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Computation of Circular Area and Spherical Volume Invariants via Boundary
Integrals∗
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Abstract. We show how to compute the circular area invariant of planar curves, and the spherical volume
invariant of surfaces, in terms of line and surface integrals, respectively. We use the divergence
theorem to express the area and volume integrals as line and surface integrals, respectively, against
particular kernels; our results also extend to higher-dimensional hypersurfaces. The resulting surface
integrals are computable analytically on a triangulated mesh. This gives a simple computational
algorithm for computing the spherical volume invariant for triangulated surfaces that does not involve
discretizing the ambient space. We discuss potential applications to feature detection on broken bone
fragments of interest in anthropology.
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1. Introduction. The aim of this paper is to facilitate the computation of certain integral
invariants that have been proposed for applications in digital image processing, namely, the
circular area and spherical volume invariants, as defined below. We show that both can
be efficiently evaluated by reducing them to boundary integrals—line or surface integrals,
respectively—plus an additional term that depends only on the local surface geometry, thus
enabling them to be computed directly from the curve or surface image data.

More specifically, given a Jordan plane curve C ⊂ R2 with interior Ω = int C, at each
point p in the curve C, the value of the (local) circular area invariant of radius r > 0 at p is
defined as the area (Lebesgue measure) of the region given by the intersection of the interior
of the curve with a disk of radius r centered at the point p, denoted Dr(p):

(1.1) AC,r(p) = A(Dr(p) ∩ Ω).

The circular area is clearly invariant under Euclidean motions of the curve, of course assuming
one relates the base points p accordingly. The ability of the local circular area invariant to
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(a) Circular Area Invariant (b) Spherical Volume Invariant

Figure 1. Illustration of the circular area and spherical volume invariants.

uniquely characterize the curve up to Euclidean motion is discussed in detail in [8]. See
Figure 1(a) for an illustration. For sufficiently smooth curves, e.g., C3, the circular area
invariant is related to the curvature κ(p) at the point p ∈ C by the asymptotic expansion [8]

(1.2) AC,r(p) =
πr2

2
− 1

3
κ(p)r3 + O(r4) as r → 0.

A global invariant can be obtained by averaging over the curve,

(1.3) ÃC,r =
1

L

∮
C
AC,r(p(s)) ds,

where length l(C) denotes the length of C.
Similarly, given a closed surface S ⊂ R3 bounding a domain Ω = int S, we define the

spherical volume invariant at each point p ∈ S to be the volume of the solid region given by
intersecting the interior of the surface with a sphere of radius r > 0 centered at the point p:

(1.4) VS,r(p) = V (Ω ∩ Br(p)),

as illustrated in Figure 1(b). Again, invariance under three-dimensional Euclidean motions is
clear. For C3 surfaces, the spherical volume invariant is related to the mean curvature of the
surface via the expansion

(1.5) VS,r(p) =
2

3
πr3 − 1

4
πH(p)r4 + O(r5) as r → 0,

where H(p) is the mean curvature of S at p, and S is a C3 surface. The spherical volume
invariant has proven useful for feature extraction [38, 30, 31], and a further analysis of the
shape of the region int S ∩ Br(p) provides a robust estimation of the second fundamental
form—see [31] and subsection 3.2. Again, one can produce the corresponding global spherical
volume invariant by integrating the local invariant over the entire surface.
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Remark 1.1. While small radius expansions such as (1.5) and those later developed in
subsection 3.2 imply that one can readily approximate other differential geometric invariants
associated with the underlying surface, including the principal, mean, and Gauss curvatures,
by the spherical volume invariant and similar integral invariants, this aspect is not the prin-
cipal focus of this study, nor of the proposed applications detailed in the final sections. Con-
sequently, we will not attempt to compare the computational accuracy and efficiency of our
method with other proposed approximation schemes—deferring this to potential subsequent
investigations. Instead, to keep within the scope of our presentation, we will concentrate on
efficient computational schemes and direct applications of the integral invariants themselves,
and not of any approximations based thereon.

These quantities clearly extend to the corresponding hyperspherical volume invariant of
closed hypersurfaces in S ⊂ Rn. Our main result is the general formula (3.14) that expresses
this integral invariant in terms of a hypersurface integral over S. In the planar case, with
n = 2, our general formula reduces to a useful formula (2.3) or (3.16) for the circular area
invariant AC,r(p) in terms of a suitable line integral over the curve C. For surfaces in (n = 3)-
dimensional space, it reduces to the key formula (3.17) for the spherical volume invariant
VS,r(p) in terms of a surface integral over S. Our results apply to Lipschitz codimension
1 submanifolds, which allows S to be a triangulated mesh, as is often used to approximate
surfaces in practice. These new formulas are simple and fast to implement on a triangulated
mesh. In particular, our method does not require discretizing the ambient three-dimensional
space off the surface, as was done using octrees and the fast Fourier transform (FFT) in [30].
Similar ideas can be used to evaluate other integral invariants, although a number of them
are already expressed in terms of integrals of the type sought after here.

This paper was motivated by an ongoing project to analyze and reassemble broken bone
fragments, a problem of significant interest in anthropology, paleontology, and surgery, build-
ing on earlier work of two of the authors on planar and surface jigsaw puzzle reassembly,
[19, 17]. A recent Research Experiences for Undergraduates (REU) project, [37], has success-
fully applied the circular area integral invariant to planar jigsaw puzzle reassembly, following
[19]. Indeed, one can easily envision modifying the circular area invariant in order to incor-
porate designs (writing, pictures, texture) that may appear on the puzzle pieces, potentially
relying on some form of digital inpainting algorithm, [6, 7, 10, 11], to extend the design in the
circular region on one side of the curve to the other, after which it could be compared to other
potential matches or, alternatively, use of texture information to effect the reconstruction, as
advocated in [33, 32].

Another potential application of these invariants is the detection of fracture edges, meaning
ridges delineating the boundaries between original surfaces of the bone and break surfaces.
Paleoanthropologists and zooarchaeologists study human biological and behavioral evolution
and are interested in fracture edges because they provide valuable information about the agent
of fragmentation [12, 16, 29], which may be, for example, humans, large carnivores, trampling,
geological processes, or hydraulic action [25, 20]. Determining the agent of fragmentation is
essential for reconstructing how archaeological sites were formed. Fracture edges can also be
used to find bones that refit, which aids in the identification of taxa and skeletal elements
of vertebrates found at sites [4]. We propose to detect fracture edges by thresholding the
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spherical volume invariant, and demonstrate by showing results of detecting fracture edges on
bone fragments in section 5.

The circular area and spherical volume invariants are particular cases of the general theory
of integral invariants, [18, 22, 30], which have also been successfully applied to a variety of
image processing problems. See [15] for applications of the moving frame method to their
classification and signature construction under basic group actions, e.g., Euclidean and equi-
affine geometries. Distance histograms underly the widely used methods of shape contexts,
[5], and shape distributions, [27]. Histograms based on various geometric invariants (lengths,
areas, etc.) play a fundamental role throughout a broad range of modern image processing
algorithms, including shape representation and classification, [2, 36], image enhancement,
[36, 34], the scale-invariant feature transform (SIFT) [21, 28], its affine-invariant counterpart
(ASIFT), [39], and object-based query methods [35].

1.1. Outline. In section 2 we give a simple formula for the circular area invariant in terms
of a line integral. In section 3 we study the spherical volume invariant, and show how to use
the divergence theorem to convert the volume integral into a surface integral, yielding a new
formula for the invariant. Furthermore, in subsection 3.2, we show how to extend our methods
to estimate the principal curvatures of the surface by adapting the methods based on Principal
Component Analysis (PCA) on local neighborhoods developed in [31]. Finally, in section 5
we discuss numerical implementations and present the results of numerical experiments on
real data. We use the Euclidean norm on Rn throughout, leaving the investigation of more
general norms to a future project.

2. The circular area invariant. As a warm-up, we consider the local circular area invariant
(1.1). We assume C is the oriented boundary of an open bounded domain Ω ⊂ R2 with
Lipschitz boundary. Consider a point p ∈ C with p = (p1, p2). Consider the vector field

V(x) =
1

2
(x− p) =

1

2
(x1 − p1, x2 − p2)

and notice that div V = 1. By the divergence theorem, we can express the circular area
invariant as

AC,r(p) =

∫∫
Ω∩Dr(p)

dxdy =

∫∫
Ω∩Dr(p)

(div V) dxdy

=

∫
C ∩Dr(p)

V · ν ds+

∫
Ω∩ ∂Dr(p)

V · ν ds,
(2.1)

where ν denotes the unit outward normal to the curve C in the first line integral and to the
circular boundary ∂Dr(p) in the second. Let us parametrize the circular boundary of the disk
Dr(p) by c(θ) = p+ r(cos θ, sin θ), so that

V · ν =
1

2
r2 on ∂Dr(p).

Let θ1 < θ2 be the angles at which the curve C intersects the disk Dr(p), assuming for the
moment there are only 2 intersections and that C lies inside the disk Dr(p) for θ1 < θ < θ2.
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Now, the second term in (2.1) is

(2.2)

∫
Ω∩ ∂Dr(p)

V · ν ds =

∫ θ2

θ1

r2

2
(sin2 θ + cos2 θ) dθ =

r2

2
(θ2 − θ1).

Therefore, our formula for the circular area invariant is

(2.3) AC,r(p) =

∫
C ∩Dr(p)

V · ν ds+
r2

2
(θ2 − θ1).

Notice this only involves integration along the curve C. The contour integral is a correction
from the flat setting, where C is a line and AC,r(p) = πr2/2, since in this case θ2 − θ1 = π
and V · ν = 0 on C ∩ Dr(p).

It is straightforward to generalize (2.3) to more than two intersections of C and ∂Dr(p).
If the intersections occur at angles θ1 < θ2 < · · · < θ2k, and C lies inside the disk1 Dr(p) for
θ2i−1 < θ < θ2i for i = 1, . . . , k, then we have

(2.4) AC,r(p) =

∫
C ∩Dr(p)

V · ν ds+
r2

2

k∑
i=1

(θ2i − θ2i−1).

3. The spherical volume invariant. Having established a formula in the simple case of the
two-dimensional circular area invariant, we now turn to the spherical volume invariant (1.4).
The argument used in section 2 is not practical in three dimensions, since the integration
over Ω ∩ ∂Dr(p) in (2.1) becomes a surface integral, which defeats the point of reducing the
calculation to an integral on the boundary surface.

We thus take a slightly different approach. Since the resulting formula will be applicable
in all dimensions n ≥ 2, we proceed in general. We assume our hypersurface S ⊂ Rn is the
boundary of an open and bounded set Ω ⊂ Rn with Lipschitz boundary. Without loss of
generality, we take p = 0 ∈ S, and set Br = Br(p) = Br(0) to be the ball of radius r centered
at p = 0. The hyperspherical invariant at p = 0 is thus

(3.1) VS,r := VS,r(0) =

∫
Ω∩Br

dx.

Define the vector field

(3.2) V(x) =
1

n
x, and note that div V = 1.

For any divergence free vector field W : Rn → Rn, whereby divW = 0, we can express VS,r
via the divergence theorem as

VS,r =

∫
Ω∩Br

div(V + W) dx =

∫
S ∩Br

(V + W) · ν dS +

∫
Ω∩ ∂Br

(V + W) · ν dS,(3.3)

1We ignore any intersection point where, nearby, C remains on one side or the other of the boundary of the
disk.
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where ν denotes the outward normal to S ∩ Br in the first term, and to Ω ∩ ∂Br in the
second. The first term is an integral over the surface S, as we seek, while the second is an
integral over ∂Br, which is undesirable.

Now, the idea is to choose the vector field W so that the second term vanishes, yielding
our formula. Noting that V · ν = r/n on ∂Br, we see that W must satisfy

(3.4) W · ν +
r

n
= 0 on Ω ∩ ∂Br.

We will construct W as W = ∇u for a harmonic function u. Then (3.4) is equivalent to the
Poisson problem

(3.5)

 ∆u = 0 in Br,

∂u

∂ν
+
r

n
= 0 on Ω ∩ ∂Br.

If we look for a smooth solution of (3.5) then the compatibility condition

(3.6)

∫
∂BR

∂u

∂ν
dS = 0

must hold. This would require modifying the boundary condition away from Ω ∩ ∂Br, which is
impractical, since the set ∂Br\Ω could be arbitrarily small, and is dependent on the particular
point p chosen on the surface.

Instead of seeking to satisfy the compatibility condition (3.6), we relax the requirement
that u is smooth but continue to impose the boundary condition in (3.5). We allow u to have
a singularity at the origin, and thus consider the Laplace equation

(3.7)

 ∆u = 0 in Br \ {0},
∂u

∂ν
+
r

n
= 0 on ∂Br,

on the punctured ball. A solution to the latter boundary value problem is given by

(3.8) u(x) = αnr
nΦ(x),

where αn is the measure of the unit ball in Rn, and

(3.9) Φ(x) =


− 1

2π
log |x| if n = 2,

1

n(n− 2)αn |x|n−2
if n ≥ 3

is the fundamental solution of Laplace’s equation. Thus, we are effectively circumventing the
compatibility condition (3.6) by placing a point source at the origin. Due to the singularity
in u at the orgin, the argument leading to (3.3) is no longer valid, and we need to proceed
more cautiously.

First, we note that, for any n ≥ 2,

(3.10) ∇u(x) = − r
n

n

x

|x|n
for x 6= 0.
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Thus, when ν is the outward normal to ∂Br, that is ν = x/r, we have

(3.11) (V +∇u) · ν =

(
1

n
x− rn

n

x

|x|n

)
· x
r

= 0 for all x ∈ ∂Br.

Let 0 < ε < r. By the divergence theorem and (3.11) we have∫
S ∩ (Br\Bε)

(V +∇u) · ν dS =

∫
∂(Ω∩ (Br\Bε))

(V +∇u) · ν dS +

∫
Ω∩ ∂Bε

(V +∇u) · ν dS

−
∫

Ω∩ ∂Br
(V +∇u) · ν dS

=

∫
Ω∩ (Br\Bε)

div(V +∇u) dx+

∫
Ω∩ ∂Bε

(
ε

n
− rn

n εn−1

)
dS

=

∫
Ω∩ (Br\Bε)

dx+

(
ε

n
− rn

n εn−1

)
Hn−1(Ω ∩ ∂Bε)

= VS,r − VS,ε +

(
ε

n
− rn

n εn−1

)
Hn−1(Ω ∩ ∂Bε),

where Hn−1 denotes (n− 1)-dimensional Hausdorff measure. Therefore

(3.12) VS,r = VS,ε +
1

n

∫
S ∩ (Br\Bε)

(
1− rn

|x|n

)
(x · ν) dS + αn(rn − εn)

Hn−1(Ω ∩ ∂Bε)
Hn−1(∂Bε)

.

All that is left is to send ε→ 0, and we state the consequence as a theorem.

Theorem 3.1. Let Ω ⊂ Rn be open and bounded with Lipschitz boundary S := ∂Ω. Let
p ∈ S and assume the limit

(3.13) Γ(p) := lim
ε→0+

Hn−1(Ω ∩ ∂Bε(p))
Hn−1(∂Bε(p))

exists. Then we have

(3.14) VS,r(p) =
1

n

∫
S ∩Br(p)

(
1− rn

|x− p|n

)
(x− p) · ν dS + αnr

nΓ(p).

A few remarks are in order.

Remark 3.2. Notice the integrand in (3.14) has a singularity at x = p. Since S is only
assumed to be Lipschitz, the singularity may not be integrable, and so we define the integral
via its principal value∫
S ∩Br(p)

(
1− rn

|x− p|n

)
(x− p) · ν dS := lim

ε→0+

∫
S ∩ (Br(p)\Bε(p))

(
1− rn

|x− p|n

)
(x− p) · ν dS,

which exists thanks to (3.12) and (3.13). If S ∈ C1,α then we have

(x− p) · ν = O(|x− p|1+α) as x→ p

and so the kernel singularity |x− p|1−n+α is integrable on the (n− 1)-dimensional surface.
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Remark 3.3. If the surface S is differentiable at p then Γ(p) = 1
2 , and thus

(3.15) VS,r(p) =
1

n

∫
S ∩Br(p)

(
1− rn

|x− p|n

)
(x− p) · ν dS +

1

2
αnr

n.

Since a Lipschitz surface is differentiable almost everywhere, the formula (3.15) holds at almost
every point of S.

Remark 3.4. If the surface S ⊂ R3 is a triangulated mesh and p ∈ S is a vertex of the
mesh, then

(x− p) · ν = 0

at all points x in the vertex polygon associated with p (i.e., the triangles adjacent to p), and
where ν denotes the unit normal to the triangle containing x. Thus, the kernel is integrable
on triangulated meshes. Moreover, Γ(p) exists, and (3.14) holds, for every p ∈ S. In subsec-
tion 3.1, we derive an explicit formula for Γ(p) on a triangulated mesh in terms of the vertex
polygon of p.

Remark 3.5. The limit (3.13) defining Γ(p) may fail to exist at a point of nondifferentia-
bility of a Lipschitz hypersurface S. Consider, for example, n = 2 and take the curve C to be
the graph of the Lipschitz function

f(x) = |x| sin
(

log |x|
)
.

Take the interior of C to be the epigraph {x ∈ R2 : f(x) > 0}. Then the limit (3.13) does
not exist at p = 0, since along the sequence xk = e

π
2
−kπ we have f(xk) = f(xk) = (−1)kxk.

Remark 3.6. Finally, let us note that in dimension n = 2, the formula (3.14) reads

(3.16) AC,r(p) =
1

2

∫
C ∩Dr(p)

(
1− r2

|x− p|2

)
(x− p) · ν ds+ π r2 Γ(p).

In dimension n = 3, it becomes

(3.17) VS,r(p) =
1

3

∫
S ∩Br(p)

(
1− r3

|x− p|3

)
(x− p) · ν dS +

4

3
π r3 Γ(p).

3.1. An analytic expression for Γ(p) on a triangulated mesh. We give here analytic
expressions for Γ(p), defined in (3.13), when p lies on a surface S ⊂ R3 described by a
triangulated mesh, which is often the case in numerical computations. The expression depends
on whether p is a vertex, belongs to an edge, or belongs to the interior of a triangle. If p
belongs to the interior of a triangle in the mesh, then Γ(p) = 1

2 , since the surface is smooth
in a neighborhood of p (see Remark 3.3). If p belongs to an edge on the triangulated mesh,
but is not a vertex of the mesh, then Γ(p) = θ/2π, where θ is the interior angle between the
two adjacent triangles.

We now consider the case where p is a vertex of the triangulated mesh, where the expression
for Γ(p) is considerably more involved. Let us assume we have made a translation and rotation
so that the vertex under consideration is p = 0 and the unit outward normal vector at the
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(a) Vertex triangles (b) Small sphere (c) From above

Figure 2. Depiction of the vertex triangles used in the computation of Γ. To compute Γ, we need to compute
the fraction of surface area of the sphere in (b) that lies above the mesh.

origin is ν = (0, 0,−1). Of course, there is no well-defined normal at the vertex p = 0 itself,
and so ν should chosen to be “close” to the nearby unit normals in that it approximates
the normal to the smooth surface represented by the mesh. For example, it could be the
normalized average of the normals to the triangles in the vertex polygon; another possibility
is that it is the normal to the least squares approximating plane to the vertices adjacent to p.

The computation of Γ := Γ(0) involves only the vertex triangles T1, . . . , Tk that are ad-
jacent to the vertex p = 0. See Figure 2 for a depiction of these triangles and the area of
the sphere we wish to compute. Since the outward normal at p = 0 is (0, 0,−1), we will
also assume that the outward unit normal vector νi = (νi1, ν

i
2, ν

i
3) to each vertex triangle Ti

satisfies2 νi3 < 0. Finally, in view of the definition (3.13) of Γ, we may extend the vertex
triangles to ∞ in the radial direction, and compute

(3.18) Γ :=
1

4π

∫
Ω∩ ∂B1

dS,

where Ω is the region above the (extended) vertex triangles in the x3-direction.
We work in spherical coordinates,

(3.19) x1 = r sinϕ cos θ, x2 = r sinϕ sin θ, x3 = r cosϕ.

The edges E1, . . . , Ek of the vertex triangles T1, . . . , Tk containing the origin will be called
vertex edges, and we let (θi, ϕi) be their corresponding spherical angles. We order the vertex
edges and triangles so that

0 ≤ θ1 < θ2 < θ3 < · · · < θk < 2π,

and, for convenience, set Ek+1 = E1 with azimuthal angle θk+1 = θ1 + 2π ≥ 2π. The vertex
triangles are similarly ordered, so that Ti has vertex edges Ei and Ei+1. Observe that the

2We will exclude “bizarre” vertices where this assumption does not hold under any reasonable choice of the
normal ν at p.
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vertex edges of Ti are ordered so that Ei, Ei+1, νi form a left-handed frame, keeping in mind
that, by the preceding assumption, the normal νi points downwards.

Each vertex triangle Ti intersects the unit sphere S1 = ∂B1 along a curve

(3.20) Ci = {ϕ = hi(θ)} = Ti ∩ S1

connecting (θi, ϕi) to (θi+1, ϕi+1). In terms of the intersection curves Ci we can compute

(3.21) Γ =
1

4π

k∑
i=1

∫ θi+1

θi

∫ hi(ϕ)

0
sinϕdϕdθ =

1

2
− 1

4π

k∑
i=1

∫ θi+1

θi

gi(θ) dθ,

where
gi(θ) = coshi(θ).

We can find an explicit formula for gi(θ). Indeed, the face Ti is described by the plane

(3.22) x3 = aix1 + bix2, where ai = − ν
i
1

νi3
and bi = − ν

i
2

νi3
.

Therefore, the intersection curve (3.20) satisfies

gi(θ) = coshi(θ) = (ai cos θ + bi sin θ) sinhi(θ)

and, hence,

(3.23) hi(θ) = cot−1 (ai cos θ + bi sin θ) .

Noting the identity

cos(cot−1x) =
x√

1 + x2
,

we have

gi(θ) =
ai cos θ + bi sin θ√

1 + (ai cos θ + bi sin θ)2
.

Let atan2(y, x) be the two-argument arctan function, which gives the angle in radians between
the positive x-axis and the ray from the origin to the point (x, y), returning values in the
interval [0, 2π). Since

ai cos θ + bi sin θ = ci cos(θ − δi), where δi = atan2(bi, ai), ci =
√
a2
i + b2i ,

we can simplify the preceding formula to read

(3.24) gi(θ) =
ci cos(θ − δi)√

1 + c2
i cos2(θ − δi)

.

Integrating gi yields

(3.25)

∫
gi(θ) dθ = arcsin (di sin(θ − δi)) + Constant, where di =

ci√
1 + c2

i

.
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This yields the following explicit formula:

(3.26) Γ =
1

2
− 1

4π

k∑
i=1

[
arcsin(di sin(θi+1 − δi))− arcsin(di sin(θi − δi))

]
.

Unwrapping the definitions we have

1 + c2
i = 1 + a2

i + b2i = 1 +
(νi1)2

(νi3)2
+

(νi2)2

(νi3)2
=

1

(νi3)2
, so c2

i =
(νi1)2 + (νi2)2

(νi3)2
.

It follows that

(3.27) di =
√

(νi1)2 + (νi2)2.

We also note that

(3.28) δi = atan2(νi2, ν
i
1), θi = atan2(yi, xi),

where (xi, yi, zi) is any point along the edge Ei.

3.2. PCA on local neighborhoods. The spherical volume invariant of a surface in R3 is
a robust estimator of its mean curvature, due to the asymptotic expansion given in (1.5).
However, it gives no information about other differential geometric quantities of interest, such
as the second fundamental form, the individual principal curvatures, the Gauss curvature, or
the directions of principal curvature.

To capture additional geometric information, we follow [31] and analyze the shape of the
region Ω ∩ Br(p). In particular, it is suggested in [31] to perform PCA on this region, that
is, we compute the eigenvalues λ1(p) ≥ λ2(p) ≥ λ3(p) of the 3× 3 symmetric matrix3

(3.29) MS,r(p) :=

∫
Ω∩Br(p)

(x− x(p))(x− x(p))T dx,

where

(3.30) x(p) :=
1

VS,r(p)

∫
Ω∩Br(p)

x dx

is the centroid of Ω ∩ Br(p); cf. (1.4). Assuming S is sufficiently smooth, it was shown in [31]
that the eigenvalues of MS,r(p) have the asymptotic expansions

(3.31)

λ1(p) =
2π

15
r5 − π

48

[
3κ1(p) + κ2(p)

]
r6 + O(r7),

λ2(p) =
2π

15
r5 − π

48

[
κ1(p) + 3κ2(p)

]
r6 + O(r7),

λ3(p) =
19π

480
r5 − 9π

512

[
κ1(p) + κ2(p)

]
r6 + O(r7),

as r −→ 0,

3Here we take x to be a column vector.
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where κ1(p), κ2(p) are the principal curvatures of the surface S at the point p ∈ S, and, in
the last formula, the r6 term gives the mean curvature

H(p) = 1
2

[
κ1(p) + κ2(p)

]
.

Moreover, the first two corresponding eigenvectors v1,v2 are approximately tangent to the
surface and, assuming we are at a nonumbilic point, offer an O(r/|κ1 − κ2|) approximation
of the directions of principal curvatures, while v3 is approximately normal to the surface and
is an O(r2) approximation of the unit normal. Thus, the matrix MS,r(p) provides a robust
estimation of the second fundamental form of S at a nonumbilic point p.

Let us now show how to compute the matrix MS,r(p) via surface integrals, as we did for the
spherical volume invariant VS,r(p) in Theorem 3.1. While these results are mainly of interest
in dimension n = 3, we carry out the derivation for an arbitrary dimension n. Noting that

(3.32) MS,r(p) =

∫
Ω∩Br(p)

(x− p)(x− p)T dx− VS,r(p)(x(p)− p) (x(p)− p)T ,

it suffices to compute the first two moments

(3.33) mi(p) :=

∫
Ω∩Br(p)

(xi − pi) dx, cij(p) :=

∫
Ω∩Br(p)

(xi − pi)(xj − pj) dx,

in terms of which the (i, j) entry of MS,r(p) is given by

(3.34) [MS,r(p)]i,j = cij(p)−
1

VS,r(p)
mi(p)mj(p).

The computation of mi(p) and cij(p) in terms of surface integrals is relatively straightforward,
compared to the computation of VS,r. In what follows, e1, e2, . . . , en denote the standard basis
vectors in Rn, and δij is the Kronecker delta.

Lemma 3.7. Let us abbreviate y = x− p. Then, for any 1 ≤ i, j ≤ n, we have

(3.35) mi(p) =
1

n+ 1

∫
S ∩Br(p)

(yiy − r2ei) · ν dS(x)

and

(3.36) cij(p) =
r2

n+ 2
VS,r(p)δij +

1

2n+ 4

∫
S ∩Br(p)

(2yiyjy − r2(yjei + yiej)) · ν dS(x).

Proof. Without loss of generality, we may assume p = 0. Then y = x and we write
Br = Br(p) = Br(0). We first prove (3.35). Define the vector field

V(x) =
xix− r2ei
n+ 1

so that div V = xi.

By the divergence theorem,

mi =

∫
Ω∩Br

div V dx =

∫
S ∩Br

V(x) · ν dS +

∫
Ω∩ ∂Br

V(x) · ν dS.
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On the spherical portion of the boundary Ω ∩ ∂Br, we have ν = x/r and so

V(x) · ν =
1

r
V(x) · x =

xi(|x|2 − r2)

(n+ 1) r
= 0

since |x|2 = r2 on ∂Br. This completes the proof of (3.35).
We now prove (3.36). Define the vector field

W(x) =
2xixjx− r2(xjei + xiej)

2n+ 4
, whereby div W = xixj −

1

n+ 2
r2δij .

By the divergence theorem, we have

cij =

∫
Ω∩Br

(
1

n+ 2
r2 δij + div W

)
dx

=
1

n+ 2
r2 δijVS,r +

∫
S ∩Br

W(x) · ν dS +

∫
Ω∩ ∂Br

W(x) · ν dS.

On the portion of the boundary x ∈ Ω ∩ ∂Br

W(x) · ν =
1

r
W(x) · x =

2xixjr
2 − r2(xjxi + xixj)

(2n+ 4) r
= 0,

which completes the proof.

4. Implementation. Let us next discuss how to compute the surface integrals from The-
orem 3.1 and Lemma 3.7 on a surface given as a triangulated mesh, which is often the case in
practice. The integrals we wish to compute all have the form

(4.1)

∫
S∩Br(p)

f(x) dS

for various choices of kernel function f(x). We adopt the convention that f(x) = 0 if |x−p| > r
and, hence, rewrite (4.1) as simply

(4.2)

∫
S
f(x) dS.

Let T1, . . . , TM denote the triangles in the triangulated surface S. Then we can write

(4.3)

∫
S
f(x) dS =

M∑
m=1

∫
Tm

f(x) dS.

We show in sections 4.1 and 4.2 that the triangular integrals appearing in the summation can
be computed analytically for all of the kernels f used in this paper. Let us note that on the
right-hand side of (4.3), we need only sum over triangles Tm that have nonempty intersection
with Br(p). However, it is computationally expensive to perform a range search to find all
such triangles, especially for large meshes. In our implementation, we instead perform a
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depth first search on the triangle graph of the mesh, starting at any triangle adjacent to p,
and terminating when all triangles in the connected component of S ∩Br(p) containing p are
found. While the depth first search has linear complexity and is very fast in practice, it will
fail to find any additional connected components of S ∩Br(p) that do not contain p. On the
other hand, this may be a desirable property of the algorithm, especially if one is primarily
interested in the local geometry of the mesh.

4.1. Analytic integration over triangles. Let us show how all the integrals considered in
this paper can be computed analytically over triangles Tm ⊂ Br(p). For simplicity, we take
p = 0, write Br = Br(0), and consider a triangle T .

For the spherical volume invariant, for any triangle T with T ⊂ Br the surface integral
(3.14) from Theorem 3.1 requires us to compute

A :=
1

3

∫
T

(
1− r3

|x|3

)
x · ν dS.

Since x · ν is constant over the triangle T , we have

A =
1

3
z · ν

(
|T | − r3

∫
T

1

|x|3
dS

)
,

where z is any point belonging to T , such as its centroid or one of its vertices, while |T | denotes
the surface area of T . The remaining integrand |x|−3 is known as a hypersingular kernel, and
arises, for instance, in the boundary element method for solving partial differential equations
[3]. The integral of this hypersingular kernel over any planar triangle can be computed ana-
lytically [26] provided p = 0 6∈ T , which we may freely assume since z · ν = 0 when 0 ∈ T .
For convenience, we recall the analytic formula, which is rather tedious and derived in [26],
in Appendix A.

For PCA on local neighborhoods, the integrals we need to compute from Lemma 3.7
correspond to

(4.4)
1

4

∫
T

(xix− r2ei) · ν dS and
1

10

∫
T

[
2xixjx− r2(xjei + xiej)

]
· ν dS.

Since x · ν and ei · ν are constant over T , we just need to compute the quantities

(4.5) ai :=

∫
T
xi dS, bij :=

∫
T
xixj dS.

Let us denote the vertices of T by x, y, z ∈ R3. The first integrand in (4.5) is linear, and so
the integral can be computed analytically with the three point stencil

(4.6) ai =
1

3
|T | (xi + yi + zi).
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For bij , we compute the integral in barycentric coordinates

bij = 2 |T |
∫ 1

0

∫ 1−t

0
((1− s− t)xi + syi + tzi)((1− s− t)xj + syj + tzj) dsdt

= 2 |T |

[∫ 1

0

∫ 1−t

0
(1− s− t)2xixj + s2yiyj + t2zizj + st(yizj + yjzi)

+ (1− s− t)s(xiyj + yjyi) + (1− s− t)t(xizj + zjzi) dsdt

]
.

Computing ∫ 1

0

∫ 1−t

0
(1− s− t)2 dsdt =

∫ 1

0

∫ 1−t

0
s2 dsdt =

∫ 1

0

∫ 1−t

0
t2 dsdt =

1

12

and ∫ 1

0

∫ 1−t

0
(1− s− t)s dsdt =

∫ 1

0

∫ 1−t

0
(1− s− t)t dsdt =

∫ 1

0

∫ 1−t

0
st dsdt =

1

24
,

we have

(4.7) bij =
1

12
|T |(2xixj + 2yiyj + 2zizj + xiyj + xjyi + xizj + xjzi + yizj + yjzi).

If we were to denote the vertices by vi = (v1
i , v

2
i , v

3
i ), say, then (4.7) would have the simple

form

bij =
1

12
|T |

3∑
p,q=1

vpi v
q
j ,

and similarly for (4.6).

4.2. Boundary triangles. For triangles T that have a nonempty intersection with the
boundary ∂Br of the ball Br, the integral over T cannot be computed analytically. To deter-
mine whether a triangle T intersects ∂Br, we compute

r1 := min
x∈T
|x|, r2 := max

x∈T
|x|,

and check whether r1 ≤ r ≤ r2. To compute r2, it is sufficient to check the vertices of the
triangle, since x 7→ |x| is convex. The computation of r1 is more tedious, since the minimum
distance may occur interior to T . To compute r1 we orthogonally project the origin p = 0
onto the plane containing the triangle T , calling the projection xP . If xP ∈ T , then r1 = |xP |.
If xP 6∈ T , then we find the closest point xT ∈ T to the projection xP and, therefore,
r2

1 = |xT |2 + |xT − xP |2 by the Pythagorean theorem.
To compute the integral over such boundary triangles, we fix a maximum desired side

length ` > 0 and recursively bisect the triangle along the line segment connecting the midpoint
of its longest side with the opposing vertex. We stop the bisection procedure on a given
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Figure 3. Illustration of the bisection process. The triangle on the left is recursively bisected three times
from left to right. Each bisection splits a triangle into two along the line segment between the midpoint of the
longest side and the opposing vertex, generating two triangles of equal area. Hence, each subtriangle on the
right has exactly 1/8 of the area of the original triangle.

subtriangle Ts if Ts ∩ ∂Br = ∅, or the maximum side length of Ts, denoted L(Ts), falls below
`. See Figure 3 for an illustration of the bisection process. We compute the integration over
Ts analytically if Ts ⊂ Br, or with the approximation

(4.8)

∫
Ts

f dS ≈ |Ts| f
(
x+ y + z

3

)
if Ts ∩ ∂Br 6= ∅, where x, y, z are the vertices of Ts. We note the approximation error is
bounded by

(4.9)

∣∣∣∣∫
Ts

f dS − |Ts| f
(
x+ y + z

3

)∣∣∣∣ ≤ |Ts| osc
Ts
f,

where
osc
Ts
f := max

Ts
f −min

Ts
f

denotes the oscillation of the function f over the triangle Ts. Now, let δ > 0 so that

(4.10) oscTsf ≤ δ whenever Ts ∩ ∂Br 6= ∅ and L(Ts) ≤ `.

Note that δ is reduced throughout the bisection procedure, since the diameter of triangles
that intersect ∂Br is decreasing. Since the triangles Ts in (4.10) belong to S ∩ Br+` \ Br−`,
the error in computing (4.2) is bounded by

(4.11) |S ∩Br+` \Br−`| δ,

where |S ∩A| denotes the surface area of S ∩A. We assume that for the mesh S, there exists
a constant C > 0, independent of r and `, such that

(4.12) |S ∩Br+` \Br−`| ≤ C
[
π(r + `)2 − π(r − `)2

]
= 2C π r `.
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Therefore, our approximation error is at most

(4.13) integration error ≤ 2C π r ` δ,

where δ is defined in (4.10). We note the volume growth assumption (4.12) is convenient, in
that it leads to a simple form for the integration error (4.13). However, the analysis below can
be easily carried out with other assumptions in place of (4.12), if needed. The volume growth
assumption is true for smooth surfaces with r > 0 small and, hence, for any triangulated mesh
that well-approximates a smooth surface.

The application of (4.13) depends on the context. For the spherical volume invariant, we
have

f(x) = −1

3

(
r3

|x|3
− 1

)
+

(x · ν),

where a+ := max{a, 0}. For any triangle Ts with maximum side length less than ` and
satisfying Ts ∩ ∂Br 6= ∅, we have

osc
Ts
f ≤ r4`

(r − `)4
.

Thus, δ from (4.10) can be chosen as δ = r4`/(r − `)4. Since the spherical volume invariant
scales with r3, it is reasonable to select an error tolerance ε > 0 and ask that the integration
error is bounded by ε r3. Thus, invoking (4.13) we find that ` should be selected so that ` < r
and

(4.14) ` 2 ≤ ε(r − `)4

r2
.

Note that we are discarding the constant 2Cπ in (4.12), since we are only interested in how
` should scale with r and ε. If ε � 1 so that ` � r, this condition can be approximated by
` 2 ≤ ε r2. In particular, the triangle refinement is more important for small radii r > 0, and
for sufficiently large r > 0, no refinement is needed.

For PCA on local neighborhoods, we have two integrals to compute. The first (3.35)
corresponds to

f(x) =
1

5

{
(xix− r2ei) · ν if |x| ≤ r,
0 otherwise.

Since f is not Lipschitz, the oscillation bound is at best

osc
Ts
f ≤ 2 max

Br+`\Br−`
|f | ≤ 2r2,

provided ` ≤ r. Thus, δ from (4.10) can be chosen as δ = 2r2. Inspecting (3.32), we see that
it is reasonable to ask that the integration error be bounded by ε r4 for an error tolerance
parameter ε > 0. Combining this with (4.13) the restriction on ` becomes ` ≤ min{ε r, r}.
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Figure 4. Spherical volume invariant for Stanford dragon [13] computed at radii of 1, 2, and 5.

The second integral (3.36) required by PCA on local neighborhoods corresponds to

f(x) =
1

10

{[
2xixjx− r2(xjei + xiej)

]
· ν if |x| ≤ r,

0 otherwise.

As before, we bound the oscillation by

osc
Ts
f ≤ 2 max

Br+`\Br−`
|f | ≤ 4 r3,

provided ` ≤ r, and so δ = 4 r3. By (3.32) we see that it is natural to bound the integration
error by ε r5, yielding again the condition ` ≤ min{ε r, r}.

5. Numerical experiments. We now present the results of numerical experiments using
our method to compute the spherical volume invariant for triangulated surfaces arising from
standard images, and for real experimental data arising from a project to classify and reassem-
ble broken bone fragments in an archaeological context. For brevity, we will not discuss the
much simpler case of curves and the circular area invariant. Our code is written in C and can be
run from MATLAB via the MEX interface, and from Python via an extension module. The
code is available for download on GitHub: https://github.com/jwcalder/Spherical-Volume-
Invariant.

We first consider the standard test case of the Stanford dragon [13]. Figure 4 shows the
spherical volume invariant for radii r = 1, 2, 5 computed on the dragon. In Figure 4, and in all
other plots below (unless otherwise specified), the colors indicate the values of the spherical
volume invariant, with red indicating the lowest value and blue corresponding to the highest.
For the dragon, and all other experiments, we used an error tolerance of ε = 1 for bisecting
boundary triangles. In the case of the dragon, the maximum triangle bisection depth was 8
and the maximum number of subtriangles in any refinement was 57.

We mention that the original version of the Stanford dragon exhibits some nonmanifold
geometry. In particular, there are stray vertices not connected to triangles, and some edges
are shared by more than 2 triangles. On such meshes, our method can produce unpredictable
results, such as negative values for volumes, since Theorem 3.1 no longer holds. This can
be easily remedied by cleaning the mesh with any standard mesh software package before
running our code, or obtaining the mesh from a reliable algorithm, such as isosurfacing. For
our experiment with the Stanford dragon reported in Figure 4, we obtained a version of the

https://github.com/jwcalder/Spherical-Volume-Invariant
https://github.com/jwcalder/Spherical-Volume-Invariant
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Table 1
Wall-clock times for computing the spherical volume invariant on the Stanford dragon [13] with ε = 1

for boundary triangle refinement. Computations were performed on a standard laptop computer using a single
3.2 GHz core, and CPU times were found to be very similar with and without boundary triangle refinement.
For reference, on the finest mesh (181,444 triangles) with r = 5, each ball B(p, r) contains on average 7,384.3
triangles.

Mesh size Radius

(# triangles/#vertices) r = 0.5 r = 1 r = 2 r = 3 r = 4 r = 5

45,360/22,678 0.19 s 0.69 s 2.5 s 6.1 s 10.3 s 16.8 s

90,722/45,359 0.67 s 2.1 s 8.9 s 26.2 s 40.7 s 66.7 s

181,444/90,720 2.0 s 7.8 s 32.8 s 83.3 s 151.4 s 268.4 s

Stanford dragon in Points With Normals (PWN) format from [1], and converted to a clean
triangulated mesh using the code provided in [1].

Our method is computationally efficient for large meshes. Table 1 shows the wall-clock
times4 for computing the spherical volume invariant with our method on the dragon for various
radii. We also include results for lower resolution versions of the dragon for comparison. We
can see the complexity of our method scales quadratically with the radius r, as expected.
These CPU times are comparable to the FFT methods reported in [31]. We note FFT methods
require coarsely discretizing the ambient space, resulting in larger numerical errors.

Let us next compute the spherical volume invariant on broken bone fragments that have
been scanned and digitized for anthropological applications, as outlined in the introduction.
Figure 5 shows the spherical volume invariant plotted over bone fragments at different radii,
demonstrating how varying the radius allows one to change the scale of detected features.
Here, the values of the spherical volume invariant are normalized with a power-law correction
v 7→ vp with p = .5 unless otherwise stated, to maximize contrast for visualization. We note
that for larger radii in Figure 5, the spherical volume appears to be discontinuous at distance
r from a sharp fracture edge, which may be a desirable feature, depending on the application.
This is due to our use of the connected component of B(p, r)∩ S in computations, which fails
to explore the opposite side of the fragment if B(p, r) does not intersect the fracture edge.
We also computed the principal curvatures via PCA on local neighborhoods. Figure 6 shows
the Gauss curvature and Figures 7 and 8 show the two principal curvatures for some of the
fragments. We did not include figures for mean curvature, since they are identical to those in
Figure 5 for the spherical volume invariant, except with the colors reversed.

We can detect fracture edges by thresholding the spherical volume invariant. Edge points
are taken as those with spherical volumes less than one standard deviation below the mean
spherical volumes for the whole fragment. Figure 9 shows the results of fracture edge detection
on several bone fragments and the Stanford Dragon. This simple approach gives a rough
outline of most fracture edges. In future work, we plan to investigate automated algorithms
for choosing the thresholds as well as the prospect of combining the spherical volume invariant
with more sophisticated edge detection methods, such as active contours [9] on surfaces, or
graph-cut segmentation algorithms [23, 24, 14].

4“Wall-clock” time refers to the actual amount of time taken to perform the operation, as opposed to CPU
time, which is often used to refer to how much time the processor spent on the job.
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Figure 5. Spherical volume invariant computed at radii of 1, 2, and 5.

6. Conclusion. In this paper, we showed how to compute a class of integral invariants,
including the circular area invariant and the spherical volume invariant, in terms of line
and surface integrals over the bounding curve and surface. The method is computationally
efficient to implement on a triangulated mesh, since it involves simply integrating a function
over the mesh triangles, which, when the triangle lies inside the ball, can be done explicitly. In
particular, it does not require discretizing the ambient three-dimensional space. We showed
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Figure 6. Gauss curvature, taken using a radius of 0.5. For power-law correction, p = 0.3.

Figure 7. Principal curvature κ1, taken using a radius of 0.5.

Figure 8. Principal curvature κ2, taken using a radius of 0.5.
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Figure 9. Results of edge detection via thresholding κ1 for values at least 1 standard deviation above the
mean.

how to numerically implement the integration accurately and efficiently, and presented the
results of some numerical experiments with real data.

Appendix A. Analytic formula for a hypersingular integral.
Here, for the reader’s convenience, we recall the analytic formula from [26] for the hyper-

singular integral:

(A.1)

∫
T

1

|x|3
dx,

where T is a planar triangle in R3, such that 0 6∈ T . (We note that [26] includes analytic
formulas for several such triangular hypersingular integrals involving other negative integer
powers of |x|.) Let P denote the plane containing T and ν the unit outward normal vector to
T and P . In what follows, we take the triangle T to be an open subset of P , i.e., T ∩∂T = ∅.

Let x∗ ∈ R3 denote the orthogonal projection of the origin onto the plane P . Let
x1, x2, x3 ∈ R3 be the vertices of T , given with positive orientation; for convenience of notation
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we write x4 = x1. Define

(A.2) θ =


0 if x∗ ∈ P \ T ,
π if x∗ ∈ ∂T \ {x1, x2, x3},
2π if x∗ ∈ T,
θi if x∗ = xi,

where θi is the interior angle of T at the vertex xi.
Let Li denote the oriented edge of the triangle T from xi to xi+1. Associated with each

edge Li, we construct an orthonormal basis (ei1, e
i
2) for the plane P with origin x∗, ei1 taken

in the direction of the edge Li, and ei2 = ν × ei1 chosen so that (ei1, e
i
2, ν) is an orthonormal

basis for R3. Let
pji = (xj − x∗) · ei1, qji = (xj − x∗) · ei2,

be the planar coordinates of the vertex xj in the basis (ei1, e
i
2). By definition, q1

1 = q2
1, q2

2 = q3
2,

and q3
3 = q4

3, since the vertices xj and xj+1 lie along the line spanned by ej1. We denote the
common values as

qi := qii = qi+1
i .

Finally, set η = x1 · ν, noting that η 6= 0, since 0 6∈ T . We then define

(A.3) γi = arctan

(
−2piiqiη|xi|

(qi)2|xi|2 − (pii)
2η2

)
− arctan

(
−2pi+1

i qiη|xi+1|
(qi)2|xi+1|2 − (pi+1

i )2η2

)
,

using the branch of arctan with values in (−π/2, π/2). Finally, the hypersingular integral
(A.1) is given by

(A.4)

∫
T

1

|x|3
dx =

γ1 + γ2 + γ3 + 2 sign(η) θ

2η
.
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[16] V. A. Garćıa, R. B. Egido, J. M. B. del Pino, A. B. C. Ruiz, A. I. E. Vidal, Á. F. Aparicio, S. H.
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frescos: Un sistema de análisis de los ángulos de los planos de fracturación como discriminador de
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