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McQuate A, Barria A. Rapid exchange of synaptic and extrasyn-
aptic NMDA receptors in hippocampal CA1 neurons. J Neurophysiol
123: 1004–1014, 2020. First published January 29, 2020; doi:
10.1152/jn.00458.2019.—N-methyl-D-aspartate receptors (NMDARs)
are fundamental coincidence detectors of synaptic activity necessary
for the induction of synaptic plasticity and synapse stability. Adjusting
NMDAR synaptic content, whether by receptor insertion or lateral
diffusion between extrasynaptic and synaptic compartments, could
play a substantial role defining the characteristics of the NMDAR-
mediated excitatory postsynaptic current (EPSC), which in turn would
mediate the ability of the synapse to undergo plasticity. Lateral
NMDAR movement has been observed in dissociated neurons; how-
ever, it is currently unclear whether NMDARs are capable of lateral
surface diffusion in hippocampal slices, a more physiologically rele-
vant environment. To test for lateral mobility in rat hippocampal
slices, we rapidly blocked synaptic NMDARs using MK-801, a
use-dependent and irreversible NMDAR blocker. Following a 5-min
washout period, we observed a strong recovery of NMDAR-mediated
responses. The degree of the observed recovery was proportional to
the amount of induced blockade, independent of levels of intracellular
calcium, and mediated primarily by GluN2B-containing NMDA re-
ceptors. These results indicate that lateral diffusion of NMDARs
could be a mechanism by which synapses rapidly adjust parameters to
fine-tune synaptic plasticity.

NEW & NOTEWORTHY N-methyl-D-aspartate-type glutamate re-
ceptors (NMDARs) have always been considered stable components
of synapses. We show that in rat hippocampal slices synaptic
NMDARs are in constant exchange with extrasynaptic receptors. This
exchange of receptors is mediated primarily by NMDA receptors
containing GluN2B, a subunit necessary to undergo synaptic plastic-
ity. Thus this lateral movement of synaptic receptors allows synapses
to rapidly regulate the total number of synaptic NMDARs with
potential consequences for synaptic plasticity.

extrasynaptic receptors; NMDA receptors; synaptic receptors; synap-
tic transmission

INTRODUCTION

The N-methyl-D-aspartate receptor (NMDAR) is an ionotropic
glutamate receptor expressed throughout neocortex, is highly
permeable to calcium, and is fundamental for both synaptogenesis
and experience-driven synaptic plasticity (Cline and Haas 2008;

Gambrill and Barria 2011; Lau and Zukin 2007). Although his-
torically NMDARs have been thought to be relatively stable
components of synapses based on their tight association with
scaffolding proteins (Malenka and Nicoll 1999; Malinow and
Malenka 2002), evidence shows that NMDARs can be dynamic
and regulated by synaptic activity within hours or days. Sensory
deprivation in rodents alters NMDAR-subunit composition at
synapses consequently affecting the threshold for synaptic plas-
ticity (Philpot et al. 2001, 2003; Quinlan et al. 1999). In cultured
hippocampal neurons, prolonged blockade of synaptic activity
with TTX increases NMDARs surface expression (Lissin et al.
1998). Similarly, blockade of receptor activation with the com-
petitive antagonist 2-amino-5-phosphonopentanoic acid (APV)
increases NMDAR phosphorylation in a manner to promote
surface expression (Chung et al. 2004), increases receptor local-
ization to synapses (Rao and Craig 1997), and prevents the normal
switch in subunit composition of NMDARs (Barria and Malinow
2002), once again altering synaptic plasticity (Barria and Malinow
2005).

Synaptic NMDAR content in hippocampal slices can also be
regulated in short time scales of minutes and seconds in
response to changes in synaptic activity. This allows synapses
to dynamically adjust NMDAR-mediated transmission and the
threshold for synaptic plasticity (Gambrill et al. 2011). Because
this change in synaptic NMDAR content is rapid, it was
suggested that lateral diffusion of NMDARs, rather than mem-
brane insertion from intracellular compartments, was respon-
sible. This idea is supported by studies in cultured dissociated
neurons, where single-receptor tracking using quantum dots
shows that, in this system, NMDARs can diffuse quite readily
on the plasma membrane surface at a rate determined by
their subunit composition (Groc et al. 2004, 2006). Addi-
tionally, by using the activity-dependent inhibitor MK-801,
it has been shown in cultured autaptic hippocampal neurons
that NMDARs are capable of rapidly moving laterally between
extrasynaptic and synaptic compartments (Tovar and West-
brook 2002). However, with the use of a similar approach in
hippocampal slices, a more physiologically relevant system,
this lateral motility has been called into question. It was
concluded that extrasynaptic and synaptic NMDARs form
stable pools (Harris and Pettit 2007). In addition, questions
regarding whether quantum dots used for single-molecule
tracking can reliably access the synaptic space makes previous
observations of rapid lateral diffusion of synaptic receptors
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using this method of tracking unclear (Delgado and Selvin
2018).

On postsynaptic sites, synaptic and extrasynaptic NMDARs
are proposed to have different subunit compositions and
functions via association with different signaling platforms
(Hardingham and Bading 2010; Papouin and Oliet 2014).
Whether there is exchange between synaptic and extrasyn-
aptic NMDARs pools remains unclear. Considering the fun-
damental role of NMDARs in learning and their implication in
neuropathologies, it is of crucial importance to clarify if and/or
how these receptors traffic laterally between compartments as
a means of fine-tuning synaptic characteristics on a minute-by-
minute basis. In this report we investigate whether NMDARs
can rapidly move between synaptic and extrasynaptic compart-
ments in hippocampal slices. We have found evidence support-
ive of NMDAR exchange between synaptic and extrasynaptic
compartments. This exchange might represent a mechanism by
which synapses can rapidly change their susceptibility to plas-
ticity.

MATERIALS AND METHODS

Hippocampal slices. Organotypic hippocampal slices (400 �m
thick) were prepared according to standard procedures (Opitz-Araya
and Barria 2011) from postnatal day (P)6–9 male and female
Sprague-Dawley rats and maintained in culture for 3–8 days at 35°C.
Animals were handled according to a protocol approved by the
University of Washington (Seattle, WA) institutional animal care and
use committee.

Electrophysiology. For each experiment, the CA1 area of a hip-
pocampal slice was isolated by making two cuts flanking the CA1
region, and then the slice was placed into the recording chamber
containing modified ACSF (in mM): 10 glucose, 2.5 KCl, 118 NaCl,
1 NaH2PO4, 2 CaCl2, 2 MgCl2, and 26 NaHCO3, pH 7.4, constantly
circulating and bubbled with 95% O2-5% CO2. NMDAR-mediated
currents were recorded from CA1 neurons patched under visual
guidance with glass pipettes (~2–4 M�) filled with a cesium-based
internal solution (in mM): 115 CsMeSO4, 20 CsCl2, 10 HEPES, 2.5
MgCl2, 4 MgATP, 0.4 Na3GTP, 10 Na- phosphocreatine, and 0.6
EGTA, pH 7.25. Currents were evoked by holding the cells at
depolarized potentials below the NMDAR reversal potential (between
�40 and �15 mV, average �30 mV) and stimulating the Schaffer
collaterals with a bipolar cluster electrode (CE2C55; FHC) placed
~100 �m away from the cell of interest. To isolate NMDAR currents,
1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfon-
amide (NBQX; 2 �M) and picrotoxin (100 �M) were also included in
the bath. Temperature was kept between 22.8 and 23.0°C. Recordings
were obtained with a MultiClamp 700B amplifier (Axon Instruments)
and pClamp 10.1 software.

Statistics. The amplitude of EPSCs for individual experiments was
normalized to the average of the baseline period to aggregate data
from different cells. Where appropriate, statistical significance was
determined using a nonparametric test, Mann-Whitney U test, or
repeated measures ANOVA with post hoc Bonferroni correction for
multiple comparisons. A value of P � 0.05 was considered statisti-
cally significant. Data are presented as average (�SE) values of
recorded cells.

RESULTS

Activity bidirectionally regulates synaptic NMDARs. It has
been proposed that NMDARs can diffuse laterally in the plane
of the membrane (Groc et al. 2006; Tovar and Westbrook
2002) and regulate synaptic responses in a dynamic manner
(Gambrill et al. 2011). To test whether synapses can rapidly

adjust their synaptic content of NMDARs in response to
varying frequencies of synaptic stimulation, we recorded iso-
lated NMDAR-mediated postsynaptic currents (EPSCs) in rat
hippocampal CA3–CA1 synapses in the presence of the AMPA
receptor blocker NBQX and 2 mM Mg2�. NMDAR-mediated
EPSCs were obtained by stimulation of Schaffer collaterals at
0.1 Hz while relieving the Mg2� block by holding the cell at a
negative potential around �30 mV, where inward NMDAR
currents were maximal. Stimulation intensity was adjusted for
each cell to produce responses between 25 and 50 pA. The
frequency of stimulation was then decreased to 0.05 Hz. This
decrease in stimulation frequency caused a progressive in-
crease in the amplitude of NMDAR-mediated EPSCs that
stabilized after 10 min (Fig. 1, A and B; P � 0.05, Mann-
Whitney test) as has been observed before (Gambrill et al.
2011).

Increasing the stimulation frequency from 0.1 to 0.5 Hz
produced the opposite effect, i.e., a gradual decrease in the
amplitude of evoked NMDAR EPSCs (P � 0.05, Mann-
Whitney test). When the frequency of stimulation was returned
to 0.1 Hz, the amplitude of the responses gradually returned to
baseline levels (Fig. 1C). This rapid adjustment in the ampli-
tude of evoked NMDARs to varying input activity suggests
that synaptic and extrasynaptic NMDARs, at least a fraction of
them, are mobile and can respond to changes in the frequency
of stimulation.

Incomplete blockade by MK-801 of synaptic NMDARs. To
further investigate whether synaptic NMDARs can drift in and
out of synapses, we used MK-801, a noncompetitive and
activity-dependent NMDAR antagonist (Halliwell et al. 1989).
MK-801 blocks only activated receptors within stimulated
synapses. Since MK-801 blockade is irreversible at negative
holding potentials (Huettner and Bean 1988; Rosenmund et al.
1993), should receptors be fixed within or outside of synapses,
each stimulus iteration should decrease the overall NMDAR
EPSC amplitude until all receptors are blocked and evoked
responses are indistinguishable from noise.

Evoked NMDAR-mediated responses were obtained in CA1
neurons by stimulation of Schaffer collaterals at 0.1 Hz. After
a stable baseline was obtained, MK-801 was added to the
perfusion bath and stimulation stopped to allow for an even
distribution of the drug in the tissue. Three concentrations, 5,
10, and 40 �M, all well above the described MK-801 IC50,
were used (Wamil and McLean 1992). When stimulation was
resumed, NMDAR EPSC amplitudes rapidly declined as ex-
pected due to blockade of the activated synaptic NMDARs.
Within the next 10 min, responses became progressively
smaller but were never eliminated at any of the concentrations
of MK-801 used (Fig. 2, A–C). Even 40 �M MK-801 after 10
min did not eliminate NMDAR-mediated EPSCs (Fig. 2, C and
D). Only the addition of 100 �M DL-APV, a competitive
antagonist for the glutamate binding site, rapidly and com-
pletely eliminated NMDAR-mediated responses (Fig. 2, A–C).
The blockade of synaptic NMDARs by MK-801 can be fit with
a single-order exponential decay function (Fig. 2E). Fits for all
three concentrations reveal that the time constant of the block-
ade was dependent on MK-801 concentration in a nonlinear
manner, with 40 �M being close to saturation (Fig. 2F).
Importantly, the percentage of MK-801 blockade after 10 min
seems to reach a plateau at a maximum of 90% blockade (Fig.
2G). Similar incomplete blockade of NMDAR-mediated syn-
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aptic currents after 15–20 min of MK-801 treatment have been
observed before in hippocampal slices (Harris and Pettit 2007;
Hessler et al. 1993) or single cultured neurons that form autapses
(Rosenmund et al. 1993). Given the saturating concentration of
MK-801, the preincubation period, and the long stimulation pe-
riod in the presence of the drug, it is unlikely the remaining
current is due to incomplete pharmacological blockade.

Incomplete blockade suggests that either a fraction of syn-
aptic NMDARs are not fixed within the synapse and can
constantly be replaced with nonblocked extrasynaptic receptors
or that nonblocked extrasynaptic receptors are added to the
synapse on top of receptors that remain synaptically fixed.
Either mechanisms could prevent a complete blockade on this
timescale and at this stimulation frequency.

Recovery of synaptic NMDARs after MK-801 blockade. If
synaptic NMDARs are in a constant exchange with extrasyn-
aptic receptors, this could explain 1) the adjustment of
NMDAR synaptic content depending on the stimulation fre-
quency (Fig. 1) and 2) the incomplete blockade of synaptic
NMDARs by MK-801 (Fig. 2). To test whether a rapid ex-
change of synaptic and extrasynaptic NMDA receptors occurs,
we hypothesized that it should be possible to recover
NMDARs responses after MK-801 has blocked a fraction of
synaptic NMDARs and the drug washed away. A partial
recovery after MK-801 blockade has been observed in autaptic
synapses (Tovar and Westbrook 2002), where the exchange of

solutions is almost instantaneous, but it has failed to be ob-
served in hippocampal slices (Harris and Pettit 2007).

To test whether extrasynaptic receptors can drift into syn-
apses and replace blocked receptors, we first blocked a fraction
of synaptic receptors by 10 �M MK-801 with 30 pulses
delivered at 0.1 Hz (5 min). This rapidly reduced the amplitude
of evoked NMDAR EPSCs to 31 � 5% of baseline levels (Fig.
3, A and B; P � 0.01, repeated measures ANOVA with post
hoc Bonferroni correction test). The drug was then washed out
for 5 min with the stimulation turned off to prevent further
blockade of synaptic NMDARs during this period. On resum-
ing stimulation at 0.1 Hz, we observed NMDAR-mediated
EPSCs had recovered to, on average, 61 � 9% of baseline
(Fig. 3, A and B). This increase in the amplitude of NMDAR
EPSCs was significantly larger compared with that at the end
of the blockade period (Fig. 3B; P � 0.01, repeated measures
ANOVA with post hoc Bonferroni correction test). Over the
course of the next 10 min, response amplitudes decreased back
to values slightly above the values observed at the end of the
MK-801 block period (33 � 6% of baseline) but did not
decrease further.

Early control experiments with the same sequence of events
as in this block and recovery paradigm were performed, but
without MK-801. This control showed that after a period of no
stimulation, a temporary increase in NMDAR transmission is
observed that subsequently decays (also see Gambrill et al.
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normalized to baseline at indicated time.
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2011), indicating that the decay postrecovery is not entirely
due to residual MK-801. A similar control was performed
where MK-801 was not removed during the washout period. In
this case, NMDAR decayed much faster than when MK-801
had been removed from the bath (not shown). Together, these
results indicate that while residual MK-801 may remain in the
bath, it alone is not responsible for the decay in response
amplitude when stimulation is resumed.

Neither the percent blockade, measured with the last three
stimuli compared with baseline, nor the percent recovery,
measured with the first three stimuli after the washout period,
were correlated with the baseline average amplitude of
NMDARs EPSCs (Fig. 3, C and D). A small, nonsignificant
negative correlation between the degree of MK-801 blockade
and the percent of recovery relative to baseline was observed
(Fig. 3E). The P value shown in Fig. 3, C–E, was calculated
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from an F test, and the R2 value represents the goodness of the
linear regression fit. This partial and temporary recovery of
NMDAR responses suggests that after MK-801 blockade and
during the washout period, unblocked extrasynaptic NMDARs
move into the synapses.

This increase in synaptic NMDAR-mediated transmission is
consistent with the adjustment to synaptic activity observed in
Fig. 1A (see also Gambrill et al. 2011). Receptors that move
into the synapses could either replace existing blocked recep-
tors or be added to the synapse. The fact that response ampli-
tudes decay again, when stimulation is resumed, to values
observed at the end of the MK-801 block period suggests that
NMDARs move out of the synapse to adjust for the new
stimulation frequency, but that previously blocked NMDARs
do not leave the synapses. It is plausible that synaptic recep-
tors, to adjust to stimulation frequency and leave the synapse,
need channel opening to break free from their synaptic anchor-
age, something that could be prevented by MK-801.

To test whether the temporary recovery of NMDAR-mediated
currents observed after MK-801 blockade results from the traf-
ficking of intracellular receptors to the surface, we suspended
stimulation of the Schaffer collaterals and coapplied the agonist
NMDA (25 �M) with MK-801 to block all surface receptors. This
was followed by a period of washout still in the absence of
synaptic stimulation. When stimulation was resumed, we ob-
served no recovery of NMDAR-mediated currents (Fig. 3F).
These results support that NMDAR recovery from MK-801 block
is not mediated by receptors trafficking into synapses from intra-
cellular compartments, but by receptors located on the surface that
can move laterally into synapses.

The small negative correlation between the degree of MK-
801 blockade (how much of baseline was blocked) and the
percentage of baseline recovered after washout of the drug
suggests that the receptors contributing to the recovery are
influenced by the amount of induced blockade (Fig. 3E). To
further examine this observation, we repeated the experiment
while increasing the percentage of blockade by stimulating
synapses at a slightly higher rate.

We hypothesized that because the constant exchange between
synaptic and extrasynaptic receptors, a larger number of synapti-
cally blocked receptors will concomitantly decrease the number of
receptors available for recovery. Stimulation of synapses at 0.2 Hz
in the presence of 10 �M MK-801 blocked NMDAR-mediated
EPSCs to 27 � 7% of baseline values. After washout of the drug,
NMDAR responses still recovered significantly to 53 � 7% of
baseline values (Fig. 4, A and B; P � 0.05, repeated measures
ANOVA with post hoc Bonferroni correction test). This recovery,
however, is less than that observed when NMDAR-mediated
currents were blocked at 0.1 Hz (Fig. 3B). When NMDAR-
mediated synaptic currents were stimulated at 0.3 Hz, MK-801
blocked NMDAR currents to 20 � 7% of baseline values. After
washout of the drug, NMDAR-mediated EPSCs recovered to
33 � 6% of baseline; in this case, the recovery was not statisti-
cally significant (Fig. 4, C and D; repeated measures ANOVA
with post hoc Bonferroni correction test). In both cases, as before,
after the initial recovery, the amplitude of NMDAR-mediated
EPSCs decayed back to the level observed at the end of the
blockade period. As expected, increasing the stimulation fre-
quency sped the rate of block (Fig. 4E) and increased the percent-
age of blockade in the 5 min before washout of the drug (Fig. 4F).
The increased blockade observed with stimulation at either 0.2 or

0.3 Hz correlated with decreased recovery of NMDAR currents
(Fig. 4G).

These data support a rapid and activity-dependent exchange of
receptors between synaptic and extrasynaptic compartments such
that synaptic receptors blocked during MK-801 exposure get
functionally replaced with extrasynaptic receptors, albeit tempo-
rarily until stimulation is resumed. An increase in the amount of
blockade concomitantly decreases the number of functional re-
ceptors available for replacement once they reach a new
equilibrium.

NMDAR diffusion is not mediated by intracellular calcium.
Intracellular calcium has been shown to regulate the trafficking
of NMDARs from intracellular compartments to the surface
(Hunt et al. 2013; Lau and Zukin 2007) as well as NMDAR
current rundown and channel open time (Krupp et al. 1999;
Legendre et al. 1993). We tested next whether intracellular
calcium might play a role in the observed recovery of synaptic
NMDAR currents following blockade with MK-801. To this
end, we used BAPTA in the patch pipette while blocking
synaptic receptors with MK-801 and 0.1-Hz stimulation of
Schaffer collaterals. Neither 10 nor 15 mM BAPTA had any
effect on the degree of MK-801 blockade or recovery after
washout of the drug compared with the amount of blockade
and recovery in control conditions (Fig. 5, A–C, two-factor
ANOVA with repeated measures on one factor with post hoc
Bonferroni correction test). These results suggest a calcium-
independent mechanism governs receptor lateral diffusion re-
sponsible of the recovery observed after MK-801 blockade.

NMDAR diffusion is regulated by subunit composition.
NMDARs are heterotetramers containing two obligatory
GluN1 subunits and two GluN2 subunits that confer the recep-
tor its kinetic properties. GluN2A-containing receptors dem-
onstrate faster decay kinetics (Traynelis et al. 2010) and weak,
if any, association with CaMKII, while GluN2B-containing
NMDA receptors demonstrate slower decay kinetics and
heightened association with CaMKII (Barria and Malinow
2005; Mayadevi et al. 2002), an association necessary for
synaptic plasticity (Barria and Malinow 2005; Halt et al. 2012;
Zhou et al. 2007). The subunit composition of NMDARs
located within synaptic versus extrasynaptic zones has been a
source of contention over the last decade, with a prevailing
view that extrasynaptic receptors contain primarily GluN2B,
and synaptic receptors GluN2A, although drawing definitive
lines between the two has been complicated by the limitations
of various experimental paradigms (Papouin and Oliet 2014).

We have reported previously that potentiation of NMDAR
currents induced by a reduction in the sampling rate is due to
incorporation of GluN2B-containing NMDA receptors, as
there is an increase in the decay time of NMDAR-mediated
EPSCs and an increased sensitivity to ifenprodil, a specific
GluN2B antagonist (Gambrill et al. 2011). Studies in cultured
dissociated neurons also distinguished GluN2B-containing
NMDA receptors as more mobile than their GluN2A counter-
parts (Groc et al. 2006).

To test whether subunit composition of NMDARs plays a
role in either the blockade by MK-801 or the recovery ob-
served after the drug has been washed out, we analyzed the
time to half-decay of NMDAR-mediated EPSCs from data
shown in Fig. 3A. NMDAR EPSCs were significantly faster at
the end of MK-801 blockade compared with baseline or the
beginning of blockade (Fig. 6A; repeated measures ANOVA
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with post hoc Bonferroni correction test). This suggests that
synaptic GluN2B-containing receptors are more sensitive to
MK-801 blockade in slices, perhaps because of their longer
opening times (Erreger et al. 2005). After the drug is washed
out and a recovery in the NMDAR-responses is observed as
described in Fig. 3A, a significant increase in the time to
half-decay is observed, suggesting that NMDAR diffusion is
primarily mediated by GluN2B-containing receptors.

Next, we manipulated the synaptic content of GluN2A-
containing NMDA receptors by overexpressing equimolar
amounts of optically tagged GluN2A and GluN1 subunits
(Barria and Malinow 2005) in organotypic hippocampal
slices via biolistic transfection (Opitz-Araya and Barria

2011; Woods and Zito 2008). Synaptic NMDAR-mediated
currents evoked in cells overexpressing GluN2A are insen-
sitive to ifenprodil (Barria and Malinow 2005) and exhibit a
faster decay time (Fig. 6B), indicating a dominance of
GluN2A-containing NMDA receptors at synapses, while
endogenous levels of GluN2B are not affected (Barria and
Malinow 2005).

Similar to our previous results, these cells also demon-
strated significant blockade and recovery following MK-801
washout (P � 0.05, repeated measures ANOVA with post
hoc Bonferroni correction test), almost achieving baseline
levels (88 � 17%; Fig. 6C and Fig. 6D, open bars). How-
ever, in these cells MK-801 blocked NMDAR EPSCs to
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only 58 � 13% of baseline levels (Fig. 6C), significantly
less than the amount of blockade in control conditions (Fig.
6D; two-factor ANOVA with repeated measures on one
factor with post hoc Bonferroni correction test). The lesser
extent of the MK-801 blockade compared with control
experiments may be related to a decreased efficacy of
MK-801 for blocking GluN2A than GluN2B given the
relatively faster kinetics of the GluN2A subunits. Impor-
tantly, responses were able to recover once MK-801 had
been washed out, consistent with an endogenous GluN2B
extracellular pool available.

Next, we tested directly whether GluN2B is the subunit
necessary for the recovery of NMDAR responses observed
after MK-801 blockade. We treated slices for 15 min with 1
�M Ro 25-6981, a specific GluN2B blocker (Fischer et al.
1997) while monitoring NMDAR-mediated synaptic re-
sponses. This treatment decreases the decay time of NMDAR-
mediated EPSCs (Barria and Malinow 2005) and reduced
NMDAR EPSCs to 57 � 9% of baseline values. Once EPSCs
had mostly stabilized, we repeated the MK-801 blockade and
recovery paradigm as before.

A 5-min MK-801 blockade decreased EPSCs to 33 � 6% of
baseline amplitude (Fig. 7A and Fig. 7B, shaded bars), a similar
blockade as in control neurons (Fig. 3), shown again in Fig. 7B
for easy comparison (two-factor ANOVA with repeated mea-
sures on one factor with post hoc Bonferroni correction test).
Following washout, in cells pretreated with Ro 25-6981, there
was a small recovery of NMDAR responses that is not statis-
tically different compared with the amount of recovery in
control cells (Fig. 7B; two-factor ANOVA with repeated mea-
sures on one factor with post hoc Bonferroni correction test).

However, the small recovery observed in cells pretreated
with Ro 25-6991 is not statistically different compared with
recovery at the end of the MK-801 blockade period (Fig. 7B,
shaded bars; two-factor ANOVA with repeated measures on
one factor with post hoc Bonferroni correction test). This is
different from control neurons, where responses during the
recovery period are statistically different compared with those
at the end of the blockade (Fig. 7B, closed bars; two-factor
ANOVA with repeated measures on one factor with post hoc
Bonferroni correction test).

Interestingly, the small recovery observed in neurons treated
with Ro 25-6981 exhibited slower EPSCs, suggesting that it is
mediated by GluN2B-containing NMDARs (Fig. 7C), presum-
ably because of incomplete blockade with Ro 25-6981. All
together, our data support that GluN2B-containing NMDA
receptors are primarily responsible for the recovery observed
after MK-801 block.

DISCUSSION

Lateral motility of NMDARs, in particular their capability to go
in and out of synapses, has been observed in dissociated neurons
using single-molecule labeling (Groc et al. 2004, 2006) and
indirectly inferred by recovery of NMDAR function after MK-
801 blockade (Tovar and Westbrook 2002). However, recovery
from MK-801 blockade has not been observed in hippocampal
slices (Harris and Pettit 2007), a more physiologically relevant
system. In addition, the use of quantum dots to label synaptic
single molecules has been called into question because of
their size and accessibility to synaptic space (Delgado and Selvin
2018). In this study we used MK-801 blockade of synaptic
receptors in organotypic hippocampal slices to study whether
NMDARs are able to diffuse in the plane of the membrane
entering and leaving synaptic areas. Organotypic slices, as op-
posed to acute slices, provide a more stable preparation that has
recovered from cell death and excitotoxicity caused by sample
preparation that could affect lateral motility.

Our results show that blockade of NMDAR currents by MK-
801 is reversed partially once the drug is removed. This recovery
in the NMDAR function is transitory, and once stimulation is
resumed, amplitude of NMDAR EPSCs decays to a new equilib-
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rium. This initial recovery indicates that unblocked extrasynaptic
receptors are mobile and able to incorporate into synapses during
the washout period, consistent with the rapid adjustment in the
amplitude of evoked NMDARs to varying input activity (Fig. 1)
or periods without stimulation (Gambrill et al. 2011).

While presynaptic changes affecting probability of release have
not been ruled out in these experiments, there is no reason to think
that could be the case: the frequency and intensity of stimulation
is the same before and after addition of MK-801; i.e., there was no
particular plasticity-inducing protocol used that could alter pre-
synaptic probability of release, and, more importantly, previous
results from our laboratory have shown no changes in probability
of release following synaptic potentiation of NMDAR responses
by varying stimulation (Gambrill et al. 2011).

Another possibility is that changes in tonic Ca2�-dependent
inactivation (Krupp et al. 1999) are responsible for the recov-
ery observed. Several considerations make us favor the hypoth-
esis that a mobile fraction of synaptic NMDARs accounts for
changes in the amplitude of EPSCs when stimulation fre-
quency changes, and not changes in the properties of a stable
synaptic pool. First, if synaptic NMDARs were not mobile,

they should have been fully blocked by MK-801 independently
of the Ca2�-dependent tonic inactivation (Fig. 2). Second, our
experiment in Fig. 5 shows that BAPTA in the pipette does not
prevent an increase in the EPSC amplitude after a period of no
stimulation (washout), suggesting that the increase in EPSC
amplitude is not due to changes in the tonic Ca2�-dependent
inactivation. Third, the Ca2�-dependent inactivation phenom-
enon has been shown to affect GluN2A-containing receptors
and is not observed in GluN2B-containing receptors (Krupp et
al. 1996). Changes in the amplitude of EPSCs as a function of
stimulation frequency involve an increase or decrease in
GluN2B-containing receptors, as shown in Figs. 6 and 7 (also
see Gambrill et al. 2011), making it unlikely that the mecha-
nism is a change in the tonic Ca2�-dependent inactivation.
Consistent with this, mobility of receptors has been shown in
dissociated autaptic synapses (Tovar and Westbrook 2002),
and GluN2B, but not GluN2A, receptors have been shown to
be highly dynamic in the membrane plane (Groc et al. 2006).

The amount of recovery was inversely proportional to the
amount of blockade, suggesting that a constant exchange of
synaptic and extrasynaptic receptors allows for MK-801 to
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block not only synaptic receptors but also receptors from the
extrasynaptic pool, rendering them unavailable for the recov-
ery of NMDAR function. This could explain why recovery
from MK-801 blockade was not observed in experiments
where exposure to the drug was long and almost complete
blockade of NMDAR EPSCs was first obtained (Harris and
Pettit 2007). It is interesting to notice that not even a high
concentration of MK-801 (40 �M) fully blocked NMDAR
EPSCs after 10 min of stimulation, despite the fact that the
tissue was preincubated in the drug. This incomplete blockade

can also be observed in other experiments where longer times
of MK-801 plus stimulation have been used (Harris and Pettit
2007; Hessler et al. 1993). It is possible that a constant delivery
of receptors to the extrasynaptic pool from intracellular stores
keeps replenishing NMDARs present in the membrane, mak-
ing it difficult to completely eliminate synaptic NMDAR re-
sponses in this timescale.

Our data support a model where GluN2B receptors can
move in and out of synapses to adjust the amplitude of
NMDAR-mediated EPSCs, whereas GluN2A seems to be
more stationary at synapses. This is consistent with previous
observations showing that adaptation of NMDAR EPSCs to
frequency stimulation is done by movement of GluN2B-con-
taining NMDA receptors (Gambrill et al. 2011) and with
single-molecule tracking experiments in dissociated neurons
that show GluN2B present in abundance in the dendritic
membrane, where they diffuse at a higher rate than GluN2A
(Groc et al. 2006). NMDAR synaptic content is also regulated
by Wnt signaling (Cerpa et al. 2011). In this case, noncanonical
Wnt signaling regulates NMDAR-mediated EPSCs via rapid
regulation of the synaptic content of GluN2B-containing
NMDARs (Cerpa et al. 2011; McQuate et al. 2017). Thus
evidence points to a model where NMDARs, primarily those
containing the GluN2B subunit, can diffuse readily on the
surface of neurons to fine-tune synaptic content in response to
patterns of activity or be regulated by other signaling path-
ways. In the absence of activity, GluN2B are more likely to
stop in a synaptic domain and associate with scaffolding
proteins. Glutamate binding to NMDARs could release them
from scaffolding and promote return to the diffusible pool.
Under constant stimulation, receptors reach an equilibrium of
movement between synaptic and extrasynaptic spaces that
results in a constant number of receptors within synapses.

The mechanism by which glutamate binding results in
movement of receptors away from synapses also warrants
further study. A calcium-independent metabotropic function of
NMDARs has only recently come to light, whereby glutamate
binding stimulates movement of the NMDAR COOH terminus
and changes receptor signaling properties (Dore et al. 2015;
Nabavi et al. 2013). It is possible glutamate binding could also
trigger a conformational change in receptors to promote diffu-
sion away from synapses. However, our results suggest that
channel opening is necessary, because MK-801 blockade
seemed to prevent their diffusion away from the synapse. The
potential effect of MK-801 in stabilizing receptors at synapses
should be further addressed in the near future.

Our results support a body of literature indicating the ability
of NMDARs to diffuse between the synaptic and extrasynaptic
space on a short timescale. This ability of NMDARs might
control the GluN2B content of synapses on a fast timescale,
modifying the ability of synapses to undergo potentiation or
depression on a minute-by-minute basis. Full understanding of
processes that regulate NMDARs will help develop novel
therapeutics for neuropathologies where the ability of these
receptors to coordinate plasticity has gone awry.
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