PMU-based Online Change-Point Detection of
Imbalance in Three-Phase Power Systems

Tirza Routtenberg

Yao Xie

Department of Electrical and Computer Engineering H. Milton Stewart School of Industrial and Systems Engineering

Ben-Gurion University of the Negev
Email: tirzar@bgu.ac.il

Abstract—In this paper, the problem of online change-point
detection of voltage imbalance in a three-phase power system
using phasor measurement unit (PMU) data is considered within
a sequential hypothesis-testing framework. A general model for
the positive-sequence data from a PMU measurement at the
time domain and off-nominal frequencies is presented. The new
formulation, which assumes an additional Gaussian noise, enables
fast online detection of imbalance. Closed-form expressions of
the cumulative sum (CUSUM) and generalized likelihood ratio
(GLR) tests are developed for detection of imbalances. The
performance of the change-point detection procedures is eval-
uated using the average-run-length and the expected detection
delay. Numerical simulations show that the proposed method
can be used for enhanced situational awareness in future grid
management systems and demonstrate the ability to inform
strategies for advancing grid capabilities by using change-point
detection methods.

Index Terms—Phasor measurement unit (PMU), power system
monitoring, unbalanced power system, state estimation, online
change-point detection

[. INTRODUCTION

The three-phase power system is designed to operate in
balanced scenarios [1]. However, in practice, imbalances hap-
pen frequently [2]. Imbalances may be a precursor to more
serious contingencies leading to possible blackouts [3, 4].
In addition, substantial power imbalance causes excessive
losses, overheating, insulation degradation, a reduced lifespan
of motors and transformers, and interruptions in production
processes [5-8]. Thus, the ability to detect quickly potentially
harmful levels of imbalance in various power systems is highly
desirable for the benefit of both the utility and customer [4,
6]. To this end, effective algorithms and sophisticated methods
are crucial for detecting an abnormal level of imbalance in real
time and evaluating the associated effects. It is in this context
that modern sensing devices, such as phasor measurement
units (PMUs), have the potential to provide rapid detection
of contingencies and situational awareness [1].

A. Summary of results

This paper focuses on online detecting a change in the
imbalance condition of a three-phase power system. The main
contributions of this paper are threefold. First, we express
the power system imbalance change-detection as an online
hypothesis testing problem based on time-domain samples.
The advantage of using time-domain signals is that the PMU
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constructs the output frequency-domain signals by using a
discrete Fourier transform operator, which may cause time
delay. Second, we apply a cumulative sum (CUSUM) test to
solve our problem and a generalized likelihood ratio (GLR)
procedure that can be used when the system parameters are
unknown. The proposed CUSUM and GLR procedures are
well-known in statistics and are specifically tailored for the
smart grid structure. Finally, using simulation results for a
variety of imbalance conditions, we examine the detection
performance of the proposed approaches. In particular, we
demonstrate that the the performance of the proposed change-
point detection procedures are evaluated using the average-
run-length (ARL) and the expected detection delay (EDD).

B. Related works

When system imbalance occurs, the PMU’s output exhibits
nonstationary frequency deviations [4, 9] and the positive-
sequence measurements become non-circular [10, 11]. The
main performance measure of imbalances in power systems
is the voltage unbalance factor (VUF) [4, 12, 13]. Recently,
new parametric imbalance detection methods that outperform
the classical parametric methods in terms of probability of
error have been proposed. The new methods are based on
the GLR test [14, 15] and generalized locally most powerful
test (GLMP) [16, 17] approaches. All these methods are
performed offline and are based on two- or three-phase data
that are not available at the control center. In contrast, the
proposed parametric change-detection method is an online
method, which employes single-phase data.

In the last decade, modern optimization and statistical
methodologies have been shown to be powerful tools in power
system problems (see, e.g., [10, 11, 14, 18-21]). In this context,
change-point detection of an emerging abrupt change point in a
time series seems a promising tool. It is well known that, under
some conditions, the optimal change-point detection procedure
is the CUSUM procedure (e.g., [22]). However, in the case
where there are unknown system parameters, the CUSUM
method should be replaced by methods that are also based on a
state estimation stage. In the context of power systems, a non-
parametric online identification method of the level, location,
and effects of voltage imbalance in a distribution network
is derived in [6]. Derivation of parametric change-detection
methods is expected to improve the detection performance.



II. MEASUREMENT TIME-DOMAIN MODEL

The voltages in a three-phase power system are assumed to
be pure sinusoidal signals of frequency wp + A, where wy is
the known nominal frequency (1007 or 1207) and A is the
frequency deviation from this nominal value. The magnitudes
and phases of the three voltages are denoted by V,, V3, V. > 0
and g, vp, @ € [0, 27], respectively. The PMU samples these
real signals IV times per cycle of the nominal frequency, wo, to
produce the following discrete-time, noisy measurement model
(e.g., [1], pp. 51-52):

1 . wn+An

+A
x[n] =S¢ w0 + K

%e_ﬂ @0 "v*+wln], Vn € Z, (1)

A A ; , o1 T .
where v = %’r and v = [Vaewa, Vyel¥r, VCeWC] . The noise

sequence, {w[n]},ecr, is assumed to be a real white Gaussian
noise sequence with a known covariance matrix o>I3.
We assume that the sequence is given by:

x[0],x[1],...,x[r = 1],x[7], ..., x[t], )

balanced system unbalanced system

where 1 < 7 < ¢ denotes the change-point location. That is,
we assume that the vectors x[0], ..., x[r—1] and x[7], ..., x][t]
are obtained form the model in (1) with balanced and unbal-
anced voltage vectors, v and v, respectively.

The positive voltage sequence, i.e., the “space vector”
[23], is calculated from three-phase voltages by using the
symmetrical component transformation ([1] pp. 63-67):

n=0,...,t, 3)

vsln] = g"xIn],

where g = 1, e, az}T and o = e727/3_ For the special case
of a perfectly balanced system, the three-phase voltages satisfy
Vo=V, =V.and ¢, = pp+ %’T = Q.— %’T Therefore, it can
be verified that for this case, i.e., before the change, g”v* = 0.
By using this result and substituting the model from (1) in (3),
one obtains that before the change:

1

i j"/w(ZfAnCv
viln] = 7€ v+ pilnl,

“

Vn =0,...,7 — 1, and after the change

1'W+An‘ 1—'7W+An D\ *
viln] = 5e” = Citge” S (CT) 4 pln), (5)
Vn = 7,...,t, where CY 2 gTv, cy 2 g7, and C7 2
- .. . N
gfv. In addition, the noise sequence, 14 [n] = gfw(n], n =
0,1,...,t, is time-independent sequence and satisfies

2
i [n] ~ N€ (o, %) : (6)

ITII. ONLINE CHANGE-POINT DETECTION FORMULATION

A. The hypothesis-testing problem

The objective of this study is to develop a method for
change-point detection based on the PMU output of the
positive sequence components. For instance, for the positive
sequence shown in Fig. 1, single-phase imbalance occurs at
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Fig. 1. Positive-sequence measurement of balanced system and unbalanced

system before and after the change, respectively, where the change point is at
n = 50 and with the parameters C'Y = 0.3709 + 0.33537, Ci = 0.8654 +
0.78254, and C? = 0.1400—0.6518i, N = 48, wo = 60Hz, and A = 1Hz.

time n = 50. The goal is to use the PMU voltage positive-
sequence measurements to locate this change point. It can be
seen that this task becomes easier as the signal-to-noise ratio
(SNR) increases.

The change-point detection problem can be mathematically
formulated as the following composite sequential hypothesis
testing problem:

Ho : The system is balanced till (at least) n = ¢ %)
H, : There is a change point at time 7 ’

where the measurement model is according to (4) and (5). The
change-point detection is a well-studied problem in statistical
signal processing and the CUSUM procedure is a popular
algorithm in the literature that has some optimality properties
for known system parameters [22].

B. CUSUM approach

The desired stopping rules are determined by likelihood
ratios, as described in the following. By using (4) and (5), as
well as the noise statistics from (6) and the hypothesis testing
from (7), the log-likelihood ratio of hypothesis H; versus Hg
for a given change-point time, 1 < 7 < ¢, is given by:

Lo(r,CY,CY,C) £ log f(vy; Ha) —log f(v4; Ho)

= QO (ij-) - Ql (Ta Cj—a 02702) ) (8)
where f(v4;H,;) is the pdf of v under hypothesis H,;,
vy A 3 1 i wota v
Qo (CY) = 292 2 vyln] — §€ﬂ R G )
and
v o] 5y & 3
Q1 (r,Cy,CY,C%) = 357 %
T—1 1 wot
( viln] = 5O
n=0
¢ 1 .« N~ _ “’(H’An ~ 2
D fosln] = g E O] - SR CT) )L 10)



By substituting (9) and (10) in (8), one obtains the decision
function:

Ly(r,CY,CY,C%) = S[t] — S[r —1], (11)
where the cumulative sum from 0 to k is defined as:
k
S 23 i), k=0 (12)
n=0

and

>

1 v 12 512 512
Ylesl - jes - e ?)
0] jy 20T
- Real{(Ci—Ci)e” “0 v+[n]}
+ Real{Cfeﬂ%nwf{n}}
- lReal{cﬁcﬁem%"} ¥n > 0. (13)
2 += =

Denote by 7¢ the time at which the CUSUM algorithm
declares an imbalance condition. Then, under the assumption
that the parameters CY,C? and C? are known, 7¢ is given
by

Tc =

(14

such that £,(,C%,C%,C?) > n, where n > 0 is a threshold
set by the user. By substituting (11) in (14), we obtain that
the change-time estimator from (14) can be rewritten as [24]

arg max L,(r,C%,C%,C?
ngTgt t( y Yy Yty )7

Tc = arg 1213%5[7 —1], (15)
such that G[t] > 7, where
Glo] = 0
Glt] = {Gt—1+1}", t>1,, (16)

{z}T = max{z,0}, and [[t] is defined in (13).

The idea is that before any imbalance scenario occurs, the
mean of the log-likelihood ratio from (8) is negative. As
a result, G[t] would remain close to or at 0 prior to the
imbalance situation. On the other hand, when the system
becomes unbalanced, the mean of the log-likelihood ratio
from (8) is positive. As a result, G[t] increases this change.
Hence, the CUSUM algorithm declares the occurrence of an
imbalance situation at the first time that G/[t] reaches the
pre-determined threshold, 7. The algorithm is summarized in
Algorithm 1.

IV. GLR TEST

In practice, the phasors CY,C% and C? are unknown.
Therefore, the CUSUM algorithm cannot be implemented
since the likelihood function depends on the unknown param-
eters. In this context, we can apply the GLR approach. In
this approach, we compute the LR statistics combined with
maximization w.r.t. the unknown parameters. In order to im-
plement the sequential GLR test, first we derive the maximum
likelihood (ML) state estimators under each hypothesis in
Section IV-A and then we develop the corresponding GLR
procedure based on these estimators in Section IV-B.
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Algorithm 1: CUSUM for imbalance change detection

Input: Positive sequence observations v [n],
n=0,...,t phasors C",C% C?, and the nominal
frequency wy.
Output: Change-point decision
Initialization:
o Set the detection threshold 1 > 0
e S[-1]=G[-1]1=0
e Fixn=0
forn=20,...,t do
while the algorithm is not stopped do
1) Set I[n] according to (13) and by using v [n]
2) Set S[n] = S[n — 1] + I[n]
3) Evaluate the function

Gn] = {G[n — 1] + U[n]} "
4) if G[n] > n > 0 then

o The change time estimator from (15) is given
by

T = arg11<nTiI<1nS[T —1]

« Stop or reset the algorithm
end if
n=n+1

end
end

A. State estimation
Let us define

N : _ w0+An
o = 2 e Moy n] (17)
n=ty
A t2 wotA
Yty = 2 Zeiﬂ “o "0} [n] (18)
n=ty
A ¢ . wotA
U, = ) et i< <t (19)

for any t1,to € [0,t]. According to the hypothesis problem in
(7), the ML estimator of C'Y maximizes the likelihood function
under hypothesis Ho, i.e., minimizes Qo (CY) from (9). By
equating the derivative of (9) w.r.t. C'/ to zero, one obtains:

~Av|0 R0.t

L (20)
The notation C’j_ll, i = 0,1 denotes the fact that this is
the estimator of C'! under hypothesis #;. Similarly, the
ML estimators of C, C, and C” maximize the likelihood
function under hypothesis 71, and are obtained by equating
the derivative of (10) w.r.t. C'{ to zero:

AU 20,7—1

eyt = 2t 21

= Bt @)

AL ATt (CE)*\D:’

+ - - ) (22)
t+1—71 t+1—71



and
oo Ynt (Cfﬂ)* v 23)
- t+1—7 t+1-—7"
for any 1 < 7 < t. Equations (22) and (23) imply that
o (1= T)z — g U
v= 2 2 24)
(t+1—7)2— |0,
and
e t+1—7)yr: — 25,92
ool ( )Yt it (25)

(t+1—7)2— |02’
for any 1 < 7 < £. It can be seen that, as expected, for
7 =t + 1, ie, there is no change, Cj_‘l ="M =0 and
C'ill = C’i‘o. If the noise variance o is also unknown, its
ML estimator can be computed, similar to [17].

B. GLR method

In this section, the CUSUM method from Algorithm 1
is replaced with the GLR method, in which the unknown
parameters in the CUSUM terms are replaced by their ML
estimators. For this case, the relevant statistic from (8) is
replaced by the following GLR statistic:

Et(T7CA’j—‘Ovévll7 Ai‘17éi‘1)
_ Awlo Aol AT ABILy O
Q( ) Q(T,C 7C+ 707 )7ﬁ><
F 1 ,
((f+ ) R 1{01|O E)kt}

4

T t+1—T ‘2 t+1—71
4 4

+2Real {Cvllng 1} + 2Real {Cv‘lzit}

+§Real {C"'lyjt} - %Real {Cﬁll(jfll\l’r}> :

(26)

AU‘O
+

Av|1)2 -

. ~1112
AD|1 AD|1
+ C+ ‘

@7

By substituting the state estimators from (20), (21), and (25)
in (26), one obtains

5 AU Av AT A 3
515(7704—‘07C+‘1’C+|1vc—‘1) 202
o?
T+ 1 0|2 A t+1—7 512
(el e 5T e
t 1 v 1 A1 A
++7’c ‘1‘ +2Real{c+‘1cj1qff}>. ©8)
Therefore, the GLR rule for the change is
TGLR = arg max, llt(T CU‘O Cj}rll,éi‘l Ull) (29)

where the r.h.s. should be hlgher than the threshold 7. Similar
to the recursive CUSUM formulation in (15), the recursive
version of the GLR procedure can be written as

. A Avl0 Av|l AD|T AD|L
= min {t:rygz(ﬁt(nCJ 7C+‘ , + CL ) > }
(30)

~recursive
GLR

It can be see that the change-time estimator, 7gig, is a
function of the amplitude of the estimator of the negative
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phasor, ol , and of the difference between the positive
sequence before and after the change, C”‘l Cill. That is, the
GLR detector in (29) can be 1nterpreted as a detector of the
presence of a negative-sequence phasor and the presence of
a change in the positive-sequence phasor, which fits a typical
situation in which the system becomes unbalanced. However,
recursive implementation of a GLR test in a CUSUM way is
intractable in the presence of unknown parameters. Therefore,
an altered window-limited version of the GLR test from (29)
has to be used in practical real-time settings.

V. SIMULATIONS

In this section, the performance of the proposed real-time
unbalanced system detection using the CUSUM algorithm in
Algorithm 1 and the GLR rule from (29) is evaluated via
10,000 Monte-Carlo simulations. We consider a single PMU
with the parameters, N = 48, wy = 60Hz, frequency deviation
of A =1 Hz, and different values of noise variance 2. The
SNR is defined as SNR = 3|C+‘ . To analyze the detection
performance of the proposed methods, we consider a single-
phase amplitude imbalance. That is the three voltage phases,
satisfy @, = 0.234m, @y, = ¢ — 2 and ¢. = ¢, + 2, with
voltage amplitudes fixed at 1 p.u. for a balanced system. To
introduce imbalance, the ¢ phasor is multiplied by 8 = 1.5,
which causes magnitude imbalance.

Two standard performance metrics used to characterize
the performance of a change detection algorithms are: the
expected duration in between two false alarms, called the
ARL, and the EDD, which is the expected time to stop in
the extreme case when the change occurs immediately at
7 = 0. It is desired that the ARL quantity will be as small as
possible to minimize the reaction time of the change-detection
method. In general, a tradeoff occurs between high accuracy
and minimum delay.

In Figs. 2 and 3 the ARL(k = 25) and the EDD are

presented, respectively, versus SNR, where SNR 2 K{’:—;‘ Fig.
2 shows that, in terms of ARL for a change that happens at
7 = 25, the GLR achieves the CUSUM performance for high
SNR, while for low SNR it has a higher ARL. Fig. 3 shows
that, in terms of EDD, The GLR’s behavior is similar to the
CUMSUM performance, where for both methods, the EDD
decreases as the SNR increases. These figures demonstrate that
the performance of the CUSUM procedure, which assumes
perfect knowledge of the unknown parameters, can be used as
a lower bound to the ARL of the GLR decision rules that are
based on the estimation of the parameters.

VI. CONCLUSION

In this paper, we introduce two techniques, based on the
CUSUM and GLR tests, for online change-point detection of
imbalance condition of three-phase power systems. The pro-
posed methods are based on a statistic model for the positive-
sequence data from a PMU measurement at off-nominal fre-
quencies. The performance of the CUSUM procedure, which
assumes perfect knowledge of the unknown parameters, can be
used as a benchmark on the performance of the GLR decision
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Fig. 2. The ARL versus SNR for single-phase imbalance at time 7 = 25

for the CUSUM and GLR tests.
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Fig. 3. The expected detection delay versus SNR for single-phase imbalance
for the CUSUM and GLR tests.

rule, which estimates the unknown parameters. Numerical
simulations show that the proposed GLR-based method can
be used for enhanced situational awareness in future grid
management systems and it has good performance in terms of
ARL and EDD. In particular, the GLR-test achieves the ARL
performance of the CUSUM procedure at high SNR. It should
be noted that in current power systems, the PMUs transmits
only positive sequence, due to lack of communication band-
width. In the future, it is expected that wide area monitoring
systems will be configured for three-phase measurements. The
proposed CUSUM and GLR methods can be readily extended
to the three-phase measurement case.

ACKNOWLEDGMENT

The work of T. Routtenberg was partially supported by the
ISRAEL SCIENCE FOUNDATION (ISF), grant No. 1173/16.
The work of Y. Xie is partially supported by NSF CCF-
1442635 and CMMI-1538746.

978-1-5386-2890-4/17/$31.00 ©2017 IEEE

REFERENCES

[1]1 A. Phadke and J. Thorp, Synchronized Phasor Measurements and Their

Applications. New York: Springer Science, 2008.

“Electric power systems and equipment voltage ratings (60 Hertz),” ANSI

Standard Publication, no. ANSI C84.1, 1995.

[3] S. Zhong and A. Abur, “Effects of nontransposed lines and unbalanced
loads on state estimation,” in /EEE Power Engineering Society Winter
Meeting, vol. 2, Jan. 2002, pp. 975-979.

[4] A. Von Jouanne and B. Banerjee, “Assessment of voltage unbalance,”
IEEE Trans. Power Delivery, vol. 16, no. 4, pp. 782-790, Oct. 2001.

[5] N. D. Tleis, Power Systems Modelling and Fault Analysis: Theory and
Practice. Oxford : Newnes, 2008.

[6] N. Woolley and J. Milanovic, “Statistical estimation of the source and
level of voltage unbalance in distribution networks,” IEEE Trans. Power
Delivery, vol. 27, no. 3, pp. 1450-1460, July 2012.

[7] M. T. Bina and A. Kashefi, “Three-phase unbalance of distribution
systems: Complementary analysis and experimental case study,” Inter-
national Journal of Electrical Power & Energy Systems, vol. 33, no. 4,
pp. 817-826, 2011.

[8] T.H. Chen, C. H. Yang, and N. C. Yang, “Examination of the definitions
of voltage unbalance,” International Journal of Electrical Power &
Energy Systems, vol. 49, pp. 380-385, 2013.

[91 A. G. Phadke, J. S. Thorp, and M. G. Adamiak, “A new measurement

technique for tracking voltage phasors, local system frequency, and rate

of change of frequency,” IEEE Trans. Power Apparatus and Systems,

vol. PAS-102, no. 5, pp. 1025-1038, May 1983.

Y. Xia, S. Douglas, and D. Mandic, “Adaptive frequency estimation

in smart grid applications: Exploiting noncircularity and widely linear

adaptive estimators,” IEEE Signal Processing Magazine, vol. 29, no. 5,

pp. 44-54, Sep. 2012.

Y. Xia and D. Mandic, “Widely linear adaptive frequency estimation of

unbalanced three-phase power systems,” [EEE Trans. Instrumentation

and Measurement, vol. 61, no. 1, pp. 74-83, Jan. 2012.

P. Pillary and M. Manyage, “Definitions of voltage unbalance,” [EEE

Power Eng. Rev., vol. 21, no. 5, pp. 49-51, May 2001.

M. H. J. Bollen, “Definitions of voltage unbalance,” I[EEE Power Eng.

Rev., vol. 22, no. 11, pp. 49-50, Nov. 2002.

T. Routtenberg, Y. Xie, R. M. Willett, and L. Tong, “PMU-based

detection of imbalance in three-phase power systems,” IEEE Trans.

Power System, vol. 30, no. 4, pp. 1966-1976, July 2015.

M. Sun, S. Demirtas, and Z. Sahinoglu, “Joint voltage and phase unbal-

ance detector for three phase power systems,” [EEE Signal Processing

Letters, vol. 20, no. 1, pp. 11-14, Jan. 2013.

[16] R. Concepcion, T. Routtenberg, and L. Tong, “Local detection of voltage

imbalance in three-phase power systems based on PMU output,” in /[EEE

Conference on Innovative Smart Grid Technologies (ISGT2015), Feb.

2015, pp. 1-5.

T. Routtenberg, R. Concepcion, and L. Tong, “PMU-based detection

of voltage imbalances with tolerance constraints,” /[EEE Trans. Power

Delivery, vol. 32, no. 1, pp. 484-494, Feb. 2017.

T. Routtenberg and L. Tong, “Joint frequency and phasor estimation

under the KCL constraint,” /IEEE Signal Processing Letters, vol. 20,

no. 6, pp. 575-578, June 2013.

Y. C. Chen, T. Banerjee, A. D. Dominguez-Garcia, and V. V. Veeravalli,

“Quickest line outage detection and identification,” /[EEE Trans. Power

Systems, vol. 31, no. 1, pp. 749-758, Jan. 2016.

O. Kosut, L. Jia, R. J. Thomas, and L. Tong, “Malicious data attacks

on the smart grid,” IEEE Trans. Smart Grid, vol. 2, no. 4, pp. 645-658,

Dec 2011.

T. Routtenberg and L. Tong, “Networked detection of voltage imbal-

ances for three-phase power system,” in The 24th IEEE International

Symposium on Industrial Electronics (ISIE 2015), June 2015, pp. 1345—

1350.

D. O. Siegmund, Sequential Analysis: Tests and Confidence Intervals,

ser. Springer Series in Statistics. Springer, Aug. 1985.

F. Neves, H. Souza, E. Bueno, M. Rizo, F. Bradaschia, and M. Caval-

canti, “A space-vector discrete fourier transform for detecting harmonic

sequence components of three-phase signals,” in /EEE Industrial Elec-

tronics (IECON)., Nov. 2009, pp. 3631-3636.

M. Basseville and I. Nikiforov, Detection of abrupt changes: theory and

application. Englewood Cliffs, N.J: Prentice Hall, 1993.

[2

=

[10]

[11]

[12]
[13]

[14]

[13]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]



