
leaves and roots, and to a lesser extent in fruits, shoots, and stems. How-
ever, there is a lack of xenobiotic crop uptake data from field-scale agri-
cultural systems, likely due to several factors such as a lack of well-
controlled experimental fields (Al Nasir and Batarseh, 2008; Calderón-
Preciado et al., 2012; Eggen et al., 2011; Mathews et al., 2014; Shenker
et al., 2011; Tanoue et al., 2012; Wu et al., 2010; Wu et al., 2014). Here
we briefly review the factors that influence plant uptake of xenobiotics.
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Xenobiotics present in irrigated water first interact with soil. In-
creased soil sorption leads to decreased plant availability and thus soil
sorption is an important factor in determining plant exposure to xeno-
biotics. Soil sorption primarily depends on pH, ionizable functional
groups in the soil (i.e., soil organic matter and minerals such as clays),
and ionizable functional groups of the xenobiotic compound. pH in the
Table 1
Plant uptake of xenobiotics from selected studies conducted in the field irrigated with treated

Compound (pKa) Concentration in irrigation water

Bezafibrate (3.8) 1.2 μg L−1 (Malchi et al. 2014)
Caffeine (NA) 1.6 μg L−1 (Malchi et al. 2014)

0.25 μg L−1 (spiked) (Wu et al. 2014)

Carbamazepine (NA) 1.7 μg L−1 (Riemenschneider et al. 2016)

0.25 μg L−1 (spiked) (Wu et al. 2014)

1.4 μg L−1 (Malchi et al. 2014)

Epoxy-carbamazepine (NA) 0.5 μg L−1 (Riemenschneider et al. 2016)

1.4 μg L−1as carbamazepine prior to plant metaboliz

Carbamazepine-dihydroxide (9.2) 6.4 μg L−1 (Riemenschneider et al. 2016)

1.4 μg L−1 as carbamazepine prior to plant metaboliz

Ciprofloxacin (5.6, 8.8) 0.3 μg L−1 (Riemenschneider et al. 2016)

Clofibric acid (3.4) 0.9 μg L−1 (Malchi et al. 2014)

Diethyltoluamide (NA) 0.25 μg L−1 spiked (Wu et al. 2014)
Dilantin (8.5) 0.25 μg L−1 spiked (Wu et al. 2014)

Gabapentin (9.9, 4.6) 1.7 μg L−1 (Riemenschneider et al. 2016)

Gemfibrozil (4.4) 0.7 μg L−1 (Malchi et al. 2014)
0.25 μg L−1 spiked (Wu et al. 2014)

Lamotrigine (5.9) 1.5 μg L−1 (Malchi et al. 2014)
Metoprolol (9.7) 0.7 μg L−1 (Malchi et al. 2014)
Primidone (11.5) 0.25 μg L−1 spiked (Wu et al. 2014)

Sildenafil (11.1, 6.0) 0.5 μg L−1 (Malchi et al. 2014)

Sulfamethoxazole (6.2) 0.03–0.06 ng/L (Christou et al. 2017)
0.8 μg L−1 (Malchi et al. 2014)

0.25 μg L−1 spiked (Wu et al. 2014)
Sulfapyridine (6.2) 0.6 μg L−1 (Malchi et al. 2014)
Trimethoprim (7.2) 0.02–0.07 ng/ L (Christou et al. 2017)

0.25 μg L−1 spiked (Wu et al. 2014)
range of 4 to 8 tends to produce the greatest sorption potential, partic-
ularly at the lower end of this range, and overlaps significantly with en-
vironmental soil conditions in agricultural systems (Borgman and
Chefetz, 2013; Gu et al., 2007; Kodešová et al., 2015; Kulshrestha et al.,
2004; Kurwadkar et al., 2007; Park and Huwe, 2016; Zhang et al.,
2014). Cation exchange is the dominant mechanism in acidic soils
wastewater. pKa were calculated with Marvin (Chemicalize.org 2019).

Concentration in plant tissue (ng g−1 dry mass)

Carrot leaves (3–6), roots (2–6)
Carrot leaves (4–8)
Sweet potato leaves (6), roots (1–2)
Mature carrot root (0.4)
Celery stem (0.2)
Arugula leaves (61), roots (38), shoots (8)
Cabbage fruit (10), leaves (79), roots (61)
Carrot leaves (61), roots (14)
Eggplant fruit (32), leaves (78), roots (193), shoots (14)
Parsley leaves (91), roots (41)
Lettuce leaves (216), roots (27)
Pepper fruit (8), roots (40), shoots (30)
Potato leaves (173), roots (77), shoots (60)
Tomato fruit (5), roots (27), shoots (41)
Zucchini fruit (7), leaves (42), roots (69), shoots (9)
Mature cucumber fruit (0.02)
Premature cabbage leaf (0.04)
Premature celery stem (0.01)
Premature and mature lettuce leaf (0.02–0.04)
Premature and mature spinach leaf (0.01)
Carrot leaves (13−22), roots (6–8)
Sweet potato leaves (3–5), roots (1)
Arugula leaves (34), roots (22), shoots (7)
Cabbage fruits (5), leaves (19), roots (13)
Carrot leaves (54), roots (8)
Eggplant fruits (12), leaves (45), roots (22), shoots (15)
Lettuce leaves (89), roots (10)
Parsley leaves (21), roots (25)
Pepper roots (4)
Potato leaves (138), roots (14), shoots (5)
Tomato roots (3), shoots (12)

ation (Malchi et al. 2014) Zucchini fruits (7), leaves (26), roots (44), shoots (6)
Sweet potato leaves (15–66), roots (0.1–3)
Carrot leaves (15–66), roots (0.1–3)
Carrot leaves (20), roots (7)
Lettuce leaves (42), roots (19)
Parsley leaves (11), roots (25)
Potato leaves (14), roots (5), shoots (3)

ation (Malchi et al. 2014) Carrot leaves (0.3–3)
Sweet potato leaves (0.3–3)
Cabbage fruits (7)
Carrot roots (12)
Carrot leaves (0.4–2), roots (b0.8)
Sweet potato leaves (0.4–2), roots (b0.8)
Premature carrot root (3)
Mature lettuce leaf (0.1)
Spinach leaf (0.1)
Arugula leaves (36)
Carrot roots (10)
Parsley leaves (22), roots (29)
Potato leaves (32)
Sweet potato leaves (0.1–0.5)
Not detected in any edible plant tissue
Carrot leaves (6–19), roots (3–8)
Sweet potato leaves (0.4–0.5)
Cabbage leaf (0.3)
Lettuce leaf (0.1)
Premature celery stem (0.5)
Carrot leaves and roots (0.2–2)
Sweet potato leaves (0.5–1)
Tomato fruits (5)
Carrot roots (0.1–0.2)
Sweet potato roots (0.1–0.2)
Not detected in any edible plant tissue
Carrot leaves and roots (b0.5)
Tomato fruits (3)
Not detected in any edible plant tissue
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with low soil organic matter and leads to increased sorption of proton-
ated xenobiotics onto silicates with pH independent negative charge
(Ding et al., 2016; Gao and Pedersen, 2005; Jones et al., 2005;
Kodešová et al., 2015; Kulshrestha et al., 2004; Kurwadkar et al., 2007;
Park and Huwe, 2016; Wegst-Uhrich et al., 2014). Sorption through
this mechanism is decreased in soils closer to neutral pH due to a lack
of xenobiotic ionization.

Increasing soil organicmatter (i.e., organic carbon) content results in
reduced xenobiotic mobility, although this is highly dependent on soil
pH and the xenobiotic pKa. Xenobiotics that are negatively charged at
the soil pH tend to be most mobile because they do not interact with
negatively charged soil organic matter and do not sorb to silicates
(Chefetz et al., 2008; Revitt et al., 2015; Zhang et al., 2014). However,
ionization also results in electrostatic repulsion by cells in the roots of
many crops and thus soil mobility does not necessarily indicate plant
uptake (Carter et al., 2014; Edgington, 1981; Goldstein et al., 2014;
Tanoue et al., 2012).

Biodegradation of xenobiotics also affects plant uptake; prior expo-
sure of soil to xenobiotics contained in agricultural irrigation water de-
rived from wastewater can result in priming the soil microorganisms
leading to greater rates of biodegradation (Topp et al., 2016; Xu et al.,
2009; Yang et al., 2009). However, some transformation products are
formed from a mixture of physical, chemical, and biological processes
and can bemore toxic or stable than the parent compound.Most studies
do not quantify transformation products and thus it is difficult to sepa-
rate effects from parent vs. derived compounds (Dévier et al., 2011;
Koba et al., 2017; Ternes et al., 2007). Agricultural systemsmay also pro-
mote product reversion to the parent compound, further obscuring the
impact of individual compounds and their degradation products (Fu
et al., 2018; Qu et al., 2013).

Selected recent data of crop uptake of xenobiotics are included in
Table 1. Because the goal of this manuscript is not to review uptake of
xenobiotics, but growth inhibition, this table only includes recent data
from field experiments, and serves to show that some xenobiotics are
translocated into the plantwhen irrigatedwithwastewater.We only in-
clude field studies here for brevity and becausefield and hydroponic ex-
periments do not always agree due to the artificial conditions employed
in hydroponic studies compared to field studies as they relate to soil or-
ganic matter and pH (Wu et al., 2010;Wu et al., 2014). For amore com-
plete discussion of uptake and human health risks, we refer to literature
solely focused on this subject (Al-Farsi et al., 2017; Carvalho et al., 2014;
Christou et al., 2018; Christou et al., 2019; Colon and Toor, 2016; Du and
Liu, 2012; Jjemba, 2002b; Madikizela et al., 2018; Pan and Chu, 2017;
Wu et al., 2015).

2.2. Crop yield effects from xenobiotic exposure

Various effects have been observedwhen plantswere exposed to xe-
nobiotics (Bartha et al. 2010; Christou et al. 2016). Specific exposure ef-
fects are thought to generally manifest in reactive oxygen species and
thus membrane lipid peroxidation (Christou et al. 2016; Sun et al.
2018). Our discussion is focused on growth inhibition because 1) it is
easilymeasured, resulting in a large data set, 2) growth is representative
of many endpoints because many effects also manifest in changes to
growth rate, and 3) it is the most relevant endpoint for a discussion of
global food security in the context of environmental change.

We reviewed 83 publications and discarded data from 1) veterinary
antibiotics or other compounds that we would not expect to be present
in municipal treated wastewater, 2) non-crop plants such as duckweed
because they are not relevant to human consumption, 3) experiments
that did not include a growth endpoint that was comparable to a con-
trol, 4) experiments in which xenobiotics were applied simultaneously
because it is impossible to determine which particular xenobiotic
caused the effect, and 5) experiments that applied the xenobiotics indi-
rectly through application of manure. Notably, the number of studies
that applied multiple xenobiotics simultaneously is limited (n = 3)
and an area ripe for further research based on the known agonistic
and antagonistic mechanisms of toxicity (Hurtado et al. 2017; Marsoni
et al. 2014; Sun et al. 2018). We did not remove select forage crops
(e.g., alfalfa) as a significant declination in productivitywould cause sec-
ondary effects on meat production, resulting in increased global food
stress. Lowest observable adverse effect concentrations (LOAEC) of xe-
nobiotics that caused growth inhibition were gathered from the re-
maining 32 publications and are shown in Fig. 1 (An et al. 2009a; An
et al. 2009b; Azanu et al. 2016; Batchelder 1981, 1982; Boonsaner and
Hawker 2010; Boxall et al. 2006; Calderón-Preciado et al. 2012; Carter
et al. 2015; Cheng and Zhou 2002; D'Abrosca et al. 2008; Eggen et al.
2011; Hammad et al. 2018; Hillis et al. 2011; Jin et al. 2009; Jjemba
2002a; Jones-Lepp et al. 2010; Khan et al. 2018; Kong et al. 2007; Li
et al. 2011; Liu et al. 2009; Michelini et al. 2012; Minden et al. 2017;
Moore and Kröger 2010; Opriş et al. 2013; Osma et al. 2018; Pan and
Chu 2016; Pino et al. 2016; Schmidt and Redshaw 2015; Shenker et al.
2011; Xie et al. 2010; Yang et al. 2010). We aggregated LOAEC rather
than lethal or effective concentrations (LC50 or EC50) because many
publications did not report these statistical extrapolations, and in
many cases the data are too coarse (i.e., lacking sufficient data between
applied concentrations that caused effects) to support such an extrapo-
lation. LOAECs were taken directly from raw data or interpolated from
plots as the lowest applied concentration in which an effect was ob-
served. No interpolation between applied concentrations was con-
ducted. The complete data set is included as Table SI-1. The same data
plotted as LOAEC vs xenobiotic is shown in Fig. SI-1, butwe urge caution
in the interpretation of thisfigure because of the loss in statistical power
by fragmenting the dataset (i.e., each bar represents limited data).

Aqueous LOAECs ranged from 10−7 g/L water (ethinyl estradiol ex-
posure reduced lettuce germination rate by 8% (D'Abrosca et al.
2008)) to 1 g/L (acetaminophen reduced grain weight of maize ~36%
(Hammad et al. 2018)). Soil LOAECs ranged from 10−3 g/kg soil [carrot
and lettuce exposed to oxytetracycline had a slight decrease in plant
weight (Boxall et al. 2006) and zucchini exposed to carbamazepine
had a ~45% decrease in root dry weight (Carter et al. 2015)] to 10 g/kg
[soybean exposed to quinacrine, decrease also not quantified (Jjemba
2002a)]. Several xenobiotics did not affect specific crops even at very
high exposure concentrations. For example, no growth effects were ob-
served for cucumber exposed to 0.3 g/L sulfamethoxazole (aqueous), or
0.3 g/kg (soil) tetracycline (Liu et al. 2009). Althoughmaize also appears
to be tolerant to xenobiotic exposure, only three studies met our re-
quirements for data relevance, with exposure to a total of only four
compounds, and one study found no growth inhibition when exposed
to 0.16 g/L chlortetracycline or oxytetracycline (Batchelder 1982).
Given the global reliance on maize, a greater number of studies should
be conducted before a conclusion is reached.

Exposure to xenobiotics nearly always resulted in a reduction in bio-
mass compared to control samples, and rarely resulted in an increase,
which may be concerning should concentrations of xenobiotics in
treated wastewater effluent increase substantially. Such a scenario is
concerning given that wastewater flows are likely to continue to de-
crease in response to decreased freshwater availability as a result of
shifting climate, along with increasing xenobiotic use. Experiments
that expose crops to multiple xenobiotics simultaneously are scarce,
and thus the agonistic or antagonistic effects of a wastewater profile
of xenobiotics are unknown and may exacerbate this issue. One study
evaluating the agonistic effects of simultaneously applied xenobiotics
found 13% reduced lettuce stem width and 27% increased stem height
after exposure to 5 × 10−8 g/L of benzophenone, bisphenol A, butylated
hydroxytoluene, caffeine, carbamazepine, methylparaben, 4-
octylphenol, phenazone, triclosan, and tris(2-chloroethyl) phosphate
(Hurtado et al. 2017). Another study foundno growth effects on arugula
when concentrations of the individual compoundswas up to 2.5 × 10−5

g/L (Marsoni et al. 2014). The difference in these two studies may be
that the former utilized hydroponic exposure (lack of soil and soil or-
ganic matter sorption) while the latter used a peat-based soil in which



Fig. 1. Boxplot of lowest observable adverse effect concentrations for crops exposed to various individual xenobiotics from 25 publications using either hydroponics or watered soil (left),
or 7 publications usingmixed soil (right) as the exposuremedium. Only publications with growth endpoints studying food crops or selected forage crops (e.g., alfalfa) exposed tomunic-
ipalwastewater relevant xenobiotics are included. Experiments that did not result in statisticallymeasurable phytotoxicity or exposed the plant tomultiple xenobiotics simultaneously are
not included in this figure but are shown in the raw data in the SI. Individual xenobiotics are typically present in treatedwastewater at b10−5 g/L treated water or b10−6 g/kg soil that has
been irrigated with treated wastewater.

5A. Poustie et al. / Science of the Total Environment 739 (2020) 139756
some compoundsmayhave been immobilized and/or degraded.Waste-
water and soil concentrations required to cause an effect were found to
be greater than would generally be expected to be currently present in
treated wastewater (b10−5 g/L) or soil irrigated with wastewater
(b10−6 g/kg). Regulatory guidance from the United States Environmen-
tal Protection Agency (US EPA) well reflects this, and suggests that the
risk to crops of xenobiotics contained in reclaimedwater used for irriga-
tion is low (U.S. EPA 2012). We note, however, that the concentrations
required to affect growth are reasonably low and thus future changes
to wastewater flows or xenobiotic use may change this conclusion.

3. Engineered nanoparticles present in treatedwastewater and their
effect on crop growth

3.1. Occurrence of engineered nanoparticles in wastewater effluent

Due to the rapid development and wide application of nanotechnol-
ogy, a range of engineered nanoparticles (ENPs)make theirway into the
wastewater system (Badireddy et al. 2012; Gottschalk and Nowack
2011; Jarvie et al. 2009; Keller et al. 2013; Levard et al. 2012; Limbach
et al. 2008; Tuoriniemi et al. 2017; Venkatesan et al. 2018). Release of
ENPs from consumer products is a major contributor of ENPs in waste-
water (Koponen et al. 2011; Mitrano et al. 2015). For instance, silver
(Ag)-based ENPs are released from certain clothes, wastewater treat-
ment effluents, personal care products, medical devices, and electronics
(Benn and Westerhoff 2008; Cervantes-Aviles et al. 2019). Nano-sized
titanium (Ti) dioxide is used in paint, consumer textiles, and other prod-
ucts, and also can be mobilized into domestic wastewater by washing
and other use (Kaegi et al. 2008; Kiser et al. 2009; Shi et al. 2016;
Weir et al. 2012; Windler et al. 2012).

Modelling studies have been conducted to estimate the release of
ENPs into wastewater systems. Keller et al. (2013) estimated that a ma-
jority of ENPs would be disposed of in landfills worldwide, and only a
small fraction of ENPs would enter natural water systems. Globally,
N30,000 tons of zinc- (Zn) based ENPs are produced annually, and
170–2985 tons/year are estimated to enter receiving water bodies. For
carbon nanotubes (CNTs), only 33 tons were estimated to end up in
water systems, equivalent to approximately 1% of CNTs produced annu-
ally worldwide (Keller et al. 2013). Using dynamic probabilistic model-
ling, Sun et al. (2016) estimated the concentrations of Ti, Ag, and CNT
ENPs in wastewater effluents in European Union to be 44.4 μg L−1,
2.65 ng/L, and 8.58 ng/L, respectively.

Limited experimental efforts have been conducted for direct analysis
of the fate of ENPs in the wastewater treatment processes. Shi et al.
(2016) found 74–85% of Ti-ENPs were removed by activated sludge
and Ti-ENPs concentrations were 27–43 μg L−1 in the effluent of a
wastewater treatment plant in China. Cervantes-Aviles et al. (2019) de-
tected 0.5–13.5 ng/L Ag-ENPs in the effluents of different treatment pro-
cesses in a wastewater treatment plant in California and determined
that 76–96% of spiked Ag-ENP was removed by the secondary and ter-
tiary treatment processes. Another study suggested that eight ENPs
were generally amenable to aqueous removal by partitioning to other
phases (soil, micelles, and sewage sludge) (Kidd et al. 2018).

3.2. Effects of wastewater associated ENPs on crop growth

Engineered nanoparticles can stimulate or inhibit agricultural crop
growth through various mechanisms, including improving disease re-
sistance, altering membrane transport, stimulating the generation of
free radicals, and changing the delivery of nutritional elements (Kranjc
andDrobne 2019; Su et al. 2019; Vithanage et al. 2017). Previous studies
well documented promoting effects of CNTs, especially at low concen-
tration, on germination, plant growth, and development
(Alimohammadi et al. 2011; Lahiani et al. 2013a; Villagarcia et al.
2012). The enhancement has been linked to the CNT-derived up-
regulation of genes related to water channel and cell division
(Villagarcia et al. 2012). However, ENPs, especially metallic ENPs, have
been shown to result in phytotoxicity, through enhanced generation
of reactive oxygen species, which damages the photosynthetic system,
as well as phytotoxicity through other mechanisms (Barhoumi et al.
2015; Dewez and Oukarroum 2012; Khan et al. 2017; Rao and
Shekhawat 2014). In particular, Ag NPs can penetrate plant cells and af-
fect cell division, leading to cell disintegration, chromatin bridging,
metaphase interruption, and other impairment (Kumari et al. 2009).
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The plant uptake and toxicity of Ag NPs can also be affected by its speci-
ation and aggregation (Stegemeier et al. 2015).

Many studies have been devoted to analyzing the effects of ENPs on
agricultural crop growth, mostly in the perspective of potential applica-
tion of ENPs in agricultural and food systems as well as their potential
implications on agricultural productivity and human health. In Fig. 2
and Tables SI-2 through SI-5, the effects of selected ENPs on agricultural
plant growth have been compiled. For our analysis, we selected data
from 36 publications: CNTs - (Canas et al. 2008; Khodakovskaya et al.
2012; Lahiani et al. 2013b; Lin and Xing 2007; Lin et al. 2009; Mondal
et al. 2011; Pandey et al. 2018; Tiwari et al. 2014; Tripathi et al. 2011;
Wang et al. 2012) Ti - (Ahmed et al. 2019; Boonyanitipong et al. 2011;
Castiglione et al. 2011; Daghan 2018; Feizi et al. 2012; Gao et al. 2008;
Hong et al. 2005; Jiang et al. 2017; Kibbey and Strevett 2019; Larue
et al. 2012; Liu et al. 2019; Raliya et al. 2015; Song et al. 2013; Su et al.
2007) Ag - (Abbas et al. 2019; Kaveh et al. 2013; Lee et al. 2012; Liu
et al. 2019; Mirzajani et al. 2013; Nair and Chung 2014; Qian et al.
2013; Song et al. 2013; Vannini et al. 2014) Zn - (Ahmed et al. 2019;
Bandyopadhyay et al. 2015; Boonyanitipong et al. 2011; Dimkpa et al.
2012; Du et al. 2011; Kim et al. 2011; Kouhi et al. 2014, 2015; Rao and
Shekhawat 2014; Raskar and Laware 2014; Yoon et al. 2014; Zhang
et al. 2015). CNT, Ti, Ag, and Zn ENPs were selected based on their rela-
tively high use and release to the wastewater (Sun et al. 2016). A range
of agricultural crops including rice, wheat, maize, tomato, bean, and
others were studied. A suite of growth-related physiological responses
(e.g., fresh weight/dry weight of shoot/root/fruit, root elongation, seed
germination, and other parameters) was aggregated from published
studies, and relative response compared to a control without input of
ENPs was used for integrative analysis of data. This calculation was
used to normalize measurements for different biological endpoint ef-
fects of nanoparticles.

Most experiments with CNTs reported positive effects of CNTs on
crop growth (e.g., increased fresh biomass, shoot weight, root length
and others) even at concentrations as high as 2000 mg/L in hydroponic
and soil culture systems. However, negative or harmful effects ofmetal-
lic ENPs on agricultural crops were observed. The concentration of Ag
ENPs was significantly correlated with physiological response (Pearson
correlation coefficient, r = −0.49, p b 0.01) and Zn ENPs (r = −0.27,
p = 0.02), but not with Ti ENPs (r = −0.10, p = 0.31) or CNTs (r =
−0.037, p = 0.78). In addition, there was significant correlation be-
tween growth and concentration of Ag ENPs (Growth = −1.5 × 10−4

Ag + 0.80, p b 0.01, where Ag is the concentration (mg/L) of Ag ENPs)
and Zn ENPs (Growth=−4.5 × 10−5 Zn+ 0.92, p b 0.01, Zn is the con-
centration (mg/L) of Zn ENPs), but not with CNTs or Ti. The inhibitory
effects were strongest for Ag ENPs, and the average relative response
was 0.77, 0.76, and 0.51 for exposures of Ag ENPs of ≤10, 10–100, and
N100 mg/L, respectively, representing an overall inhibitory effect of Ag
ENPs at these relatively high concentrations. It should be noted that
the concentrations used in these studies far exceeded concentrations
present in wastewater. At concentrations currently expected in treated
wastewater, growth inhibition fromENP exposure is likely to be negligi-
ble for these four ENPs. In terms of risk to the food supply, it is appropri-
ate that US EPA guidance focuses more on bulk dissolved elements than
nanomaterials (U.S. EPA 2012).

Despite an abundance of studies, there are several significant knowl-
edge gaps regarding the effects of ENPs in treated wastewater on agri-
cultural crops. In the majority of these publications, no additional
experiments were conducted to distinguish effects of the heavy metal
compared to the nanoparticle itself, which is an area of ongoing study.
Additionally, very few studies have been conducted with ENPs and ex-
perimental conditions relevant to wastewater reclamation and reuse
Fig. 2. Relative physiological growth response (e.g., freshweight/dryweight of shoot/root/
fruit, root elongation, seed germination) of 24 agricultural crops vs. the concentration of
engineered nanoparticles (ENP) in appliedwater (mg/L) for crop growth. Raw data is pre-
sented in Tables SI-2 to SI-5.
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for agriculture (Kouhi et al. 2015). The lowest concentration of ENPs
used for crop growth experiments was 10−4 and 2 × 10−5 g/L for CNT
and Ag ENPs, respectively, while their concentrations in wastewater
treatment effluents are estimated to be in the range of 10−9 g/L. The
lowest concentration of Ti ENPs usedwas 7 × 10−5 g/L, similar to the es-
timated concentration inwastewater effluents, but thiswas not the case
for the majority of publications, with concentrations above 10−2 g/L.
Further, most of existing results are based on short-term exposures
and data is rare for long-term or multi-year exposures, which are im-
portant for evaluating the effects of ENPs on agricultural crop growth
and their implications in agricultural systems. We expect that reduced
experimental concentrations will result in limited effects and that in-
creasing duration of exposure will not significantly change uptake and
therefore growth. However, reduced wastewater flows and increased
ENP use in the future might significantly increase crop exposure, but it
is unlikely that concentrations will exceed those in the reviewed litera-
ture, which had limited or no impact on various physiological end-
points. Further experimentation is needed to confirm these hypotheses.

Finally, in addition to affecting plant growth directly, ENPs transfer
through the food chain. Compared to the effects to plant growth, rela-
tively limited studies have been conducted regarding the fate of ENPs
in the agriculture food chain, i.e., transfer from fresh products to
humans or to grazing animals and then to humans. A significant data
gap exists regarding human exposure to ENPs through agricultural
products and the associated risk and implications to human health
from increasing the proportion of treated wastewater irrigation.
4. Influence of plant available nutrients present in treated
wastewater

Plant available major nutrients, N, P, and K are commonly present in
treated wastewater and have the most pronounced effect on soil char-
acteristics and plant growth when irrigated with treated wastewater.
The same nutrients can also increase microbial activity involved in car-
bon metabolism and in general, increase soil microbial metabolism.
Often, N and P levels in treated wastewater could be present in concen-
trations that exceedmetabolic needs of the plants grown in the irrigated
soils, leading to their potential release into the environment. The degree
of treatment and regulations for treated wastewater reuse for irrigation
are the determining factors for nutrient releases into the environment.
Release of N and P into receiving waters causes eutrophication or algal
blooms. More importantly, treated wastewater irrigation could lead to
high N inputs into soils, transformation of reduced N forms into nitrate,
followed by leaching of the nitrate into groundwater. One study demon-
strated that poorly denitrified wastewater containing ~40 mg/L NH4

+-N
resulted in increasedNO3

− concentrations in the underlying aquifer sim-
ilar to that of agricultural fertilizer use (Kass et al. 2005). However,
Candela et al. (2007) found no increase in nitrate in the groundwater
as a result of using treated wastewater to irrigate a golf course in an
urban area and determined that the application of N from the treated
wastewater was lower than the agronomic requirements. Anane et al.
(2014) found that reclaimed wastewater was not an influencing factor
on groundwater contamination by nitrate, but high cropping density
wasmore likely to cause elevated nitrate levels. Therefore, prolonged ir-
rigation of crops with treated wastewater may not cause groundwater
nitrate contamination problems as long as the application rates and ag-
ronomic uptake rates are balanced. The overwhelming outcome of
treated wastewater irrigation results in beneficial impacts of nutrients
in terms of soil microbial activity and plant growth and yields
(Jaramillo and Restrepo 2017). Guo et al. (2017) found that increased
N and P in treatedwastewater irrigation increased abundance of certain
microbial groups such as Verrucomicrobia and Gemmatimonadetes. On
the other hand, P input from reclaimed wastewater water into irrigated
soils has not been reported to be released into the groundwater, but sur-
face waters releases are possible as is the case with agricultural runoff.
5. Changes to soil induced by irrigation with treated wastewater

5.1. Salt and heavy metal accumulation

Several recent reviews on the effects of heavy metals on plants have
been written including Chibuike and Obiora (2014), Tangahu et al.
(2011), Gjorgieva Ackova (2018), and Singh et al. (2016). For the pur-
poses of this paper we summarize the key points from these reviews
and other sources. Plant-available heavy metals are present as soluble
components in the soil solution or as compounds that can be solubilized
by root exudates (Blaylock and Huang 2000). Plants require specific
heavy metals to function optimally, but excessive amounts of metals
can become harmful. Excess heavy metals can have both direct and in-
direct negative effects on plants. Direct effects include inhibition of en-
zyme activity, metabolic processes, and photosynthesis as well as
oxidative stress (Van Assche and Clijsters 1990). Metals may indirectly
affect plants when non-essential metals compete with essential metals
for cation exchange sites in soils and plants (Taiz and Zeiger 2002). In
addition, high heavy metal concentrations may adversely affect benefi-
cial soil microorganisms. As a result, organicmatter decompositionmay
decrease thereby decreasing soil nutrient availability.

The effect of heavy metal toxicity on the plant growth depends on
the particular heavy metal as well as their concentration in the soil.
For metals that are not required by plants such as Pb, Cd, Hg, and As, ad-
verse effects have been recorded at very low concentrations. For in-
stance, Kibra (2008) observed significant reduction in height and tiller
production of rice plants growing on a soil contaminated with
1 mg/kg Hg. Similarly, shoot and root growth in wheat plants was re-
duced when Cd in the soil solution was as low as 5 mg/L (Ahmad et al.
2012). For metals that are beneficial or essential to plants, low soil con-
centrations typically improve plant production. However, even for these
metals, plant functioning can be damaged at higher concentrations. Sev-
eral studies have shown that growth, nutrient content, and enzyme ac-
tivities in tomato, radish and mung bean increased at soil Co
concentrations between 0 and 50mg/kg but decreased at Co concentra-
tions exceeding 100 mg/kg (Jayakumar et al. 2007; Jayakumar et al.
2008; Jayakumar et al. 2013). Similarly, growth and physiology of clus-
ter beans increased at soil solution Zn concentrations up to 25 mg/L but
decreased at concentrations above 50 mg/L (Manivasagaperumal et al.
2011). Often, soils are polluted with more than one heavy metal.
Ghani (2010) examined the combined effect of Cd, Cr, Co, Mn, and Pb
on the growth of maize and observed that the combined effect of two
or more heavy metals was typically determined by the most toxic
heavy metal. Given that heavy metal concentrations in wastewater ef-
fluent are typically limited by discharge limits to much less than the
thresholds for toxicity described above, and metals overall are present
at b750 μg L−1 for Al, Ni, Fe, and Zn, and b100 μg L−1 for others
(Carletti et al. 2008; Karvelas et al. 2003; Metcalf and Eddy 2013),
metals, including heavy metals, likely have limited to no impact on
crops irrigated with treated wastewater.

A second concern associated with use of treated wastewater for irri-
gation is increasing soil salinity as salts contained in the water may ac-
cumulate in soils. Build-up of salts in the soil causes chemical and
physical changes to the soil that reduce crop yields or can prevent
crop production all together. High concentrations of Ca2+ and other
polyvalent ions reduce the ability of plants to take up water as high
salt concentrations decrease the osmotic potential across the crop's
roots. Crops must then use resources to correct for that potential differ-
ence or suffer from reduced water uptake, resulting in wilting (Munns
and Tester 2008). In addition, high salt concentrations can reduce
plant growth due to specific-ion toxicities and nutritional imbalances
(Läuchli and Epstein 1990; Munns and Tester 2008). Salinity can nega-
tively affect photosynthesis by decreasing CO2 availability due to diffu-
sion limitations (Flexas et al. 2007) and a reduction in photosynthetic
pigments (Ashraf and Harris 2013; Delfine et al. 1999). Salt accumula-
tion in spinach inhibits photosynthesis (Di Martino et al. 1999)
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primarily by decreasing stomatal and mesophyll conductance to CO2

(Delfine et al. 1998) and reducing chlorophyll content, which can affect
light absorbance (Alvino et al. 2000; Delfine et al. 1999). The presence of
high fractions (N15%) of exchangeable sodium (Na+) relative to bi- or
trivalent cations in soil can cause a breakdown of soil structure due to
clay dispersion. Dispersed clays lead to reduced infiltration and hydrau-
lic conductivity, thereby limiting root growth, and seedling establish-
ment. Clay dispersion also increases soil erosion and clay swelling
(Minhas et al. 2019). An increase in pH is associatedwith high Na+ con-
tent (alkalization), caused by the presence of HCO3

− and CO3
2−. The Ex-

changeable Sodium Percentage, or fraction of the cation exchange
complex occupied by Na+ typically shows a linear relationship with
soil pH (Sumner and Naidu 1998). Increasing pH can cause deficiencies
and/or toxicities of plant nutrients. Sodium in the soil also competes
with Ca2+, K+, and other cations. As a result, high amounts of Na+ can
cause a reduction in these other cations to reduce their availability to
crops. In summary, soils with high levels of exchangeable Na+ may im-
pact plant growth by deterioration of soil structure, nutrient deficien-
cies or imbalances, and specific toxicity to Na+-sensitive plants.

The addition of salts contained inwastewater tends to affect the sur-
face horizonsmore than the subsurface horizons of the soil, and salt ac-
cumulation is often greater as clay content of soils increases (Chen et al.
2013). Palacios-Díaz et al. (2009) observed high electrical conductivity
values in a soil when municipal wastewater was used for irrigation.
The levels exceeded the threshold of salinity damage of alfalfa and
could cause plant mortality. Chen et al. (2013) conducted a study
using reclaimed wastewater and found that the average soil salinity
plots irrigatedwith the reclaimedwaterwas 19.2% higher than those ir-
rigated with tap water, but the growth of the grasses in the experiment
(Bluegrass and Buffalograss) was not impacted.

As global wastewater flow decreases due to water conservation, in-
creases in salinity, organic matter, and metal concentrations can be ex-
pected. However, given that both salts and metals have a known
detrimental impact to receiving streams, effluent permitting is expected
to drive wastewater treatment processes in controlling their concentra-
tions. However, if effluent concentrations continue to increase, more
salt-tolerant crops such as barley, camelina, rye, safflower, sunflower,
sugar beets, amaranth, and quinoa may become favored in scenarios
where wastewater is applied for irrigation. Given that most crops are
sensitive to heavy metals, increasing concentrations are likely to nega-
tively impact crop production.

5.2. Soil microbiome

Treated wastewater irrigation has been shown to have beneficial ef-
fects or no effects on soil microbiome in terms of microbial diversity
and inter-species connection, and on plant growth in terms of yield com-
pared to groundwater irrigation (Li et al. 2019). The focus here is on how
contaminants in treated wastewater affect soil microbiome and in turn,
the productivity of soils in terms of crop growth. Engineered
nanomaterials including those commonly occurring in treated wastewa-
ter have adverse effects on soilmicrobiota (Liu et al. 2018). The significant
broader effects includeddecreasedmicrobial diversity and shifts inmicro-
bial communities, although specific effects on individual microorganisms
or genuswereminimal. The predominant ENPs that induced these effects
were suspected to be TiO2, ZnO, and Ag particles, but it was difficult to
separate effects of ENPs present in the wastewater and dissolved metals.

The intermediate role of rhizosphere interactions of the soil
microbiomeon root uptake of PPCPs by the plant not been directly stud-
ied or reported in the literature. The soil microbiome may play an im-
portant role in the bioaccumulation of persistent contaminants (not
amenable to biodegradation) such as perfluoroalkyl substances, carba-
mazepine, and antibiotics in treated wastewater used for irrigation
and hence promote the plant uptake at the higher concentrations in
the rhizosphere (Li et al. 2013; Pullagurala et al. 2018). There is much
discussion and work on biodegradation of xenobiotic input from
reclaimed water and sludge into soils, but not on the bioaccumulation
by the soil microbiome. If the soil microbiome attenuates leachability
of recalcitrant trace contaminants, they become available for plant up-
take andhence deserve significant research to understand this phenom-
enon. This is particularly the case with soils irrigated with treated
wastewater because the nutrients present in the water may stimulate
microbial growth. The conferring of antibiotic resistance to the soil
microbiome by antibiotic resistance genes in treated wastewater used
for irrigation is also known. Han et al. (2016) found a significant diver-
gence of soil microbial community structure following reclaimed water
irrigation, however, it is not clear if such a resulting microbiome affects
plant growth in those soils.

6. Conclusions

Weexpect that treatedwastewaterwill increasingly contribute to ir-
rigation supplies for food crops.We critically reviewed literature related
to the impacts of wastewater constituents, particularly, trace contami-
nants and ENPs on crop yield and found that:

1) At concentrations much greater than are expected in treated waste-
water, xenobiotics generally cause reduced growth in a broad range
of food crops.

2) CNTs and Ag, Ti, and Zn ENPs also generally caused declinations in
plant growth, but again the impacts were only observed at concen-
trations much greater than are expected in treated wastewater.

3) The presence of N and P presents one of the greatest benefits of irri-
gation with treated wastewater over more typical sources and there
is an abundance of evidence that indicates that yields are increased
and nitrate and P releases to groundwater and surface waters are
small or negligible.

4) Salt accumulation likely presents the greatest threat to crop yields
andmay result in significant decreases in crop yield if soils are poorly
managed. Metals were detrimental to growth but only at concentra-
tions greater than present in treated wastewater.

5) Future changes towastewater flowdue to climate change or increas-
ing use of the chemicals or particles may change the conclusion that
they cause little or no phytotoxicity, and this is especially apparent
for xenobiotics, of which, some are present in wastewater effluent
at concentrations within an order of magnitude of their LOAEC.
Together, the reviewed literature suggests that the overall impact of

treatedwastewater constituents on crop growth is likely to be beneficial
as long as salts concentrations in the treated wastewater are well con-
trolled, and the soil managed to limit salt accumulation. Further, should
the concentrations of ENPs, metals, salts, or xenobiotics significantly in-
crease, the beneficial impact of N and P present in treated wastewater
may be overcome, resulting in a net decrease in yield.
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