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Abstract

Connected and automated vehicle (CAV) technologies offer promising solutions to challenges that face
today’s transportation systems. Vehicular trajectory control and intersection controller optimization
based on CAV technologies are two approaches that have significant potential to mitigate congestion,
lessen the risk of crashes, reduce fuel consumption, and decrease emissions at intersections. These two
approaches should be integrated into a single process such that both aspects can be optimized
simultaneously to achieve maximum benefits. This paper proposes an efficient DP-SH (dynamic
programming with shooting heuristic as a subroutine) algorithm for the integrated optimization
problem that can simultaneously optimize the trajectories of CAVs and intersection controllers (i.e.,
signal timing and phasing of traffic signals), and develops a two-step approach (DP-SH and trajectory
optimization) to effectively obtain near-optimal intersection and trajectory control plans. Also, the
proposed DP-SH algorithm can also consider mixed traffic stream scenarios with different levels of
CAV market penetration. Numerical experiments are conducted, and the results prove the efficiency
and sound performance of the proposed optimization framework. The proposed DP-SH algorithm,
compared to the adaptive signal control, can reduce the average travel time by up to 35.72% and save
the consumption by up to 31.5%. In mixed traffic scenarios, system performance improves with
increasing market penetration rates. Even with low levels of penetration, there are significant benefits
in fuel consumption savings. The computational efficiency, as evidenced in the case studies, indicates
the applicability of DP-SH for real-time implementation.

Key Words
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intersection control; signal timing and phasing; mobility and sustainability



1. Introduction

As science and technology advance, new solutions to the existing problems of the transportation
system emerge, and automation is once again at the forefront of these advances. Connected and
automated vehicle (CAV) technology, which includes connected vehicles (CVs) and automated
vehicles (AVs), is one of the most promising solutions. CVs can communicate with each other (i.e.,
vehicle to vehicle [V2V]) and with infrastructure (i.e., vehicle to infrastructure [V2I]) to exchange
critical real-time traffic safety and operations information (e.g., status data of CAVs [location, speed,
acceleration, etc.], intersection geometry, traffic signal status, etc.). More importantly, these data are
accurate, and their resolution is high (less than 1 second). These features of CV data provide a solid
foundation for transportation agencies to improve transportation systems. One of the objectives of the
U.S. Department of Transportation’s Connected Vehicle Research Program is to develop innovative
applications that take advantage of communications between V2I and V2V to improve safety, mobility,
and environmental performances of multi-modal transportation systems. On the other hand,
accomplishments in individual vehicle control (automated/autonomous vehicle technology) have laid
the foundation for more advanced control that governs interactions among multiple CVs and can
produce resultant effects on highway traffic performance. A higher level of controllability of each
vehicle enables better traffic system control that aims to improve stability, traffic throughput, and
energy and environmental impacts. Many applications using CAV technologies have been proposed in
recent years, and this paper focuses on the integration of automated vehicle control with infrastructure-
based control (e.g., traffic signals) to improve overall system performance.

1.1 Real-Time Intersection Control Based on CAV Technologies

To reduce conflicts between vehicles traveling in different directions, signalized arterials need to
alternate between green and red lights. This causes traffic to frequently decelerate and accelerate along
the signalized arterials. However, vehicles engaged in repeated stop-and-go movements are exposed
to higher crash risks (Sen and Head, 1997), extra driver discomfort (Beard and Griffin, 2013), and
excessive fuel consumption and emissions (Li et al., 2014). As a result, traffic signal control
improvement remains a hot topic in the field of transportation. The ideal traffic signal control is to
optimally allocate green time to serve traffic from different approaches to achieve the best system
performance (e.g., minimum delay and maximum throughput). To this end, real-time, accurate, and
high-resolution traffic data are the key. With the advent of CVs, especially the V2I technology, these
data can be obtained. CV data enable a traffic signal application to acquire a much more complete
picture of a signalized intersection (i.e., states of both the nearby vehicle and traffic infrastructure). As
a result, traffic signal control models/algorithms based on CAV data can generate better results than
those based on traditional traffic detectors’ data.

Some studies in recent years have examined the benefits of using CV data for traffic signal control.

These CV-based models could outperform start-of-the-practice traffic control modes and/or traffic

signal optimization software. He et al. (2012) proposed a platoon-based arterial signal control

algorithm in which Pseudo-platoons are identified with a headway-based platoon recognition
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algorithm. A mixed-integer linear program is applied to optimize future signal plans, and this algorithm
is adaptive to two different modes. Lee et al. (2013) developed a cumulative travel-time (CTR)
responsive real-time intersection control algorithm, for which each vehicle’s travel time have been
measured or estimated. Both total delay and average speed can be improved by 34% and 36%
respectively under the 100% CV market penetration. It also has been found that a minimum CV market
penetration of 30% is essential to gain the benefits. Priemer and Friedrich developed a decentralized
adaptive traffic signal control algorithm with V2I data (Priemer and Friedrich, 2009). According to
simulation results, the presented algorithm could reduce average delay by 24% and increase average
speed by 5%, compared with the fixed-time signal timing plan optimized by TRANSYT-7F. Feng et
al. examined an approach to integrating real-time adaptive signal control in a connected vehicle
environment assuming varied market penetration rates (Feng et al., 2015). This algorithm is based on
the controlled optimization of the phases algorithm introduced by Sen and Head (1997). The authors
found that, when minimizing total vehicle delay with a 100% market penetration rate under two
demand levels, total delay decreased by 10.04% and 14.67%, respectively. Also, when minimizing
queue length with a 100% market penetration rate, total delay decreased by 6.37% and 16.33%,
respectively. Huang presented an arterial-level traffic progression optimization model (ALTPOM) for
under/near-saturated conditions (Huang, 2016). According to the simulation study, under penetration
rates of 25% and 50%, ALTPOM minimally reduced 26.0% control delay and increased 4.4%
throughput for both directions of major and minor streets compared to signal timing plans optimized
by TRANSYT-7F.

The above algorithms usually require at least a 10 percent CV penetration rate to estimate the status of
signalized intersections. The algorithms’ performance would improve as penetration rates of CV
increase; however, as indicated by Goodall (2013), the connected vehicle penetration rate is anticipated
to increase steadily to a near 100 percent rate in approximately 25 years in the United States. Therefore,
estimation locations and/or trajectories of non-CVs are vital for CV-based traffic signal control
applications for current conditions with low penetrations rates. Locations and/or trajectories of non-
CAVs are usually estimated by the status of CVs (Feng et al., 2015; Goodall, 2013) or fusion data of
traditional detectors and CV data (Huang, 2016).

1.2 Automated Vehicle Trajectory Control

Researchers are also investigating strategies to enhance transportation system performance by fully
controlling vehicle trajectory according to real-time traffic conditions. Some CAV-based
models/algorithms were developed to precisely control individual vehicle trajectories (e.g., Ahn, 2013;
Wang et al., 2014; Wang et al., 2014). With precise trajectory control, vehicles can either adjust their
driving according to existing intersection controller information (e.g., traffic signal timing plans) to
smoothly pass the intersection during green phases. The majority of existing studies address individual
trajectory control instead of the coordination of a stream of vehicles that interact with one another.
Most control methods developed to date either seek algorithm efficiency by ignoring detailed
acceleration tuning (e.g., allowing speed jumps) or rely on complex algorithms that may impede real-
time applications. Seredynski and Khadraoui (2014) and Seredynski et al. (2015) proposed that TSP
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could be complemented with in-vehicle systems such as Green Light Optimal Speed Advisory
(GLOSA) and Green Light Optimal Dwell Time Advisory (GLODTA). They allow a bus to pass
through signalized intersections during a green phase without modifying signal timings. Compared to
the problems of controlling regular traffic, TSP focuses on controlling a small number of buses or
special-use vehicles. Jiang et al. (2017) studied the CAV trajectory control problem under scenarios of
less than 100% market penetration. While the simulation results show improvements across different
penetration rates, the algorithm does not explicitly consider complex interactions between human-
driven and CAV trajectories in the trajectory design stage. Zhou et al. (2017) and Ma et al. (2017)
proposed a parsimonious shooting heuristic (SH) algorithm that can effectively smooth the trajectories
of a stream of vehicles approaching a signalized intersection by controlling detailed acceleration
profiles. The SH algorithm represents each infinite-dimensional vehicle trajectory with a few segments
of analytical quadratic curves. Therefore, it efficiently constructs a large number of vehicle trajectories
subject to physical limits, car-following safety, and traffic signal timing. Instead of using fixed
parameters for trajectory construction, they also proposed to embed SH into an efficient optimization
framework that aims to identify the optimum vehicle trajectories on a signalized highway segment to
minimize multiple traffic performance measures (i.e., travel time, fuel consumption, and safety)
simultaneously. These two studies are limited to fixed signal timing and phasing and only control
vehicle trajectories.

Some studies coordinate different vehicle trajectories to cross an intersection without an explicit traffic
light (visualize a school of fish) (Dresner and Stone, 2008; Lee and Park, 2012; Chai et al., 2018).
These studies usually use reservation-type systems that pre-assign intersection spaces to vehicles.
Apparently, these studies will require a 100% CAV market penetration, and this concept is out of the
scope of this study. We still consider the necessity of traffic signals due to the existence of human-
vehicles in the next decades.

To the best of our knowledge, there is only a limited number of studies on the combined optimization
of traffic signal and vehicle trajectories. To address these research gaps, Li et al. (2014) is a pioneer
study investigating joint trajectory and signal control algorithms. The trajectory control algorithm is
based on simple vehicle kinematics and constructed with fixed acceleration and decelerations
parameters. The signal timing optimization is based on pure enumeration. This works in simple case
studies but is expected to be non-tractable when considering more complex scenarios. Pourmehrab et
al. (2017) continued the study and used relatively simple rules (such as green extension) for signal
control and did not consider the complex interactions between vehicle trajectory optimization and
signal timing control. Therefore, the results may not be the optimal conditions for the given system.
Guler et al. (2014) and Yang et al. (2016) analyzed the value of platooning, autonomous vehicle control
and connected vehicle information for improving intersection performance through a large number of
simulations (embedded with a bi-level automated trajectory planning model) on a simple two-approach
intersection. Li and Zhou (2017) considered the interaction, but the study is for network planning, and
the designed trajectories are not detailed trajectories at the subsecond level for actual implementation
of vehicle control. Feng et al. (2018) proposed a spatiotemporal traffic control framework to optimize
traffic signal and vehicle trajectories. Dynamic programming and non-linear programming are applied
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in this framework for minimizing total delay and fuel consumptions and emissions under 100% CAV
penetration rates. Yu et al. (2018) further proposed a mixed integer linear programming (MIIP) model
to optimize traffic signal and vehicle trajectories under the 100% CAV scenario. All vehicle movements
such as left-turn, right-turn and through are considered. Phase sequences, green start, duration of each
phase, and cycle lengths are optimized together with vehicle lane-changing behaviors and vehicle
arrival times for delay minimization. While these two studies present the latest developments of
advanced traffic signal and trajectory control, there are still a few aspects to be improved, such as
studying scenarios less than 100% and optimizing a large number of trajectories simultaneously while
considering the complex interactions between human-driven vehicles and CAVs.

1.3 Contributions and Highlights

Overall, this paper aims to address the gaps mentioned above and make contributions to the literature
by proposing an efficient DP-SH (dynamic programming with shooting heuristic as a subroutine)
algorithm for the integrated vehicle trajectory and intersection control (ITIC) problem. The algorithm
can simultaneously optimize CAV trajectories in a mixed traffic stream and an intersection controller
(note that the complex interactions between the intersection control, CAV trajectory design, and
human-driven vehicle behavior are explicitly considered in the proposed algorithm). We developed a
two-step approach (DP-SH and trajectory optimization) to effectively obtain near-optimal intersection
and trajectory control plans based on newly developed and enhanced previously developed algorithms
(i.e., shooting heuristic for CAV trajectory design, human-driven vehicle trajectory construction, and
a customized numerical gradient method for optimization over a composite performance measure).

One highlight of the paper is the numerical experiments for scenarios of different traffic conditions
and CAV market penetration rates using a realistic real-world 4-phase signal timing design to verify
the performance of this proposed optimization framework and draw managerial insights. Also, in the
case studies, we also investigated the computational efficiency of the algorithm by varying the number
of vehicles, segment length, traffic saturation rate, and planning horizon, proving the algorithm’s
potential for online real-world applications.

Note that in this study we consider a realistic 4-phase signal design as introduced later. The nature of
the proposed dynamic programming-based signal control makes it easy to extend the intersection
control algorithm to any number of phases in the future. Additionally, when the CAV market
penetration is 100%, and all vehicles can be automatically controlled, the algorithm proposed in this
study is by nature the vehicle entry control to avoid potential conflicts — allocating the right-of-way at
the intersection. It does not require physical traffic signals (red lights) to enforce vehicles to stop under
full market penetration of CAVs. The proposed algorithms can also be applied to any intersection
control: signaless intersection (similar to the concept in Dresner and Stone [2008]) and autonomous
merging area coordination. In this paper, however, we use intersection control with physical signals to
illustrate the proposed DP-SH algorithm. More importantly, this paper also considers the scenario of
mixed traffic conditions with both CAVs and human-driven vehicles. These scenarios are particularly
useful in the coming decades when the vehicle and highway system goes through the transition to full
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automation. Traffic signals are necessary under these scenarios to ensure safety.

This paper is organized as follows. Section 2 states the studied CAV ITIC problem, including problem
settings, constraints, and system objectives. Section 3 briefly reviews the SH algorithm developed in
the author's previous work (Zhou et al., 2017; Ma et al., 2017) and proposes an ITIC Dynamic
programming framework and the corresponding optimization method. Efficient methods of evaluating
the system objectives are also discussed. Section 4 demonstrates the proposed optimization framework
and tests its solution efficiency and related properties with numerical examples. Section 5 concludes
this paper and proposes future research directions.

2. Problem Statement

This section states the integrated vehicle trajectory and intersection control (ITIC) problem under
investigation in this paper. Fig. 1 illustrates the problem with a simplified intersection with two
highway segments of length L. The set of locations of this segment is [0, L]. There is a traffic signal
at location L of both segments. This paper aims to solve the joint optimal design of signal timing and
vehicle trajectory planning considering conflicts of different movements. Note that the paper aims to
address general intersection configurations and the example in Fig. 1 is for the purpose of problem
illustration.

Fig. 1. Illustration of ITIC problem

2.1 Trajectory Control Problem

A set of consecutive vehicles N = {1,2,...,n} travel from location 0 to L. The dynamics of these
vehicles follow a number of constraints specified with the notion of trajectories. A vehicle trajectory
is denoted with a second-order semi-differentiable function p(t), Vt € (—o0, ), such that its first
order differential (or velocity) p(t) is absolutely continuous, and its second-order right-differential

(or acceleration) p(t) is Riemann integrable. For notation convenience, we denote the whole
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trajectory of function p(t) with p, and the section of p over time interval [t~,t*] by trajectory
section p(t~,t*),V—oc0o <t~ <t* < 0. Let p, denote the trajectory for vehicle n, vn € N, and
we call P := [p,], n € N atrajectory vector that contains all dynamic information of these vehicles.
Trajectory vector P should satisfy the following constraints to be feasible.

Let v, and t, denote the speed and time when vehicle n enters location 0, Vn € N, and we
consider pair (v,,t,) the entry boundary condition of vehicle n. We assume that all vehicles'
boundary conditions can be exactly predicted (e.g., with the advanced sensing and tracking technology
in the future transportation infrastructure). Then, each trajectory p,, should satisfy the entry boundary
constraint p,(t;) =0 and p,(t;) = v;. We assume all vehicles are identical, and each vehicle's
acceleration is limited in [Q <0,a> 0], and its speed range is [0, 7]. We say a trajectory section p

is kinetically feasible if the following kinematic constraint is met.
0<p(t)<va<p(t)<aVte (—ow,0) (1)

A vehicle n € N\{1} should always be at least a minimum space separation s (which is usually the
summation of the length of a vehicle and a safety buffer) behind its preceding vehicle (n —1)'s
location a reaction time 7 (or a communication delay) ago. We call the trajectory obtained by
translating any p rightwards by 7 and downwards by s the shadow trajectory of p. This shadow
trajectory is denoted by adding a superscript 's ', i.e., p®, denoting the shadow trajectory of p. Then,
this safety constraint can be stated as

Pn(t) < pp_1(t),Vt € (—00,0),Vn € N (2)

We let 1;,, denote the start of next green time and define G (t) as the function that finds the next 1;,.
G(t) =t indicates that time t is in a green phase, or otherwise G(t) > t. Let p~1(l) denote the
first time when trajectory p(t) arrives at location [. Then, p~1(l) denotes the time when this vehicle
exits the highway segment location [ (i.e., passing the stop bar), and it has to be during a green time.
We call this the green exit time constraint.

G W) =p™'@) 3)
Any trajectory p,, Yn € N needs to satisfy constraints (1) — (3) simultaneously to be a feasible
trajectory.
2.2 ITIC Problem

Unlike single approach trajectory control problems (e.g., Ma et al., 2017), at a signalized intersection,
a traffic signal needs to assign the right-of-way to vehicles from different approaches such that the
total delay, the number of stops or other performance measurements can be minimized. We consider
an intersection and a set of possible vehicle movements as shown in Fig. 2. Combinations of non-
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conflicting movements that allow safe passage through the intersection are called phases PH. The
cardinality of this set is denoted as |PH| and individual phase is denoted by @. In this study, |PH| =
4 and PH = {0, 0,03, 0,}. Other phases are certainly possible including combinations of
movements 1 and 2, 3 and 4, 5 and 6, and 7 and 8. We use y to indicate the minimum green time and
r to represent effective clearance time. It is assumed that r < y.

2 5

D — |_i 4| |8
6 [ 7
¢, $2 $3 N

Fig. 2. Illustration of the 4-phase signal timing design considered in the paper

Performance measures are identified for the ITIC problem. The first measure is total intersection delay.
In this study, vehicle n’s delay is considered as the extra time vehicle n needs to traverse the segment
as compared with the expected time traveling at entry speed without stopping at the red light (t, +

1%). When trajectory vector P = [p,].en 1S given, the corresponding average vehicle delay can be

formulated as:
D(P) = 4 Bnen (P (L) = (7 +32) 4)

Note that D(P) is usually a positive value for regular traffic because, after entering the segment,
manually driven vehicles usually keep their current speed and are delayed when they have to stop at
the red light or at the end of a queue. In this study, however, we will use the shooting heuristic algorithm
(Ma et al., 2017) to plan CAV trajectories, and these vehicles can accelerate to the speed limit and aim
at no stops at the intersection. Therefore, it is likely that D(P) can take negative values, indicating
generally early departure from the intersection. Alternatively, the speed limit can be used as the desired
speeds to replace v, in Equation (4), and in that case, the performance D(P) will only take non-
negative values.

Also, note that here we overload notation N to indicate the total number of vehicles on all movements
that are assigned to a phase @. All the following performance measures should be calculated
considering all vehicles controlled by a signal phase @ which may concern multiple movements as
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illustrated in Fig. 2.

Similar to intersection delay, we can also use the total travel time of all vehicles to complete traversing
the segments. When trajectory vector P = [p,].en 18 given, the corresponding average travel time
(per vehicle) can be simply formulated as:

T(P) =+ Tnen(t(n) = pr(L) — £51) ()
where t(p,) is the travel time for vehicle n.

In many cases, reducing fuel consumption and pollutant emissions are also important goals for
intersection control, particularly when trajectory control is possible. To measure consumption, the VT-
Micro model (Ahn et al., 2013) was used, incorporating the speed profiles of the probe vehicles as
shown in Equation (6).

e (i 0,50 (0)) = exp {Zin0 B Kig(5o O) 13 O™ ") (15 OL2 S0v72) } (@

Where coefficient K;;(p,(t)) depends on the sign of p, (t), the type of vehicle, and the measure-of-

effectiveness (MOE) (e.g., fuel consumption). Model parameters used in the calculation are listed in
Ma et al. (2017).

Other performance measurements, such as safety as measured by surrogate safety measures (e.g.,
inverse time-to-collision) can also be applied. Ma et al. (2017) provides a detailed discussion of each
of these measurements and how they can be effectively evaluated for real-time application without the
need to evaluate fuel consumption and safety measures at discrete time points (e.g., 0.1 seconds). Due
to space constraints, this paper will not discuss the expedited performance evaluation. Interested
readers can refer to this work for details.

3. Methodology

This section introduces the main components of the ITIC methodology proposed in this paper. We first
revisit the shooting heuristic (SH) previously proposed by the authors, and this algorithm is used to
efficiently construct trajectories for a stream of traffic. Next, we introduce the core contribution of this
paper, the DP-SH algorithm, which uses dynamic programming (DP) to obtain an optimal signal timing
plan while considering vehicle movements as constructed by the SH algorithm. The last step is to
optimize CAV trajectories given the optimal signal timing plan, and this optimization can be based on
various performance measures (e.g., travel time, delay and/or fuel consumption).

The proposed ITIC solution method is a two-step approach. Step 1 is to obtain an optimal signal timing

plan that minimizes intersection delay (with consideration of the interactive relations between the

designed trajectories and the signal timing plan). Step 2 is to design optimal trajectories for the signal
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timing plan developed in Step 1 for various performance measures.
3.1 Revisit of Shooting Heuristic

This subsection briefly reviews the SH algorithm from Zhou et al. (2017), and interested readers can
refer to it for detailed algorithmic descriptions and theoretical property analyses. The SH algorithm
visits all N wvehicles steering in the segment sequentially, and entry boundary condition (vy,t,) of
each vehicle at location 0 is recorded. Based on the entry boundary condition and given parameter set
(a’,a’,ab,al,v), a feasible trajectory can be designed using the SH algorithm for each vehicle as a
piecewise quadratic function. Each two consecutive quadratic segments in the same trajectory are
tangent to each other. Each trajectory is differentiable everywhere and does not contain any speed
jumps. Fig. 3(a) and (b) show the forward shooting process (FSP), under two conditions, respectively.
For each vehicle n, FSP shoots two sequential quadratic segments at first, as shown in Fig. 3 (a). The
first segment radiates from location 0 with entry boundary condition (v,,t;;), and then reaches a
target cruising speed v € [0, V], where ¥ is the maximum allowable cruising speed, with a forward
acceleration a’. Note that in this paper, without the loss of generality, we assume v = ¥ for through
movements and v = 97 for turning movements, where 9 < 1. It takes £, = (v—v;)/a’

seconds to reach target speed at location p;, = v, &, + %&f t,. The second segment is simply cruise

remaining with constant speed v until the vehicle exits location L at:

- _—, = af _
vn— [(vp)2+2al L L < v2—(v;7)?

ttw,a’):=t, + af o 2af (7)
L w , oOtherwise
v 2afv

2l

(a) (b) (c)
Fig. 3. (a) Forward shooting process without activating safety constraint; (b) forward shooting process
with activating safety constraint; and (c) backward shooting process

The safety constraint is tested against this candidate trajectory. If the safety constraint is not violated,
i.e., the n™ vehicle is always below the shadow trajectory of the preceding vehicle, this candidate
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trajectory will be returned as the forward shooting trajectory of vehicle n denoted by p,fl . Under this
scenario, the candidate trajectory p,]; is always below the shadow trajectory p;_; of the preceding
vehicle, which is shown using the red solid curve under the green dash curve in Fig. 3(a). Otherwise,
if the candidate trajectory violates the safety constraint, as shown in Fig. 3(b), the candidate trajectory
should smoothly merge into the previous shadow trajectory p3_, at a forward deceleration a/ .This
process will create a merging segment, and these three segments merge together and become a smooth
curve as the forward shooting trajectory p,{ . When the forward shooting trajectory p,’: is constructed,
the green time exit constraint will be tested against p,];. The SH algorithm compares the actual exit
time of trajectory pfl and its corresponding time phase calculated using Equation (3). If the vehicle
n exits during the green time, there is no need to revise p,]: and it will be regarded as a feasible
trajectory of vehicle n, noted as p,,. Otherwise, if the trajectory p,]: runs into a red light, a backward

shooting process (BSP) will be activated to revise p,]: . This segment shifts rightwards horizontally to
the start of the next green phase as the initial segment of a backward shooting trajectory pk. Then,

BSP shoots backwards along this initial part at a backward acceleration a®. When pL gets close

enough to p,{ , BSP can shoot backwards a smooth merging segment at a backward deceleration aP.

A merging segment will be constructed from p2 to p,]; and then becomes tangent to p,’:, as shown

in Fig. 3(c). As a result, merging p,{ and pl generates feasible trajectory p,,. This loop of FSP and
BSP is consecutively executed by the SH algorithm for all N vehicles, and a feasible trajectory vector
[Pr]lnen Will be generated.

Note that the entire process of the SH algorithm deals with no more than 7n,V¥Vn € N quadratic
segments (Ma et al., 2017) in the construction of a single trajectory, and every segment is analytically
solvable. This indicates the efficiency of the algorithm and makes it possible for large-scale practical
applications. Further, only five variables, including four acceleration rates {c_lf ,al,ab, ab } and the
target speed v, need to be determined to control the overall smoothness and corresponding
performance. Because the algorithm is efficient, parsimonious, and simple to implement, it is then
possible that the proposed DP-SH optimization framework can use SH as a sub-routine. The steps of
the SH algorithm are shown as the following pseudo code. The computational complexity of the
Shooting Heuristic algorithm is o(N?), and the computing space complexity is also o(N?) (Ma et
al., 2017).

Algorithm 1: Shooting Heuristic

Define segment length L, safety buffer s, reaction time 7 as a global variable.

Initialize acceleration rates (df , gf , ab , gb) and target cruise speed v.

N <« number of vehicle .

[v;\,;t;,] <« entry boundry condition .
P« O % Set trajectory vector
For n=1to N

If v, <v

—next

1% <~V

n
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next
tn

1t

n n

p/V PlotSegment(c_zf ',V”ex’,t””’) % Plot first segment of FSP

pe it (va)

n

p! @) PlotSegment(O,v,t,’;ex’ ) % Plot second segment of FSP

p] < merge(p]".p]?|
Else

pl <« PlotSegment(O, v, f;)
End

If p/ (t; it ) crosses or overlap p. (tn_ it ) %If p! violates safety constraint
Vay < Diff (vjfl,vn) % Calculate the velocity gap between p;_; and candidate p,};

Ly < MergeT ime(t' { +) % Calculate the time range of merging

no’n

p’ (merge) PlotSegment( a’ ’,Vdm,fd[ff) % Plot forward merging segment

p] < merge(p]p]" ™)

End
% Entire FSP has been executed and a forward shooting trajectory p,{ has been constructed %

If G(p,'(L))>p, (L)
Pl ShiftRightwards(p[ (zfn*:oo),G(p;1 (L)))
d’ « FindDistance(p[,pi’)

While d” > merge range

If v, <v
P« PlotSegment(ab,Vn |, )
Else
P PlotSegment(O,v, fn )
End
d’ « FindDistance(p[,pf )
End
pf(merge) “«— PlotSegment( gb,\_/diﬁ,fdm ) % Plot backward merging segment

9} < merge( . 1)
p, < merge(p].pl)
Else
P, < p)
End
P(n)<p,
End
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3.2 Dynamic programming framework with SH as a subroutine

With a given signal timing plan or predictable timing plan, the SH algorithm can construct P =
[pn]nenWith parameter set {C_lf ,a’,ab, ab, v}. Getting the signal timing plan, however, is a difficult
problem itself because it is based on predicted vehicle movements in manual traffic or designed
trajectories in automated traffic. Different signal plans may result in quite distinct automated vehicle
trajectories because the signal timing optimization and trajectory optimization are two intertwined
problems and need to be considered simultaneously. In this study, we use dynamic programming (DP)
to optimize signal timing and phasing with the SH trajectory construction algorithm as a subroutine
(DP-SH). The SH algorithm is extremely efficient as proved in Ma et al. (2017), and therefore the DP-
SH algorithm can still be applied in real time.

The DP algorithm is based on breaking a decision problem into manageable decision stages and
computing an appropriate performance measure in a recursive manner. The recursion may be
performed in a forward fashion, starting from the initial decision stage; or in a backward fashion,
starting from the final decision stage. Similar to Sen and Head (1997), the DP-SH algorithm in this
study uses a forward recursion. In this setting, a value function for any stage represents an accumulated
measure of effectiveness for the current and all previous stages. In specifying a DP formulation, we
must define the appropriate state variables, decision stages, and the recursion necessary to compute
the value functions.

In this study, the recursion is based on using phases as stages. Starting with an initial phase, DP-SH
treats each phase in a cycle as a stage and optimizes over a planning horizon to obtain an optimal plan.
As introduced in Sen and Head (1997), DP-SH allows us to skip phases whenever it is advantageous
to do so, and therefore has more flexibility for the optimization problem.

We use similar notations as in Sen and Head (1997) when necessary for comparison purposes and use
new notations to cover additional elements for our new problem. We use j as the index for stages of
the DP-SH. Let x; be the control variable denoting the amount of green-time allocated to stage j;
and s; be the state variable denoting the total number of time-steps that have been allocated after the
completion of stage j. Use X;(s;) to denote the set of feasible control decisions, given state s;;
fi(sj,xj) to denote the performance measure at stage j, given state s; and control x;; and v;(s;) to
denote the value function (cumulative value of prior performance measures) given state s;. Therefore,

given the state variable s;, the control variable x; can assume the following values in set X;(s;):

{O}I Sj_r<y

Xi(sj) = { )]

{O, vy+1..,s— r}, otherwise
The use of y as the smallest non-zero value that can be assigned to the control variable x; ensures
the satisfaction of the minimum green-time requirement. We use the following relationship between

two consecutive stages of the DP-SH due to the clearance time 7
14



Sji-1 = Sj — hj(x;) )

0, if x;=0

Where hy(x;) = {xj + 7, othejrwise

In this study, we consider the average travel time as the performance function which is calculated using
Equation (10). This establishes mobility as the main objective when designing signal timing and
phasing. Other performance measures, such as fuel consumption and safety, can also be applied with
increased levels of problem complexity. In order to ensure the algorithmic efficiency for real-time
implementation, we leave fuel consumption and safety during the final optimization of vehicle
trajectories when the signal control has been determined.

(s 2) = s (Zres T(PIow) (10)

pH=1NPH

where T(P),, is calculated by Equation (5), representing the average travel time for each intersection
movements with constructed trajectory sets {Pys, Py2, Pys, Pys}, Tespectively, with control x; at

stage s;.

We now present the steps of the DP-SH algorithm. There are two parts of the algorithm: forward
recursion and backward solution retrieval.

The use of the forward recursion is also in compliance with the problem nature because the trajectories
are built sequentially. Thus, the subset of the solution to a problem at a later stage is still the optimal
solution to the earlier subset of the problem. This is reflected in the forward recursion as shown in
Equation (11). Note that at each stage, only trajectories that can pass the intersection during this stage
are built, and the corresponding f 1is calculated. This ensures that the earlier constructed solutions are
still solutions to the trajectory construction at later stages. Actually, if the computer storage space is
available, the trajectories built at each early stage (j,s;) can be stored along with v;(s;) such that
future stages can continue the trajectory construction without rebuilding the trajectories that have been
constructed when calculating v;(s;).

Uj+1(5j+1) = ij+1(vj(5j) + fj+1(5j+1:xj+1)) (11)

The Algorithm 2 below shows the pseudo code for the proposed DP-SH framework. We consider a
planning horizon of H and step size & can be indexed by € € [1, H], which reflects the granularity
of our algorithm.

Algorithm 2: DP-SH Framework

Define time horizon H as ga lobal variable.
v, (0)«0

j<1

s, <0
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For s, =r step¢ to (H _SH) % Start forward recursion
While x; e X, (s,)

P« ShootingHeuristic(x‘ ; )

1 |PH|
fj(sj:xj) T T E T(P)py
|PH|
ZPH:l NPH PH=1

Loop
Vi (Sj ) < ’ﬁl/”(fj (Sj’xj ) Vi (Sj—l ))

x; (s ; ) «x, % fcj is the corresponding control variable to the optimal solution in this stage

If s,=H-s,,
break
L (H)=v . (H
Else if (V‘H( ) Vj( )) <o
|Vj—1 (H )|
break
Elseif j>||H|/r]
break
Else
j=j+l
End
End
S comptere <= J %o record complete stage j as |

For j=J step —1to 1 % Start retrieval

s;l = s; —h; (xj (sj )) .
End

The later stages allow more phase changes for the same values of the state variable, and the value
function always improves, i.e., vj_;(H) = v;(H). Therefore, the forward recursion will stop when the

percent change from v;_;(H) to v;(H) is less than a threshold value o. In this study, we use o =

0.05. Then, the DP-SH framework retrieves an optimal solution for determining the optimal trajectory
of states and the associated optimal controls.

The fundamental difference of this method from the adaptive signal control system (Sen and Head,
1997) is P « ShootingHeuristic(x;). They make assumptions on a vehicle arrival table based on
certain short-term traffic predictive technology. The accuracy of the arrival table significantly affects
the actual system performance. This study, however, designs trajectory in each substep in forward
recursion, and trajectory design is a part of the algorithm itself. The trajectory design using the SH
algorithm considers kinematic constraints, thus it is likely that vehicles’ actual trajectories can be close
to designed trajectories, increasing the actual effectiveness of the algorithm. Also, it is worth
mentioning that any small changes in signal timing may change vehicle trajectories, and such
interaction and the iterative process is only possible because of the extremely efficient SH algorithm.
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Note that in this step, SH parameters are predetermined. While the next section will discuss methods
for identifying these parameters for trajectory optimization, reasonable initial values of these
parameters can be used in order to obtain an optimal signal timing and phasing plan. In fact, previous
work (Ma et al., 2017) found an interesting distribution of the optimal parameters. For example, the
most frequent optimal values of @/ are around 1 m/s?.

3.3 Trajectory Optimization

The previous section uses average vehicle delay (calculated by Equation 3) as the performance function
when optimizing signal phasing and timing. However, depending on actual conditions (e.g., traffic
congestion, segment length, market penetration, cycle length), the input parameters may need to be
optimized from case to case, particularly from the perspective of fuel consumption and safety.

After an optimal signal timing solution is obtained through DP-SH, we will run a customized numerical
gradient-based approach with SH as a subroutine to optimize the five parameters (a’,a’,a®, a?, v)
for best system performance in terms of travel time, fuel consumption, and safety (Ma et al., 2017).

Fig. 4 illustrates how the SH-based vehicle trajectory optimization framework works. Basically, we
first initialize a small set of control parameters and feed them to the SH algorithm to generate a feasible
trajectory vector P. Then, system performance M (P) is evaluated (potentially using expedited
methods [Ma et al., 2017] based on the analytical properties of the SH solution). The evaluation result
is then fed to the central optimization algorithm. This algorithm checks whether P is already optimal.
If yes, it returns P as the optimal solution and sends back the corresponding parameter set
(a’,a’,ab, al,v). Otherwise, it updates the control parameter values based on a customized numerical
gradient based method. This loop will start from different start parameter sets and each loop generates
an optimal solution. The central optimization algorithm compares all of the solutions and then returns
the final optimum and its control parameters. For left-turn vehicles, a penalty parameter is added to
the optimization objective function if the desired cruise speed v exceeds a given threshold (i.e.
turning speed limit v*). This penalty parameter ensures the left-turn vehicles do not travel too fast
when they traverse the intersection, while still considering overall optimality in terms of travel time
and fuel consumption. The purpose of using multiple starting points of the optimization is to avoid
local optimal results because the objective function is non-convex. Please see Ma et al. (2017) for a
detailed description of this algorithm and how to evaluate different performance measures in an
expedited manner online.
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3.4 Shooting Heuristic with Human-driven Vehicles
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Fig. 4. SH-based vehicle trajectory optimization framework

When CAVs and human-driven vehicles coexist in the traffic, the integrated trajectory and intersection
control needs to take into account potential trajectories of human-driven vehicles and their impacts on
and interactions with the signal control and CAV trajectories. In this study, we assume there are vehicle
detectors upstream of the intersection at the beginning of the trajectory control section, so the
information on the human-driven vehicle entry boundary information is known. If these human-driven
vehicles are CVs, their information can be obtained at any time. Therefore, the human-driven vehicle
trajectories need to be predicted efficiently based on the entry information. Traditional models such as
Intelligent Driver Model simulate trajectories second by second, and the computational burden makes



it difficult to be implemented in real time with a large number of vehicles at the intersection. In this
paper, we propose human-driven vehicle shooting heuristic (SH) to predict their trajectories under
given entry boundary conditions.

'l

1
S
J b
p” ' p”
I
!

stop
n

merge
n

Fig. 5. Human-driven oriented backward shooting

As Fig. 5 shows, the trajectory of a human-driven vehicle is also firstly constructed by the FSP. If the
human-driven vehicle crosses the intersection during a green phase, its trajectory prf will be kept as

a feasible trajectory. Otherwise, if the existing trajectory p,’; violates the green time exit constraints,
as the red dash line shows in Fig. 5, a human-driven vehicle BSP (HD-BSP) will be activated to revise

the existing infeasible trajectory p,{. The segment above the stop bar also shifts rightwards
horizontally to the start of the next green phase and constructs the initial segment of the backward

shooting trajectory p2. But different from the regular BSP discussed in Section 3.1, the HD-BSP

P which is

shoots horizontally from the start of the next green phase to a specific stop point p;w
calculated by the HD-BSP along with the trajectory p,’: at a forward deceleration a/ € [Q, 0), and

the original trajectory under the stop bar cannot be changed. Then HD-BSP shoots backwards from the

p

stop point p,ito at a backward deceleration —a/ to merge into the p,{. As a result, a feasible

trajectory p,, in Fig. 5 can be generated by merging p,’: and pZ, and the feasible trajectory p,, will
be added into the feasible trajectory vector [p,]nen- Fig. 6 shows the process of HD-BSP.

Yes
o ______ | _
— . ) L | Shift segment
-gfee""“*ff’f'z ~ No | calculate stop point PP :
IL _______________________ HD-BSP |

Fig. 6. Human-driven oriented backward shooting
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If a CAV follows a human-driven vehicle, the CAV trajectory will be revised with an additional step
in BSP, as shown in Fig. 7. The human-driven vehicle left the intersection at the point pP.(t,, L).
The point pHZP. on the human-driven trajectory Py, is the point that the human-driven vehicle
reaches the target cruise speed v with the acceleration @’ after it crosses the intersection. The point

pHD . can be depicted as a tuple piD, ( +——,L +3 ) Then, the CAV can reach the target speed

—faa )
v atthe point pSAY. (tL + % +1,L+ ;7 — s) due to the car-following safety constraints. If the CAV

follows the human-driven vehicle closely, it may end up following the human-driven vehicle’s shadow
trajectory, which may be less energy efficient and incur a higher level of safety risk (inverse time-to-
collision). Instead, in our method, similar to regular SH, we still let the CAV to pass the intersection
(stop bar) with the target cruise speed v, and then catch up and form a “platoon” with the human-

driven vehicle with the constant speed v . The point pSAY can be analytically solved as

pEAY (tL +2 +2a 4+t L) Then the segment between points pSiy, and pSAY will be used as the

CAV

initial segment of the BSP. The wasted green time t,,, i.e., the distance between pfi2, and pSaY,

v+2as
2afv

acceleration a@’. In our DP-SH framework, the target cruise speed v and forward acceleration a’

can be calculated as t,, + 7 and it is correlated with the cruise speed v and forward

are both optimization variables as mentioned. The proposed optimization process in Section 3.3 will
eventually select the optimal values for v and @/ that minimize the system composite costs (i.e.,
travel time, fuel consumption and safety risk).

HD

max cav

max

ptP cav
init Pt

pHD pCAV

Fig. 7. Human-driven oriented backward shooting
4. Results and Discussions

4.1 Computational performance
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The computational efficiency of the SH algorithm and the SH-based optimization framework are
discussed in Ma et al. (2017), and both algorithms are applicable in real time. This subsection
investigates the computational complexity of the proposed DP-SH algorithm. The default values for
the input parameters {C_lf ,al,ab, ab, 17} are shown in Table 1. For left-turn movements, we assume
9 = 0.8. Also note that without the loss of generality, we consider one movement in each of the four
phases in the case study for presentation clarity. This does not affect the insights we obtained from the
case studies. Particularly for computational efficiency analysis, since each movement can be
independently evaluated, the actual additional computational time can be ignored when the
computation for each movement in a phase is in parallel. The only difference is the addition of
performance measures of different movements controlled by the same phase.

Table 1 Default input parameter values

Parameter  af(m/s?) a’(m/s?) af(m/s?) aP(m/s?)  ©(m/s?)
Value 1 1 -5 -5 30

We investigate the DP-SH algorithm’s complexity with different input parameters (L, N, f;, &, H).
Table 2(a) shows computational performance results by varying L and N, which represents the
segment length and number of vehicles in each segment correspondingly. It can be found intuitively
from Table 2(a) and (b) that the number of vehicles N per phase does not affect the computational
time significantly. That is because the DP-SH algorithm considers vehicles sequentially only for a
specified planning horizon. It means that a limited number of vehicles will be calculated in DP-SH
meaning vehicles that enter this segment after the current stage will be not considered in this stage.
The algorithm, however, still needs to handle the vehicles that remain in the segment in the DP points
and calculate the travel time of these vehicles, and therefore the computational time still increases to
some extent. Segment length L also has a negligible impact on the computational time; however, the
number of vehicles per time unit, which is reflected by saturation rate f; € (0,C/G] (Ma et al.,
2017), affects the computational time to some extent. That is because the more congested the road
segment is, (i.e., higher values of f;) , the more vehicle trajectories need to be constructed in each
stage.

In contrast to other parameters, as shown in Table 2(c), the planning horizon H and step size ¢
significantly affect computational time, in both sparse and congested scenarios. Planning horizon H
impacts computational time mainly because at each stage, DP-SH scans all possible values of s;, and
the algorithm evaluates all possible values of x; (as shown in Equation 6) for each s;. The
extension of the planning horizon means more stages, and in each stage, larger sets of possible values
of possible s; and x; will need to be considered. Thus, more vehicles can be taken into
consideration, and more trajectories can be constructed and optimized. For the objective of reducing
total average delay, extending H is effective; but, for the purpose of large-scale applications, a
longer H consumes more time for computation and makes DP-SH infeasible. Based on a
comprehensive consideration with these two objectives, we set the planning horizon at H = 122 s.
We use this planning horizon in reporting results in Table 2(a) and (b).

The computational times with the planning horizon of 122 seconds are about 9.75 seconds and 15.19
seconds for 10-vehicle-each-phase and 20-vehicle-each-phase scenarios, respectively, using a regular
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office laptop (Intel Core 17-8550U CPU, 1.80 GHz processor frequency, and 8 GB DDR 4 RAM).
This is close to or less than 10% of the planning horizon and can be considered as applicable in real
time. It is reasonable to believe this algorithm can be much faster when using parallel computing on
a powerful server.

700

600

500

400

300

200

Computational Time (sec)

100

1 2 3 - 5 6 7 8
Step Size (sec)

Fig. 8. Sensitivity of computational time to parameter step size &

Table 2 DP-SH computational performance

(a) Computational Time (sec)
Segment Length L(m)
400 800 1200
N
10 9.75 8.16 7.71
20 15.19 10.51 13.43
30 18.83 15.03 17.11
50 23.16 19.48 18.21
(b) Computational Time (sec)
Saturation Rate f;
0.6 0.9 1.2 1.5
N
10 11.39 9.72 9.88 9.75
20 12.57 16.56 15.83 15.19
30 16.64 18.06 16.51 18.83
50 18.01 17.59 23.96 23.16
(c) Computational Time (sec)
fs=0.6 fi=15
Planning Horizon (sec)
26 50 74 98 122 26 50 74 98 122
£
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6.83 69.14 | 177.27 | 413.38 | 623.68 | 20.41 | 50.31 | 149.21 | 300.14 | 575.87
4.98 16.69 | 47.92 | 8549 | 161.81 | 7.84 13.08 | 40.63 | 91.36 | 147.55
3.19 9.68 13.1 2444 | 44.01 4.23 6.11 1291 | 29.75 | 51.62
2.79 4.64 6.03 8.53 12.57 | 3.11 3.59 5.43 7.98 15.19

(o ol I I NS I

Clearly, larger step size &€ can result in significantly less DP-SH evaluation scenarios and therefore
reduce computational time effectively, but the final results may be suboptimal as a side-effect. This is
because the use of a large time step size may not be able to scan the optimal solution due to the coarse
resolution. As expected, as step size & increases from 1 to 8 seconds, the computational time
decreases almost exponentially, which as shown in Fig. 8.

Note that in this paper the shortest segment length we consider in the sensitivity analysis is 400
meters because no SH solutions can be guaranteed for shorter segments. This is because in some
cases shorter segments may not allow vehicles to accelerate to the target speed v when they exist
the intersection stop bar. The infeasibility usually occurs when the traffic is heavy (e.g., existing
queues due to red lights). Then vehicles need to slow down to a complete stop, but they cannot
accelerate to the target speed before the intersection because of the constraints (1) on maximum
accelerations. As Zhou et al. (2017) indicated, for any given entry point (0,v,,t,) and feasible state

point (I, v,,t,), the set of feasible trajectories T, has a lower bound trajectory p (ie.,the

vehicle having to decelerate to zero speed first). If we set the exit point (L, v,f) as the feasible state
point and let vehicle reach the target speed v at the intersection stop bar, a minimum segment length
Lmin can be proposed that ensure T, & @ for all vehicles. Under this scenario, the lower boundary
trajectory is formulated as:

vg v
20 te[to, 0],
—p2 .
PO=1 32 . re[Zi-Y; (12)
—v8 4 v? Py ]
e Ton tE|E-E

in which the subject vehicle leaves the intersection at t = £. Therefore, the minimum length Ly,;, =

1,2 2
% + % Given a set of input parameters, L,,;, is positively correlated to the entry speed. When

-v2 v —(30m/s)?

vy = v and other parameters take the values in Table 1, L,,;,, = e 122 = x5 m/sh)

30 m/s?
2X(1.5m/s?)

= 390 m.

Under these highly congested cases, the backward shooting component of the algorithm may find a
start of the backward shooting segment upstream of the start point of the segment, and therefore not
feasible. Then the results are not comparable to other scenarios with feasible SH solutions. The
differences in effectiveness are not only caused by the segment length but also attributed to the fact
that, due to traffic congestion, there are no feasible SH trajectories and the vehicles can only slowly
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pass the intersection (with reduction of green time capacity). When urban signalized intersections are
close-by, it is critical to consider optimization of trajectories through multiple traffic signals
simultaneously. We leave this topic for future exploration. In this study, we consider three different
segment lengths: {400,800,1200} meters.

4.2 Scenario analysis

This section conducts a further simulation analysis to examine the algorithm’s performance further.
We first use the DP-SH algorithm to obtain the optimal signal timing plan that minimizes the average
vehicle delay. Then, the corresponding timing plan is used in the numerical gradient-based
optimization approach with SH as a subroutine to obtain optimal trajectories that minimize weighted
average travel time and fuel consumption (refer to [Ma et al., 2017] for how to determine weights). In
this case study, we use step size € = 8 seconds, because this granularity also generates near-optimal
results and significantly reduces computational burden. The results of DP-SH with default SH
parameters and the results of final trajectory optimization will also be reported.

We aim to compare DP-SH with scenarios in which the intersection is controlled by adaptive signal
control (ASC). The ASC algorithm used in the study is similar to the Controlled Optimization of Phases
at an Intersection proposed by Sen and Head (1997).

Table 3 shows the simulation results of scenarios with different segment length L and saturation rate

f.. The segment length L has three levels, and saturation rate f, has four levels, so there have

twelve scenarios. As we can see, the SH-DP with default SH parameters can significantly improve both
travel time (TT) and fuel consumption (Fuel). Compared with ASC results, the optimal trajectories
reduce the travel time by 23.63% to 35.72% and fuel consumption by 11.75% to 31.5%. Even
compared to the SH-DP results, there still have savings in fuel consumption by 10.13% to 17.55% with
only limited sacrifice of travel time because the optimal case aims to smooth the trajectories more and
avoid large accelerations. Note that it has been proved in Zhou et al. (14) that large acceleration
parameters can result in best travel time performance. However, optimal trajectories can still achieve
good travel times but significantly less fuel consumption.

Table 3 Simulation results and benefits

ASC SH-DP Optimal
L f TT Fuel TT Fuel TT Fuel
(meter) * | (second) (L) (second) (L) (second) (L)
0.6 | 114.1036 0.1802 75.0557 0.1713 78.2417 0.1460
0.9 | 1149188 0.1969 75.9389 0.1671 76.3282 0.1420
400

1.2 | 120.5917 0.1968 75.5210 0.1592 78.6325 0.1348
1.5 | 122.3923 0.1901 75.6687 0.1603 78.6720 0.1355
800 0.6 | 138.6885 0.2563 94.4473 0.2126 98.8671 0.1821
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400 -

350 [

300 [

250

200 [

150 |

100 [

50

0.9 | 1153372 | 02431 | 79.2902 | 02188 | 82.5938 | 0.1804
12 | 116.9924 | 02421 | 77.0059 0.211 79.071 0.1809
1.5 | 114.7237 | 02413 | 763979 | 0.2125 | 80.2855 | 0.1829
0.6 | 117.2056 | 02707 | 82.8195 0.269 87.7733 | 0.2389
0.9 | 119.7548 | 02748 | 90.1766 | 02666 | 91.4602 | 0.2396
1200 12 | 128.9281 | 0.2832 92.037 02732 | 92.1662 | 0.2421
1.5 | 130.7628 | 0.288 92.3627 | 02692 | 94.5745 | 0.2401
Optimal - ASC Optimal - SH-DP
L (m) /. TT Fuel TT Fuel
0.6 -31.43% | -18.98% | 4.24% | -14.77%
0.9 -33.58% | -27.88% | 0.51% | -15.02%
00 12 -34.79% | -31.50% | 4.12% | -15.33%
1.5 35.72% | -28.72% | 3.97% | -15.47%
Percent 0.6 28.71% | -28.95% | 4.68% | -14.35%
Change 0.9 -2839% | -25.79% | 4.17% | -17.55%
500 12 32.41% | -25.28% | 2.68% | -14.27%
1.5 -30.02% | -24.20% | 5.09% | -13.93%
0.6 2511% | -11.75% | 5.98% | -11.19%
0.9 -23.63% | -12.81% | 1.42% | -10.13%
1200 1.2 -28.51% | -14.51% | 0.14% | -11.38%
1.5 27.67% | -16.63% | 2.39% | -10.81%
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Fig. 9. Time planning and trajectory of scenario L = 400m, f; = 0.6

Fig. 9 shows example trajectories and the optimal timing plan using our DP-SH approach under the
scenario L = 400 m, f; = 0.6. Fig. 9(a) to (d) are movements under adaptive signal control scenario.
Smoother trajectories in Fig. 9(e) to (h) are results from final trajectory optimization results and
expected to generate less fuel consumption and safety concerns. More importantly, it can be seen from
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all cases that DP-SH successfully distributes green times among the four phases when necessary, and
green time assignment is well coordinated with the trajectory construction algorithm. This optimal
algorithm allows vehicles to stop in the segment to generate optimal solutions. We see that the signal
timing is adjusted such that multiple trajectories can pass the intersection at the beginning or the end
of the green.

There may be concerns that the algorithm let vehicles stop in the middle of the segment, and the
vehicles seem to be queuing to near the beginning of the segment, indicating a risk of spillback.
Actually, this algorithm will prevent the spillback by increasing the acceleration values. For example,
in Fig. 9(h), the fifth vehicle is commanded to stop at location 150 meters because the optimized
acceleration after the stop is relatively small to save fuel and the algorithm predicts that there will be
no spillback. In a hypothetical scenario when a possible spillback may occur, the algorithm will
command a larger acceleration such that the fifth vehicle in Fig. 9(h) will stop downstream of location
150 meters.

Note again that the default SH parameters used in the DP-SH approach can be further optimized using
the customized approach proposed in Ma et al. (2017), and this process can still generate more than
10% extra reduction of fuel consumption, though the travel time (or throughput) performance is similar.
As our numerical examples show, this optimization process may be stuck at a local optimum, and the
control parameter vector oscillates in a fairly small range. This is due to the non-convexity of the
objective function. Therefore, alternative control parameter vectors are provided to the optimization
algorithm as different start points, and the algorithm selects the final solution with optimal performance
values.

4.3 Mixed Traffic Scenarios

This section shows the results under different CAV market penetration rates. A series of simulation
runs with different CAV market penetration rates can help understand the robustness and effectiveness
of DP-SH for a mixed traffic stream with both CAVs and human-driven vehicles. In this section, the
market penetration varies from 0% to 100% with an increment of 10%. The 0% scenario reduces to all
human-driven vehicles with adaptive signal control, similar to Sen and Head (1997). In Table 5, we
present results obtained under two example scenarios of L =400m, f; =0.6 and L =400m,
fs = 1.2, which represent common urban congested and uncongested scenarios. The sequences of
human-driven vehicles in the traffic steam are randomly assigned for 10 simulation runs under each
scenario.

The HD-BSP assumes that the constructed analytical human-driven vehicles’ trajectories can
approximate the actual trajectories that are obtained using simulation to reduce computational burden.
In order to numerically show the approximation accuracy, we obtain simulation trajectories using
microscopic traffic simulation. Several microscopic simulations were conducted with the same speed
limit and signal phasing and timing. In Fig. 10, the orange dotted line is the human-driven vehicle
trajectory constructed using the intelligent driver model (IDM) with the default parameter set
{a=1.44,b =1.67,6 = 4,5, =2,T = 1,v, = 30} (Treiber et al., 2000). The three dashed lines are
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the human-driven vehicle trajectories constructed using SH with different parameter sets. These three
parameter sets are {@/ = 1.50,a/ = —5.00}, {a/ =1.76,a = —6.60} and {a' =1.31,a/ =
-3.9 7}, which are selected from the former research results in Ma et al. (2017) to represent the most
typical cases of good trajectories. All other six solid lines are human-driven vehicle data collected from
VISSIM simulations. It can be found that these segments of trajectories overlap with each other well.
We generated 15 human-driven trajectories stochastically with the random process in VISSIM. In
Table 4, the differences between the three SH human-driven trajectories and 6 example simulated
trajectories are reported. Also, the average percent differences between the three SH trajectories and
all 15 simulated trajectories are all less than 5% on average. Note that the main difference actually
comes from the variation of VISSIM desired cruise speeds and different types of vehicles (e.g.,
different desired accelerations), though VISSIM car-following parameters are set to similar to what
SH scenarios imply. This indicates that SH human-driven trajectories can well approximate the IDM
trajectories and VISSIM human-driven trajectories and can meet the requirement for a trajectory
planning algorithm. More importantly, constructing SH trajectories analytically are much more
efficient than the simulation, more applicable for online applications.

IDM
=== 1SH (1.50, -5.00)
mmm  1SH (1.76, -6.60)
SH (1.31, -3.97)
Human-driven 1
Human-driven 2
Human-driven 3
Human-driven 4
Human-driven 5
Human-driven 6

Fig. 10. Trajectories Built by IDM, SH and Collected Human-Driven Data

Table 4 Difference Between SH Built Trajectories and Human-driven Trajectories

SH(1.50, -5.00) SH(1.76, -6.60) SH(1.37, -3.97)
Human-driven trajectory 1 0.70% 3.09% 2.7%
Human-driven trajectory 2 1.21% 2.30% 3.46%
Human-driven trajectory 3 4.30% 7.40% 1.51%
Human-driven trajectory 4 2.13% 2.83% 4.43%
Human-driven trajectory 5 1.45% 2.03% 3.65%
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Human-driven trajectory 6 3.78% 6.86% 1.21%
Average of 16 human-driven
. . 3.84% 4.25% 4.54%
trajectories

The human-driven vehicle trajectories can have a major or minor impact on the following CAV’s
trajectory and the signal phasing and timing developed using DP-SH, and the impacts also depend on
the distances between the human-driven vehicle and the following CAV. Fig. 11 shows two example
trajectories of the 90% market penetration scenario. In Fig. 11(a), the fifth vehicle is human-driven,
and others are CAVs. It is expected the human-driven vehicle stops at the intersection during the red
light and slowly start up afterward. The following CAV slows down upstream of the intersection, as
commanded by SH, and then accelerates to and passes the stop bar with the target speed v. In Fig.
11(b), the human-driven vehicle is also the fifth vehicle in this stream, and in this case, it does not
affect the following CAV and this situation can be regarded as the “best situation” under this scenario.
In some other situations where the human-driven vehicle are the first vehicle in a traffic stream and it
stops at the intersection for some time, all the following CAV trajectories may be affected, and they
can be considered as the “worst situation”. The DP-SH framework, however, can optimize traffic signal
to avoid stops of human-driven vehicles and CAVs adaptively based on their actual arrival patterns
(i.e., entry boundary conditions).

(a) (b)
Fig. 11. The Influence of a Human-driven Vehicle on CAVs

Table 5 The improvement of DP-SH with different market penetrations

L =400m,fs =0.6 L=400m,fs =1.2
Average Improvement | Improvement Average Improvement | Improvement
MP ) g under best under worst . g under best under worst
1mprovement . . . . 1mprovement . . . .
(% ) situation situation (% ) situation situation
(%) (%) (%) (%)
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TT Fuel TT Fuel TT Fuel TT Fuel TT Fuel TT Fuel
0% 0 0 0 0 0 0 0 0 0 0 0

10% | 3.09 | 6.23 | 1546 | 17.15 0 7.60 | 879 | 2593 | 16.67 | 3.02 | 6.96
20% | 6.19 | 9.82 | 1546 | 17.15 494 | 12.19 | 12.04 | 25.93 | 17.89 | 3.02 | 8.13
30% | 12.47 | 13.12 | 15.46 | 17.15 6.16 | 21.75 | 14.99 | 34.23 | 19.26 | 3.02 | 8.59
40% | 15.56 | 16.15 | 31.43 | 18.98 7.66 | 24.27 | 15.40 | 34.23 | 20.02 | 3.02 | 9.20
50% | 18.76 | 16.84 | 31.43 | 18.98 10.16 | 28.21 | 23.48 | 34.79 | 31.50 | 3.02 | 10.98
60% | 21.95 | 17.55 | 31.43 | 18.98 0 12.76 | 30.03 | 24.54 | 34.79 | 31.50 | 3.02 | 12.70
70% | 21.98 | 18.11 | 31.43 | 18.98 | 0.15 | 15.59 | 30.86 | 28.96 | 34.79 | 31.50 | 3.02 | 14.38
80% | 26.07 | 18.70 | 31.43 | 18.98 | 4.61 | 17.59 | 31.59 | 30.69 | 34.79 | 31.50 | 9.66 | 18.90
90% | 28.08 | 18.81 | 31.43 | 18.98 | 4.61 | 17.59 | 33.21 | 30.95 | 34.79 | 31.50 | 11.49 | 20.68
100% | 31.43 | 18.98 | 31.43 | 18.98 | 31.43 | 18.98 | 34.79 | 31.50 | 34.79 | 31.50 | 34.79 | 31.50

=N NNl el E=AR=]

In Table 5, we report the average, worst-case, and best-case improvements. To obtain these results, we
randomly selected 10 sets of possible positions of human-driven vehicles in the mixed traffic stream.
In this table, we use ASC as the base case for comparison. The results show that DP-SH can
significantly reduce travel time and fuel consumption on average, even at a low CAV market
penetration rates. The average travel time decreases from 3.09% to 34.79%, and the fuel consumptions
reduction ranges from 6.23% to 31.5%. We can see that even under low market penetration scenarios,
the fuel consumption savings due to the improved smoothness of the trajectories are still quite
significant compared with ASC, though the travel time improvements in those scenarios are limited.
Also, the travel time savings under relatively congested traffic (f; = 1.2) are much higher than the
savings under less congested traffic (f; = 0.6), particularly when the market penetration is below 60%.
This is because the less congested traffic can be well handled by regular adaptive signal control, which
can be limited during rather congested conditions. Trajectory control offers the possibility to modify
vehicle arrival patterns at the intersection stop bar and further reduce system delays. Meanwhile, there
are dramatic differences in fuel savings between congested and less congested cases when the market
penetration rate is high. This is also because DP-SH can better handle the congested scenarios than
adaptive signal control and therefore the trajectories of vehicles traversing the intersections can be
smooth instead of having to coming to complete stops. As expected, both fuel consumption and travel
time improvements increase as the market penetration rate becomes higher. The differences in
improvements between the worst and best situations are quite dramatic, and it implies that the sequence
of human-driven vehicles in a traffic stream affects the system performance significantly. Overall, the
results prove that the DP-SH framework can effectively handle the mixed traffic situations without
100% CAV market penetration.

5. Conclusions and Future Research

Vehicle trajectory control and intersection control are two intertwined problems that need to be

considered simultaneously. Advanced connected and automated vehicle (CAV) technologies offer
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better solutions for these problems by both adjusting the intersection controllers and optimizing vehicle
trajectories. This paper applies the joint control at intersections with physical signal controllers (i.e.,
optimizing traffic signal phases and timing) to illustrate the algorithm. Based on former research results
in Ma et al. (2017), the Shooting Heuristic (SH) algorithm can construct near-optimal trajectories for
a platoon of vehicles for one direction with a given traffic signal phasing and timing plan. By adopting
this parsimonious SH algorithm and its numerical sub-gradient-based framework (NG-SH) as a sub-
routine, this paper proposes a framework of dynamic programming with shooting heuristic as a
subroutine (DP-SH). DP-SH can coordinate signal phases and timing and platoons of vehicles in
different directions at an intersection section while optimizing comprehensive performances of travel
time, fuel consumption, and safety. As results show, DP-SH has feasible computational time and
solution optimality performance, which enables DP-SH to be applied in practical real-time scenarios.
DP-SH generates a signal timing plan with given parameters and entry boundary information, and then
constructs trajectories for each platoon of vehicles with NG-SH based on the signal timing plan. In this
paper, numerical examples illustrate that all solutions significantly outperform the benchmark and
adaptive signal control cases for all performance measures. The proposed DP-SH algorithm, compared
to the adaptive signal control, can reduce the average travel time by up to 35.72% and save the
consumption by up to 31.5%. In mixed traffic scenarios, system performance improves with increasing
market penetration rates. Overall, the DP-SH enables this intertwined and infinite-dimensional
optimization problem to be solved simultaneously and efficiently, and it can be considered suitable for
real-time application when related technologies are deployed.

This study reveals great potential for combined signal timing control and vehicle trajectory
optimization. This study can be further extended in several aspects. First, this paper controls
intersections with physical signals. The proposed algorithms can also be applied and tested for
intersection control for signaless intersections and autonomous merge areas. Second, this paper focuses
on an isolated signalized intersection. It is interesting to apply and adapt the method to controlling
busy physical urban signalized corridors. Besides, for real-time application, parallel computation
algorithms, feedback control, and distributed computation need to be taken into account for future real-
time implementation.
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