LOW-RANK MATRIX COMPLETION FOR
DISTRIBUTED AMBIENT NOISE IMAGING SYSTEMS

Danye Xu*  Bingqing Song*  Yao Xie'

Sin-Mei Wu?

Fan-Chi Lin*  WenZhan Song®

* University of Science and Technology of China, Hefei, Anhui, China.
TSchool of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
iDept. of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA.
*College of Engineering, University of Georgia, Athens, GA, USA.

ABSTRACT

We present a new approach to address the “missing data” is-
sue in the distributed ambient noise imaging (ANSI) system,
a promising new seismic imaging paradigm for shallow earth
surfaces. Missing data is inevitable in distributed ANSI: due
to communication constraint and weak signals, not all pairs
of cross-correlation functions between sensors contain use-
ful information (i.e., a significant peak). Without complet-
ing the missing data, we cannot use the conventional ambi-
ent noise imaging methods, which requires to know the com-
plete pairs of cross-correlation between sensors. We show
that the problem can be formulated as a low-rank matrix com-
pletion problem, and leverage the recent advances in this field
to present an efficient algorithm. Simulated and real-data
examples demonstrate the promising performance of our ap-
proach. !

1. INTRODUCTION

ANSI (Ambient Noise Imaging) is a promising new paradigm
for seismic imaging. ANSI makes use of ambient noises
recorded by sensors. The most crucial step in imaging is
to compute pairwise cross-correlation functions between
sensors, and finding the location of “peak” of the cross-

correlation functions, which is used in the subsequent frequency-

time analysis to form images [1]. Compared with conven-
tional active imaging, which usually requires strong sources
that are artificially introduced (such as dynamite explosion),
ANSI uses natural sources of “signals”, which is non-invasive
and more environmentally friendly. The ANSI is particularly
useful for imaging shallow earth structures.

In the recently developed distributed ANSI systems [2] for
real-time imaging, sensors perform pairwise cross-correlation
in real-time using continuous data streams. Due to commu-
nication and computation constraint, we may not be able to
require all sensors to communicate with each other (to form
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N (N —1)/2 cross-correlation function, where N is the num-
ber of sensors). Each sensor is only able to communicate
with their neighboring sensors. On the other hand, in prac-
tice, there will be pairs of sensors where “signal” is missing,
i.e., when performing cross-correlation between these pairs,
there is no significant “peak” in the cross-correlation, which
indicates somehow the signal might be missing (due to sensor
measurement errors, or the signal-to-noise ratio is too weak).
Due to the two above reasons, we are not able to obtain cross-
correlation functions between all pairs of sensors. However,
the conventional ambient noise imaging algorithms require
cross-correlation between all pairs of sensors. Therefore, we
need to complete the missing information: the information
between the pairs of sensors that we are not able to find cross-
correlation.

In this paper, we address the missing data problem in dis-
tributed ANSI, using rank-one matrix completion. In par-
ticular, we show that the problem has a rank-one structure
(which could be explained by the fact that usually there is one
strong dominating signal source). This allows us to leverage
the recent advances in low-rank matrix completion (see, e.g.,
[3, 4]) to solve this problem efficiently. We demonstrate the
promising performance of our approach using simulated ex-
amples and a real-data set measured at Yellowstone Old Faith-
ful geyser.

On a high level, the problem we are facing in ANSI is
related to the delay estimation. However, our problem differs
from the array signal processing (for instance, the well-known
MUSIC algorithm [5]), since we do not have a uniform linear
array as considered in these classic works. Our problem is
also different from the localization using delay estimate (e.g.,
[6]) since we cannot measure the relative delay directly. Our
problem can be viewed as a special case of signal synchro-
nization [7], however, here we focus specially on missing data
aspect of the problem.

2. FORMULATION

Assume there are IV sensors. In ANSI, usually it is assumed
there is one unknown dominant ambient noise ‘‘source”,
which we represent using s(t). Each sensor observes a con-
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taminated and delayed version of the source signal:
Tp(t) = pps(t — 1) + 1 (t),t =0,..., T —1,Yn (1)

where T is the number of samples, and 7, (t) is Gaussian
noise.
In ANSI, the ambient noise source is usually very weak,

so we can only detect the signal by performing cross-correlation

two long recorded sequences (7" is usually large). We are in-
terested in estimating the pairwise delays between sensors:

Anm = Tn — Tm,

using cross-correlation function. The (zero-padded) cross-
correlation between a pair of sensors indexed by n and m is
given by

Prm () = T (£) * T (£) £ 2 (O (t 4 0).
4

where * denotes convolution. Note that due to communica-
tion constraint and missing data, we are only able to observe
a subset of cross-correlation functions in @ C [1,...,N] x
[1,...,N], ie., we only know 7., for (n,m) € Q. Our
goal is to complete A,,,,,, based on observations of r,,,, (¢) on
(n,m) € Q.

sensor2
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Fig. 1. Problem setup for ambient noise imaging, where
rnm(t) denotes pairwise cross-correlation functions, and we
can only observe (n,m) € Q.

3. RANK-ONE MATRIX COMPLETION

First we show the rank-one structure of the problem. Define
the discrete Fourier transform of signals

Xu(k) =3 2a(0)e ™k =0,1,-- T~ 1,¥n,
4

where f, £ onk /T, and i = \/—1. In the frequency domain,
cross-correlation becomes multiplication:

an(k) = X;(k)Xm(k)

. 2
= |S(k)[Pe 2 + Ny (k) k= 0,1, , T — 1. @

where * denotes the conjugate operation, and Ny, (k) de-
notes noise terms, which may also depend on signal. Define
matrices R(k) € CN*N k =0,1,2,--- ,7—1, whose entry
is given by R,,,,, (k). Also define

hy = (6—7'1fk76—7'2f1c’ .. ’e—Tka)T.

From (2), we can show that these matrices are rank-one:

R(k) = |S(k)|2hkh£[ + N(k)v k= O» 17 e 5T - 13
Define the phase angle of a complex number to be 6, and

consider the phase angle of each R(k) € CN*N, k =
0,1,2,---,T — 1, the formula gives an estimation of the lag
time A,,,, = 0(R(k))T/2mk. We construct a matrix R(k),
in which each entry R,,,,,(k) stands for the lag time between
the two sensors in a pair. We can show the matrix is rank-1:

R(k) = [S(k)["hihy! + N(k),k=0,1,---,T =1, (3)
where N(k) is noise, h¥ refers to the Hermitian of hy, and
the vector hy, = (e=T1fk e m2fr .. emTNT,

3.1. Low-rank matrix completion

Now formulation (3) will enable us to use low-rank matrix
completion (LRMC) to infer the missing entries. The com-
pleted matrix can be solved using the following nuclear min-
imization problem (for each k)

min I1X1,
X
Z(i,j)eQ(Xij

where ||X]|, denote the nuclear norm of X, § > 0 is the tol-
erance parameter [8]. We need to solve N — 1 LRMC prob-
lems. There are various efficient algorithms to solve the ma-
trix completion problem (e.g., iterative singular value thresh-
olding [9], using non-convex formulation and alternating min-
imization [10].)

“)

subject to — Ri;(k))* <6,

3.2. Delay estimate based on completed matrices

Finally we relate the recovered matrices to relative delay es-
timates. After solving K matrix completion problems, we
obtain solutions R(k) We can extract the leading eigenvec-
tor for each solution, which can be treated as an estimate for
hy. Let (=) denote the phase angle of a complex number z.
Thus, we have that

B(R()] ) ~ 2T 2mmE

N k=1,...,K, Vn,m.

Then for each (n, m), we have K equations for A,,,,,. We use
least square to estimate A,,,, i.e., fitting a line to relate K
points: (k, #([R(k)]nm)), and the slope of the line will be an
estimate for 27 A,,,,, /N.

3.3. Maximal-likelihood delay estimation

We can also derive the maximum likelihood estimate (MLE)
for the delay, for each pair of sensors that we have data to
compute cross-correlation function (the derivation of MLE
can be found in appendix). MLE, being an asymptotic effi-
cient estimator, may serve as a bench mark for the accuracy
of our low-rank matrix completion algorithm (as we show in
numerical example section). Assume the noise in observation
(1) is Gaussian with zero mean and variance 2. Denote S(k)
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as the MLE of the signal. Using the definition of the cross-
correlation function (2), it can be shown that the following
quantity is approximately x? distributed with two degree-of-
freedom (denote its probability distribution function as f):

Gi(r) = (Xn(k) = S(k)e™™)* (X (k) — S(K)).
We can estimate A,,,, by

T-1

T = arg max Z log f ('Gk(T”) ,
T k=0 o]

where f(z)=2"2¢% /(v/2y(1)), which is the density func-
tion of a x? variable with two.

4. NUMERICAL EXAMPLES

In this section, we verified the accuracy of our proposed
method using simulation and real-data.

4.1. Simulation

The influence of noise variance on the error between the true
lag time and the lag time predicted by our method is studied
in the following simulations. We adopt the usual performance
metric RMSE = (1/N) SN | (Tpredicted,i — Terue,i)?)"/2.

Comparison with MLE. First, we compare the accuracy of
the estimates obtained by rank-one matrix completion and
that by MLE. We show that the proposed approach can obtain
good accuracy that is close to MLE, but remember that our
approach is computationally much more efficient. We gen-
erate N = 9 sensors, with random positive delays 7;. The
source s is a Gaussian-shaped signal. The results show that
the larger the variance of the noise between each pair of sig-
nals, the larger the error between lag time predicted using our
method and the real lag time we set. What’s more, the RMSE
of MLE is only a little bit smaller than our method, which
means our method is accurate and easy enough. And the rea-
son why we do not use MLE on real data is that MLE is based
on an exact distribution of noises, while the practical noises
of real signals is unknown.

RMSE with randomly missing data. We generate instances
with randomly missed entries. The results are shown in ...,
which show the MSE for relative delay estimate for three pairs
of sensors (denoted by A1, Ay, and Ag3).

RMSE with missing data due to distance. In this section,
we simulated a scenario, where sensors are arbitrarily places
in three dimensional spaces. We assume sensors that are more
far apart, with distance greater than certain threshold, whose
cross-correlation functions are missing. This is to mimic the
situation in distributed ANSI, the sensors are only able to
communicate with their neighbors, since signals are transmit-
ted wirelessly and the channels between far away sensors is
usually not available due to path loss and mutual interference.
Note that the MSE of the estimated delay are quite reasonable.
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Fig. 2. The lines with different A indicate different lag times
between signals, and A; < Ay < Ags. The y axis is the
RMSE between the lag time we predicted and the real lag
time we set to each signal. And the noise_standard deviation
means the standard deviation of noise we add to signals.

4.2. Real-data

In this section, we use a real dataset to demonstrate the good
performance of our method. From 2015/11/06 on and for a
week, 16 geophone sensors are placed around Old Faithful
Geyser in Yellowstone National Park to record signal contin-
uously (the sampling frequency is 500 Hz). Sensors are in-
dexed 001, 002, ... 016 below. The locations of the sensors
are shown in Fig. 3. First, we perform cross-correlation be-
tween pairs of sensors. When performing cross-correlation,
we truncated the signal into 5S-minute segments, and there are
120 segments. We perform cross-correlation for the 5 minute
segments, and average the cross-correlation functions over all
segments (for each pair of sensors). The averaging is shown
to be essential in boosting the signal. Then we band-pass fil-
tering the results in 1-5 Hz (which, according to geophysicts’
experience, contain interesting information which is likely to
be related to Old Faithful Geyser’s activity [11]).

Signal detection. As a first step, we have to decide whether
there is a “peak” between a pair of sensors. We did this by
computing the cross-correlation functions between all pairs of
sensors. We then examine the peaks of the cross-correlation
functions, and find out the maximum peak values across all
cross-correlation functions. Then we set a threshold, which is
7% of the maximum peak value. We decide all pairs whose
peak values are below the threshold to be the ones that does
not contain a “peak”, i.e., the signal is missing. This create
a missing pattern, as shown in the block holes in Fig. 4(a).
The cross-correlation functions for all sensors are shown in
appendix. We also find that sensor 007 does not contain any
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Fig. 3. Sensor deployment in Yellowstone National Park to
collect ambient noise signals. There are total of 135 sensors
(labeled in picture) and we only used the first 16 sensors in
our study as a proof of concept.

signal in any of its cross-correlation functions, so we removed
it from study. This gives N = 15 sensors and a 15-by-15
matrix to complete.

Verify rank-one assumption. Now we form the R(k) ma-
trices using frequency samples of the cross-correlation func-
tions. We verify the rank-one property of these matrices as
follows. We will out the missing entries by zero, and com-
pute the singular value decomposition (in this case, the eigen-
decomposition also works since the matrix is Hermitian). The
eigenvalues of R(k) are real, since the matrices are all Her-
mitian. The eigenvalues for f{(l) is shown in Fig. 4, which
clearly shows that the matrix is nearly rank-one. The situation
for all the other matrices are similar. This means that we can
indeed use our approach to infer the missing entries.

Top ten largest eigenvalues

Eigenvalue

Fig. 4. Top 10 eigenvalues of zero-filled fl(l) This shows
that our rank-one assumption holds.

Accuracy. Now we study the accuracy of our approach. Since
there is no ground truth in our study, we use the following
method. Fig. 6(a) shows the relative delay matrices, between
all 15 sensors (the value of the matrix is the relative delay).
Note that the matrix is per-symmetric. The blue entries are
missing, whose values are recovered using our method. Now
we cover up some randomly chosen entries, pretending their
cross-correlation functions are missing, using our method to
recover their values and compare with the observed values
(i.e., in Fig. 6(a)). Fig. 6(b) shows the matrix obtained this
way, where the green entries are the “covered-up” ones. Note
that indeed, the green entries matches pretty well with their

correspondence in Fig. 6(a).

0.35
0.30
0.25
0.20
0.15
0.10

0.05

(a) (b)

Fig. 5. Heat map of the relative delay matrix A,,,,: (a) the
missing entries correspond to black holes; (b) recovered ma-
trix using our method.

sensors |0 0 1[0 0 2/0 03|00 4 00 5fo06/008f0o09/010[011/012[013[014[015[016

0 0 1| o |-0.0a6|-0.163(0.194(0.229(0.499(0.3570.097[0.3190.309|0.220(0.236(0.171[0.109|0.064

0 0 2[0.046 ©0 |-0.001(0.027(0.100|0.282(0.364/0.073[0.3020.266|0.277(0.341(0.261[0.211|0.227

0 0 3[0.163/0.001| 0 [0.047(0.079(0.107(0.214/0.179[0.1940.168|0.582(0.423(0.361[0.3400.321

0 0 4|-0.194|-0.027|-0.047| o0 [0.023[0.054(0.169/0.077[0.167|0.134|0.441[0.347[0.386|0.364|0.244

0 0 5[-0.229(-0.010|-0.079(-0.023| ©0 [0.015(0.093/0.105[0.1050.075 |-0.067 [-0.099 |-0.136 |-0.157 | -0.176

0 0 6[-0.499-0.282-0.107 |-0.054|-0.015| 0 [0.071/0.077[0.093|0.079|-0.108 |-0.108 |-0.150 |-0.167 | -0.189

0 0 8[-0.357|-0.364|-0.214 | -0.169|-0.093|-0.071| ©0 |0.003[0.0140.017|-0.159 [-0.178-0.210 |-0.256 | -0.306

0 0 9[-0.097|-0.073|-0.179 [ -0.077|-0.105|-0.077 [-0.003| ©0 [-0.005|0.059 |-0.153 |-0.157 |-0.197 |-0.237 | -0.235

0 1 0[-0.319-0.302|-0.194 | -0.167|-0.105|-0.093 [-0.014 |0.005| ©0 |0.020|-0.152 [-0.193|-0.229 |-0.265 | -0.289

0 1 1[-0.309(-0.266-0.168 |-0.134|-0.075|-0.079 [-0.017 | -0.059 [-0.020| ©0 |-0.106 [-0.256 |-0.215 | -0.250 | -0.271
0 1 2[-0.220(-0.277|-0.582 [-0.441|0.067|0.108[0.159|0.153[0.152|0.106| o0 [-0.006|-0.078 |-0.162-0.167
0 1 3|-0.236|-0.341|-0.423 [-0.347|0.099|0.108(0.178]0.157[0.193|0.256|0.006| 0 [-0.065-0.156|-0.161
0 1 4[-0.171|-0.261|-0.361-0.386(0.136(0.150(0.210/0.197[0.2290.215|0.078(0.065| o [-0.032|-0.078
0 1 5[-0.109|-0.211|-0.340(-0.364(0.157|0.167 [0.256|0.237[0.2650.250|0.162[0.156(0.032| 0 |-0.013

0 1 6|-0.064|-0.227|-0.321(-0.244(0.176(0.189(0.306|0.235/0.2890.271[0.167[0.161(0.078[0.013| o

(a)

sensors |0 0 10 0 2/0 03004 o0 sfo06(oo0s8fo09/010[011/012[013[014[015[016

0 0 1| o |-0.046|-0.163)0.194(0.229(0.499(0.357/0.097[0.3190.309|0.220[0.236(0.171[0.090|0.064

0 0 2[0.046| ©0 |-0.001(0.027(0.100|0.282(0.364/0.073[0.3020.266(0.277[0.341(0.241[0.211|0.227

0 0 3[0.163/0.001| o0 [0.047|0.079(0.107(0.214/0.179[0.1940.168|0.582(0.423(0.361[0.3400.321

0 0 4|-0.194|-0.027|-0.047| o0 [0.023|0.054(0.169/0.077[0.167|0.134|0.441[0.347|0.386|0.364|0.244

0 0 5[-0.229-0.010|-0.079[-0.023| o [0.015(0.093|0.105[0.087|0.075 |-0.067 [-0.099|-0.136 [-0.157 |-0.176

0 0 6|-0.499-0.282-0.107 |-0.054|-0.015| 0 [0.071/0.077[0.0780.079|-0.108 |-0.108 |-0.089 |-0.167 | -0.189

0 0 8|-0.357|-0.364|-0.214 | -0.169|-0.093|-0.071| ©0 |0.003[0.0140.017|-0.159[-0.178|-0.210 |-0.256 | -0.262

0 0 9[-0.097-0.073|-0.179 [ -0.077|-0.105|-0.077 [-0.003| 0 [-0.005|0.059 |-0.153 |-0.157 |-0.197 [-0.237 | -0.235

0 1 0[-0.319|-0.302|-0.194 | -0.167 | -0.087 | -0.078 [-0.014 |0.005| o0 |0.020|-0.152[-0.193|-0.229 |-0.265 | -0.289

0 1 1|-0.309|-0.266|-0.168|-0.13a | -0.075 |-0.079 | -0.017 | -0.059 | -0.020 | o |-0.106|-0.256 |-0.215 |-0.250 | -0.271
0 1 2|-0.220{-0.277|-0.582|-0.441[0.067 [0.108[0.159 |0.153]0.152 0.106| o |-0.006|-0.078|-0.162 |-0.167
0 1 3|-0.236|-0.3a1|-0.423|-0.347| 0.095 [ 0.108|0.175 |0.157 [0.193 |0.256 0.006| o |-0.065|-0.156-0.161
0 1 a|-0.171|-0.241-0.361|-0.386 | 0.136 [0.089[0.210[0.197]0.229|0.215]|0.078 |0.065| o |-0.032|-0.078
0 1 5|-0.090|-0.211-0.300|-0.36a [ 0.157 [0.167|0.256 [0.237]0.265 [0.250 | 0.162|0.156 |0.032| o |-0.013

0 1 6|-0.064|-0.227|-0.321[-0.244|0.176|0.189[0.262|0.235/0.2890.271|0.167 |0.161|0.078[0.013| o

Fig. 6. a) Relative delay matrix: blue entries are filled by
matrix completion; (b) Relative delay matrix: green entries.

5. CONCLUSION

In this paper, we present a low-rank matrix completion based
approach, for the missing data issue in the distributed ambi-
ent noise imaging systems. Simulated and real-data examples
demonstrate the good performance of our approach. (The ap-

pendix can be found at www2.isye.gatech.edu/~yxie77/ICASSP2019-

appendix.pdf)
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A. MAXIMUM LIKELIHOOD ESTIMATOR

We propose another method to estimate the lag time regarding
the maximal likelihood estimation. Also, we apply the model
displayed in 2.1.

Tn(t) = s(t — 7) + na(t),
T (t) = s(t) + N (t),

t=0,1,2,---,T —1,
t=0,1,2,---,T —1.

Suppose the noise detected by each sensor is Gaussian white
noise with variance o2. Then the product of the two noise fol-
lows the productive normal distribution, which has a density
function Ko(%), and K, (z) is a modified Bessel function
of the second kind. The maximal likelihood estimation of S

of each pair is

3(0) = 3 (ealt+7) + 2 (1)

Also, we transfer to the frequency domain to get
1

The Fourier Transform of a Gaussian noise follows complex
Gaussian distribution, whose modulus follows Rayleigh dis-
tribution. For a fixed k, define

Gr(7) = Nou(k)* Nin (k) = (X, (k)S(k)e ™™ )* (X, (k) S (k)

where N,,(k)andN,, (k) are the Fourier Transform of Gaus-
sian noise. G (7) is the product of two Rayleigh variables.
And the result comes out to be

N (k)" N (k) = (X (k) = S(k)e™ )" (X (k) = S(k))

Empirical CDF

= = = Product Rayleigh Distribution

= 2 Distribution

o 5 10 15 20 25 30 35
x

Fig. 7. Monte-Carlo simulation with 20,000,000 points

Since the samples are independent, the joint likelihood func-
tion of G (0), G(1), Gk(2),--- ,Gr(T — 1) is defined to be

h(r) = ngogf ()

And we should find the 7 which makes h(7) reach the max

_ T %e_ 5 . . . .
value where f(z) = @) which is the density function
of a x2 variable. The estimation of T is

T—1
7 = arg max Z log f ('Gk(T”)

o)
k=0 0

"Then we get a maximal likelihood estimation of the lag time.
Also, if only the real or the image part of the product is con-
sidered, w.l.0.g the real part, is a sum of two productive nor-
mal variables. Then we can calculate the density function of
it and find the 7 maximizing the likelihood function as well.

= L (X (E) = X (B)e™™) (X (k) — Xn(B)e™)
= () Xon () + X (1) X ()

— X (B X (k)e™ — X (k)" X (K)e™ ™)

Suppose we get an estimation of the variance of the modu-
lus of N,,(k)*N,, (k) to be 03, we calculate the modulus of
G(7), and divide it by og, then it is standardized and we
can approximate the distribution of G (7) to be the x? dis-
tribution with the degree of freedom 2. We do Monte-Carlo
simulation with 20,000,000 points, and show the distribution
of the product of two Rayleigh variable and a variable that
follows x? distribution with the degree of freedom 2 in Fig-
ure 6. The blue line represents the variable that follows the x?
distribution and the red line is the distribution of the product
of two Rayleigh variables.

As is shown in the figure, the distribution of the product
of two Rayleigh variables can be approximated by the x? dis-
tribution, that is

Gel _ s

- 2
0o
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B. REAL-DATA EXAMPLE

The cross-correlation functions between pairs of sensors, which contain signal (“peak”) and do not contain signal.
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Fig. 8. Results of signal detection under e = 0.1 — cross-correlation function
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