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Abstract 

Connected and automated vehicle (CAV) technologies offer promising solutions to challenges that face 

today’s transportation systems. Vehicular trajectory control and intersection controller optimization 

based on CAV technologies are two approaches that have significant potential to mitigate congestion, 

lessen the risk of crashes, reduce fuel consumption, and decrease emissions at intersections. These two 

approaches should be integrated into a single process such that both aspects can be optimized 

simultaneously to achieve maximum benefits. This paper proposes an efficient DP-SH (dynamic 

programming with shooting heuristic as a subroutine) algorithm for the integrated optimization 

problem that can simultaneously optimize the trajectories of CAVs and intersection controllers (i.e., 

signal timing and phasing of traffic signals), and develops a two-step approach (DP-SH and trajectory 

optimization) to effectively obtain near-optimal intersection and trajectory control plans. Also, the 

proposed DP-SH algorithm can also consider mixed traffic stream scenarios with different levels of 

CAV market penetration. Numerical experiments are conducted, and the results prove the efficiency 

and sound performance of the proposed optimization framework. The proposed DP-SH algorithm, 

compared to the adaptive signal control, can reduce the average travel time by up to 35.72% and save 

the consumption by up to 31.5%. In mixed traffic scenarios, system performance improves with 

increasing market penetration rates. Even with low levels of penetration, there are significant benefits 

in fuel consumption savings. The computational efficiency, as evidenced in the case studies, indicates 

the applicability of DP-SH for real-time implementation. 

 

Key Words 

Connected and automated vehicle (CAV); dynamic programming (DP); shooting heuristic (SH); 

intersection control; signal timing and phasing; mobility and sustainability 

 

  



3 
 

1. Introduction 

As science and technology advance, new solutions to the existing problems of the transportation 

system emerge, and automation is once again at the forefront of these advances. Connected and 

automated vehicle (CAV) technology, which includes connected vehicles (CVs) and automated 

vehicles (AVs), is one of the most promising solutions. CVs can communicate with each other (i.e., 

vehicle to vehicle [V2V]) and with infrastructure (i.e., vehicle to infrastructure [V2I]) to exchange 

critical real-time traffic safety and operations information (e.g., status data of CAVs [location, speed, 

acceleration, etc.], intersection geometry, traffic signal status, etc.). More importantly, these data are 

accurate, and their resolution is high (less than 1 second). These features of CV data provide a solid 

foundation for transportation agencies to improve transportation systems. One of the objectives of the 

U.S. Department of Transportation’s Connected Vehicle Research Program is to develop innovative 

applications that take advantage of communications between V2I and V2V to improve safety, mobility, 

and environmental performances of multi-modal transportation systems. On the other hand, 

accomplishments in individual vehicle control (automated/autonomous vehicle technology) have laid 

the foundation for more advanced control that governs interactions among multiple CVs and can 

produce resultant effects on highway traffic performance. A higher level of controllability of each 

vehicle enables better traffic system control that aims to improve stability, traffic throughput, and 

energy and environmental impacts. Many applications using CAV technologies have been proposed in 

recent years, and this paper focuses on the integration of automated vehicle control with infrastructure-

based control (e.g., traffic signals) to improve overall system performance.  

1.1 Real-Time Intersection Control Based on CAV Technologies 

To reduce conflicts between vehicles traveling in different directions, signalized arterials need to 

alternate between green and red lights. This causes traffic to frequently decelerate and accelerate along 

the signalized arterials. However, vehicles engaged in repeated stop-and-go movements are exposed 

to higher crash risks (Sen and Head, 1997), extra driver discomfort (Beard and Griffin, 2013), and 

excessive fuel consumption and emissions (Li et al., 2014). As a result, traffic signal control 

improvement remains a hot topic in the field of transportation. The ideal traffic signal control is to 

optimally allocate green time to serve traffic from different approaches to achieve the best system 

performance (e.g., minimum delay and maximum throughput). To this end, real-time, accurate, and 

high-resolution traffic data are the key. With the advent of CVs, especially the V2I technology, these 

data can be obtained. CV data enable a traffic signal application to acquire a much more complete 

picture of a signalized intersection (i.e., states of both the nearby vehicle and traffic infrastructure). As 

a result, traffic signal control models/algorithms based on CAV data can generate better results than 

those based on traditional traffic detectors’ data. 

Some studies in recent years have examined the benefits of using CV data for traffic signal control. 

These CV-based models could outperform start-of-the-practice traffic control modes and/or traffic 

signal optimization software. He et al. (2012) proposed a platoon-based arterial signal control 

algorithm in which Pseudo-platoons are identified with a headway-based platoon recognition 
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algorithm. A mixed-integer linear program is applied to optimize future signal plans, and this algorithm 

is adaptive to two different modes. Lee et al. (2013) developed a cumulative travel-time (CTR) 

responsive real-time intersection control algorithm, for which each vehicle’s travel time have been 

measured or estimated. Both total delay and average speed can be improved by 34% and 36% 

respectively under the 100% CV market penetration. It also has been found that a minimum CV market 

penetration of 30% is essential to gain the benefits. Priemer and Friedrich developed a decentralized 

adaptive traffic signal control algorithm with V2I data (Priemer and Friedrich, 2009). According to 

simulation results, the presented algorithm could reduce average delay by 24% and increase average 

speed by 5%, compared with the fixed-time signal timing plan optimized by TRANSYT-7F. Feng et 

al. examined an approach to integrating real-time adaptive signal control in a connected vehicle 

environment assuming varied market penetration rates (Feng et al., 2015). This algorithm is based on 

the controlled optimization of the phases algorithm introduced by Sen and Head (1997). The authors 

found that, when minimizing total vehicle delay with a 100% market penetration rate under two 

demand levels, total delay decreased by 10.04% and 14.67%, respectively. Also, when minimizing 

queue length with a 100% market penetration rate, total delay decreased by 6.37% and 16.33%, 

respectively. Huang presented an arterial-level traffic progression optimization model (ALTPOM) for 

under/near-saturated conditions (Huang, 2016). According to the simulation study, under penetration 

rates of 25% and 50%, ALTPOM minimally reduced 26.0% control delay and increased 4.4% 

throughput for both directions of major and minor streets compared to signal timing plans optimized 

by TRANSYT-7F. 

The above algorithms usually require at least a 10 percent CV penetration rate to estimate the status of 

signalized intersections. The algorithms’ performance would improve as penetration rates of CV 

increase; however, as indicated by Goodall (2013), the connected vehicle penetration rate is anticipated 

to increase steadily to a near 100 percent rate in approximately 25 years in the United States. Therefore, 

estimation locations and/or trajectories of non-CVs are vital for CV-based traffic signal control 

applications for current conditions with low penetrations rates. Locations and/or trajectories of non-

CAVs are usually estimated by the status of CVs (Feng et al., 2015; Goodall, 2013) or fusion data of 

traditional detectors and CV data (Huang, 2016). 

1.2 Automated Vehicle Trajectory Control  

Researchers are also investigating strategies to enhance transportation system performance by fully 

controlling vehicle trajectory according to real-time traffic conditions. Some CAV-based 

models/algorithms were developed to precisely control individual vehicle trajectories (e.g., Ahn, 2013; 

Wang et al., 2014; Wang et al., 2014). With precise trajectory control, vehicles can either adjust their 

driving according to existing intersection controller information (e.g., traffic signal timing plans) to 

smoothly pass the intersection during green phases. The majority of existing studies address individual 

trajectory control instead of the coordination of a stream of vehicles that interact with one another. 

Most control methods developed to date either seek algorithm efficiency by ignoring detailed 

acceleration tuning (e.g., allowing speed jumps) or rely on complex algorithms that may impede real-

time applications. Seredynski and Khadraoui (2014) and Seredynski et al. (2015) proposed that TSP 
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could be complemented with in-vehicle systems such as Green Light Optimal Speed Advisory 

(GLOSA) and Green Light Optimal Dwell Time Advisory (GLODTA). They allow a bus to pass 

through signalized intersections during a green phase without modifying signal timings. Compared to 

the problems of controlling regular traffic, TSP focuses on controlling a small number of buses or 

special-use vehicles. Jiang et al. (2017) studied the CAV trajectory control problem under scenarios of 

less than 100% market penetration. While the simulation results show improvements across different 

penetration rates, the algorithm does not explicitly consider complex interactions between human-

driven and CAV trajectories in the trajectory design stage. Zhou et al. (2017) and Ma et al. (2017) 

proposed a parsimonious shooting heuristic (SH) algorithm that can effectively smooth the trajectories 

of a stream of vehicles approaching a signalized intersection by controlling detailed acceleration 

profiles. The SH algorithm represents each infinite-dimensional vehicle trajectory with a few segments 

of analytical quadratic curves. Therefore, it efficiently constructs a large number of vehicle trajectories 

subject to physical limits, car-following safety, and traffic signal timing. Instead of using fixed 

parameters for trajectory construction, they also proposed to embed SH into an efficient optimization 

framework that aims to identify the optimum vehicle trajectories on a signalized highway segment to 

minimize multiple traffic performance measures (i.e., travel time, fuel consumption, and safety) 

simultaneously. These two studies are limited to fixed signal timing and phasing and only control 

vehicle trajectories.  

Some studies coordinate different vehicle trajectories to cross an intersection without an explicit traffic 

light (visualize a school of fish) (Dresner and Stone, 2008; Lee and Park, 2012; Chai et al., 2018). 

These studies usually use reservation-type systems that pre-assign intersection spaces to vehicles. 

Apparently, these studies will require a 100% CAV market penetration, and this concept is out of the 

scope of this study. We still consider the necessity of traffic signals due to the existence of human-

vehicles in the next decades.   

To the best of our knowledge, there is only a limited number of studies on the combined optimization 

of traffic signal and vehicle trajectories. To address these research gaps, Li et al. (2014) is a pioneer 

study investigating joint trajectory and signal control algorithms. The trajectory control algorithm is 

based on simple vehicle kinematics and constructed with fixed acceleration and decelerations 

parameters. The signal timing optimization is based on pure enumeration. This works in simple case 

studies but is expected to be non-tractable when considering more complex scenarios. Pourmehrab et 

al. (2017) continued the study and used relatively simple rules (such as green extension) for signal 

control and did not consider the complex interactions between vehicle trajectory optimization and 

signal timing control. Therefore, the results may not be the optimal conditions for the given system. 

Guler et al. (2014) and Yang et al. (2016) analyzed the value of platooning, autonomous vehicle control 

and connected vehicle information for improving intersection performance through a large number of 

simulations (embedded with a bi-level automated trajectory planning model) on a simple two-approach 

intersection. Li and Zhou (2017) considered the interaction, but the study is for network planning, and 

the designed trajectories are not detailed trajectories at the subsecond level for actual implementation 

of vehicle control. Feng et al. (2018) proposed a spatiotemporal traffic control framework to optimize 

traffic signal and vehicle trajectories. Dynamic programming and non-linear programming are applied 
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in this framework for minimizing total delay and fuel consumptions and emissions under 100% CAV 

penetration rates. Yu et al. (2018) further proposed a mixed integer linear programming (MIIP) model 

to optimize traffic signal and vehicle trajectories under the 100% CAV scenario. All vehicle movements 

such as left-turn, right-turn and through are considered. Phase sequences, green start, duration of each 

phase, and cycle lengths are optimized together with vehicle lane-changing behaviors and vehicle 

arrival times for delay minimization. While these two studies present the latest developments of 

advanced traffic signal and trajectory control, there are still a few aspects to be improved, such as 

studying scenarios less than 100% and optimizing a large number of trajectories simultaneously while 

considering the complex interactions between human-driven vehicles and CAVs. 

1.3 Contributions and Highlights 

Overall, this paper aims to address the gaps mentioned above and make contributions to the literature 

by proposing an efficient DP-SH (dynamic programming with shooting heuristic as a subroutine) 

algorithm for the integrated vehicle trajectory and intersection control (ITIC) problem. The algorithm 

can simultaneously optimize CAV trajectories in a mixed traffic stream and an intersection controller 

(note that the complex interactions between the intersection control, CAV trajectory design, and 

human-driven vehicle behavior are explicitly considered in the proposed algorithm). We developed a 

two-step approach (DP-SH and trajectory optimization) to effectively obtain near-optimal intersection 

and trajectory control plans based on newly developed and enhanced previously developed algorithms 

(i.e., shooting heuristic for CAV trajectory design, human-driven vehicle trajectory construction, and 

a customized numerical gradient method for optimization over a composite performance measure). 

One highlight of the paper is the numerical experiments for scenarios of different traffic conditions 

and CAV market penetration rates using a realistic real-world 4-phase signal timing design to verify 

the performance of this proposed optimization framework and draw managerial insights. Also, in the 

case studies, we also investigated the computational efficiency of the algorithm by varying the number 

of vehicles, segment length, traffic saturation rate, and planning horizon, proving the algorithm’s 

potential for online real-world applications. 

Note that in this study we consider a realistic 4-phase signal design as introduced later. The nature of 

the proposed dynamic programming-based signal control makes it easy to extend the intersection 

control algorithm to any number of phases in the future. Additionally, when the CAV market 

penetration is 100%, and all vehicles can be automatically controlled, the algorithm proposed in this 

study is by nature the vehicle entry control to avoid potential conflicts – allocating the right-of-way at 

the intersection. It does not require physical traffic signals (red lights) to enforce vehicles to stop under 

full market penetration of CAVs. The proposed algorithms can also be applied to any intersection 

control: signaless intersection (similar to the concept in Dresner and Stone [2008]) and autonomous 

merging area coordination. In this paper, however, we use intersection control with physical signals to 

illustrate the proposed DP-SH algorithm. More importantly, this paper also considers the scenario of 

mixed traffic conditions with both CAVs and human-driven vehicles. These scenarios are particularly 

useful in the coming decades when the vehicle and highway system goes through the transition to full 
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automation. Traffic signals are necessary under these scenarios to ensure safety. 

This paper is organized as follows. Section 2 states the studied CAV ITIC problem, including problem 

settings, constraints, and system objectives. Section 3 briefly reviews the SH algorithm developed in 

the author's previous work (Zhou et al., 2017; Ma et al., 2017) and proposes an ITIC Dynamic 

programming framework and the corresponding optimization method. Efficient methods of evaluating 

the system objectives are also discussed. Section 4 demonstrates the proposed optimization framework 

and tests its solution efficiency and related properties with numerical examples. Section 5 concludes 

this paper and proposes future research directions. 

2. Problem Statement 

This section states the integrated vehicle trajectory and intersection control (ITIC) problem under 

investigation in this paper. Fig. 1 illustrates the problem with a simplified intersection with two 

highway segments of length 𝐿. The set of locations of this segment is [0, 𝐿]. There is a traffic signal 

at location 𝐿 of both segments. This paper aims to solve the joint optimal design of signal timing and 

vehicle trajectory planning considering conflicts of different movements. Note that the paper aims to 

address general intersection configurations and the example in Fig. 1 is for the purpose of problem 

illustration. 

 

Fig. 1. Illustration of ITIC problem 

2.1 Trajectory Control Problem 

A set of consecutive vehicles 𝑁 = {1,2,… , 𝑛} travel from location 0 to 𝐿. The dynamics of these 

vehicles follow a number of constraints specified with the notion of trajectories. A vehicle trajectory 

is denoted with a second-order semi-differentiable function 𝑝(𝑡), ∀𝑡 ∈ (−∞,∞), such that its first 

order differential (or velocity) 𝑝̇(𝑡) is absolutely continuous, and its second-order right-differential 

(or acceleration) 𝑝̈(𝑡)  is Riemann integrable. For notation convenience, we denote the whole 
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trajectory of function 𝑝(𝑡) with 𝑝, and the section of 𝑝 over time interval [𝑡−, 𝑡+] by trajectory 

section 𝑝(𝑡−, 𝑡+), ∀ −∞ ≤ 𝑡− ≤ 𝑡+ ≤ ∞. Let 𝑝𝑛 denote the trajectory for vehicle 𝑛, ∀𝑛 ∈ 𝑁, and 

we call 𝑃 ≔ [𝑝𝑛], 𝑛 ∈ 𝑁 a trajectory vector that contains all dynamic information of these vehicles. 

Trajectory vector 𝑃 should satisfy the following constraints to be feasible. 

Let 𝑣𝑛
−  and  𝑡𝑛

−  denote the speed and time when vehicle 𝑛  enters location 0, ∀𝑛 ∈ 𝑁 , and we 

consider pair (𝑣𝑛
−, 𝑡𝑛

−)  the entry boundary condition of vehicle 𝑛 . We assume that all vehicles' 

boundary conditions can be exactly predicted (e.g., with the advanced sensing and tracking technology 

in the future transportation infrastructure). Then, each trajectory 𝑝𝑛 should satisfy the entry boundary 

constraint 𝑝𝑛(𝑡𝑛
−) = 0 and 𝑝̇𝑛(𝑡𝑛

−) = 𝑣𝑛
−. We assume all vehicles are identical, and each vehicle's 

acceleration is limited in [𝑎 < 0, 𝑎̅ > 0], and its speed range is [0, 𝑣̅]. We say a trajectory section 𝑝 

is kinetically feasible if the following kinematic constraint is met. 

 0 ≤ 𝑝̇(𝑡) ≤ 𝑣̅, 𝑎 ≤ 𝑝̈(𝑡) ≤ 𝑎̅, ∀𝑡 ∈ (−∞,∞)  (1) 

A vehicle 𝑛 ∈ 𝑁\{1} should always be at least a minimum space separation 𝑠 (which is usually the 

summation of the length of a vehicle and a safety buffer) behind its preceding vehicle (𝑛 − 1) 's 

location a reaction time 𝜏  (or a communication delay) ago. We call the trajectory obtained by 

translating any 𝑝 rightwards by 𝜏 and downwards by 𝑠 the shadow trajectory of 𝑝. This shadow 

trajectory is denoted by adding a superscript ' s ', i.e., 𝑝𝑠, denoting the shadow trajectory of 𝑝. Then, 

this safety constraint can be stated as 

 𝑝𝑛(𝑡) ≤ 𝑝𝑛−1
𝑠 (𝑡), ∀𝑡 ∈ (−∞,∞), ∀𝑛 ∈ 𝑁  (2) 

We let 𝑟𝑚 denote the start of next green time and define 𝐺(𝑡) as the function that finds the next 𝑟𝑚. 

𝐺(𝑡) = 𝑡 indicates that time 𝑡 is in a green phase, or otherwise 𝐺(𝑡) > 𝑡. Let 𝑝−1(𝑙) denote the 

first time when trajectory 𝑝(𝑡) arrives at location 𝑙. Then, 𝑝−1(𝑙) denotes the time when this vehicle 

exits the highway segment location 𝑙 (i.e., passing the stop bar), and it has to be during a green time. 

We call this the green exit time constraint.  

 G(𝑝−1(𝐿)) = 𝑝−1(𝐿)      (3) 

Any trajectory 𝑝𝑛 , ∀𝑛 ∈ 𝑁  needs to satisfy constraints (1) – (3) simultaneously to be a feasible 

trajectory. 

2.2 ITIC Problem 

Unlike single approach trajectory control problems (e.g., Ma et al., 2017), at a signalized intersection, 

a traffic signal needs to assign the right-of-way to vehicles from different approaches such that the 

total delay, the number of stops or other performance measurements can be minimized. We consider 

an intersection and a set of possible vehicle movements as shown in Fig. 2. Combinations of non-
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conflicting movements that allow safe passage through the intersection are called phases 𝑃𝐻. The 

cardinality of this set is denoted as |𝑃𝐻| and individual phase is denoted by ∅. In this study, |𝑃𝐻| =

4  and 𝑃𝐻 = {∅1, ∅2, ∅3, ∅4} . Other phases are certainly possible including combinations of 

movements 1 and 2, 3 and 4, 5 and 6, and 7 and 8. We use 𝛾 to indicate the minimum green time and 

𝑟 to represent effective clearance time. It is assumed that 𝑟 ≤ 𝛾.  

 

Fig. 2. Illustration of the 4-phase signal timing design considered in the paper 

Performance measures are identified for the ITIC problem. The first measure is total intersection delay. 

In this study, vehicle 𝑛’s delay is considered as the extra time vehicle 𝑛 needs to traverse the segment 

as compared with the expected time traveling at entry speed without stopping at the red light (𝑡𝑛
− +

𝐿

𝑣𝑛
−). When trajectory vector 𝑃 = [𝑝𝑛]𝑛∈𝑁 is given, the corresponding average vehicle delay can be 

formulated as:  

 𝐷(𝑃) =
1

𝑁
∑ (𝑃𝑛

−1(𝐿) − (𝑡𝑛
− +

𝐿

𝑣𝑛
−))𝑛∈𝑁   (4) 

Note that 𝐷(𝑃) is usually a positive value for regular traffic because, after entering the segment, 

manually driven vehicles usually keep their current speed and are delayed when they have to stop at 

the red light or at the end of a queue. In this study, however, we will use the shooting heuristic algorithm 

(Ma et al., 2017) to plan CAV trajectories, and these vehicles can accelerate to the speed limit and aim 

at no stops at the intersection. Therefore, it is likely that 𝐷(𝑃) can take negative values, indicating 

generally early departure from the intersection. Alternatively, the speed limit can be used as the desired 

speeds to replace 𝑣𝑛
− in Equation (4), and in that case, the performance 𝐷(𝑃) will only take non-

negative values.  

Also, note that here we overload notation 𝑁 to indicate the total number of vehicles on all movements 

that are assigned to a phase ∅ . All the following performance measures should be calculated 

considering all vehicles controlled by a signal phase ∅ which may concern multiple movements as 
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illustrated in Fig. 2. 

Similar to intersection delay, we can also use the total travel time of all vehicles to complete traversing 

the segments. When trajectory vector 𝑃 = [𝑝𝑛]𝑛∈𝑁 is given, the corresponding average travel time 

(per vehicle) can be simply formulated as:  

 𝑇(𝑃) =
1

𝑁
∑ (𝑡(𝑝𝑛) ≔ 𝑝𝑛

−1(𝐿) − 𝑡𝑛
−1)𝑛∈𝑁   (5) 

where 𝑡(𝑝𝑛) is the travel time for vehicle 𝑛.  

In many cases, reducing fuel consumption and pollutant emissions are also important goals for 

intersection control, particularly when trajectory control is possible. To measure consumption, the VT-

Micro model (Ahn et al., 2013) was used, incorporating the speed profiles of the probe vehicles as 

shown in Equation (6).  

 𝑒(𝑝̇𝑛(𝑡), 𝑝̈𝑛(𝑡)) = 𝑒𝑥𝑝 {∑ ∑ 𝐾𝑖𝑗(𝑝̈𝑛(𝑡))(⌊𝑝̇𝑛(𝑡)⌋0
120 𝑘𝑚/ℎ)

𝑖
(⌊𝑝̈𝑛(𝑡)⌋−5   𝑘𝑚/ℎ/𝑠𝑒𝑐

120 𝑘𝑚/ℎ/𝑠𝑒𝑐
)
𝑗

3
𝑗=0

3
𝑖=0 } (6) 

Where coefficient 𝐾𝑖𝑗(𝑝̈𝑛(𝑡)) depends on the sign of 𝑝̈𝑛(𝑡), the type of vehicle, and the measure-of-

effectiveness (MOE) (e.g., fuel consumption). Model parameters used in the calculation are listed in 

Ma et al. (2017).  

Other performance measurements, such as safety as measured by surrogate safety measures (e.g., 

inverse time-to-collision) can also be applied. Ma et al. (2017) provides a detailed discussion of each 

of these measurements and how they can be effectively evaluated for real-time application without the 

need to evaluate fuel consumption and safety measures at discrete time points (e.g., 0.1 seconds). Due 

to space constraints, this paper will not discuss the expedited performance evaluation. Interested 

readers can refer to this work for details. 

3. Methodology 

This section introduces the main components of the ITIC methodology proposed in this paper. We first 

revisit the shooting heuristic (SH) previously proposed by the authors, and this algorithm is used to 

efficiently construct trajectories for a stream of traffic. Next, we introduce the core contribution of this 

paper, the DP-SH algorithm, which uses dynamic programming (DP) to obtain an optimal signal timing 

plan while considering vehicle movements as constructed by the SH algorithm. The last step is to 

optimize CAV trajectories given the optimal signal timing plan, and this optimization can be based on 

various performance measures (e.g., travel time, delay and/or fuel consumption).  

The proposed ITIC solution method is a two-step approach. Step 1 is to obtain an optimal signal timing 

plan that minimizes intersection delay (with consideration of the interactive relations between the 

designed trajectories and the signal timing plan). Step 2 is to design optimal trajectories for the signal 
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timing plan developed in Step 1 for various performance measures.  

3.1 Revisit of Shooting Heuristic  

This subsection briefly reviews the SH algorithm from Zhou et al. (2017), and interested readers can 

refer to it for detailed algorithmic descriptions and theoretical property analyses. The SH algorithm 

visits all  𝑁 vehicles steering in the segment sequentially, and entry boundary condition (𝑣𝑛
−, 𝑡𝑛

−) of 

each vehicle at location 0 is recorded. Based on the entry boundary condition and given parameter set 

(𝑎̅𝑓, 𝑎𝑓 , 𝑎̅𝑏 , 𝑎𝑏 , 𝑣), a feasible trajectory can be designed using the SH algorithm for each vehicle as a 

piecewise quadratic function. Each two consecutive quadratic segments in the same trajectory are 

tangent to each other. Each trajectory is differentiable everywhere and does not contain any speed 

jumps. Fig. 3(a) and (b) show the forward shooting process (FSP), under two conditions, respectively. 

For each vehicle 𝑛, FSP shoots two sequential quadratic segments at first, as shown in Fig. 3 (a). The 

first segment radiates from location 0 with entry boundary condition (𝑣𝑛
−, 𝑡𝑛

−), and then reaches a 

target cruising speed 𝑣 ∈ [0, 𝑣̅], where 𝑣̅ is the maximum allowable cruising speed, with a forward 

acceleration 𝑎̅𝑓. Note that in this paper, without the loss of generality, we assume 𝑣 = 𝑣̅ for through 

movements and 𝑣 = 𝜗𝑣̅  for turning movements, where 𝜗 < 1 . It  takes 𝑡̂𝑛
− = (𝑣 − 𝑣𝑛

−)/𝑎̅𝑓 

seconds to reach target speed at location 𝑝̂𝑛
− = 𝑣𝑛

−𝑡̂𝑛
− +

1

2
𝑎̅𝑓 𝑡̂𝑛

−. The second segment is simply cruise 

remaining with constant speed 𝑣 until the vehicle exits location 𝐿 at: 

 𝑡̂𝑛
+(𝑣, 𝑎̅𝑓):= 𝑡𝑛

− + {

−𝑣𝑛
−−√(𝑣𝑛

−)2+2𝑎𝑓𝐿

𝑎𝑓
, if 𝐿 ≤

𝑣2−(𝑣𝑛
−)2

2𝑎𝑓

𝐿

𝑣
+

(𝑣−𝑣𝑛
−)2

2𝑎𝑓𝑣
     ,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7) 

 

             (a)                        (b)                        (c) 

Fig. 3. (a) Forward shooting process without activating safety constraint; (b) forward shooting process 

with activating safety constraint; and (c) backward shooting process  

The safety constraint is tested against this candidate trajectory. If the safety constraint is not violated, 

i.e., the 𝑛th vehicle is always below the shadow trajectory of the preceding vehicle, this candidate 
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trajectory will be returned as the forward shooting trajectory of vehicle 𝑛 denoted by 𝑝𝑛
𝑓
. Under this 

scenario, the candidate trajectory 𝑝𝑛
𝑓
 is always below the shadow trajectory 𝑝𝑛−1

𝑠  of the preceding 

vehicle, which is shown using the red solid curve under the green dash curve in Fig. 3(a). Otherwise, 

if the candidate trajectory violates the safety constraint, as shown in Fig. 3(b), the candidate trajectory 

should smoothly merge into the previous shadow trajectory 𝑝𝑛−1
𝑠  at a forward deceleration 𝑎𝑓  .This 

process will create a merging segment, and these three segments merge together and become a smooth 

curve as the forward shooting trajectory 𝑝𝑛
𝑓
. When the forward shooting trajectory 𝑝𝑛

𝑓
 is constructed, 

the green time exit constraint will be tested against 𝑝𝑛
𝑓
. The SH algorithm compares the actual exit 

time of trajectory 𝑝𝑛
𝑓

 and its corresponding time phase calculated using Equation (3). If the vehicle 

𝑛 exits during the green time, there is no need to revise 𝑝𝑛
𝑓
 and it will be regarded as a feasible 

trajectory of vehicle 𝑛, noted as 𝑝𝑛. Otherwise, if the trajectory 𝑝𝑛
𝑓
 runs into a red light, a backward 

shooting process (BSP) will be activated to revise 𝑝𝑛
𝑓
. This segment shifts rightwards horizontally to 

the start of the next green phase as the initial segment of a backward shooting trajectory 𝑝𝑛
𝑏. Then, 

BSP shoots backwards along this initial part at a backward acceleration 𝑎̅𝑏. When 𝑝𝑛
𝑏 gets close 

enough to 𝑝𝑛
𝑓
, BSP can shoot backwards a smooth merging segment at a backward deceleration 𝑎𝑏. 

A merging segment will be constructed from 𝑝𝑛
𝑏 to 𝑝𝑛

𝑓
 and then becomes tangent to 𝑝𝑛

𝑓
, as shown 

in Fig. 3(c). As a result, merging 𝑝𝑛
𝑓
 and 𝑝𝑛

𝑏 generates feasible trajectory 𝑝𝑛. This loop of FSP and 

BSP is consecutively executed by the SH algorithm for all 𝑁 vehicles, and a feasible trajectory vector 

[𝑝𝑛]𝑛∈𝑁 will be generated. 

Note that the entire process of the SH algorithm deals with no more than 7𝑛, ∀𝑛 ∈ 𝑁  quadratic 

segments (Ma et al., 2017) in the construction of a single trajectory, and every segment is analytically 

solvable. This indicates the efficiency of the algorithm and makes it possible for large-scale practical 

applications. Further, only five variables, including four acceleration rates {𝑎̅𝑓 , 𝑎𝑓 , 𝑎̅𝑏, 𝑎𝑏} and the 

target speed 𝑣 , need to be determined to control the overall smoothness and corresponding 

performance. Because the algorithm is efficient, parsimonious, and simple to implement, it is then 

possible that the proposed DP-SH optimization framework can use SH as a sub-routine. The steps of 

the SH algorithm are shown as the following pseudo code. The computational complexity of the 

Shooting Heuristic algorithm is 𝑜(𝑁2), and the computing space complexity is also 𝑜(𝑁2) (Ma et 

al., 2017). 

Algorithm 1: Shooting Heuristic 

Define segment length L , safety buffer s , reaction time   as a global variable. 

Initialize acceleration rates (𝑎̅𝑓, 𝑎𝑓 , 𝑎̅𝑏, 𝑎𝑏) and target cruise speed 𝑣. 

N number of vehicle . 

;− −   N Nv t entry boundry condition . 

P   % Set trajectory vector 

For 1=n to N  

If nv v   

next

nv v  
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next

n n
ˆt t −  

( ) ( )1
 next next

n n

f f

np PlotSegment a v ,t,  % Plot first segment of FSP 

( )+next f

n n
ˆt t v,a  

( ) ( )2
0 nef

n

xt

np PlotSegme v,tnt ,    % Plot second segment of FSP 

( ) ( )( )1 2


f ff

n n np merge p , p  

Else 

( )0 + n

f

np PlotSegm t , ˆv,ten  

End 

 

If ( ) ( )1: :+− −

−

+f s

n n n nn np t crosses or overlap p tˆ ˆt t   % If 
f

np  violates safety constraint 

( )1− s

diff n nv Diff v ,v      % Calculate the velocity gap between 𝑝𝑛−1
𝑠  and candidate 𝑝𝑛

𝑓
 

( ), +−diff n nt̂ MergeT e t t̂im  % Calculate the time range of merging 

( ) ( )
f merge f

n diff diff
ˆp PlotSegment a ,v ,t   % Plot forward merging segment 

( )( )
f mergef f

n n np merge p , p  

End 

% Entire FSP has been executed and a forward shooting trajectory 𝑝𝑛
𝑓

 has been constructed % 

If ( )( ) ( )1 1− −
n n

G p L p L  

( ) ( )( )( )1:+ − b f

n n n n
ˆp ShiftRightwards p t ,G p L  

( )b f b

n nd FindDis tance p , p  

While bd merge range  

If nv v   

( )b b

n n n
ˆp PlotSegment a ,v ,t  

Else 

( )0b

n n
ˆp PlotSegment ,v,t  

End 

( )b f b

n nd FindDis tance p , p  

End 
( ) ( )

b merge b

n diff diff
ˆp PlotSegment a ,v ,t   % Plot backward merging segment 

( )( )
b mergeb b

n n np merge p , p  

( ) f b

n n np merge p , p  

Else 

 f

n np p  

End 

( ) nP n p  

End 
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3.2 Dynamic programming framework with SH as a subroutine 

With a given signal timing plan or predictable timing plan, the SH algorithm can construct P =

[𝑝𝑛]𝑛∈𝑁with parameter set {𝑎̅𝑓, 𝑎𝑓 , 𝑎̅𝑏 , 𝑎𝑏, 𝑣}. Getting the signal timing plan, however, is a difficult 

problem itself because it is based on predicted vehicle movements in manual traffic or designed 

trajectories in automated traffic. Different signal plans may result in quite distinct automated vehicle 

trajectories because the signal timing optimization and trajectory optimization are two intertwined 

problems and need to be considered simultaneously. In this study, we use dynamic programming (DP) 

to optimize signal timing and phasing with the SH trajectory construction algorithm as a subroutine 

(DP-SH). The SH algorithm is extremely efficient as proved in Ma et al. (2017), and therefore the DP-

SH algorithm can still be applied in real time. 

The DP algorithm is based on breaking a decision problem into manageable decision stages and 

computing an appropriate performance measure in a recursive manner. The recursion may be 

performed in a forward fashion, starting from the initial decision stage; or in a backward fashion, 

starting from the final decision stage. Similar to Sen and Head (1997), the DP-SH algorithm in this 

study uses a forward recursion. In this setting, a value function for any stage represents an accumulated 

measure of effectiveness for the current and all previous stages. In specifying a DP formulation, we 

must define the appropriate state variables, decision stages, and the recursion necessary to compute 

the value functions.  

In this study, the recursion is based on using phases as stages. Starting with an initial phase, DP-SH 

treats each phase in a cycle as a stage and optimizes over a planning horizon to obtain an optimal plan. 

As introduced in Sen and Head (1997), DP-SH allows us to skip phases whenever it is advantageous 

to do so, and therefore has more flexibility for the optimization problem. 

We use similar notations as in Sen and Head (1997) when necessary for comparison purposes and use 

new notations to cover additional elements for our new problem. We use 𝑗 as the index for stages of 

the DP-SH. Let 𝑥𝑗 be the control variable denoting the amount of green-time allocated to stage  𝑗; 

and 𝑠𝑗 be the state variable denoting the total number of time-steps that have been allocated after the 

completion of stage 𝑗 . Use 𝑋𝑗(𝑠𝑗)  to denote the set of feasible control decisions, given state 𝑠𝑗 ; 

𝑓𝑗(𝑠𝑗, 𝑥𝑗) to denote the performance measure at stage 𝑗, given state 𝑠𝑗 and control 𝑥𝑗; and 𝑣𝑗(𝑠𝑗) to 

denote the value function (cumulative value of prior performance measures) given state 𝑠𝑗. Therefore, 

given the state variable 𝑠𝑗, the control variable 𝑥𝑗 can assume the following values in set 𝑋𝑗(𝑠𝑗): 

 𝑋𝑗(𝑠𝑗) = {
{0},                                   𝑠𝑗 − 𝑟 < 𝛾

{0, 𝛾, 𝛾 + 1,… , 𝑠𝑗 − 𝑟}, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (8) 

The use of 𝛾 as the smallest non-zero value that can be assigned to the control variable 𝑥𝑗 ensures 

the satisfaction of the minimum green-time requirement. We use the following relationship between 

two consecutive stages of the DP-SH due to the clearance time 𝑟: 
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 𝑠𝑗−1 = 𝑠𝑗 − ℎ𝑗(𝑥𝑗)  (9) 

Where ℎ𝑗(𝑥𝑗) = {
0,        𝑖𝑓 𝑥𝑗 = 0

𝑥𝑗 + 𝑟, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

In this study, we consider the average travel time as the performance function which is calculated using 

Equation (10). This establishes mobility as the main objective when designing signal timing and 

phasing. Other performance measures, such as fuel consumption and safety, can also be applied with 

increased levels of problem complexity. In order to ensure the algorithmic efficiency for real-time 

implementation, we leave fuel consumption and safety during the final optimization of vehicle 

trajectories when the signal control has been determined. 

 𝑓𝑗(𝑠𝑗, 𝑥𝑗) =
1

∑ 𝑁𝑃𝐻
|𝑃𝐻|
𝑃𝐻=1

(∑ 𝑇(𝑃)𝑃𝐻
|𝑃𝐻|
𝑃𝐻=1 ) (10) 

where 𝑇(𝑃)𝑃𝐻 is calculated by Equation (5), representing the average travel time for each intersection 

movements with constructed trajectory sets {𝑃𝑁1, 𝑃𝑁2, 𝑃𝑁3, 𝑃𝑁4} ,  respectively, with control 𝑥𝑗  at 

stage 𝑠𝑗. 

We now present the steps of the DP-SH algorithm. There are two parts of the algorithm: forward 

recursion and backward solution retrieval.  

The use of the forward recursion is also in compliance with the problem nature because the trajectories 

are built sequentially. Thus, the subset of the solution to a problem at a later stage is still the optimal 

solution to the earlier subset of the problem. This is reflected in the forward recursion as shown in 

Equation (11). Note that at each stage, only trajectories that can pass the intersection during this stage 

are built, and the corresponding 𝑓 is calculated. This ensures that the earlier constructed solutions are 

still solutions to the trajectory construction at later stages. Actually, if the computer storage space is 

available, the trajectories built at each early stage (𝑗, 𝑠𝑗) can be stored along with 𝑣𝑗(𝑠𝑗) such that 

future stages can continue the trajectory construction without rebuilding the trajectories that have been 

constructed when calculating 𝑣𝑗(𝑠𝑗). 

                 𝑣𝑗+1(𝑠𝑗+1) = ∑ (𝑣𝑗(𝑠𝑗) + 𝑓𝑗+1(𝑠𝑗+1, 𝑥𝑗+1))𝑥𝑗+1                      (11) 

The Algorithm 2 below shows the pseudo code for the proposed DP-SH framework. We consider a 

planning horizon of H  and step size 𝜀 can be indexed by 𝜀 ∈ [1,𝐻], which reflects the granularity 

of our algorithm.  

Algorithm 2: DP-SH Framework 

Define time horizon 𝐻 as ga lobal variable. 

( )0 0 0v  

1j  

0 0s  
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For ( )1−= −j js r step to H s    % Start forward recursion  

While ( )j j jx X s  

( ) jP ShootingHeuristic x  

𝑓𝑗(𝑠𝑗 , 𝑥𝑗) =
1

∑ 𝑁𝑃𝐻
|𝑃𝐻|
𝑃𝐻=1

(∑ 𝑇(𝑃)𝑃𝐻

|𝑃𝐻|

𝑃𝐻=1

) 

Loop 

( ) ( ) ( )( )1 1− − +
j

j j j j j j j
x

v s min f s ,x v s  

( )*

j j j
ˆx s x   % jx̂  is the corresponding control variable to the optimal solution in this stage 

If 1−= −j js H s  

break 

Else if 
( ) ( )( )

( )

1

1

−

−

−


j j

j

v H v H

v H
  

break 

Else if    j H / r  

break 
Else 

1= +j j  

End 

End 

completeJ j   % record complete stage 𝑗 as 𝐽 

For 1 1= −j J step to    % Start retrieval 

( )( )1

* * * *

j j j j js s h x s− = − . 

End 

The later stages allow more phase changes for the same values of the state variable, and the value 

function always improves, i.e., 𝑣𝑗−1(𝐻) ≥ 𝑣𝑗(𝐻). Therefore, the forward recursion will stop when the 

percent change from 𝑣𝑗−1(𝐻) to 𝑣𝑗(𝐻) is less than a threshold value 𝜎. In this study, we use 𝜎 =

0.05. Then, the DP-SH framework retrieves an optimal solution for determining the optimal trajectory 

of states and the associated optimal controls. 

The fundamental difference of this method from the adaptive signal control system (Sen and Head, 

1997) is 𝑃 ← 𝑆ℎ𝑜𝑜𝑡𝑖𝑛𝑔𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐(𝑥𝑗). They make assumptions on a vehicle arrival table based on 

certain short-term traffic predictive technology. The accuracy of the arrival table significantly affects 

the actual system performance. This study, however, designs trajectory in each substep in forward 

recursion, and trajectory design is a part of the algorithm itself. The trajectory design using the SH 

algorithm considers kinematic constraints, thus it is likely that vehicles’ actual trajectories can be close 

to designed trajectories, increasing the actual effectiveness of the algorithm. Also, it is worth 

mentioning that any small changes in signal timing may change vehicle trajectories, and such 

interaction and the iterative process is only possible because of the extremely efficient SH algorithm. 
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Note that in this step, SH parameters are predetermined. While the next section will discuss methods 

for identifying these parameters for trajectory optimization, reasonable initial values of these 

parameters can be used in order to obtain an optimal signal timing and phasing plan. In fact, previous 

work (Ma et al., 2017) found an interesting distribution of the optimal parameters. For example, the 

most frequent optimal values of 𝑎̅𝑓  are around 1 𝑚/𝑠2. 

3.3 Trajectory Optimization  

The previous section uses average vehicle delay (calculated by Equation 3) as the performance function 

when optimizing signal phasing and timing. However, depending on actual conditions (e.g., traffic 

congestion, segment length, market penetration, cycle length), the input parameters may need to be 

optimized from case to case, particularly from the perspective of fuel consumption and safety.  

After an optimal signal timing solution is obtained through DP-SH, we will run a customized numerical 

gradient-based approach with SH as a subroutine to optimize the five parameters (𝑎̅𝑓 , 𝑎𝑓 , 𝑎̅𝑏, 𝑎𝑏, 𝑣) 

for best system performance in terms of travel time, fuel consumption, and safety (Ma et al., 2017). 

Fig. 4 illustrates how the SH-based vehicle trajectory optimization framework works. Basically, we 

first initialize a small set of control parameters and feed them to the SH algorithm to generate a feasible 

trajectory vector 𝑃 . Then, system performance 𝑀(𝑃)  is evaluated (potentially using expedited 

methods [Ma et al., 2017] based on the analytical properties of the SH solution). The evaluation result 

is then fed to the central optimization algorithm. This algorithm checks whether 𝑃 is already optimal. 

If yes, it returns 𝑃  as the optimal solution and sends back the corresponding parameter set 

(𝑎̅𝑓, 𝑎𝑓 , 𝑎̅𝑏 , 𝑎𝑏 , 𝑣). Otherwise, it updates the control parameter values based on a customized numerical 

gradient based method. This loop will start from different start parameter sets and each loop generates 

an optimal solution. The central optimization algorithm compares all of the solutions and then returns 

the final optimum and its control parameters. For left-turn vehicles, a penalty parameter is added to 

the optimization objective function if the desired cruise speed 𝑣  exceeds a given threshold (i.e. 

turning speed limit 𝑣𝐿). This penalty parameter ensures the left-turn vehicles do not travel too fast 

when they traverse the intersection, while still considering overall optimality in terms of travel time 

and fuel consumption. The purpose of using multiple starting points of the optimization is to avoid 

local optimal results because the objective function is non-convex. Please see Ma et al. (2017) for a 

detailed description of this algorithm and how to evaluate different performance measures in an 

expedited manner online. 
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Fig. 4. SH-based vehicle trajectory optimization framework 

 

3.4 Shooting Heuristic with Human-driven Vehicles  

When CAVs and human-driven vehicles coexist in the traffic, the integrated trajectory and intersection 

control needs to take into account potential trajectories of human-driven vehicles and their impacts on 

and interactions with the signal control and CAV trajectories. In this study, we assume there are vehicle 

detectors upstream of the intersection at the beginning of the trajectory control section, so the 

information on the human-driven vehicle entry boundary information is known. If these human-driven 

vehicles are CVs, their information can be obtained at any time. Therefore, the human-driven vehicle 

trajectories need to be predicted efficiently based on the entry information. Traditional models such as 

Intelligent Driver Model simulate trajectories second by second, and the computational burden makes 
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it difficult to be implemented in real time with a large number of vehicles at the intersection. In this 

paper, we propose human-driven vehicle shooting heuristic (SH) to predict their trajectories under 

given entry boundary conditions. 

 

Fig. 5. Human-driven oriented backward shooting  

As Fig. 5 shows, the trajectory of a human-driven vehicle is also firstly constructed by the FSP. If the 

human-driven vehicle crosses the intersection during a green phase, its trajectory 𝑝𝑛
𝑓
 will be kept as 

a feasible trajectory. Otherwise, if the existing trajectory 𝑝𝑛
𝑓

 violates the green time exit constraints, 

as the red dash line shows in Fig. 5, a human-driven vehicle BSP (HD-BSP) will be activated to revise 

the existing infeasible trajectory 𝑝𝑛
𝑓
 . The segment above the stop bar also shifts rightwards 

horizontally to the start of the next green phase and constructs the initial segment of the backward 

shooting trajectory 𝑝𝑛
𝑏 . But different from the regular BSP discussed in Section 3.1, the HD-BSP 

shoots horizontally from the start of the next green phase to a specific stop point 𝑝𝑛
𝑠𝑡𝑜𝑝

, which is 

calculated by the HD-BSP along with the trajectory 𝑝𝑛
𝑓
 at a forward deceleration 𝑎𝑓 ∈ [𝑎, 0), and 

the original trajectory under the stop bar cannot be changed. Then HD-BSP shoots backwards from the 

stop point 𝑝𝑛
𝑠𝑡𝑜𝑝

  at a backward deceleration −𝑎𝑓   to merge into the 𝑝𝑛
𝑓
 . As a result, a feasible 

trajectory 𝑝𝑛 in Fig. 5 can be generated by merging 𝑝𝑛
𝑓
 and 𝑝𝑛

𝑏, and the feasible trajectory 𝑝𝑛 will 

be added into the feasible trajectory vector [𝑝𝑛]𝑛∈𝑁. Fig. 6 shows the process of HD-BSP. 

 

Fig. 6. Human-driven oriented backward shooting 
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If a CAV follows a human-driven vehicle, the CAV trajectory will be revised with an additional step 

in BSP, as shown in Fig. 7. The human-driven vehicle left the intersection at the point 𝑝𝑖𝑛𝑖𝑡
𝐻𝐷 (𝑡𝐿, 𝐿). 

The point 𝑝𝑚𝑎𝑥
𝐻𝐷   on the human-driven trajectory 𝑃𝐻𝐷   is the point that the human-driven vehicle 

reaches the target cruise speed 𝑣 with the acceleration 𝑎̅𝑓  after it crosses the intersection. The point 

𝑝𝑚𝑎𝑥
𝐻𝐷  can be depicted as a tuple 𝑝𝑚𝑎𝑥

𝐻𝐷 (𝑡𝐿 +
𝑣

𝑎𝑓𝑎 𝑎 
 , 𝐿 +

𝑣2

2𝑎𝑓
). Then, the CAV can reach the target speed 

𝑣 at the point 𝑝𝑚𝑎𝑥
𝐶𝐴𝑉 (𝑡𝐿 +

𝑣

𝑎̅𝑓
+ 𝜏, 𝐿 +

𝑣2

2𝑎𝑓
− 𝑠) due to the car-following safety constraints. If the CAV 

follows the human-driven vehicle closely, it may end up following the human-driven vehicle’s shadow 

trajectory, which may be less energy efficient and incur a higher level of safety risk (inverse time-to-

collision). Instead, in our method, similar to regular SH, we still let the CAV to pass the intersection 

(stop bar) with the target cruise speed 𝑣, and then catch up and form a “platoon” with the human-

driven vehicle with the constant speed 𝑣 . The point 𝑝𝑖𝑛𝑖𝑡
𝐶𝐴𝑉   can be analytically solved as 

𝑝𝑖𝑛𝑖𝑡
𝐶𝐴𝑉 (𝑡𝐿 +

𝑣2+2𝑎̅𝑓𝑠

2𝑎𝑓𝑣
+ 𝜏, 𝐿). Then the segment between points 𝑝𝑚𝑎𝑥

𝐶𝐴𝑉  and 𝑝𝑖𝑛𝑖𝑡
𝐶𝐴𝑉  will be used as the 

initial segment of the BSP.  The wasted green time 𝑡𝑤, i.e., the distance between 𝑝𝑖𝑛𝑖𝑡
𝐻𝐷  and 𝑝𝑖𝑛𝑖𝑡

𝐶𝐴𝑉 , 

can be calculated as 𝑡𝑤 =
𝑣2+2𝑎𝑓𝑠

2𝑎̅𝑓𝑣
+ 𝜏  and it is correlated with the cruise speed 𝑣  and forward 

acceleration 𝑎̅𝑓. In our DP-SH framework, the target cruise speed 𝑣 and forward acceleration 𝑎̅𝑓  

are both optimization variables as mentioned. The proposed optimization process in Section 3.3 will 

eventually select the optimal values for 𝑣 and 𝑎̅𝑓   that minimize the system composite costs (i.e., 

travel time, fuel consumption and safety risk). 

 

Fig. 7. Human-driven oriented backward shooting 

4. Results and Discussions 

4.1 Computational performance 
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The computational efficiency of the SH algorithm and the SH-based optimization framework are 

discussed in Ma et al. (2017), and both algorithms are applicable in real time. This subsection 

investigates the computational complexity of the proposed DP-SH algorithm. The default values for 

the input parameters {𝑎̅𝑓, 𝑎𝑓 , 𝑎̅𝑏, 𝑎𝑏, 𝑣̅} are shown in Table 1. For left-turn movements, we assume 

𝜗 = 0.8. Also note that without the loss of generality, we consider one movement in each of the four 

phases in the case study for presentation clarity. This does not affect the insights we obtained from the 

case studies. Particularly for computational efficiency analysis, since each movement can be 

independently evaluated, the actual additional computational time can be ignored when the 

computation for each movement in a phase is in parallel. The only difference is the addition of 

performance measures of different movements controlled by the same phase. 

Table 1 Default input parameter values 

Parameter 𝑎̅𝑓(𝑚/𝑠2)  𝑎̅𝑏(𝑚/𝑠2) 𝑎𝑓(𝑚/𝑠2) 𝑎𝑏(𝑚/𝑠2) 𝑣̅(𝑚/𝑠2) 

Value 1 1 -5 -5 30 

 

We investigate the DP-SH algorithm’s complexity with different input parameters (𝐿, 𝑁, 𝑓𝑠 , 𝜀, 𝐻). 

Table 2(a) shows computational performance results by varying 𝐿 and 𝑁, which represents the 

segment length and number of vehicles in each segment correspondingly. It can be found intuitively 

from Table 2(a) and (b) that the number of vehicles N  per phase does not affect the computational 

time significantly. That is because the DP-SH algorithm considers vehicles sequentially only for a 

specified planning horizon. It means that a limited number of vehicles will be calculated in DP-SH 

meaning vehicles that enter this segment after the current stage will be not considered in this stage. 

The algorithm, however, still needs to handle the vehicles that remain in the segment in the DP points 

and calculate the travel time of these vehicles, and therefore the computational time still increases to 

some extent. Segment length 𝐿 also has a negligible impact on the computational time; however, the 

number of vehicles per time unit, which is reflected by saturation rate 𝑓𝑠 ∈ (0, 𝐶/𝐺] (Ma et al., 

2017), affects the computational time to some extent. That is because the more congested the road 

segment is, (i.e., higher values of 𝑓𝑠) , the more vehicle trajectories need to be constructed in each 

stage.  

 

In contrast to other parameters, as shown in Table 2(c), the planning horizon 𝐻 and step size 𝜀 

significantly affect computational time, in both sparse and congested scenarios. Planning horizon 𝐻 

impacts computational time mainly because at each stage, DP-SH scans all possible values of 𝑠𝑗, and 

the algorithm evaluates all possible values of 𝑥𝑗 (as shown in Equation 6) for each 𝑠𝑗. The 

extension of the planning horizon means more stages, and in each stage, larger sets of possible values 

of possible 𝑠𝑗 and 𝑥𝑗 will need to be considered. Thus, more vehicles can be taken into 

consideration, and more trajectories can be constructed and optimized. For the objective of reducing 

total average delay, extending 𝐻 is effective; but, for the purpose of large-scale applications, a 

longer 𝐻 consumes more time for computation and makes DP-SH infeasible. Based on a 

comprehensive consideration with these two objectives, we set the planning horizon at 𝐻 = 122 𝑠. 

We use this planning horizon in reporting results in Table 2(a) and (b). 

 

The computational times with the planning horizon of 122 seconds are about 9.75 seconds and 15.19 

seconds for 10-vehicle-each-phase and 20-vehicle-each-phase scenarios, respectively, using a regular 
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office laptop (Intel Core i7-8550U CPU, 1.80 GHz processor frequency, and 8 GB DDR 4 RAM). 

This is close to or less than 10% of the planning horizon and can be considered as applicable in real 

time. It is reasonable to believe this algorithm can be much faster when using parallel computing on 

a powerful server.  

 

 

 
Fig. 8. Sensitivity of computational time to parameter step size 𝜀 

 

Table 2 DP-SH computational performance 

(a) Computational Time (sec) 

 Segment Length 𝐿(𝑚) 

 400 800 1200 

𝑁    

10 9.75 8.16 7.71 

20 15.19 10.51 13.43 

30 18.83 15.03 17.11 

50 23.16 19.48 18.21 

(b) Computational Time (sec) 

 Saturation Rate 𝑓𝑠 

 0.6 0.9 1.2 1.5 

𝑁     

10 11.39 9.72 9.88 9.75 

20 12.57 16.56 15.83 15.19 

30 16.64 18.06 16.51 18.83 

50 18.01 17.59 23.96 23.16 

(c) Computational Time (sec) 

 𝑓𝑠 = 0.6 𝑓𝑠 = 1.5 

 Planning Horizon (sec) 

 26 50 74 98 122 26 50 74 98 122 

𝜀           
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1 6.83 69.14 177.27 413.38 623.68 20.41 50.31 149.21 300.14 575.87 

2 4.98 16.69 47.92 85.49 161.81 7.84 13.08 40.63 91.36 147.55 

4 3.19 9.68 13.1 24.44 44.01 4.23 6.11 12.91 29.75 51.62 

8 2.79 4.64 6.03 8.53 12.57 3.11 3.59 5.43 7.98 15.19 

Clearly, larger step size 𝜀 can result in significantly less DP-SH evaluation scenarios and therefore 

reduce computational time effectively, but the final results may be suboptimal as a side-effect. This is 

because the use of a large time step size may not be able to scan the optimal solution due to the coarse 

resolution. As expected, as step size    increases from 1 to 8 seconds, the computational time 

decreases almost exponentially, which as shown in Fig. 8.  

 

Note that in this paper the shortest segment length we consider in the sensitivity analysis is 400 

meters because no SH solutions can be guaranteed for shorter segments. This is because in some 

cases shorter segments may not allow vehicles to accelerate to the target speed 𝑣 when they exist 

the intersection stop bar. The infeasibility usually occurs when the traffic is heavy (e.g., existing 

queues due to red lights). Then vehicles need to slow down to a complete stop, but they cannot 

accelerate to the target speed before the intersection because of the constraints (1) on maximum 

accelerations. As Zhou et al. (2017) indicated, for any given entry point (0, 𝑣0, 𝑡0) and feasible state 

point (𝑙+, 𝑣+, 𝑡+), the set of feasible trajectories 𝑇+ has a lower bound trajectory 𝑝 (i.e., the 

vehicle having to decelerate to zero speed first). If we set the exit point (𝐿, 𝑣, 𝑡̂) as the feasible state 

point and let vehicle reach the target speed 𝑣 at the intersection stop bar, a minimum segment length 

𝐿𝑚𝑖𝑛 can be proposed that ensure 𝑇+  ∉ ∅ for all vehicles. Under this scenario, the lower boundary 

trajectory is formulated as: 

𝑝(𝑡) =

{
 
 

 
 

−𝑣0
2

2𝑎
,

−𝑣0
2

2𝑎
,

−𝑣0
2

2𝑎
+

𝑣2

2𝑎
,

𝑡 ∈ [𝑡0,
−𝑣0

𝑎
] ;

𝑡 ∈ [
−𝑣0

𝑎
, 𝑡̂ −

𝑣

𝑎
] ;

𝑡 ∈ [𝑡̂ −
𝑣

𝑎̅
, 𝑡̂] .

                     (12) 

in which the subject vehicle leaves the intersection at 𝑡 = 𝑡̂. Therefore, the minimum length 𝐿𝑚𝑖𝑛 =

−𝑣0
2

2𝑎
+

𝑣2

2𝑎
. Given a set of input parameters, 𝐿𝑚𝑖𝑛 is positively correlated to the entry speed. When 

𝑣0 = 𝑣 and other parameters take the values in Table 1, 𝐿𝑚𝑖𝑛 =
−𝑣2

2𝑎
+

𝑣2

2𝑎̅
=

−(30 𝑚/𝑠)2

2×(−5 𝑚/𝑠2)
+

30 𝑚/𝑠2

2×(1.5 𝑚/𝑠2)
= 390 𝑚.  

 

Under these highly congested cases, the backward shooting component of the algorithm may find a 

start of the backward shooting segment upstream of the start point of the segment, and therefore not 

feasible. Then the results are not comparable to other scenarios with feasible SH solutions. The 

differences in effectiveness are not only caused by the segment length but also attributed to the fact 

that, due to traffic congestion, there are no feasible SH trajectories and the vehicles can only slowly 
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pass the intersection (with reduction of green time capacity). When urban signalized intersections are 

close-by, it is critical to consider optimization of trajectories through multiple traffic signals 

simultaneously. We leave this topic for future exploration. In this study, we consider three different 

segment lengths: {400,800, 1200} meters. 

4.2 Scenario analysis 

This section conducts a further simulation analysis to examine the algorithm’s performance further. 

We first use the DP-SH algorithm to obtain the optimal signal timing plan that minimizes the average 

vehicle delay. Then, the corresponding timing plan is used in the numerical gradient-based 

optimization approach with SH as a subroutine to obtain optimal trajectories that minimize weighted 

average travel time and fuel consumption (refer to [Ma et al., 2017] for how to determine weights). In 

this case study, we use step size 𝜀 = 8 seconds, because this granularity also generates near-optimal 

results and significantly reduces computational burden. The results of DP-SH with default SH 

parameters and the results of final trajectory optimization will also be reported. 

We aim to compare DP-SH with scenarios in which the intersection is controlled by adaptive signal 

control (ASC). The ASC algorithm used in the study is similar to the Controlled Optimization of Phases 

at an Intersection proposed by Sen and Head (1997). 

Table 3 shows the simulation results of scenarios with different segment length L  and saturation rate 

s
f . The segment length L  has three levels, and saturation rate s

f  has four levels, so there have 

twelve scenarios. As we can see, the SH-DP with default SH parameters can significantly improve both 

travel time (TT) and fuel consumption (Fuel). Compared with ASC results, the optimal trajectories 

reduce the travel time by 23.63% to 35.72% and fuel consumption by 11.75% to 31.5%. Even 

compared to the SH-DP results, there still have savings in fuel consumption by 10.13% to 17.55% with 

only limited sacrifice of travel time because the optimal case aims to smooth the trajectories more and 

avoid large accelerations. Note that it has been proved in Zhou et al. (14) that large acceleration 

parameters can result in best travel time performance. However, optimal trajectories can still achieve 

good travel times but significantly less fuel consumption. 

 

Table 3 Simulation results and benefits 

  ASC SH-DP Optimal 

L 

(meter) s
f  

TT 

(second) 

Fuel 

(L) 

TT 

(second) 

Fuel 

(L) 

TT 

(second) 

Fuel 

(L) 

400 

0.6 114.1036 0.1802 75.0557 0.1713 78.2417 0.1460 

0.9 114.9188 0.1969 75.9389 0.1671 76.3282 0.1420 

1.2 120.5917 0.1968 75.5210 0.1592 78.6325 0.1348 

1.5 122.3923 0.1901 75.6687 0.1603 78.6720 0.1355 

800 0.6 138.6885 0.2563 94.4473 0.2126 98.8671 0.1821 
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0.9 115.3372 0.2431 79.2902 0.2188 82.5938 0.1804 

1.2 116.9924 0.2421 77.0059 0.211 79.071 0.1809 

1.5 114.7237 0.2413 76.3979 0.2125 80.2855 0.1829 

1200 

0.6 117.2056 0.2707 82.8195 0.269 87.7733 0.2389 

0.9 119.7548 0.2748 90.1766 0.2666 91.4602 0.2396 

1.2 128.9281 0.2832 92.037 0.2732 92.1662 0.2421 

1.5 130.7628 0.288 92.3627 0.2692 94.5745 0.2401 

Percent 

Change 

 Optimal - ASC Optimal - SH-DP 

L  (m) s
f  TT Fuel TT Fuel 

400 

0.6 -31.43% -18.98% 4.24% -14.77% 

0.9 -33.58% -27.88% 0.51% -15.02% 

1.2 -34.79% -31.50% 4.12% -15.33% 

1.5 -35.72% -28.72% 3.97% -15.47% 

800 

0.6 -28.71% -28.95% 4.68% -14.35% 

0.9 -28.39% -25.79% 4.17% -17.55% 

1.2 -32.41% -25.28% 2.68% -14.27% 

1.5 -30.02% -24.20% 5.09% -13.93% 

1200 

0.6 -25.11% -11.75% 5.98% -11.19% 

0.9 -23.63% -12.81% 1.42% -10.13% 

1.2 -28.51% -14.51% 0.14% -11.38% 

1.5 -27.67% -16.63% 2.39% -10.81% 

  
(a) Phase 1 – ASC                      (b) Phase 2 – ASC 
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(c) Phase 3 – ASC                      (d) Phase 4 – ASC 

  
(e) Phase 1 – Optimal                   (f) Phase 2 – Optimal 

 
(g) Phase 3 – Optimal                  (h) Phase 4 – Optimal 

 

Fig. 9. Time planning and trajectory of scenario 𝐿 = 400𝑚, 𝑓𝑠 = 0.6 

 

Fig. 9 shows example trajectories and the optimal timing plan using our DP-SH approach under the 

scenario 𝐿 = 400 𝑚, 𝑓𝑠 = 0.6. Fig. 9(a) to (d) are movements under adaptive signal control scenario. 

Smoother trajectories in Fig. 9(e) to (h) are results from final trajectory optimization results and 

expected to generate less fuel consumption and safety concerns. More importantly, it can be seen from 
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all cases that DP-SH successfully distributes green times among the four phases when necessary, and 

green time assignment is well coordinated with the trajectory construction algorithm. This optimal 

algorithm allows vehicles to stop in the segment to generate optimal solutions. We see that the signal 

timing is adjusted such that multiple trajectories can pass the intersection at the beginning or the end 

of the green.  

 

There may be concerns that the algorithm let vehicles stop in the middle of the segment, and the 

vehicles seem to be queuing to near the beginning of the segment, indicating a risk of spillback. 

Actually, this algorithm will prevent the spillback by increasing the acceleration values. For example, 

in Fig. 9(h), the fifth vehicle is commanded to stop at location 150 meters because the optimized 

acceleration after the stop is relatively small to save fuel and the algorithm predicts that there will be 

no spillback. In a hypothetical scenario when a possible spillback may occur, the algorithm will 

command a larger acceleration such that the fifth vehicle in Fig. 9(h) will stop downstream of location 

150 meters. 

Note again that the default SH parameters used in the DP-SH approach can be further optimized using 

the customized approach proposed in Ma et al. (2017), and this process can still generate more than 

10% extra reduction of fuel consumption, though the travel time (or throughput) performance is similar. 

As our numerical examples show, this optimization process may be stuck at a local optimum, and the 

control parameter vector oscillates in a fairly small range. This is due to the non-convexity of the 

objective function. Therefore, alternative control parameter vectors are provided to the optimization 

algorithm as different start points, and the algorithm selects the final solution with optimal performance 

values. 

 

4.3 Mixed Traffic Scenarios 

This section shows the results under different CAV market penetration rates. A series of simulation 

runs with different CAV market penetration rates can help understand the robustness and effectiveness 

of DP-SH for a mixed traffic stream with both CAVs and human-driven vehicles. In this section, the 

market penetration varies from 0% to 100% with an increment of 10%. The 0% scenario reduces to all 

human-driven vehicles with adaptive signal control, similar to Sen and Head (1997). In Table 5, we 

present results obtained under two example scenarios of 𝐿 = 400 𝑚 , 𝑓𝑠 = 0.6  and 𝐿 = 400 𝑚 , 

𝑓𝑠 = 1.2 , which represent common urban congested and uncongested scenarios. The sequences of 

human-driven vehicles in the traffic steam are randomly assigned for 10 simulation runs under each 

scenario. 

The HD-BSP assumes that the constructed analytical human-driven vehicles’ trajectories can 

approximate the actual trajectories that are obtained using simulation to reduce computational burden. 

In order to numerically show the approximation accuracy, we obtain simulation trajectories using 

microscopic traffic simulation. Several microscopic simulations were conducted with the same speed 

limit and signal phasing and timing. In Fig. 10, the orange dotted line is the human-driven vehicle 

trajectory constructed using the intelligent driver model (IDM) with the default parameter set 

{𝑎 = 1.44, 𝑏 = 1.67, 𝛿 = 4, 𝑠0 = 2, 𝑇 = 1, 𝑣0 = 30} (Treiber et al., 2000). The three dashed lines are 
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the human-driven vehicle trajectories constructed using SH with different parameter sets. These three 

parameter sets are {𝑎̅𝑓 = 1.50, 𝑎𝑓 = −5.00} , {𝑎̅𝑓 = 1.76, 𝑎𝑓 = −6.60}  and {𝑎̅𝑓 = 1.31, 𝑎𝑓 =

−3.97}, which are selected from the former research results in Ma et al. (2017) to represent the most 

typical cases of good trajectories. All other six solid lines are human-driven vehicle data collected from 

VISSIM simulations. It can be found that these segments of trajectories overlap with each other well. 

We generated 15 human-driven trajectories stochastically with the random process in VISSIM. In 

Table 4, the differences between the three SH human-driven trajectories and 6 example simulated 

trajectories are reported. Also, the average percent differences between the three SH trajectories and 

all 15 simulated trajectories are all less than 5% on average. Note that the main difference actually 

comes from the variation of VISSIM desired cruise speeds and different types of vehicles (e.g., 

different desired accelerations), though VISSIM car-following parameters are set to similar to what 

SH scenarios imply. This indicates that SH human-driven trajectories can well approximate the IDM 

trajectories and VISSIM human-driven trajectories and can meet the requirement for a trajectory 

planning algorithm. More importantly, constructing SH trajectories analytically are much more 

efficient than the simulation, more applicable for online applications. 

 

Fig. 10. Trajectories Built by IDM, SH and Collected Human-Driven Data 

 

Table 4 Difference Between SH Built Trajectories and Human-driven Trajectories 

 SH(1.50, -5.00) SH(1.76, -6.60) SH(1.37, -3.97) 

Human-driven trajectory 1 0.70% 3.09% 2.7% 

Human-driven trajectory 2 1.21% 2.30% 3.46% 

Human-driven trajectory 3 4.30% 7.40% 1.51% 

Human-driven trajectory 4 2.13% 2.83% 4.43% 

Human-driven trajectory 5 1.45% 2.03% 3.65% 
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Human-driven trajectory 6 3.78% 6.86% 1.21% 

… … … … 

Average of 16 human-driven 

trajectories 
3.84% 4.25% 4.54% 

The human-driven vehicle trajectories can have a major or minor impact on the following CAV’s 

trajectory and the signal phasing and timing developed using DP-SH, and the impacts also depend on 

the distances between the human-driven vehicle and the following CAV. Fig. 11 shows two example 

trajectories of the 90% market penetration scenario. In Fig. 11(a), the fifth vehicle is human-driven, 

and others are CAVs. It is expected the human-driven vehicle stops at the intersection during the red 

light and slowly start up afterward. The following CAV slows down upstream of the intersection, as 

commanded by SH, and then accelerates to and passes the stop bar with the target speed 𝑣. In Fig. 

11(b), the human-driven vehicle is also the fifth vehicle in this stream, and in this case, it does not 

affect the following CAV and this situation can be regarded as the “best situation” under this scenario. 

In some other situations where the human-driven vehicle are the first vehicle in a traffic stream and it 

stops at the intersection for some time, all the following CAV trajectories may be affected, and they 

can be considered as the “worst situation”. The DP-SH framework, however, can optimize traffic signal 

to avoid stops of human-driven vehicles and CAVs adaptively based on their actual arrival patterns 

(i.e., entry boundary conditions).  

  

(a) (b) 

Fig. 11. The Influence of a Human-driven Vehicle on CAVs 

 

Table 5 The improvement of DP-SH with different market penetrations 

MP 

𝐿 = 400𝑚, 𝑓𝑠 = 0.6 𝐿 = 400𝑚, 𝑓𝑠 = 1.2 

Average 
improvement 

(%) 

Improvement 

under best 

situation 

(%) 

Improvement 

under worst 

situation 

(%) 

Average 
improvement 

(%) 

Improvement 

under best 

situation 

(%) 

Improvement 

under worst 

situation 

(%) 
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 TT Fuel TT Fuel TT Fuel TT Fuel TT Fuel TT Fuel 

0% 0 0 0 0 0 0 0 0 0 0 0 0 

10% 3.09 6.23 15.46 17.15 0 0 7.60 8.79 25.93 16.67 3.02 6.96 

20% 6.19 9.82 15.46 17.15 0 4.94 12.19 12.04 25.93 17.89 3.02 8.13 

30% 12.47 13.12 15.46 17.15 0 6.16 21.75 14.99 34.23 19.26 3.02 8.59 

40% 15.56 16.15 31.43 18.98 0 7.66 24.27 15.40 34.23 20.02 3.02 9.20 

50% 18.76 16.84 31.43 18.98 0 10.16 28.21 23.48 34.79 31.50 3.02 10.98 

60% 21.95 17.55 31.43 18.98 0 12.76 30.03 24.54 34.79 31.50 3.02 12.70 

70% 21.98 18.11 31.43 18.98 0.15 15.59 30.86 28.96 34.79 31.50 3.02 14.38 

80% 26.07 18.70 31.43 18.98 4.61 17.59 31.59 30.69 34.79 31.50 9.66 18.90 

90% 28.08 18.81 31.43 18.98 4.61 17.59 33.21 30.95 34.79 31.50 11.49 20.68 

100% 31.43 18.98 31.43 18.98 31.43 18.98 34.79 31.50 34.79 31.50 34.79 31.50 

In Table 5, we report the average, worst-case, and best-case improvements. To obtain these results, we 

randomly selected 10 sets of possible positions of human-driven vehicles in the mixed traffic stream. 

In this table, we use ASC as the base case for comparison. The results show that DP-SH can 

significantly reduce travel time and fuel consumption on average, even at a low CAV market 

penetration rates. The average travel time decreases from 3.09% to 34.79%, and the fuel consumptions 

reduction ranges from 6.23% to 31.5%. We can see that even under low market penetration scenarios, 

the fuel consumption savings due to the improved smoothness of the trajectories are still quite 

significant compared with ASC, though the travel time improvements in those scenarios are limited. 

Also, the travel time savings under relatively congested traffic (𝑓𝑠 = 1.2) are much higher than the 

savings under less congested traffic (𝑓𝑠 = 0.6), particularly when the market penetration is below 60%. 

This is because the less congested traffic can be well handled by regular adaptive signal control, which 

can be limited during rather congested conditions. Trajectory control offers the possibility to modify 

vehicle arrival patterns at the intersection stop bar and further reduce system delays. Meanwhile, there 

are dramatic differences in fuel savings between congested and less congested cases when the market 

penetration rate is high. This is also because DP-SH can better handle the congested scenarios than 

adaptive signal control and therefore the trajectories of vehicles traversing the intersections can be 

smooth instead of having to coming to complete stops. As expected, both fuel consumption and travel 

time improvements increase as the market penetration rate becomes higher. The differences in 

improvements between the worst and best situations are quite dramatic, and it implies that the sequence 

of human-driven vehicles in a traffic stream affects the system performance significantly. Overall, the 

results prove that the DP-SH framework can effectively handle the mixed traffic situations without 

100% CAV market penetration. 

5. Conclusions and Future Research 

Vehicle trajectory control and intersection control are two intertwined problems that need to be 

considered simultaneously. Advanced connected and automated vehicle (CAV) technologies offer 
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better solutions for these problems by both adjusting the intersection controllers and optimizing vehicle 

trajectories. This paper applies the joint control at intersections with physical signal controllers (i.e., 

optimizing traffic signal phases and timing) to illustrate the algorithm. Based on former research results 

in Ma et al. (2017), the Shooting Heuristic (SH) algorithm can construct near-optimal trajectories for 

a platoon of vehicles for one direction with a given traffic signal phasing and timing plan. By adopting 

this parsimonious SH algorithm and its numerical sub-gradient-based framework (NG-SH) as a sub-

routine, this paper proposes a framework of dynamic programming with shooting heuristic as a 

subroutine (DP-SH). DP-SH can coordinate signal phases and timing and platoons of vehicles in 

different directions at an intersection section while optimizing comprehensive performances of travel 

time, fuel consumption, and safety. As results show, DP-SH has feasible computational time and 

solution optimality performance, which enables DP-SH to be applied in practical real-time scenarios. 

DP-SH generates a signal timing plan with given parameters and entry boundary information, and then 

constructs trajectories for each platoon of vehicles with NG-SH based on the signal timing plan. In this 

paper, numerical examples illustrate that all solutions significantly outperform the benchmark and 

adaptive signal control cases for all performance measures. The proposed DP-SH algorithm, compared 

to the adaptive signal control, can reduce the average travel time by up to 35.72% and save the 

consumption by up to 31.5%. In mixed traffic scenarios, system performance improves with increasing 

market penetration rates. Overall, the DP-SH enables this intertwined and infinite-dimensional 

optimization problem to be solved simultaneously and efficiently, and it can be considered suitable for 

real-time application when related technologies are deployed. 

This study reveals great potential for combined signal timing control and vehicle trajectory 

optimization. This study can be further extended in several aspects. First, this paper controls 

intersections with physical signals. The proposed algorithms can also be applied and tested for 

intersection control for signaless intersections and autonomous merge areas. Second, this paper focuses 

on an isolated signalized intersection. It is interesting to apply and adapt the method to controlling 

busy physical urban signalized corridors. Besides, for real-time application, parallel computation 

algorithms, feedback control, and distributed computation need to be taken into account for future real-

time implementation. 
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