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Mobile quantum impurities interacting with a fermionic bath form quasiparticles known as Fermi
polarons. We demonstrate that a force applied to the bath particles can generate a drag force of similar
magnitude acting on the impurities, realizing a novel, nonperturbative Coulomb drag effect. To prove this,
we calculate the fully self-consistent, frequency-dependent transconductivity at zero temperature in the
Baym-Kadanoff conserving approximation. We apply our theory to excitons and exciton polaritons
interacting with a bath of charge carriers in a doped semiconductor embedded in a microcavity. In external
electric and magnetic fields, the drag effect enables electrical control of excitons and may pave the way for
the implementation of gauge fields for excitons and polaritons. Moreover, a reciprocal effect may facilitate
optical manipulation of electron transport. Our findings establish transport measurements as a novel,
powerful tool for probing the many-body physics of mobile quantum impurities.
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I. INTRODUCTION

Polaritons are composite bosonic particles formed by
hybridization of propagating photons and quanta of polari-
zation waves in a solid. A particular realization that has
recently been extensively studied involves two-dimensional
(2D) cavity exciton polaritons, implemented in monolithic
III-V semiconductor heterostructures [1], as well as in tran-
sition metal dichalcogenide (TMD) monolayers embedded
in open dielectric cavities [2-5]. Remarkably, these cavity-
polariton excitations combine an ultralight effective mass
dictated by their photonic content with a sizable interparticle
interaction strength stemming from their excitonic character.
This unique combination allows for the realization of a
driven-dissipative interacting bosonic system that has been
shown to exhibit a myriad of many-body phenomena such as
nonequilibrium condensation [6—10], superfluidity [11], and
the Josephson effect [12].

Recent progress in the realization of topological states
of polaritons [13-15] demonstrates the importance of
implementing effective gauge fields in photonic systems.
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Exciton polaritons are charge-neutral particles, and hence
their center-of-mass motion does not couple directly to dc
electric or magnetic fields. Prior work has exploited a
combination of spin-orbit coupling of light and magnetic
field response of a polariton polarization degree of freedom
in lattice structures. Alternatively, it might be possible to
exploit the interaction of polaritons with charge carriers to
induce effective photonic gauge fields that are linearly
proportional to the external fields. In this regard, semi-
conducting TMD monolayers are a particularly promising
platform featuring exceptionally large exciton binding
energies and strongly attractive interactions between exci-
tons and charge carriers.

In a simple picture, excitons in the presence of degen-
erate electrons can be considered as mobile impurities
interacting with a Fermi sea, which constitutes a funda-
mental problem of many-body physics [16-25]. To lower
its energy, an exciton can bind an additional charge carrier
forming a charged trion. Alternatively, the exciton can,
however, also create a polarization cloud in its environ-
ment, forming an attractive exciton polaron, shortly
referred to as a polaron. In this case, the exciton remains
a neutral particle that is dressed by fluctuations of the Fermi
sea, which renormalize its energy and effective mass.
The competition of trion formation and polaronic dressing
was previously observed in cold atomic systems near a
Feshbach resonance in two and three dimensions [26-29].
Recently, it was demonstrated both theoretically [4,30] and
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experimentally [4,31] that polaron physics also plays a key
role in semiconductor photonic materials hosting a two-
dimensional electron system (2DES). In particular, absorp-
tion experiments in TMD monolayers show one of the key
signatures of Fermi polaron formation: a redshifted optical
resonance with an oscillator strength that increases with
increasing electron density n,, which is accompanied by a
strong blueshift and broadening of the bare-exciton reso-
nance [31]. These observations demonstrate that the optical
excitation spectrum should be described in terms of
attractive and repulsive exciton polarons. In contrast, trion
states have negligible weight in absorption spectra due to
their vanishing oscillator strength. Moreover, we remark
that the polaron states introduced in Ref. [4] correspond to
the mixed exciton-trion states previously introduced by
Suris et al. in Ref. [32] to explain the optical spectrum of
doped quantum wells.

In this work, we propose to use exciton polarons as a new
means to control photons by dc electric or magnetic fields.
In contrast to trions, polarons are amenable to polariton
formation, and recent TMD-cavity experiments have dem-
onstrated strong coupling of exciton polarons and light [4].
We find that, although polarons are charge-neutral optical
excitations, their interaction with the Fermi sea forces them
to follow the motion of charge carriers in an electric or
magnetic field. This phenomenon bears similarity to
Coulomb drag between two semiconductor layers [33-36],
motivating us to coin the term polaron drag. A key
difference to previous work on photon drag [36-38]
originates from the nonperturbative nature of the polaronic
coupling, which gives rise to a remarkably efficient drag
mechanism. Indeed, we find that the zero-temperature
(T = 0) drag conductivity of polarons can ideally be of
the same order as the electron conductivity, implying the
realization of sizable photonic gauge fields.

From a more general perspective, our work addresses
the problem of nonperturbative Coulomb drag, and it is
unique in that it analyzes the drag effect in the regime
of strong interactions that can lead to the formation of
interspecies molecular bound states (trions in our setup) as
well as many-body optical excitations (exciton polarons).
Although in this work we treat the regime of large density
imbalance between the different species, which allows us to
model the problem using the quantum impurity framework,
our results will likely be relevant even in the balanced
density regime [39]. As mentioned previously, there are
two types of emerging quasiparticles in this system, which
have very different drag properties.

The drag of the molecular states is closely related to
previous work on indirect excitons in bilayer systems in the
quantum Hall regime, where the phenomenon of perfect
Coulomb drag has been observed [36,40]. In these systems,
one of the layers hosts holes, while the other contains
electrons. The strong interlayer attractive interaction leads
to the formation of bound molecular states known as

indirect excitons. Because of the pairing process, any force
applied on one of the particles is felt by the molecule as a
whole, leading to the emergence of phenomena such as
perfect Coulomb drag. The direct analog in our system is
provided by trions—a bound molecular state of an exciton
and a single electron; we expect the trion to respond as a
charged particle to any applied electric field and exhibit
perfect Coulomb drag.

The drag of polarons, on the other hand, which is the
focus of the present work, is more subtle and was not
analyzed previously. We find that the response of polarons,
which are many-body optical excitations, is very different
from the response of trions, which are two-body bound
molecular excitations. Indeed, in equilibrium setups with
disorder and static electric fields, polarons do not respond
at all to a force on the bath particles (at zero temperature).
Remarkably, however, in the case of dynamical fields (more
specifically, when the frequency of the field is much larger
than the inverse disorder lifetime of the bath particles) or in
nonequilibrium scenarios where the impurities have a finite
lifetime, the response of the polarons can be as large as the
response of the molecules. The (zero-temperature) polaron
drag effect that we investigate can be understood as arising
from a shift in the polaron dispersion proportional to the
velocity of the majority particles and therefore can be
understood as an effective gauge potential for the impurity
particles.

Furthermore, our work establishes transport measure-
ments as powerful tools to probe the nature of the many-
body ground state in mobile impurity experiments, and it
should be of central interest to a large subset of low energy
physics, ranging from ultracold atoms through semicon-
ductor quantum optics to strongly correlated materials.
Indeed, the fundamentally different transport response of
polarons compared to molecules provides a way of exper-
imentally identifying the polaron-to-molecule transition in
two dimensions, as well as also providing a way to measure
the mass of the polaron or molecule quasiparticles.

Arguably, the most important aspect that distinguishes
our work is the extension to nonequilibrium drag. As an
experimental realization, we assume that exciton polarons
are injected resonantly by laser fields at a given point in the
sample. The exciton-polaron drag leads to a spatial dis-
placement of the emission generated as the excitons decay
into photons propagating out of the plane (Fig. 1). Hence,
spatially resolved excitation and detection of emission from
the sample constitute the equivalent of source and drain
contacts to the exciton system, enabling us to measure the
drag-induced displacement and thereby giving a physical
meaning to the transconductivity.

We start our analysis by a heuristic derivation of the
polaron drag force based on intuitive arguments in Sec. II.
Moreover, we solve the semiclassical equations of motion
of a polaron in an electric field. In Sec. III, we corroborate
these results by a microscopic calculation of the polaron
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FIG. 1. Schematic of the experimental setup. A photon is
absorbed by the TMD monolayer, forming a polariton that is then
dragged by the drifting electrons and subsequently emitted at a
different position.

drag conductivity in an electric field using diagrammatic
perturbation theory within the Kadanoff-Baym conserving
approximation. To make this paper self-contained, we start
this section by reviewing the Fermi polaron problem as well
as the conserving approximation. In Sec. IV, we extend our
results to polaritons and comment on nonequilibrium
effects in Sec. V. After discussing the extension of our
analysis to the case of magnetic field response in Sec. VI,
we conclude by presenting an outlook on possible exten-
sions of our work. We remark that the theoretical calcu-
lations in Secs. II-IV and VI assume an equilibrium
scenario where the impurity does not decay radiatively,
and therefore these results do not apply directly to the
experimental scenario that we proposed. Our purpose for
taking this approach was twofold. First, this keeps the
discussion completely general and allows our results to be
directly applied to the usual bilayer systems or to cold-atom
experiments. Second, it allows us to identify the physical
process responsible for Coulomb drag and then analyze
the polaron-polariton drag using a Boltzmann equation in
Sec. V, without performing an even more cumbersome
nonequilibrium diagrammatic calculation.

II. HEURISTIC DERIVATION
OF POLARON DRAG

We consider a mobile exciton with mass m, interacting
with a Fermi sea of electrons with mass m,. For simplicity,
we neglect the finite radiative lifetime of the exciton in this
section. Applying a force on the electrons causes an
acceleration a, of the Fermi sea. We now go to the rest
frame of the electrons. Because this is a noninertial
reference frame, a fictitious force acts on the exciton
F = —m,a, accelerating it. Crucially, the force is propor-
tional to the bare mass of the exciton. The interaction with
the electrons, however, impairs the motion of the exciton,
and hence, the dressed exciton quasiparticle is heavier than

the bare exciton with an effective mass m}. The accel-
eration of this quasiparticle in the electron rest frame is thus
F/m: = —a,m,/m?. Going back to the lab frame, we have
to add the acceleration of the reference frame, and we thus
arrive at an exciton acceleration

a, = (1—%>ae. (1)

This equation relates any force acting on the electron
system to a somewhat smaller force on the dressed exciton.
This force can be qualitatively understood as friction
between electrons and excitons, which originates from
the ability of the excitons to minimize their energy by
following the dressing cloud surrounding them.

The above discussion is completely general and does not
make any assumptions regarding the nature of the quasi-
particles, and therefore it is equally valid for both molecules
and polarons. This is because we assumed that all electrons
accelerate with a,. However, in the presence of disorder,
this is no longer the case, leading to the emergence of a
distinction between the trion and polaron response. For
trions, the situation is relatively simple: Because the trion is
a two-particle bound state, formed by an exciton that binds
to a single electron from the Fermi sea, it follows the
motion of this particular electron. Therefore, the trion
motion is still described by Eq. (1) as long as we let a,
denote the instantaneous acceleration of one electron. This
means that trions will respond to applied fields like charged
particles, and they will exhibit drag properties similar to the
ones investigated in the work of Ref. [40]. In contrast, we
recall that exciton polarons are many-body excitations
where an exciton is dressed with a polarization wave of
the electron system. Since all electrons in the Fermi sea
contribute to this polarization wave, we can describe the
polaron motion using Eq. (1) if and only if we let a, denote
the average acceleration of the electron system. This
interpretation is justified a posteriori by the rigorous
diagrammatic calculation in the following section. In the
following, we focus only on the response of polarons.

We remark that the electrons should also experience a drag
force when the excitons are accelerated by an external force.
Equation (1) corresponds to the combined force all electrons
exert on a single polaron. Hence, the average inverse drag
force on an electron in the Fermi sea in the presence of an
exciton force F, should be (n,/n,)(1 —m,/m%)F,, where
n, . 1s the density of electrons (excitons).

We can write down general semiclassical equations of
motion for the coupled electron and polaron motion:

G = R0+ 22 =m0 )
i G0 =0+ o= 2
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We can evaluate the polaron drag conductivity in an ac
electric field E(7) in the presence of disorder for both
electrons and excitons by choosing

F,(1) = —eE(f) - me:f(t), F() = -0

where 7,(7%) is the transport lifetime of electrons (exciton
polarons).

To leading order in the polaron density, we can ignore the
drag force on electrons. The solution in Fourier space reads

—-E(Q) 1,
—iQz,’

ve(Q) = (5)

m, 1

@ = (1-2) (5 @, ©

Notice that in the absence of excitonic disorder, 7i — oo,
the drag is the only force acting on the excitons, and their
drift velocity is simply v, = (1 — m,/m¥)v,. This case is
particularly relevant for exciton polaritons, which are
expected to be largely immune to exciton disorder (see
Sec. IV). We emphasize that this result only holds at small
polaron densities as we neglect electron drag forces
generated by polarons. From the exciton drift velocity,
we obtain the transconductivity to first order in the polaron
density n,:

iQr,7%

oul) =5 (1-0) gy =y

As mentioned above, the reverse effect also exists. An
electric current should flow in response to an ac force f ()
applied to the excitons. Such a force can be affected by
applying an ac field perpendicular to the 2D plane that
modifies the exciton energy through a quantum-confined
Stark effect with a spatial and/or time dependence deter-
mined through the applied laser field [41]. We can find the
drag conductivity of electrons from Egs. (2) and (3) with

R =" ) =g - g

Te X

In this case, we need to include the drag force on electrons
in Eq. (2). We can, however, neglect the drag term in the
polaron equation of motion (3) since F, < v, « n,/n, only
contributes at higher order in polaron density. With this
method, we again arrive at the transconductivity given by
Eq. (7), as guaranteed by Onsager’s reciprocity principle.
An experimentally more relevant quantity is the electric
voltage that builds up as a response to an exciton force
when no current can flow. The electric field can be found by
setting v, = 0 in the equations of motion, which yields

n, m, Q7

E(Q) = <1 - m_x) <1__—M>fx(9)- )

The polaron drag force in Eq. (1) is fully determined by
the force acting on the electrons and the mass renormal-
ization, and specifically, it does not depend on the exciton
velocity. This enables us to reinterpret the polaron drag
effect as a consequence of an effective gauge field. This
interpretation is further supported by a microscopic inves-
tigation of the drag mechanism. As we show in the
Appendixes B and C, the exciton-polaron dispersion ¢y
shifts by an amount proportional to the electron drift
velocity (implying that k = 0 excitons experience a finite
group velocity). We can introduce a gauge potential A (7)
to write the new dispersion as &, = (i, A,- In the case of a
time-dependent drive, this gauge potential is given by

mti —m, —er,Ee™ ¥

eA (1) = (m; = m v, (1) = " IEIEEE - (10)

which corresponds to an effective electric field E, given by

mi—m, iQr,eEe ™

eE (1) = —eA(r) = (11)

m, 1-iQr,

Although the field strength vanishes in the dirty regime
Qz, < 1, the finite (constant) gauge potential can still have
measurable effects. Indeed, in Sec. V, we discuss at length
the role of this gauge potential on photon transport and
show, for a conservative choice of material, that photons
could be dragged for distances of a few hundred
nanometers.

We now investigate the magnitude of the polaron drag
effect and the role played by the trion binding energy,
which determines the energy scale of the exciton-electron
interaction in the limit of vanishing electron density.
Figure 2 shows the dependence of the (normalized) polaron
mass m%/m, on the ratio of the Fermi energy (¢y) to the
trion binding energy (e7): Since the magnitude of the
effective electric field seen by the polaron is proportional to
[(mi —m,)/m,], we conclude that for a given electron
density, a stronger trion binding leads to a larger mass
renormalization for the polaron and, consequently, to a
more efficient drag. Remarkably, the polaron drag can
ideally be even more efficient than the drag of trions.

It is important to note that our analysis so far has
neglected incoherent scattering of electrons and polarons.
In addition to coherent scattering of electrons and excitons
that lead to polaron formation, there may also be incoherent
scattering events that lead to a finite lifetime of polarons in
an excited state. We investigate this effect in more detail in
Secs. III E and V B, and discuss in what parameter regimes
it can be neglected.

To conclude this section, we emphasize that in the
exciton-polaron transconductivity —problem we are
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FIG. 2. Polaron mass as a function of Fermi energy. For this
plot, we used a contact interaction model for exciton-electron
interaction and solved the polaron problem using the non-self-
consistent T-matrix approach developed in Ref. [23]. We took the
exciton mass to be twice as large as the electron mass m, = 2m,.

analyzing, the drag process takes place in an interacting
system consisting of a fixed number of excitons and
electrons. Even in the case of a finite exciton or polariton
lifetime, an underlying assumption is that laser excitation
leads to creation of real particles with a lifetime much
longer than the characteristic timescales associated with
their interactions with electrons. This case is in stark
contrast to polarons in an interacting electron-phonon
system where dynamic screening of the electron by the
lattice can be described in terms of virtual phonon emission
and absorption processes. Consequently, in the limit of
linear response at vanishing temperature, there is no natural
setting to talk about drag conductivity of phonons. The
opposite limit of large applied electric fields, on the other
hand, constitutes a very interesting problem where electron
transport can be associated with multiple real phonon
emission and absorption processes and the associated
phonon drag could have signatures in current noise [42,43].

Before proceeding, we summarize the consequences of

our results:

(1) The polaron drag can be extremely efficient, prom-
ising a drag mobility of the same order as the
electron mobility. This result is a consequence of
the nonperturbative interaction that is responsible for
the polaron formation, which leads to a drag trans-
conductivity proportional to the mass renormaliza-
tion of the polaron.

(ii) When the interspecies interaction is weak, the mass
renormalization of the polaron is proportional to V>
(where V denotes the interspecies interaction
strength; the contribution linear in V can only lead
to a shift of the polaron energy and will not affect the
polaron mass). According to Eq. (7), this conse-
quence will result in a zero-temperature drag
transconductivity proportional to V2. While in the
(dirty) limit (Qz,, Qr7 < 1) the transconductivity is

proportional to Q, in the opposite (clean) limit (Qz,,
Q7y > 1), the transconductivity is proportional to
1/Q. This clean limit result shows that second-order
processes do not vanish as Q —- 0 at 7 =0, in
contrast to previous claims that in these limits the
only nonzero contributions to drag (in both the clean
and dirty regime) must be higher order in the
interspecies interaction [35,36]. It would be inter-
esting to check whether our result holds also in the
regime of balanced interspecies densities analyzed
in Ref. [35].

(iii) The electrons should also experience a drag force,
when the excitons are accelerated by an external
force, in accordance with Onsager’s reciprocity
principle.

(iv) The drag effect that we investigate emerges from an
effective gauge potential that the exciton polaron
experiences due to the motion of the electrons. Even
in the Qr, < 1 limit, when the effective electric
field vanishes, the finite gauge potential still has
important consequences for the exciton-polaron
transport (Sec. V).

(v) The semiclassical analysis presented here can be
extended to include an external magnetic field (see
also Refs. [44,45]). The drag force could then give
rise to a Hall effect and a cyclotron resonance of
exciton polarons, a phenomenon that we discuss at
length in Sec. VL

II1. DIAGRAMMATIC CALCULATION OF
TRANSCONDUCTIVITY USING THE
CONSERVING APPROXIMATION

We now evaluate polaron drag within a microscopic
theory in order to verify the heuristic results discussed in
the previous section. To this end, we use diagrammatic
perturbation theory, taking into account the effect of
electron-exciton interactions as well as disorder for electrons
and excitons. We are interested in the nonperturbative effect
of the interaction and must therefore proceed with care.
Simply evaluating a certain class of diagrams might lead to
erroneous results, as an incomplete set of diagrams does not
necessarily satisfy the conservation laws of the physical
systems. A powerful technique to generate diagrams obeying
conservation laws is the conserving approximation (see
Ref. [46] for a pedagogical introduction).

We start by introducing the Hamiltonian of the exciton
electron system and by discussing the polaron problem in
the absence of fields. We then review the basic principles
of the conserving approximation and use it to find an
approximation to the drag conductivity within linear
response. As a crucial simplification, we focus on the limit
of small polaron density. This limit is also implicitly
assumed in the semiclassical analysis in Sec. II, as we
neglect interactions between polarons. Moreover, the
quasiparticle picture of polarons eventually breaks down
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at sufficiently high densities. A small polaron density also
justifies the standard diagrammatic description of polarons
in the ladder approximation presented in Sec. III A. Hence,
our calculation will only include contributions to leading
order in the polaron density.

A. Exciton-polaron problem

We consider noninteracting excitons coupled via contact
interactions of strength V' to a Fermi sea of noninteracting
electrons. To be specific, we focus on the two-dimensional
case; however, our results for the transconductivity apply to
three dimensions as well. We focus on the limit of very
small exciton density, where the statistics of excitons
becomes irrelevant. We exploit this fact by treating the
low-density excitons as an effective Fermi gas, which
allows us to simplify calculations. Since we are moreover
interested in the regime where no exciton condensation
takes place, treating excitons effectively as fermions allows
us to take the corresponding limit of 7 — 0 without
technical complications from Bose condensation. We
emphasize that all results are independent of the statistics.

Our system is described by the Hamiltonian

H= /dr{‘PZ(r) <— 2:; —,ue> ¥, (r)

() (00

+ V()W (r) W) (1) ¥, (r) + P! (r)¥, (r) U (r)

+ﬂm%mww@, (12)

where we introduced the creation operators of the electrons
and excitons ¥, and ¥} and the chemical potentials ,, .
We model the disorder potentials U¢*) by Gaussian ensem-
bles with zero means and variances (U (r)U(¢9) (r)) =
Yexd(r —1’), where y parametrizes the strength of disorder.
We introduce the exciton and electron Green’s functions
Go (Y151, 1) = —i(TW] (¥, )P, (v, 1)). (13)
After disorder averaging, the system is translationally
invariant, which allows us to work in Fourier space,

GM@OE/@QAMWHW (14)

where we have introduced p = (p, w) for notational sim-
plicity [we will later also use k = (k, €)]. Moreover, we
incorporate factors of 1/2z into the definition of the
integral measure such that dp = dpdw/(2x)3. The effect
of disorder and interactions is taken into account by
introducing self-energy corrections to the Green’s functions
shown in Fig. 3(a),

Qe
8
[
y
|
Y
+
A
=8
y
+

Ge = o = e el
(b) —— >3
T|= § + i|T
—e €
FIG. 3. The Green’s functions and T matrix.
Gl (p) =w— S — Zgis.e (D) (15)

Gi'(p) =w— op = Zin(P) — Zais (P, (16)

where we introduced the dispersions of electrons &, =
p>/(2m,) — u, and excitons w, = p?/(2m,) — p, and the
exciton self-energy from interactions with electrons %, as
well as the disorder self-energies %, 4 and X, 4;;. Assuming
a small density of polarons in the system, we can neglect
the effect of excitons on the electron system.

The calculation of the self-energies requires some
approximations. We treat the effect of disorder in the
self-consistent Born approximation and therefore ignore
any quantum interference effects such as weak localization.
For the evaluation of the interaction self-energy X, we use
the self-consistent T-matrix approach in the ladder approxi-
mation displayed in Fig. 3(b). This choice gives the leading
contribution in the limit of small exciton density [47]
and has been successfully used to describe the physics
of Feshbach resonances in cold atomic systems [22,48].
The T matrix does not have any vertex corrections due to
disorder because of our choice of Gaussian-correlated
white-noise disorder. We will see in Sec. III B how these
self-energies can be obtained within a conserving approxi-
mation. We point out that the non-self-consistent T-matrix
approximation is equivalent to the Chevy ansatz for the
variational polaron wave function [49,50].

The disorder self-energies can be evaluated as

dk
z:dis,e/)c(p) = /@T)de/xGe/x(k)lew = 2—sgn(m),

e/x

(17)
where the lifetimes are defined as

1

= 18
2700 Y e x (18)

TE.X

with p, . the densities of states per unit volume at the Fermi
surface. Importantly, in the self-consistent theory, the
exciton Green’s function in Eq. (17) is dressed by disorder
and interactions, and hence p, refers to the renormalized
exciton dispersion to be determined below.
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The exciton self-energy due to interactions can be
evaluated in the self-consistent T-matrix approximation

Slp) = i / G, (OT(k+p).  (19)

where we introduced the self-consistent T matrix shown in
Fig. 3(b),

T(p) =V +iv / dkG,(K)G,(p — T (p). (20)

The contact interaction allows for a simple solution,

r(p) =V =i [ dkG. WG (=B (21)

In two dimensions, a bound state of electrons and excitons
(i.e., a trion) exists for arbitrarily weak interactions in the
limit of a single exciton, and its energy e is determined by
the pole of the T matrix.

At vanishing exciton density (i.e., n, =0), we can
evaluate the self-energy by replacing G, — G® in the
above equations (for more details about this step, see
Sec. IIIC). We can evaluate all frequency integrals by
closing the contour in the upper half-plane, where the
retarded exciton Green’s function is analytical, and obtain

dk
£9(p) = / A EITO 0+ &k D). (22)

(27)
TO(p)yt = v 4+ /%[1 — np(&y)]
X GR(w — &, p - K), (23)

where the superscript (¥ denotes quantities at n, = 0 and
np(x) is the Fermi-Dirac distribution function. In order
to regularize the contact interaction V, we introduce a UV
momentum cutoff A. The interaction strength is then
related to the experimentally accessible trion binding
energy ey at zero electron density by [23]

dk 1
vl = —/ . (24)
k< (27)? e + 2+ 3

We solve Eq. (22) self-consistently, by discretizing momen-
tum and energy and using an iterative method. The self-
consistent exciton spectral function A(p) = —z~'ImG=®(p)
for n, =0 and u, = ¢;/2 is plotted in Fig. 4.

The plot shows two spectral features: At negative
frequencies, the attractive polaron is a well-defined quasi-
particle excitation at sufficiently low momenta, while a
second well-defined, metastable repulsive polaron quasi-
particle exists at positive energies. Both excitations have
been observed in transition metal dichalcogenides [4] and

Il
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FIG. 4. Self-consistent spectral function of excitons at zero
exciton density, u, = er/2, m, =2m,, and disorder broad-
ening 1/27, = e7/100.

cold atomic quantum gases close to Feshbach resonances
[24,27,29,51,52].

1. Attractive polaron quasiparticles

The ground state of a single exciton described by
the model in Eq. (12) depends on the dimensionless
interaction strength given by the ratio ep/e; of Fermi
energy of electrons and trion energy. While the attractive
polaron is stable at higher electron densities, diagrammatic
Monte Carlo simulations predict a trion ground state for
Fermi energies below 0.le7 for contact interaction models
[53,54]. We henceforth assume a sufficiently large electron
density so that the physics at low exciton densities is
dominated by the formation of attractive polarons. In this
regime, it is instructive to introduce an effective (or
projected) Green’s function G,, describing the propagation
of attractive polaron quasiparticles (see Appendix A):

~ 1

G,.(p) = —— ) 25
TR
Here, we have introduced the polaron dispersion
2
P
= — U3, 26
bp = 3 T H (26)

with the polaron chemical potential 4§ measured from the
bottom of the polaron band. Moreover, we have defined
the effective polaron mass m, the polaron lifetime z%(p),
and the quasiparticle weight Z as

(my)™" = Zm;' + ZOgReZin (p.0)|p—p,.  (27)
1/27;(13) = Z/ZT)C - ZImZint(p’ Cp)’ (28)
zh=1- O Zint(PF. @)] =0 (29)

where we introduced the exciton Fermi momentum p. The
polaron density of states in Eq. (18) is hence p, = m}/2x.
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The polaron lifetime has a constant part from disorder
scattering, as well as a momentum-dependent part due to
incoherent electron-polaron scattering [see Appendix D for
an estimate of ImZX;,(p), as well as the discussion in
Ref. [48]]. We emphasize that it is crucial to evaluate
the polaron self-energy self-consistently to obtain the
momentum-dependent lifetime.

In Sec. III E, we make use of the fact that the full exciton
Green’s function can be approximated by the effective
expression, G,(p)~ZG,(p) near the resonance w ~{,
and |p| < ky. The interaction vertex between electrons and
polarons, however, is determined by virtual transitions to
excited states, and knowledge of the full exciton Green’s
function is required to accurately determine the vertex
functions.

B. Conserving approximation

We now turn to finding an expression for the trans-
conductivity within the conserving approximation [46,55].
We first review the basic principles of the conserving
approximation and then apply this formalism to the polaron
problem. In this section, we temporarily adopt the Keldysh
notation, which is most convenient for this purpose.

Intuitively, an approximation that satisfies conservation
laws can be derived from a quantity that is invariant under
symmetry operations. In the diagrammatic language, such
quantities are represented by vacuum diagrams, i.e., dia-
grams that appear in the expansion of the thermodynamic
potential. Our starting point is a functional ®[G] of the
Green’s function defined as the sum of certain two-particle
irreducible connected vacuum diagrams. The choice of
diagrams determines the accuracy of the approximation.

We can obtain a self-energy from the generating func-
tional ®[G] by a functional derivative

$(1,2) = 5‘2‘1(’5;1) , (30)

where the arguments are space-time coordinates on the
Keldysh contour. In a diagrammatic language, this pro-
cedure amounts to simply cutting a Green’s function line in
the vacuum diagrams leading to the desired self-energy,
which is called @ derivable. Crucially, the Green’s function
obtained from a Dyson equation with this self-energy turns
out to be conserving; i.e., physical quantities constructed
with this Green’s function obey conservation laws such as
the continuity equation [56]. Importantly, £ needs to be
evaluated self-consistently, which means that all internal
Green’s function lines in X represent full lines dressed by
the self-energy.

Response functions can also be derived within the
conserving approximation (for a detailed discussion, see
Ref. [46]). We start from the equation of motion

/d2G‘1(1,2)G(2, 3) =46(1,3), (31)
where we have defined the operator
G7'(1,2) = [i0, — h(1)]8(1,2) = £(1,2),  (32)

where £ is the single-particle Hamiltonian and 7 a time on
the Keldysh contour. We now consider the variation 6G of
the Green’s function with respect to some perturbation
of the single-particle Hamiltonian 64. From Eq. (31), we
obtain

/d2[5G‘1(1,2)G(2,3) +G71(1,2)6G(2,3)] =0, (33)
and thus

5G(1,3) = / DAAG(1,2)56- (2, 4)G(4,3)  (34)

= - / d2d4G(1,2)[5(2,4)6h(4) + 6Z(2,4)]
x G(4,3), (35)

with 6X = X[G + 6G| — Z[G]. Equation (35) defines a
recursive relation for 6G as we can write 6%(1,2) =
[ d3d4K(1,3;2,4)5G(3,4), where K = 8*®/5G? is the
irreducible two-particle vertex, which is obtained from @
by cutting two lines. We can reorganize Eq. (35) to find

8G(1,3) = —/d2d45(2,4)5h(4)L(1,2;3,4), (36)

where L(1,2;3,4) is a reducible vertex function, which is
related to the irreducible vertex K via the Bethe-Salpeter
equation

L(1,2;3.4) = G(1,4)G(2,3)
+ / d5d6d1d8G(1,5)G(6,3)

x K(5,8;6,7)L(7,2;8,4) (37)

shown in Fig. 5(c).

The two-particle function L relates the change of the
Green’s function to a perturbation in the single-particle
Hamiltonian and can be used to calculate arbitrary response
functions. For instance, the current response to a vector
potential reads

57,(1) = / 2, (1,2)54°(2), (38)
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FIG. 5. Linear response theory for polaron drag within the
conserving approximation to lowest order in polaron density.
(a) The functional ®. Dashed (wavy) lines represent disorder
(interactions). Blue (dark gray) lines indicate dressed electron
propagators, and red (light gray) lines indicate dressed exciton
propagators as defined in Fig. 3. (b) The irreducible two-particle
vertex K = §>®/5G>. Only diagrams to leading order in exciton
density are retained. (c) The Bethe-Salpeter equation (37) for the
reducible two-particle vertex L. (d) The transconductivity dia-
gram obtained from Eq. (39). The second and third lines show the
solution for L based on the irreducible vertex K in panel (b).

where the Einstein sum convention is implied and

Piy—Dr, P2p—DP2p
Zup(1.2) = ( e ")( oy ’)L(l,z;l/,Z’)

=1
22

(39)

Diagrammatically, this amounts to connecting pairs of
outer legs of the two-point function L to current vertices
as shown in Fig. 5(d).

We now derive the transconductivity diagrams for the
electron-exciton system. Our starting point is the functional
® depicted in Fig. 5(a). The prefactors of the individual
terms are determined by the number of symmetry oper-
ations of each diagram. The choice of the diagram is
motivated by the ladder approximation for the T matrix
discussed above. Summing over all possible ways to cut a
single line in this diagram, we obtain the disorder self-
energies for excitons and electrons as well as the polaron
self-energy in the ladder approximation. The resulting
Green’s functions are displayed in Fig. 3(a). By cutting

all possible pairs of lines in @, we obtain a set of diagrams
that form the irreducible vertex K shown in Fig. 5(b), which
is the kernel of the Bethe-Salpeter equation (37). Note that
K includes exciton-electron as well as exciton-exciton
vertices. Here, we have neglected any self-energy or vertex
corrections of the electronic Green’s function due to
interactions, anticipating that these do not contribute to
the transconductivity to leading order in the polaron
density. For the same reason, we restrict the response
function to diagrams with a single polaron loop. Moreover,
we have used the fact that vertex corrections due to disorder
are absent for Gaussian white noise.

The solution of the Bethe-Salpeter equation (37) shown
in Fig. 5(c) is the reducible two-particle vertex L, which is
directly related to the response function by Eq. (39). As a
result, we obtain two types of diagrams, displayed in
Fig. 5(d). We emphasize that these are the only diagrams
contributing to the linear order in the polaron density n,
within the conserving approximation, as any diagram with
an additional internal exciton loop would yield a result
proportional to n2. These diagrams are closely related to
the so-called Maki-Thompson and Aslamazov-Larkin dia-
grams that describe superconducting fluctuations (similar
diagrams appear in Ref. [57], which considers transport in a
two-component Fermi gas). We point out that these dia-
grams recover the perturbative Coulomb drag results if
expanded to lowest order in the interaction [34,35].
Crucially, however, we need to include vertex corrections
for the polarons, which arise from the third diagram in
Fig. 5(b). Moreover, we emphasize that the T matrices are
to be evaluated self-consistently in order to remain within
the conserving approximation. Indeed, one can readily
verify that the self-consistent self-energy and the vertex
corrections at zero external frequency satisfy the Ward
identity (cf. Sec. Il D). Finally, we point out that, while
there are no vertex corrections from disorder, the effect of
impurities is included as a broadening of the electron and
exciton Green’s functions [see Fig. 3(a)].

We now switch to Fourier space to make use of the
translational symmetry restored after disorder averaging.
The transconductivity is related to the response function
x in Fig. 5(d) by

e

O-a/}(Q) lQ (40)

and the response function reads
£ap(@) = =i [ dpr (3 DG (P)Gp -+ DT (p: ),
(41)

where p + Q= (p,w + Q). Here, we have defined the
exciton current vertex
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I'(p;Q) = P / dkdk'G,(q)G.(p + kK —k+ Q)

xT(p+K)T(p+kK+QG, (k)
X G (k+ Q) '(k; Q). (42)

The vertex I' describes the renormalization of the exciton
velocity due to many-body interactions [see Fig. 5(d)]. The
vertex function 7 describes the coupling of excitons to an
electric current and is given by

mmgp?f/&%4um@@+gﬂnp+k+m

e

—|—i/dk’Ge(k’)T(p+k’)T(p+k’+Q)

xGX(p+k’—k)} (43)

C. Low exciton density expansion

Before embarking on the evaluation of the response
function, we clarify the regime of validity of our calcu-
lation. As mentioned above, we are interested in the result
to linear order in the exciton density 7, o u}. Nevertheless,
we assume both electron and exciton Fermi levels to exceed
the frequency and disorder scattering rate, which allows us
to linearize the dispersions around the Fermi levels and
neglect localization effects. To be precise, we consider the
limiting case Q, 1/7, < u} and Q, 1/7, < u,. At the same
time, we assume u; < p,, which ensures that the Fermi-
polaron picture remains valid.

Within this approximation, we can simply set 7(p +
Q) ~T(p) to lowest order in Q. The external frequency
thus only enters in products of Green’s functions,
G (p)G(p+ Q) and G, (k)G,(k + Q), where Q separates
the branch cuts of the two Green’s functions. We can now
write the exciton current vertex as

F(ps@) = 24 [ dhon(p. G (WG & + QT ().

x (44)

where we introduced the kernel

5Zint(p)
5G (k)

:/que(q)Ge(p+q—k)T2(p+CI), (45)

w(p.k)=

which corresponds to the last term in Fig. 5(b). The vertex
function 7 reads

7(pi) = i [ dio GG+ ) S e

e 6G,(k)

- —i/dkEGe(k)Ge(k—i-Q) [T(erk)

+ i/ dK'G,(K)T(p + K)*G.(p + K — k)] :
(47)

We can alternatively apply the vertex corrections to the
vertex 7 and rewrite Eq. (41) as

X(lﬂ(g) = _l/dpna(p’g)Gx(p)Gx(p + Q)%’ (48)

X

where we introduced the dressed vertex IT defined by
(p; Q)
=n(p; Q) + / dkII(k; Q)G (k)G (k + Q)w(k, p).
(49)

We now outline our strategy for expanding Eqgs. (41)
and (44) to linear order in n,. While we have restricted
the calculation to diagrams with only a single exciton
loop, thereby neglecting certain higher-order contributions,
single-loop diagrams may still contain terms nonlinear in
n, that should be eliminated. Our starting point is the
following decomposition of the exciton Green’s function

G.(p) = Gi(p) + 2imG; (p)0(-w). (50)

In the diagrams, each Green’s function G, appears inside
a frequency integration, and we can write

/ dpf(p)Ga(p) = / dpf(p)G(p)
4 / dpf(p)2ImGA(p)6(-w). (51)

where the second term is proportional to n, for any function
f(p) that does not have poles in the lower half-plane
@ < 0. Hence, we can use Eq. (51) to expand a loop
diagram in powers of n,. The zeroth order is given by
replacing all exciton Green’s functions in a loop by retarded
functions. This contribution to the transconductivity trivi-
ally vanishes. The decomposition (51) thus suggests a
simple recipe to generate the diagrams at first order in 7,:
Consider all diagrams, where a single exciton line is
replaced by ImG%(p)0(—w) and all others are assumed
to be retarded functions.

Indeed, this recipe works for the functions w(p, k) and
n(p,Q) in Egs. (45) and (47) as all exciton Green’s
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functions in these expressions, including the internal
Green’s functions in the definition of the T matrix, are
of the form of Eq. (51). The only exception to this simple
expansion rule are the expressions in Egs. (41) and (44),
where products of two exciton Green’s functions within the
same frequency integral appear. The expansion of such
terms will be derived in Sec. III E below.

To simplify bookkeeping, we consider st and w to be
functionals of G,. The expansion 7t ~ (¥ + (") can then
be expressed to first order in n, as

¥ = n[GE], (52)

R
al) = / dpggéG(;}) 2(ImGA(p)0(—w),  (53)

where 7t[GF] means that all exciton Green’s functions
inside the vertex have been replaced by retarded functions.
Similarly, the function w can be expressed as w=

w© + ) with
w0 = w[GE], (54)

R
WD) —/dp Sw|Gy]
8G¥(p)

Naively, it may seem cumbersome to expand all exciton
Green’s functions as described above for both diagrams
shown in Fig. 5(d); however, we can considerably simplify
the solution by symmetry arguments. Importantly, both
diagrams have been derived by functional derivatives of
the @ functional, and therefore, the representation of the
expansion in n, in terms of functional derivatives is
particularly suitable for our problem. Most terms in the
expansion simply correspond to some higher-order deriv-
atives of the @ functional or the self-energy. The fact that
the order of differentiation does not matter leads to
important symmetry properties, for instance, w(p, p’) =
6Z(p)/6G.(p") = w(p', p), which can be readily verified
from Eq. (45). Moreover, this relation is immediately
obvious from the diagrammatic representation of w, shown
as the last term in Fig. 5(b).

We make use of symmetry properties as well as the Ward
identity in the evaluation of the transconductivity below.
Indeed, we find at the end of Sec. III E that the various
contributions from the expansion of the self-energy and
vertex corrections eventually combine into a simple final
expression that can be readily computed. As mentioned
above, however, the product G,(p)G,(p + Q) cannot be
simply expanded using functional derivatives. This term
accounts for the mobility of excitons and depends sensi-
tively on the parameter Qr,. A similar expression,
~G,(k)G,(k + Q), occurs in the definition of z(p;Q) in
Eq. (46) and contains information about the electron
mobility. The latter expression can be simplified by

2iImGA (p)8(~w).  (55)

expanding the Green’s functions in terms of delta functions
around the quasiparticle resonance € = &. In Appendix F,
we show that the approximation

k (iTeQmLeae + ak)Ge (k)

- G, (k)G (k+ Q) ~ = .0 (56)
is valid to leading order in Q,1/7, < u,. We cannot
immediately use this relation for the exciton Green’s
function because its nonperturbative interaction self-energy
correction precludes a description in terms of on-shell
properties only. We discuss this issue in more detail in
Sec. IITE below.

D. Evaluation of the vertex functions
to zeroth order in n,

We begin with the evaluation of the vertex functions
I'(p,Q), n(p,Q), and II(p,Q) to zeroth order in the
polaron density by simply replacing all exciton Green’s
functions by retarded functions. Equation (44) reads, at
zeroth order in n,,

rO(p) =2t [ ot (p PO IGE®?, (57)

where we have approximated GR (k)GR (k + Q) — GR(k)?
to lowest order in Q. Using the chain rule

(0)
(0) 6%y (P) R
>, = [ d G
ap int (p) / q 5G§(q) 8q X (Q), (58)

which immediately follows from the definition of X, and T
in Egs. (19) and (21), as well as 5ngg(p)/5G§(q) =
w(")(p,q), we can readily verify that the solution of
Eq. (57) is given by the Ward identity

rO(p) =2 4+ 9,59(p) (59)

= [GX(P)] 20, G (p)- (60)

In order to evaluate ¥ (p, Q), defined by Eq. (47), we
employ Eq. (56) and write

ireQ%QE + 8k

O (p;Q) =i [ dkG,(k
") =i [ kG ()=

[T“” (p+k)
+i / dK'G(K)TO) (p + K )*GE(p + K - k)] ,
(61)

where we have performed a partial integration. Using
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0,1(p) = i / kT (p)G(K)9,Go(p k). (62)

which follows directly from the definition of the T matrix in
Eq. (21), we find that the momentum derivative in Eq. (61)
drops out, and we obtain

) (p; Q) = 72 / Pk p)o.GR(K). (63)

1 —iz,Q B

The dressed vertex IT”) (p, Q) at zero polaron density can
be determined by plugging this expression into Eq. (49) and
approximating GR(k)GR(k + Q) ~ [G®(k)]>. Using the
chain rule

int

0, (p) = / dkw® (p, k) [GR (k)2 [GR ()] (64)

and an analogous identity for BPZSI?[) (p) as well as [GR]~! =

w—aw,+(i/ ZTX)—Zi([?g (p), one can readily verify that

Eq. (49) is satisfied by the expression

it,Q  [(m,
;) (B0 + 20, )20 (@

T 1-i,Q \m,

E. Evaluation of transconductivity to first order in n,

With the results above, we are prepared to evaluate the
response function y,s in Eq. (41) to linear order in n,. As
outlined previously, we can use the representation of the
exciton Green’s function in Eq. (51). By expanding the
different terms of Eq. (41) separately, we obtain three
contributions

Xap(Q) = 2 5(Q) + 1 ,(Q) + 4i(Q) + O(n3),  (66)

2y @) = —i / dpr) (p: Q)G (p) T (), (67)

20 (Q) = —i / dpdkI1y (p; Q)GR (p2W N (p. k)

x GR (k)T (k). (68)

xi(Q) = —i / dpTly (p; QT ()G (P)G.(p + Q).

(69)

To evaluate the first contribution, we use Eq. (53) as well as
the Ward identity for I'”) in Eq. (60) and obtain

517 (p; Q)

P Q) =2 [ dpdp
Hop(Q) / PAP =5 GR ()

X 8pﬁG§(p). (70)

ImG{ (p")0(~a)

Writing the first-order term in 7, as a functional derivatives
turns out to be very useful. We first use Eq. (46) to express
the vertex 7,(p) in terms of the self-energy %, and we
subsequently have to evaluate &%, (p)/6G,(p') =
W(p, p'). From its definition in Eq. (45), however, we
immediately observe that the function W(p, p’) is sym-
metric under the exchange of momentum arguments, which
implies the simple relation

674(p; Q) _ 6ma(p; Q)
8G.(p') 6G,(p)

(71)

Making use of this expression together with the chain rule

on,(p; Q)

/dPIWOP’Gx(pI) = ap”a(P§Q>7 (72)

we find
2 y(Q) =2 / dpimG} (p)0(-0)0,, 7" (p. Q). (73)

The structure of the second term given by Eq. (68) is
similar to the first contribution. Using the Ward identity as
well as the expansion of w in Eq. (55), we obtain

£ip(@) =2 [ dpdkakni? (p:@)GE(p o)

O (p, k)
We now use the identities
5W(p, k) _ 6221nt(p) _ (3W(p, k/) (75)
3G, (K) ~ 6G,(k)6G(K) ~ G, (k)
[ el k) ,
R R e R ONCD

where the second line immediately follows from the
definition of 7 and w in Egs. (21) and (45). We arrive at

£y (@ =2 [ dpdirtl) ()G (p)0(-e)
x ImG (k)(D,,, + 0, )W (p. k). (77)
The third contribution ¥ in Eq. (66) contains a term

G.(p)G(p + @), which cannot be expanded by the simple
recipe in Eq. (51) because two exciton Green’s functions
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are evaluated at nearby frequencies. A similar expression
for the electronic Green’s function has been evaluated in
Eq. (56); however, we cannot use the same formula for
excitons because their self-energy has an energy-dependent
imaginary part. In particular, when evaluated away from the
polaron resonance at @ = {,, ImZ;,(p) is not necessarily
small. Hence, the imaginary part of the exciton Green’s
function cannot be simply replaced by a delta function at
the polaron resonance, and the energy integral has both on-
shell and off-shell contributions.

The evaluation of the on-shell contribution, where
G, ~ G, given by Eq. (25), is further complicated by the
momentum-dependent  lifetime  broadening 1/27, +
ImX;,(p) of the polarons. For simplicity, we neglect this
momentum dependence in the following, writing

1
T o=, +i/2tsgn(w)

G.(p) (78)

with 1/7} = Z/7,, which is formally justified in the limit
ImX;, (0, —u%) < 1/27,. This approximation ignores the
effect of electron-polaron scattering on transport, which is
expected to be suppressed at small external frequencies due
to the small available phase space. We discuss this issue in
more detail in Sec. III F below.
The distinction between on- and off-shell contributions
can now be made explicit by writing
ImG,(p) = ZImG, + |G*(p) PImZiy(p. @). (79)
For the relevant energies @ < 0, the first term is entirely
determined by on-shell contributions, whereas the second

term vanishes near the polaron resonance. With the help of
Eq. (50), we find

G(p)G(p +9Q)
= [G¥(p) + 2iZImG (p)0(-w)]
x [GR(p + Q) + 2iZImG, (p + Q)0(-w)]

+4iG¥(p)|G* (p) PImZiy (p. @)0(~a). (80)

where we have approximated @ + £ — w in the second
term and we have neglected terms of order ImX;,(p)? o n2.

Using this expression, we can rewrite Eq. (69) as

X (Q) = —i / dpnly (p: QT (p)[Z°G,(p)G(p + Q)

+4iReG(p)|GX (p)PImEin (p)0(-w)].  (81)
where we have replaced G, — ZG, in the first term as this
integral is dominated by on-shell contributions. The second
term has only off-shell contributions, and we can therefore
write, to leading order, ReG,(p)|GR(p)|> ~ GR(p)3. We
obtain

2(Q) = —i / dpl1 (s QT (p) (226, (p)Go(p + Q)
+ 41[GR (p) P ISy (p)0(=)]. (82)

To make a connection with Eq. (77), we express ImXZ(p)
in terms of ImG,(p) using straightforward manipulations
(see Appendix E), and employing the Ward identity, we
arrive at

2(Q) = / dpT1? (3 Q){~iT (0) 226, ()G (p + @)
1 2ImG, (K)0(~e)wO) (. ), [GR (P} (83)

Adding all three contributions, we obtain

Yap(Q) = —iZ? / dply (p: Q)T ()G (p)G.(p + Q)
+oz / dplmG,(p)0(=)0y, 1 (9 Q)

+2 / dpdkT1Y (k; Q)0(-w)

x ImG4 ()3, W) (p, k) GE (k)?]. (84)

We can perform a partial integration in the last term, and
using [ dkw® (p, k)GR(k)? ~ -Z0,%(w) ~ 1 — Z, we can
write the response function in the form

Zap(Q) = —iZ2 / dpT? (p: QT ()G, (p)G(p + ©)

+Z/dp6x(p)ap/;n’(’0)(p;g)’ (85)
where we have used Eq. (51) and [dpG,(p) =

JdpG.(p).

We have arrived at an expression that depends exclu-
sively on the on-shell Green’s function G,(p). Using the
explicit expression in Eq. (78), we can rewrite Eq. (85)
using Eq. (56) as

Xap(Q) = —iZ / dpGx(p)ap/,H((xO)(p;Q>

—iZ? / dp1ty) (p; )Ty (p)

(Q220, + 8, i/70)G(p)
Q+i/t}

(86)

Moreover, the vertex functions in Egs. (60) and (65) can be
evaluated explicitly,

rOp.g,) = (87)

*?
Zmy
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—iz,Q p m
O (p.£,: Q) = —e=s 1) (g8
P ) = oz \ ") (88
Using these expressions and the identities —i [ dpG,(p) =
n, and [dwd,G,(w) =0 as well as integration by parts,
we readily obtain

OypN m 7,75 Q2
ap’tx X elx
= - 1-—— . (89
Kap m, < m,ﬁ) (1 —ir,Q)(1 —itiQ) (89)

The longitudinal transconductivity o, = €y,,/i€ thus
reads

en, n, iQr, 75

owl® =5 (1-08) e =y OO

which is identical to the expression in Eq. (7).

F. Transconductivity in terms of
low-energy excitations

We can rederive the result in Eq. (85) starting from an
effective theory based on attractive polarons as the only
low-energy excitations of the system. The effective low-
energy Hamiltonian in terms of the attractive polaron
operators a,, in the absence of electric fields reads

Hy = Cyapay + > UeWial, qay. (91)
P

P.q.j

where the first term denotes the dispersion of polarons,
while the second term corresponds to disorder scattering of
polarons. The effective polaron Green’s function can be
written as G,(p) = [ dwe™(0|Tay(t)a}(0)[0).

In the presence of an electric field E(f) = Ee~¥, the
polaron quasiparticles are no longer eigenstates of the
system as the field induces a drift in the Fermi sea. Solving
the polaron problem with average electron velocity v,, we
find that the polaron dispersion is shifted in momentum
space p—p+V,.(mf—m,) (see Appendix B for a detailed
calculation). This shift can be interpreted as an effective
vector potential for polarons induced by the electric field.
Assuming an electronic drift velocity v, = —et,Ee™¥/
m,(1 — iQz,), we can account for the shifted dispersion by
introducing an additional term in the effective polaron
Hamiltonian

H' ==Y aba,ZI%(p.,:Q) - A1), (92)
P

where TI() is the vertex evaluated at vanishing exciton
density given by Eq. (88) and A(t) = Ee ¥ /iQ is the
electric vector potential.

Alternatively, Eq. (92) can be derived by evaluating
the effective electron current vertex of polarons. Following

the same arguments as in Sec. III B, one can readily
convince oneself that this vertex is given by ZII =
[0/(0A)]|Zin[G.(A)]|a—o- The evaluation of the vertex
M is straightforward and has been performed in
Sec. III D.

The attractive polaron current resulting from the
Hamiltonian H' is

R E —iQt .
i = Z[£+e 70,1(p,,; Q) |apa,

n iQ
p
A eEeiQt A
=j, + Tzapn@ (. {p: Q. (93)

where we introduced j, = > p(p/ m;)a;ap, and we used

the fact that GPH(O) (p. ¢ s Q) does not depend on momen-
tum. The first term corresponds to the paramagnetic
contribution that can be evaluated using Kubo’s formula.
The second term is the diamagnetic contribution that
originates from the change in polaron velocity due to the
shift of the dispersion implied by Eq. (92). These two terms
precisely recover Eq. (85).

We can hence interpret Eq. (85) as the paramagnetic
and diamagnetic contributions to the conductivity in terms
of effective polaron quasiparticles with propagator G,.
In the derivation of this equation in Sec. IIIE, we have
neglected the momentum dependence of the lifetime,
thereby ignoring incoherent electron-polaron scattering.
Here, we have not made such an assumption, which
suggests that Eq. (85) holds even for a more general
momentum-dependent lifetime.

Nevertheless, the result for the transconductivity remains
unchanged. Obviously, only quasiparticles within a thin
shell with width of about Q around the Fermi energy
contribute to the conductivity. In close analogy to Landau
Fermi liquid theory, we find that the electron scattering rate
of an attractive polaron of energy Q is proportional to Q2
(see Appendix D). In accordance with our expansion to
lowest order in Q, the electron-scattering lifetime ImZ;,(p)
of the quasiparticles relevant for transport can therefore
be neglected.

IV. TRANSCONDUCTIVITY OF
POLARON POLARITONS

The above calculation can be readily generalized to the
case of exciton-polaron polaritons. We simply add a term
@, describing the coupling of excitons to the cavity mode
to the functional @ discussed in Sec. III B. The term is
depicted in Fig. 6 and reads explicitly

LONE gz/dleGx(l,Z)Gy(Z, 1), (94)

where the photon propagator is defined as
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G, = ={ }
BT ED

FIG. 6. Functional describing the exciton-photon interaction
®,,[G,,G,] and the vertex correction I' for polaritons with
photon propagators represented by green (dark gray) lines.

G,(k)™' = w — 1y + i0sgn(w) (95)

and we introduced the dispersion of cavity photons,
v = k?/2m, + A, where m, ~10m, and we assume
for simplicity that photons have an infinite lifetime. The
functional ®,, leads to an additional self-energy for the
exciton

2

g
. (k) = G, (k) = , 96
and the exciton propagator is changed accordingly,
1
G.(p) = (97)

o — C‘)p - z“int(p) - Zdis,x(p) - zxu(p) ‘

To make connection with our previous result, we assume
that we can describe the exciton as an attractive polaron
neglecting other excitations such as the trion. In our
approach, this is formally justified if g is much smaller
than the energy difference between the attractive polaron
and trion. Nevertheless, we expect our results to be valid
also at somewhat stronger couplings because, in reality, the
coupling strength between cavity photons and trions is
vanishingly small, even though this fact is not captured by
our simple model.

Hence, approximating the bare exciton Green’s function
by the attractive polaron Green’s function in Eq. (25),
we find

Z
=y — iZIm[Zi (p) + Zais(p)] —

G.(p) =~

The resonances of G, are determined by the equation

(@ =Ep) (@ — 1) = Zg. (99)

Near zero momentum, the lower-energy branch can be
approximated by a quadratic dispersion

2

_ L
Vp_70+2my-

(100)
Hence, near the lower polariton resonance, G, takes the
approximate form

G,(p) = 2
\P)= O —=Yp — iZyIm[Zint(p) + Edis,x(p)] .

(101)

When the cavity photon is tuned into resonance with the
attractive polaron, A = ¢, we find

vo=A-gVZ (102)
1111
— = —4— 103
m, 2 (m; mv>, ( )
z
z,=5. (104)

We have arrived at an effective polariton Green’s
function that is formally identical to the attractive polaron
Green’s function in Eq. (25), albeit with renormalized para-
meters. We emphasize that the broadening Im[Z;,(p) +
Ygisx(P)] has to be calculated self-consistently, and thus
disorder scattering as well as electron scattering will be
strongly suppressed due to the small polariton density of
states ~m,, <K mj.

The calculation of the transconductivity between elec-
trons and polaron polaritons is closely related to the one for
polarons. The relation for the exciton current vertex in
Eq. (44) acquires an additional term and reads

P P
L(pQ) =- =+ 7G,(p)G,(p+Q) -

4 / AW (p, )G ()G, (k + Q)T (k: Q).
(105)

This equation is also displayed in Fig. 6. Following the
same steps as in Sec. III D, we can verify that the vertex at
zeroth order in the polariton density satisfies the Ward
identity

T (p) =[G (p)] 20, GF (p)-

For small wave vectors |p| < ,/7,g, where G,(p)=
G,(p), we have

(106)

(107)

In contrast, the derivation of the vertex function I (p; Q)
in Eq. (65) remains unchanged. Moreover, the real part of
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the self-energy ReX;(p) is largely independent of the
cavity coupling, and hence the on-shell expression for
IO (p; Q) in Eq. (88) is retained.

In Sec. IIIE, most expressions involving G, remain
unchanged as they involve an integral over a large area in
momentum space. The only exceptions occur after Eq. (79),
where the on-shell Green’s function G of occupied states is
used. In these expressions, we can thus simply substitute
ZG, with Zyc_?y. These changes result in an additional factor
Z,/Z in the final result, Eq. (90). In addition, the lifetime 7,
is replaced by the polariton lifetime 7, = 7,my/m, > 7,.
Based on these considerations, we finally arrive at the
transconductivity between electrons and polaritons

Z, en m Q7,7
Q)=r2x (22 e .
o) =7 ( m;) (1= iQz,)(1 - iQr,)

The additional factor Z,/Z takes into account the fact that
the drag requires a finite excitonic quasiparticle weight. At
resonance, this factor reduces the polaron velocity to half its
value. Moreover, we emphasize that polariton drag is much
less affected by excitonic disorder because the small density
of states of polaritons suppresses disorder scattering.

(108)

V. NONEQUILIBRIUM EFFECTS

We have seen that our intuitive picture of polaron drag
developed in Sec. II correctly reproduces the results of the
fully microscopic model presented in Sec. III. This is
encouraging as the semiclassical theory can be extended to
include other effects that could not be captured within the
linear-response calculation but that are potentially relevant
for experiments. Most notably, optically excited excitons
have a finite lifetime due to recombination processes,
which requires a nonequilibrium calculation.

For exciton polarons in monolayer TMDs, an ultrashort
radiative lifetime of about 1 ps for low-momentum excitons
implies that the assumption of an equilibrium exciton gas is
not justified. Moreover, disorder scattering in state-of-the-
art samples is comparable to the radiative decay rate,
rendering it unlikely that a spatial displacement in exciton
photoluminescence induced by an applied low-frequency
electric field can be observed.

In general, we envision three different experimental
scenarios, where our findings are potentially observable:

(1) In the case of interlayer excitons in TMD hetero-

bilayers, where electrons and holes occupy conduc-
tion and valence band states in different monolayers,
the exciton lifetime can be tuned electrically and can
well exceed 100 ns. Since timescales for disorder
scattering are considerably shorter, we expect the
interlayer excitons to be in equilibrium. Provided
that the spatially indirect trion state remains bound,
our results could also be used to describe drag of
indirect exciton polarons, where disorder or electron

scattering times can be shorter than the radiative
lifetime. In this case, the resonantly generated polar-
ons will be scattered to momentum states outside
the light cone, where they can decay nonradiatively
or by phonon-assisted radiative decay. The nonzero
drag velocity may be detected in photolumi-
nescence.

(i) Alternatively, our results may be relevant to hetero-
bilayers at very large electron density. In this limit,
screening of the interaction between valence band
holes and conduction band electrons has to be taken
into account, which invalidates our assumption that
excitons can be regarded as rigid quasiparticles.
Instead, we may consider the valence band hole as a
quantum impurity interacting with a Fermi sea of
conduction band electrons. For sufficiently high
electron densities, it may become favorable for
the hole to form a polaron rather than an exciton.
This approach bears some similarity with Ref. [58],
and it can be used to analyze the Fermi-edge
singularity problem within the framework of Fermi
polarons. Our analysis of the transport problem
carries over to the case of hole polarons with the
trion binding energy replaced by the screened
exciton binding energy. To ensure that Qz > 1 is
satisfied, it may be possible to use microwave or
terahertz irradiation and monitor the polaron re-
sponse as sidebands in optical response.

(iii) Arguably, the most promising platform for the
observation of electric-field-induced displacement
of neutral optical excitations is provided by exciton-
polaron polaritons observed when a monolayer with
a 2DES is embedded inside a 2D microcavity [2—4]
or when a monolayer is embedded in a dielectric
structure that supports in-plane propagating pho-
tonic modes [59]. Small-momentum excitations in
the lower-energy polaron-polariton branch have two
striking features: First, because of their extremely
small effective mass, polaritons are, to a large extent,
protected from disorder scattering. This effect was
observed in exciton polaritons in the 1990s in GaAs
heterostructures [60,61]. Second, low-momentum
polaritons can only decay radiatively through cavity
mirror loss: It is therefore possible to ensure that the
polariton lifetime is much longer than that of excitons
by using high-quality-factor cavities. Nevertheless,
interactions between polaritons are also weak, and we
cannot expect a low density of polaritons to thermal-
ize, rendering it essential to develop a nonequilibrium
description of transport.

A. Boltzmann equation

Our aim is to develop a kinetic theory for the distribu-
tion function gy (r, ) of exciton polarons, including the
effects of pumping, recombination, and disorder as well as
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a nonzero electron drift velocity v,(z) due to an electric
field E(7). In the most general case, we can write the
Boltzmann equation as

dgy(r, 1) _ Ogk (r. 1) n kagk(rv 1)

Jg (r. 1)
dt ot ’

ok Tk or

(109)

Importantly, the electric field does not exert a direct force
on polarons, whose canonical momentum Kk is conserved.
Instead, it shifts the polaron dispersion by changing the
electron velocity. A straightforward solution of the polaron
problem discussed in Sec. III A in the presence of an
electron drift (see Appendix B) yields the dispersion

élk(t) = é‘k+(m;—mx)ve(t)’ (1 10)
which is shifted from the equilibrium dispersion {j =
k?/2m such that the polaron state at k = 0 has a velocity
(I —m,/m})v,(r). Even though an electric field does not
affect the conjugate momentum of the polaron, k =0, it
changes its kinetic momentum m}v,(k, t) with the polaron
velocity

a%k(t) :m5+ (1 _%>Ve(t)_ (111)

*
X X

v.(k, 1) =

For simplicity, we assume a spatially homogeneous dis-
tribution, 0.gi(r,?) =0, and we suppress the spatial
dependence in the following. Hence, the distribution
function does not have an implicit time dependence, and
Eq. (109) can be written as

o(t) _ paiaey — ) <898Lft>>dis * (agaLz(t))m'

dt T,

(112)

The first term is due to pumping of polarons at a rate R in
the polaron state at k = 0 by resonant laser absorption. The
incidence angle of a collimated laser field determines the
in-plane momentum of the exciton polarons, which is, in
turn, much smaller than the other characteristic momentum
scales in the problem, such as kr and m,v,. By tuning the
frequency of a normal-incidence single-mode laser field, it
is possible to ensure that only k = 0 attractive polarons
can be created. The second term in Eq. (112) corresponds to
the loss of attractive polarons due to the recombination
processes at arate 1/z,. In general, 7, is expected to depend
on momentum since the recombination rate should be
strongest for small momenta k that lie inside the light cone,
whereas the decay from states outside the light cone
requires the generation of additional excitations such as
phonons. Here, we neglect the momentum dependence of
7,., for simplicity, although the generalization of our results
to include this effect is straightforward. The last two terms
in Eq. (112) conserve the number of polarons and

correspond to collision processes, either due to exciton
disorder or incoherent scattering off electrons. These terms
will be discussed in more detail below.

Integrating Eq. (112) over momentum space, we obtain
the time evolution of the exciton density n(f) = n,(t) =

J(dk/4x?)gi (1) as

i) = -0 (113)

Tr

where we have used that the collision integrals conserve
the number of polarons. Moreover, we are interested in
evaluating the exciton current density defined as

w50 = [ Grsadvien. (114)
Differentiating with respect to time, we obtain
) i50) = [ s o)

+dg%t(t)vx(k,t)} (115)

The first term on the right-hand side can be readily
evaluated using Eq. (111) and k =0 as

[ ) P =) ),

2n dt mim,

(116)

with F, = m,v,(¢). The second integral in Eq. (115) can be
evaluated using the Boltzmann equation (112) and, with the
help of Eq. (113), we obtain

i ) =m0 = i, ()
+ MFe(t) + Fdis(t) + Fint(t),

e

(117)

In this expression, the first and second terms account
for polarons in the k = 0 state with velocity v,(0,7) =
(1 —m,/m})v,(z) that are generated by the laser or lost by
the recombination of excitons, respectively. The third term
corresponds to the drag force acting on the exciton system
due to the polaronic coupling to electrons, which was the
main focus of the equilibrium calculation in Sec. III. The
last two terms correspond to the friction due to exciton
disorder and incoherent scattering with electrons,

ms dk (0g
Fdis(t) = n(t)/(Zn')2 <a—[k>disvx(k’t)’ (118)
_omy dk (0gy
Fol) = 5 | o (o ek 019
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These forces depend sensitively on the polaron distribution
and can lead to nonlinear effects in the time evolution. We
discuss them in more detail in the next section.

B. Estimation of the friction forces from disorder
and incoherent scattering with electrons

Friction from excitonic disorder can be described by the
collision integral

<88itk> dis - % [ (2) — g1 ()] M e

(120)
where My, denotes the matrix element corresponding to
the scattering of a polaron from state k to state k’. In the
simplest case, we can assume Gaussian white noise as in
Sec. III A, and we obtain

Mo = o) =Bl (121)

*
x¥x

Note that the matrix elements depend on the shifted
dispersion in the presence of the electric field. With this
approximation, the collision integral simplifies to

<86%> b : / K e (03 (1) = B ()] — 2

R (27) T
(122)
and the friction force reads
v, (1
(1) = - 2 (123)
TX

Hence, for Gaussian white noise correlated disorder, the
polaron disorder scattering time is also the relaxation time
for the drift velocity of the exciton system. We emphasize
that this result holds, even though we cannot treat the
collision integral in Eq. (120) in the relaxation time
approximation.

The force introduced in Eq. (119) corresponds to an
additional drag force originating from the residual inter-
action between electrons and polarons. While coherent
scattering events of electrons and excitons result in polaron
formation and the polaron drag phenomenon described in
Secs. II and III, incoherent collisions lead to a lifetime
broadening of the polarons. This broadening appears as a
term ImX;,(p) in the Green’s function description of
polarons discussed in Sec. IIT A.

The qualitative effect of incoherent broadening can be
estimated from a simple argument by temporarily disre-
garding polaronic disorder. For concreteness, we imagine a
narrow distribution of polarons around zero momentum,
which corresponds to the distribution shortly after the
laser has been switched on. In the comoving frame of
the electrons, the zero-momentum polarons have a velocity

—v,m,/m} and thus are in an excited state. Excited polaron
states, however, have a finite lifetime due to the interaction
with electrons and will decay into lower-energy states,
which also have a smaller absolute velocity. Hence,
incoherent electron-polaron scattering will lead to a relax-
ation of the polaron velocity to zero in the comoving frame.
In the lab frame, this case corresponds to an acceleration of
polarons until they reach a velocity v,, which justifies the
following ansatz for the electron friction force on the
polarons,

vV.(t) —v
Fim:_m;M’

Ting(1) 2y

with an effective timescale z;,, that depends on details of the
polaron distribution at time 7. A rough estimate for 7, is
given by the interaction lifetime of an excited polaron state
with velocity —m,v,/m?. After this time, all the polarons at
zero momentum have scattered at least once. In the comov-
ing frame of electrons, the scattering probability does not
have a very strong dependence on the direction of the final
polaron momentum. Hence, the polaron reaches an average
velocity similar or equal to v, already after a few scattering
events, even though the time for each individual polaron to
reach that velocity is expected to be much longer.

The expression for the friction force in Eq. (124)
captures the conventional Coulomb drag effect, e.g., in
electron bilayer systems [33-36]. Indeed, for perturbative
interactions, F;, is the only contribution to drag. As we
have shown in Sec. III, nonperturbative interactions result
in an additional polaron drag effect that dominates at low
temperatures and frequencies, whereas the drag force in
Eq. (124) is a subleading correction that we have neglected
in the linear response calculation in Sec. III. We emphasize
that in nonequilibrium systems or at finite temperatures,
F;,; cannot necessarily be ignored.

An explicit expression for the collision integral reads

(%L:) - /%[gy(l = 9k) Qi = 9k (1 = gi) Qe .

int

(125)

where the transition probability Oy, denotes the scattering
rate of an attractive polaron of momentum k to a momen-
tum k' due to interactions with an electron Fermi sea
drifting at velocity v,. In order to derive an expression for
Qppr, we first consider the polaron scattering rate Qpy
when the electron drift velocity is zero. The electron-polaron
scattering amplitude is simply given by the T matrix, and,
hence, Fermi’s golden rule yields

dk
Qpp’ = ZZH/W |T(P + k’Cp + €k)|2fk[1 _kaFP—P/}

X 5((:[) - Cp’ — Ekip—p T 8k)’ (126)
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where f denotes the equilibrium electron distribution.
One can readily verify that this scattering rate reproduces
the lifetime broadening of the on-shell polaron Green’s
function (see Appendix D 3 for the case of an empty polaron
band),

/

(1- gk’)Qkk’- (127)

dk
Imz’int(p’é’p) :/W

In the presence of a nonzero electron drift velocity,
Eq. (126) has to be modified by shifting both the polaron
dispersion ¢, — Zp and the electron distribution f} —
Sk=m,v,(1)- A straightforward calculation along the lines of
Appendix B establishes a relation between the scattering
amplitude with and without an electric field,

OQpp' = Opm,v, (1) p'=m,v. (1) (128)

Indeed, this result confirms the intuition that the friction
between polarons and electrons results in the relaxation of
the polaron velocity in the comoving frame of electrons. To
see this result, we observe that the lowest energy state has an
infinite lifetime, i.e., Oy = 0. In the presence of an electric
field, this means a polaron state with momentum p = m,v,
is stable with respect to scattering off electrons. According to
Eq. (111), this state has a velocity v,; i.e., it is moving at the
same speed as the electron Fermi sea.

In order to obtain an estimate for the friction force F;,
in Eq. (119) on a narrow distribution centered at zero
momentum, ¢ ~ nd(k), we can make the same approxi-
mation as above that the average velocity after a single
scattering event is v,. We can hence write the force from the
first term in Eq. (125) as

m dk dk’ ~ miv
= —— Kk, g (1 — e~ —= R
17 G o D1 =) Qs
(129)
and for the second term, we obtain
m dk dk’ ~ miv
— | ——= v, (k,t)g (1 — g, p
1107 T e (1= )=
(130)
Here, we have defined the scattering time
=370 (131)
Tint(t) - Kk’ oK’

which is identical to the interaction lifetime of a polaron at
momentum —m,V,. With these results, we indeed re-
cover Eq. (124).

To obtain a rough estimate of 7;,, we can approximate
the T matrix by a constant ZT(p +K,{, + &) ~ U=

ZT(kp,0), which is valid in the relevant limit |p| < kp
and |k| =~ kp. The scattering time at zero temperature
can then be obtained from a straightforward calculation
(assuming m = m, ~ m,, see Appendix D) as

1 3
~p U2 (mv,)
Tint(t) kF

(132)

At frequencies close to the trion energy, the T matrix is
dominated by the trion pole. The interaction between
attractive polarons and electrons originates from virtual
scattering events into a higher energy state comprising a
trion and a hole, which results in an effective attractive
interaction. This yields the estimate

z
Uz—pi, (133)

where A is the energy separation between the trion-hole
continuum and the attractive polaron. Assuming a quasi-
particle weight Z ~ +/u,/er, the friction force on polarons
at zero momentum is of the order of

(134)

The friction force therefore scales with the electric field as
Fi, < E*, which illustrates why this effect has not been
captured in the linear response calculation in Sec. III.

We emphasize that this result is valid at zero temperature.
At finite temperatures, the friction force is still expected to
have the form in Eq. (124), but the scattering rate acquires
an additional temperature-dependent contribution due to
the enhanced phase space available for electron-polaron
scattering.

C. Equations of motion for polarons and polaritons

After the pump has been switched on for a time of about
7,, the polaron density saturates to the value n = Rz,. Even
though the density has reached a steady-state value, the
solution of the nonlinear Boltzmann equation (112)
depends sensitively on the ratio of the various timescales
and, in general, requires numerical calculations. To ensure a
strong hybridization of polarons and photons, it is desirable
to work in a limit where the radiative lifetime is the shortest
timescale, 7, < 7}, ;.. In this case, the polarons remain
mostly near k = 0 and therefore within the light cone, as
disorder and electron scattering, which change the polaron
momentum, are suppressed.

This limit guarantees that the friction caused by electrons
can be described by Eq. (124), and we can make the
connection to the semiclassical equations in Sec. II more
explicit. Assuming a density n(¢) = Rz,, Eq. (117) can be
written as
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% dvx(t) (m; - mx)ve(t) _ m;‘_lx(t) _ m;‘_’x(t)

Todr T, 7, P
- m;(vx(t) B Ve)
— F () ————2 =7

* m, E( ) Tint(t>

(135)

A comparison with the corresponding Eq. (3) in Sec. II
reveals three extra contributions in the nonequilibrium
case. The first term originates from pumping polarons
into the state k =0 with velocity v,(k=0,7)=
(I —m,/m})v,(t). The second term describes recombina-
tion of polarons. Finally, the last term originates from
incoherent scattering of electrons, which has been neg-
lected in Sec. II. This assumption is justified in the limit of
weak electric fields.

Equation (135) can be readily generalized to polaritons.
As has been argued in Sec. IV, polaritons are much less
affected by scattering processes because of their ultra-low
mass and the correspondingly small scattering phase space.
Resonant coupling between polarons and the cavity mode
creates a local minimum near zero momentum in the
polariton dispersion. For a sufficiently strong coupling
lg > (m,v,)?/2m} in the notation of Sec. IV], disorder or
interaction scattering of low-energy polaritons to large
momenta of about m,|v,| is energetically forbidden. In
this case, the polariton scattering rates 1/7% and 1/7;, are
reduced by a factor (m,/m};) compared to exciton polarons.
As typical values are (m,/m}) ~ 107>, we conclude that
such scattering processes can be neglected. Following
similar steps as above, we arrive at the equation of motion
for polaritons,

B4 (1) %l B0 () B0

dt x) 2z, 7, mi) 2m,

(136)

The additional factor of 1/2 in the first and third terms
reflects the ratio of the polariton and polaron quasiparticle
weights. This equation can be readily solved. Assuming a
static electric field, such that F,(7) = 0, the polaritons
move at a velocity v, = (1 —m,/m})v,(t)/2 during their
entire lifetime, which corresponds to an approximate
distance A = (1 — m,/m})v,(t)z,/2.

We also perform a quick estimate of the magnitude of A.
The ratio m,/m} depends on the Fermi energy but is of
the order 1, and therefore we can conservatively take
m,/mi = 1/2. The electron drift velocity can be calculated
from v, = Eu. In TMDs, the applied source-drain electric
field E can be of the order of 1000 V/cm, while the
electron mobilities can reach y = 10* cm?/(V's) [62,63],
which results in drift velocities of the order of v, =
10° m/s. Assuming a polariton lifetime of 7, = 10 ps,
we obtain a drag-induced polariton displacement of
roughly A =250 nm. We envision an experiment where
polaritons are injected with a finite group velocity using a

resonant laser field, upon which they travel distances
exceeding 10 ym while decaying due to cavity losses:
By interfering, the polariton emission with the same laser
field, drag-induced polariton displacement of the order of
30 nm can be easily measured [64]. The photonic dis-
placement induced by the applied electric field can easily
be increased by using higher quality cavities leading to
longer polariton lifetimes [65].

VI. MAGNETIC FIELD RESPONSE
OF EXCITON POLARONS

We can include the effect of a dc magnetic field by
adding a Lorentz force to Eq. (2),

d eE(r) eB v, (1)
— = =— - ———=. (1
v =a.0=-0 v x 2t )
We can readily solve this equation and find
e E(Q) x eB/m, —E(Q)(r;! —iQ)
Q) =— , 138
AT (zo! = Q) + ¢ 3%

where w,. = eB/m, is the cyclotron frequency. As the
magnetic field does not directly couple to excitons, Eq. (6)
remains valid. Hence, when o, > Q, 1/7, and Qz, > 1,
the electrons and polarons drift in the direction perpen-
dicular to the electric and magnetic fields realizing a Hall
effect of neutral excitons.

More generally, Eq. (6) predicts that excitons will follow
the trajectory of electrons (scaled by a factor) on timescales
shorter than the exciton impurity scattering time. In the
absence of an electric field, excitons should therefore move
in cyclotron orbits, which suggests that polarons could
experience a phenomenon similar to Landau quantization.
Equivalently, one can argue that excitons should be affected
by the quantizing magnetic field as they are dressed by
particle-hole excitations with a discrete energy spectrum due
to electronic Landau levels. A signature of this case would be
a polaron spectral function with a series of peaks on top of an
incoherent background present at higher energies roughly
spaced by the cyclotron frequency. A related phenomenon has
been discussed in the context of Bose polarons, in particular,
for electrons strongly coupled to dispersionless phonons. In
this case, phonon shake-off processes lead to a series of broad
peaks in the polaron spectral function separated in energy by
multiples of the phonon frequency [66].

Observation of Landau levels in the absorption spectrum
where the energy separation is given by the electron
cyclotron frequency would represent yet another manifes-
tation of the central role played by polaron physics in
optical excitations out of a 2DES. If bound trions were
observable in absorption, the observed Landau-level spacing
would be determined by the trion mass, which is a factor
of 3 larger than that of the electron in TMD monolayers.
In the opposite limit of very high electron densities, we
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expect screening to lead to ionization of excitons: In this
regime, the level separation will be determined by the
reduced mass of electron-hole pairs.

Conversely, the motion of electrons in a magnetic field
can be influenced by the presence of excitons. Excitons at
an appreciable density can lead to a polaronic dressing of
electrons, thereby increasing their effective mass, which
could be detected in Shubnikov—de Haas oscillations or
cyclotron resonance measurements. With increasing den-
sity of excitons, the electronic resonance frequency is
expected to shift as a result of a polaronic dressing. In
contrast, bound trions would appear as a new resonance in
addition to the bare electron resonance, and no shift is
expected as a function of trion density.

VII. OUTLOOK AND CONCLUSION

Our work opens up new frontiers in nonequilibrium
many-body physics by showing that external electric and
magnetic fields could be used to control and manipulate
elementary optical excitations such as excitons or polar-
itons. The requisite element leading to this intriguing
functionality is the presence of nonperturbative interactions
between excitons and electrons, leading to the formation of
exciton polarons. In addition to the potential applications in
realizing effective gauge fields for photonic excitations
that we already highlighted, we envision several extensions
of our work that, by themselves, constitute open theory
problems.

Arguably, the most interesting extension of our work is
the investigation of the degenerate Bose-Fermi mixture
regime, which can be accessed by increasing the optical
pump strength. In the limit of perturbative electron-exciton
interactions, this problem could be formulated as a cou-
pling between Bogoliubov excitations out of a polariton
condensate and electrons close to the Fermi surface [67].
In the opposite limit of nonperturbative exciton-electron
interactions and polariton density n, lower than that of
electrons n,, the ground state could be described as a
polaron-polariton condensate. We expect the confluence of
these two approaches to give rise to new physics where the
nature of polariton screening by electrons could be dra-
matically modified due to degeneracy favoring a high
quasiparticle weight. Moreover, it is precisely in this regime
that the modification of the electronic transport properties
due to degenerate-polaron formation would become signifi-
cant. It is possible that the previous proposals for polariton-
mediated superconductivity may have to be revisited in light
of new features that emerge from a rigorous analysis of
polaron-polariton condensation [67—-69]. Last but not least, a
gradual increase (decrease) of polariton (electron) density
from the n,, < n, to n,, > n, regime takes us from a Fermi-
polaron problem to a Bose-polaron problem: The exciton-
polariton system allows for such tuning by changing the
optical pump strength together with applied gate voltages
that control the electron density.

Another exciting extension of our work is the analysis of
the regime of a strong ac drive of the interacting electron-
polariton system where electrons occupy Floquet bands.
We expect a particularly strong modification of polaron
formation if the external field resonantly drives plasmon
resonance of degenerate electrons. Introduction of spatial
modulation of the electron density using Moire patters or
surface acoustic waves could be used to engineer nontrivial
band structure for electrons: It is thereby possible to realize
either stationary or Floquet topological bands for electrons,
which will, in turn, modify exciton-polaron transport. An
alternative strategy to investigate the interplay between
topological order and polaron formation is to study optical
excitations from fractional quantum Hall states.

As we highlighted earlier, application of our formalism
to 2D materials is particularly exciting: On the one hand,
these materials exhibit a valley pseudospin degree of
freedom and a nontrivial band geometry with a sizable
Berry curvature. On the other hand, they allow for creating
hybrid materials combining different functionalities; an
exciting recent example is a heterostructure based on
exchange coupled semiconducting and a ferromagnetic
monolayers. Optical excitations in such a system will be
Bose polarons where the magnetic moments of valley
excitons are screened by magnon excitations out of the
ferromagnet.
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Note added.—Recently, an experimental work was posted
[70] reporting a response of polaritons to external electric
fields. At this point, it is not clear to us if the observed
response is related to the polaron drag we predict.

APPENDIX A: EFFECTIVE ATTRACTIVE
POLARON PROPAGATOR

In this section, we show, starting from the full Green’s
function G,, how one can introduce an effective (or
projected) propagator, which describes the propagation
of the low-energy excitations (i.e., the attractive polarons).
Starting from the general Green’s function
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1
w — wp — Zin(p) +i/27,5gn0"

G.(p) = (A1)

we introduce the dispersion of attractive polarons as the
lowest-energy pole of the above, i.e.,

2

p
{p = wp +ReZiy(p. p) = m*

-1 (A2)

where we introduced the polaron mass mj} and also
introduced a new chemical potential yj}, measured from
the bottom of the attractive polaron dispersion. The above
equation is correct for small momenta p < ky, while for
larger momenta, it will start to deviate from a quadratic
dispersion.

Expanding the self-energy X(p, @) to linear order in o,
we can write

1

G.(p) =~

1

w—Wp — Rezim(pv Z.:p) - iImZint(pv Cp) + (a) - cp)awzint(pv w)|m:Cp + i/ZTngn(a))

0= Cp 1 (@ )0 Z(P- @), g, +1/27,580(0) — (M, (p. Cp)

_ Zy

C w-— $p +iZy/27,5g0(w) — iZpImE, (p. &)

where we introduced the renormalization factor Z; l=
1 —0,%.(p, a))|w:Cp. It is clear from this definition that,
in general, the renormalization factor Z, is complex (|Z,,|
denotes the quasiparticle weight) since the self-energy is
complex. However, as long as

aa)Irnz“int(IL 0)) |w:§p < Imzim(pa ép)’ (A4)

we can neglect the complex part of Z,. We prove that the
above condition is satisfied for small momenta |p| < kg in
Appendix D, where we explicitly evaluate the imaginary
part of the self-energy. In this limit, we can approximate the

quasiparticle weight by a constant:
Zl;l ~1- awRezint(p’ w)‘w=§p

~1—0,ReZi(pr.@)|,—0 =Z7".

w=0 =

(A5)

We can also introduce the lifetime of the attractive
polaron as

1/273(p) = iZ/2%; + iZ|ImZi (p. &)

. (A6)

where we introduced the absolute value of the imaginary
part of the self-energy, which changes sign at @ = 0. Using
the above, we can rewrite the exciton propagator for low
momenta as

Z

G,(p)~ w—Cy+ iti(p)sgn(w)

=Z7G.(p). (A7)

which defines the projected operator G(p).

In the main text, we sometimes need to evaluate the
partial derivatives of X(p) on shell, ie., at p = (p,{p).
From Eq. (A5), we immediately have

(A3)

[
a(x)zint(p7 a)) |(1):§p = 1 - Z_l ° (A8)

To evaluate the momentum derivative, we solve Eq. (A2) to
obtain

dp_ P
dp  my
dwp d(Rezint(p7 Cp))
=t
P dp
p gy
=——0,ReZ;(p, —0,ReZ;(p,
m, P € mt(p gp) + dp € t(p a’) ot
(A9)
From the above, we immediately obtain
4P P
8pReZim<p’Cp) =Z lm_;_m_x' (AIO)

It is useful to obtain an explicit expression for the
polaron dispersion ¢, with respect to the value (and
derivatives) of the self-energy at the Fermi surface
P = pr, by expanding the self-energy in a Taylor series
with respect to these points:

Rezint(p’ 6()) = Rezint(va 0) + papReZint(p’ O) |p:pF

2
|Y
+ 7 812,R62im(l’, 0) |p:pF

+ @0,ReZiy (Pr. 0)|,—o- (A11)

The pole w of Eq. (A1), which yields ¢, therefore satisfies
the equation
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w—wp — Rezint(va 0) - papReZint<p7 O>|p=pF

2
p
- 7 a]%Rezint(p’ O) |p=p[,v - wawRezim(pF’ O) |w=0 =0,
(A12)

which can be solved to obtain

2

p
r papReZim(p» O) |p=PF

Cp = Z<wp + ReZim(pF, 0) + m

2
p
_7812,Re2ml(p,0)|p=pp), (A13)

where we introduced . From the above, it is clear that the
renormalized mass of the polaron can be written as

1

1
_ 2
- z(mx + O2ReZ; (p, 0)\”F> . (A14)

APPENDIX B: POLARON DISPERSION FOR A
DRIFTING FERMI SEA

Here, we determine the polaron dispersion, when the
electrons are drifting at velocity v,. For simplicity, we
restrict ourselves to the case of zero polaron density,
wi = 0. Moreover, we focus on sufficiently low energies
(i.e., below the trion energy) such that we can represent the
exciton Green’s function by the effective polaron Green’s
function

. 1
G¥(p) =
+(p) o —{p +iZ/27, — iZImZ, (p)

,  (B1)

where (, = p?/2m* is the polaron dispersion at zero
density, when the electron Fermi sea is at rest.
According to Eq. (22), we can write the self-energy in
the absence of a drift as

dk
i (@,p) = /WWF(fk)T(O) (@ +é&.k+p). (B2
The T matrix in Eq. (23) can be expressed as
|
dq nF(‘fq) -1 (BS)

T~ (o, p :V‘1+/ . . .
(.p) (2n)? 0 — &g — Lpoq + 1227, — iZIMZyy (0 — . P — Q)

where we have substituted the exciton Green’s function by Eq. (B1). This method is justified because, in the domain
of integration, the energy argument of G, always remains smaller than @, and hence Eq. (B1) is a good approximation.
We can now simply introduce a drift velocity of the Fermi surface of electrons by shifting the distribution function
ng(&) = np(Ee_a) with A = v,m,. We denote the self-energy with a shifted Fermi surface as % and find

- dk -
Zi(r?t)(a)a p.A) = /W”F(ik-A)T(w +&.k+p.A). (B4)
The self-consistent T matrix needs to be changed accordingly,
- d _a)—1
T (w.p.A) = V' + / - _nrllen) | , (BS)
2a) w—&q—Cpoq +iZ/27, — iZImEy (0 — £ P — Q. A)

where we have defined the polaron dispersion in the presence of a Fermi sea ¢ p that we seek to obtain. Shifting the variable
of integration, the self-energy reads

- dk -
wp.a) = [ e BT+ Gk A+ pA), (B6)
with
T (@ +&ia kK +A+p,A)
d -1
— V—l +/ q2 _ - nF(fq) _ . (B7)
(27)° @ + &a — Eqin — Ckip—q T iZ/27, — iZIME (@ + Exa — Equn K +P — Q. A)
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We make the following general ansatz for the new polaron
dispersion:

> (p+p)

2
Cp="7p = TOL (B8)

where 6p and OF are constants to be determined. It is
straightforward to rewrite the real part of the denominator
of Eq. (B7) as

w + §k+A - §q+A - 5k+p—q =o'+ &k — fq - §k+p’—qv

(B9)
where we have introduced
p' =p+p—Am;/m,, (B10)
Sp)A  Alm*
o — - PTRA "x_sE. (BlI)
m, 2m;

Notice that the right-hand side of Eq. (B9) involves the bare
polaron dispersion at zero electron drift velocity. Using this
relation, we can express the T matrix in the presence of an
electron drift by the bare T matrix at shifted energy and
momentum arguments, 7(@ +&ia. K+ A +p,A) =
T(0' + &,k + p’). Similarly, the self-energy can be ex-
pressed as

St (@.p.A) = Z0) (o, p). (B12)
Here, we have used the relation
Imiim(a) + k1A —Sqra K +P—q. A)
:Imzint(w+§k _fq’k+p_q)’ (B13)

which can be verified straightforwardly using Eqgs. (B6)
and (B7). We can now determine the polaron dispersion in
Eq. (B8) from the pole of the Green’s function

2

® —2—+ p, — ReZ(w,p, A) =0. (Bl4)
my v,
Near the polaron pole, we can write
(0 0
ReZ())(w.p. A) = Rexy) (o p')
p/2
=~ 1 - Z_l / Z_l ;) —_—— .
( Jo' +Z7¢, o HHa
(B15)

Substituting A = m,v,, we find, after some straightforward
manipulations,

5p = Ve(m; - mx)’ (B16)

vg(’n; — mx)

OF = — ,
2

(B17)

and hence the polaron dispersion when the electrons are

drifting at a constant velocity reads

Z _ (p + Ve(m; - mx))2 _ U%(m; - mx)
P 2my 2 '

(B18)

APPENDIX C: POLARON TRANSPORT USING
A VARIATIONAL APPROACH

A complementary way to show the emergence of this
force is using a variational approach. We start from the
following Hamiltonian, which incorporates the interaction
between excitons and electrons in the presence of an
electric field. We use the Coulomb gauge, such that the
effect of the electric field is to shift the electron dispersion
and therefore preserve translational invariance. We obtain

H(1) = Zé:kereve(t)clck + Zwkxixk
K K

V.
+ Z ZxLJrch,_qck/xk, (C1)

k.k'.q

where ¢ is the electron creation operator, while x' denotes
the creation of an excitonic impurity. Furthermore, &, =
[k2/(2m,)] — u, is the electron dispersion, while w) =
[k2/(2m,)] — u, denotes the impurity dispersion. Notice
that we investigate only the case of vanishing exciton
density, i.e., y, < 0. We remark that the total conjugate
momentum Py = 3y k(xfxy + cjcy) is an integral of
motion, and we can simply replace it by its eigenvalue py.

Strictly speaking, the above Hamiltonian is valid only
when disorder can be neglected, and in this case, v,(¢) is the
velocity acquired by electrons due to the acceleration by
the electric field: v,(¢) = Re[e/(iQm,)|Ee~¥. However,
we can also include the effect of disorder on the electron
system, heuristically, by assuming that the velocity v, (¢) is
the steady-state electron velocity in the presence of an
electric field and disorder [as calculated in Eq. (5)].

It is instructive to first solve the problem in the absence
of an electric field. To solve the problem, we introduce a
Chevy ansatz, which is completely equivalent to a non-self-
consistent T-matrix approach:

) = ahl0) = (¢px£ S Dotk *) 0). (C2)
k.q

To obtain the ground-state energy, we have to minimize
(VYp|H — E|¥},), where the energy E is the Lagrange
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multiplier ensuring the normalization of the wave function.
The minimization will yield the dispersion of the polarons
£p(1) = &o + p*/(2m}) (see Refs. [4,49] for details regard-
ing the minimization procedure; the mass m} might not be
the same as the m} obtained self-consistently since this is a
non-self-consistent derivation).

Having solved the problem in the absence of the electric
field, we now find a mapping from the instantaneous
eigenstates of the Hamiltonian in the presence of an electric
field to the states in the absence of any field. To show this
mapping we first go to a frame that is comoving with the
electrons with the unitary U(f) = (), where S(1) =
r.(1)pr, with r,(¢) = [idf'v,(¢). Since U(t)x U'(t) =
xi e *r()  the conservation of total conjugate momentum
implies that U(1)HU'(t) = H, so the only contribution to
the Hamiltonian comes from the time dependence of the
transformation —iU(¢){[0U (¢)]/(0t)} = {[0S(1)]/(0t)} =
(e/m,)A(t)pr. The new Hamiltonian becomes

H(r) = 251(0:(01( + Zwk—mxve(t)xr(xk
K K

% .
+ Z Xerqel‘(,_qeklxk, (C3)

k.k'.q

where now the exciton dispersion is shifted by an
amount —m, v, (¢). Assuming that the electric field is small
enough, the system will remain in the many-body ground
state, according to the adiabatic theorem. To determine
the instantaneous ground state of H(z), we have to
minimize (W, (¢)|H(t) — E|W,(t)), where the Chevy ansatz
is given by

¥, (1)) = ap|0)
= (qsp(z)x; + qup,k,q(r)x;ﬂ_kclcq) 10).
k.q
(C4)

One can check that, up to some irrelevant constants,
(o (DH (0¥ (1)) = (Pppv, ) H ¥y, () (one way
to see this is to explicitly expand these terms and compare
them), which illustrates the mapping to the states in the
absence of an electric field. From the above, we immedi-
ately see that

% (p — N,V t )2 %
(p(t) = é’p—mxvl,(t) = T() — Hx»

(C5)
where we used a tilde to denote the dispersion in the frame
co-moving with the electrons. We remark that polarons
acquire a backward velocity —m,/m}v,(t), which is
smaller than the electron velocity due to the mass renorm-
alization. Moving back to the lab frame, the dispersion
becomes

mi—m 2

0

Assuming that the electric field is small enough, the
evolution is adiabatic, and we can focus only on the
attractive-polaron states and ignore all the other higher
lying states; therefore, we can write down an effective
Hamiltonian in terms of attractive polarons:

H(I) _ Z <[p + (m; B Tx)ve<t)] _M;) a;ap’ (C7)

2m;

which is similar to the Hamiltonian introduced in Sec. III F.

APPENDIX D: POLARON LIFETIME

In this Appendix, we investigate the residual interac-
tions between polarons and the Fermi sea and calculate
the corresponding scattering rates associated with these
processes. We first calculate the scattering lifetime using
Fermi’s golden rule since it is more transparent, but then we
show that the same result can be obtained by explicitly
evaluating ImX(p, &,). In the following, we are interested
in the case of only one polaron in the system with
momentum |p| < kg, and therefore we choose pi < 0.

1. Interaction between polarons and electrons

The interaction between this polaron and an electron of
momentum K is given by

U(p.k) = ZT(p + k.{, + &) (D1)

where Z is the quasiparticle weight of the polaron. Since,

by assumption, the polaron has a small energy ¢, < e, the

polaron will only be able to scatter electrons in a thin shell

around the Fermi surface. Therefore, for our purposes, we
have k ~ k, and thus,

U~ZT(kp,0). (D2)

In the above, T denotes the self-consistent T matrix. We

know that the T matrix has a a simple pole at the trion

resonance wr (k). Therefore, for energies in the vicinity of
the trion resonance, we can approximate the T matrix by

Cc

Tk,o)y———F——,
(k, ) o — wr(k) + iyr

(D3)

where w7 (k) is the trion energy measured from the exciton
chemical potential y,, and y; denotes the lifetime of the
trion state.

Since it is not immediately obvious how to calculate C
for the self-consistent T matrix, we proceed to estimate it.
Since the self-consistent T matrix cannot be too much
different than the non-self-consistent T matrix 7y (which
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we know how to calculate exactly), we use the analytical
expression of Ty to obtain an order-of-magnitude estima-
tion for T. Considering, for simplicity, the case m, = m,,
we know that [23]

2
po(InGL) + i)

O+
O((a) € ) ) ’
T

- 2€T 1
(D4)

To(0,w) =

B Pe a)+€T+)ux

which shows that C ~ 2e7/p,. Denoting the energy differ-
ence between the trion of momentum k  and the attractive
polaron of momentum p with A, we can approximate the
interaction U as

27
U= ‘Z. (Ds)

2. Polaron lifetime using Fermi’s golden rule

According to Fermi’s golden rule, the scattering rate
from a state of momentum p is given by

I' = 2zU? Z 6(¢p = &p = Exip—p + Ek)

[p'[<[p|.k

x [np(&x) — nF(ngrp—p’)]’ (D6)
where we used the fact that a polaron can scatter by creating
electron-hole pairs in the Fermi sea. We can write the above
more compactly by introducing the electron response
function:

np(éx) — ”F(fkm)
W) = — - D7
raw)=-) T O0)
which allows us to rewrite I" as
r=202 ) Imy(p—p'.¢p — &)

Ip'|<Ipl

=202 Imy(q.8p = $p-g)0(lp — Gpg)-  (DB)
lal<p|

Since |q| < |p| < kp and therefore {, —{,_q < 1, wWe
can use the low-frequency expansion:

o kg

Imy(q,w) ~2p, ——, D9
(@) pe lql (B9)

which, in our case, means that

2pgcos ¢ — q*

2r
T~ dp, U2 / " dqq / dpTm2p, i
0 0 zmxﬂe

k
X ﬁQ(qu cosp — q*) (D10)
3 1
= 4peU2p—9]fF/ dq
2mxﬂe 0

x /2” dp(2qcos p — )0(2qcosp — ¢?).  (D11)
0

The integral is easy to evaluate, and it is similar to or equal

to 1. Since Z ~ \/u,/er, we finally obtain

3
er P kp
~— .
A*m,m’

r (D12)

3. Polaron lifetime from self-energy

The same expression can be derived by explicitly evalu-
ating the imaginary part of the self-energy. To evaluate the
imaginary part, one can use the optical theorem. In our case,
it is just as simple to directly evaluate the imaginary part of
the self-energy. The polaron broadening due to interaction
with the Fermi sea is related to the self-energy by

I' = ZImX(p, gp), (D13)
where
d’k
Xp.0) = [ Ssnrl@Te ko +&) (DI
and the T matrix is given by
T(p,w)™
d’k
=V'- /W (1 —np(&))GR(p — k. @ — &).
(D15)
From the above equations, we conclude that
Im7(p, w)™!
d’k .
= | 55 (1= np(&)ImGE(p -k, @ — &), (D16)
(27)
Im7'(p, w) = |T(p, w)[*ImT (p, )~
~T(p,w)ImT(p,w)", (D17)
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A’k d’k’

mz(p.0)= [ 55 (2n)? (21)?
X (1 =np(&))np(éi)

xImG4(p+k —K, 0+ & — &)

/ d’k  d°K’
(27)? (27)?
X np (& )nZ8(w = Cp ik + &k — i)

T(p+k. o+ &)

(D18)

T(p+k o+ &) (1 - np(&))
(D19)
We see that the polaron broadening is

I = ZImZ(p, &)

d’k d°K’

72
=z / (27 (20)
X np(€k)d(Cp = Cpik—i + Sk — &)

which can be directly related to Eq. (D6) through the change
of coordinates k/ - —p’ + k + p and using the approxi-
mation T(p +k,{, + &) = T(kp,0), which is valid
for |p| < kp.

T(p+k.{p + &) (1 —np(&))

(D20)

4. Polaron lifetime at finite exciton density

The above calculation was performed in the limit of
vanishing exciton density, but we can use the same method
to calculate the lifetime in the presence of a finite density of
excitons. We therefore calculate the imaginary part of the
interaction self-energy for a polaron of frequency w < 0
and momentum |p| < |pz|. This corresponds to a hole of

|

energy —@ and momentum —p, which can scatter into
states with momenta p’ obeying the condition 0 > {y > @
by creating electron-hole pairs.

Using similar arguments as in Appendix D2, the
scattering rate can be calculated using Fermi’s golden
rule:

[(p,w) =2U? Imy(p —p'.o — )0y — )
p.Ip'|<[pF|

- r(p’ é’p) + ((1) - é‘p)awr‘(p’ w)a}:éjp’ (Dzl)

where we expanded I'" in a Taylor series in frequency
around ¢, and kept only the first term:

T(p.&p) =207 > Tmy(p—p'., = 60y — &),

P[P/ |<IpFl
(D22)

a(ur(p’ w)w:ép

=2U {Zp’.p’klwllmﬂf(l’ —PL0=(y)0(ly ~w)

0=(,

(D23)

Introducing q = p — p’ and using the low-frequency and
momentum expansion of the response function y, as given
in Eq. (D9), we obtain

4Up k &H—¢
F(p7 Cp) = —t | |p 4 G(Cp—q - Cp) (D24)
¢ qlp—ql<pr
Upek Pr q° —2pqcos¢1
- / d q/ g 0(q* = 2pqcos p)0(pt + 2pgcos — p* — q°) (D25)
UzpekF p3F
= I , D26
T o(P/PF) (D26)
where we introduced the integral of order 1:
2 2r
= / dq/ dep(q* — 2qu cos §)0(q*> — 2qu cos §)O(1 + 2uq cos p — u> — q?). (D27)
0 0

In the above, one of the theta functions ensures that {,; > , while the other theta function ensures that [p’| < pp. Itis useful
to investigate the energy of hole quasiparticles with —w = {;, < u}. For these particles, p/pr ~ 1 — @/2u;. Introducing

= w/u%, one can easily check that Io(1 — §/2) =

polaron excitations are well-defined quasiparticles, with lifetime proportional to w*.

C& + (9(53) This proves that, in analogy to Fermi liquid theory, the

2
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The derivative of I can be evaluated similarly using Eq. (D9):

4U%p, k w—Cp
9,1 (p. w)w=€p - #800 [Zq,p—qu TMQ(CP—q - a))} - (D28)
4U? ok 1 —Cp—
= ¢ |: Z ﬂe(Cp—q - Cp) - é1p|é|/pqé(§p—q - gp):| . (D29)
He q.[p—q|<pr 4

Similarly to the evaluation of I', we can evaluate the above by turning the sum into integrals. We immediately see that the
last term in the brackets vanishes, and we are left with

U*p.k
9,1 (p. w)w:gp = M—ﬂ_szFll(p/pF)’ (D30)
where we introduced the integral of order 1:
2 2r
I(u) = / dq/ dp0(q* — 2qu cos $)0(1 + 2uq cos ¢ — u* — g*), (D31)
0 0

APPENDIX E: RELATION BETWEEN ImZ%;,, AND ImG,

In Sec. IIIE of the main text, we encounter an expression of the type
[ apAlGE Pz (p)o(-0), (E1)
where A is a functional of GR. In this Appendix, we show that this expression can alternatively be written as
I= / dpA[GR(p)|ImZiy (p)0(-@) = / dpdkA|GE (p)ImG? (k)w'” (k. p)&(~e)
= / dpdkdk'A[GY (p)ImGZ (k)G (K)G.(p + K = k)[T*(p + K')]*0(=e). (E2)

where A is a functional of GR. We first derive an expression for the imaginary part of the self-energy. Using G, (k) =
GR(k) + 2ilmG,(k)0(—¢) and a similar relation for the T matrix, we can write the self-energy as

Zni(p)0(—w) = —if0(—w) / dk[GR(k)TR(k + p) + GR(k)2ilmT4 (k + p)8(—w — €)

+ 2iImG4 (k)0(—€)TR (k + p) — 4ImG4 (k)ImT* (k + p)0(—w — €)8(—¢)] (E3)

=20(-w) / dk{ReG,(k)ImTA(k + p)0(—w — €) + ImG4 (k)ReT (k + p)0(—e)
+iImG (k)ImT* (k + p)[0(-w — €) — 0(—¢)]}. (E4)

The imaginary part of the T matrix is

ImT (k + p) = 2|T(k + p)|? / dk'TmG4 (K')ImG4 (k + p — K)0(—=€)0(¢' — @ — €). (ES)
With this result, we can express the imaginary part of the self-energy as

ImZ, (p)0(—w) = 40(—w) / dkdk'|T(k + p)| ImG2 (k)ImG2 (K )ImG4 (p + k — k') (E6)

X 0(—€)[0(—w — €) — 0(—€)]0(€' — € — w). (E7)
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To prove Eq (E2), we make the replacement G, (p+k'—k) =GR (p+k' —k) +2ilmG4 (p+ k' —k)0(e —w—¢’). The first
term is canceled by the integral over w since all poles are located in the same complex half-plane; hence, after shifting
K — k' — p, we find

T =2i / dpdkdk A[GR (p)|ImGA ()G, (K — p)ImGA(K' — k) [T (K)20(~€)6(e — €). (E8)

The shift of variables conveniently allows us to repeat the same trick writing G.(kK' —p) = G4(k' — p)—
2ilmG4 (k' — p)O(¢' — w). The first term is again canceled by the w integration, and we find, after returning to the
original integration variables,

=4 / dpdkdk!' A[GR (p)ImG4 (k)ImG4 (K)ImG2 (p + k' — k)[TR(K' + p)]?0(—€)0(¢')0(c — € —w).  (E9)
By comparison with Eq. (E7) and using the simple identity
0(—€)0(e")0(e — € —w) = O(—€)[0(—w — €) — O(—€)|0(¢' — € — w)0(—w), (E10)

we arrive at

/ dpAIGE ()M ()0(—0) = / dpdkA[GR (p)ImGA(K)w (k. p)0(~e). (E11)

1. Exciton density

We now show that the integral —i [ dpG,(p) over the exciton Green’s function indeed yields the correct polaron density

= (b 000) = Snte) = SThal0uhie +09) = i3 / 9 G (p. )™, (E12)
) p

Y

where the infinitesimal w0 originates from time ordering and ensures that the contour is closed in the upper-half plane.
Using the decomposition G(p) = GX(p) + 2iImG*(p)d(—w), we find

i [ pGo(p) =2 [ apimGi(p)o(-w) = [ dp IGEPIPO0) +2 [ apmzl(po-o)GHPP. (1)

where we have expanded the second term to lowest order in 72,.. As 1/7} is a small parameter, the first term is dominated by
on-shell contributions @ =~ ¢,, and we can write

1 1/27"
IGR(p)0(~w) ~ 22Z /2%

E K /20 & Im5 () 8w —¢,)0(—w) ~27Z0(—w)d(w - £ ,). (E14)

where the last equality follows from ImX;, (p) < 1/7; for on-shell energies {, ~ @ < 0 consistent with the assumptions
made in Sec. IIIE. The second term can be replaced by Eq. (E11), which yields

=i [ dpGi(p) = 20, +2 [ dpimGLROIWO (k. p)[GH(p)] (E15)
where the density is n, = uivi. We have [dpWO(k, p)[GR(p)]> = =Z9,Z(p) = 1 — Z, and hence,
_i/dpGx(p) = Ny (E16)
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APPENDIX F: PROOF OF EQ. (56) IN MAIN TEXT

We now demonstrate Eq. (56) of the main text, which reads

it, QX 9, +0y)G,(k
X G (0G4 @) e O T O)Ge)

F1
m, 1—i7,Q (F1)

to leading order in Q and 1/7,, where G, = [e — & +i(1/27,)sgne]™!. We start by writing G, (k) = GR(k)+
2iImG4 (k)9(—¢), and we obtain

G, (k)G,(k + Q) = GR(k)GE(k + Q) + ReGR (k)2iImGA (k + Q)0(—¢ — Q)
+ ReGR (k + Q)2iImGA(k)0(—€) + 2ImGA(K)ImGA (k + Q)[0(—¢) — O(—e = Q)].  (F2)

We are interested in a result to zeroth order in Q and 1/7,. At this order, all but the first term vanish everywhere except when
€ = &. Our strategy is to expand these expressions in terms of d functions around the resonance; for instance, we write

ReGER(k)ImG2 (k + Q) = apd(e — &) + a8 (€ — &) + axd" (€ — &) + ... (F3)

We can obtain the coefficients from the following integrals:

—1Q
ag = /deRerf (k)ImG‘;‘ (k + Q) = m s (F4)
R A x2(27,)7% + Q)
a; = — [ de(e — &)ReGR(k)ImG2 (k + Q) = — =, (F5)
7,7+ Q
Q[3(27,)2 + Q2
= [ detc - &P ReGEWIMG k + @) = - FEEETL LS (F6)
7,7+ Q
The second order is already linear in the small parameters and can hence be ignored. The expansion then reads
n 1
ReGE (k)ImG2 (k 4+ Q) ~ P ey [_95(6 — &) — <2_T’g‘ + 92>5’(e - .»:k)] . (F7)
Similar considerations yield
7 1
ImG4 (k)ImG4 (k + Q) ~ S l(S(e = &) + g5’(e = &)l (F9)
¢ ¢ 24+ Q2 |1, 27,
Substituting these relations in Eq. (F2), we find
RTINS . 27Q7,
Ge(k)Ge(k+Q) = Gg (k) = 2in8 (¢ = &)0(=€) + 75— (e = &) (e), (F10)

where we have expanded the step function (—¢ — Q) ~ 0(—¢) — Q5(e). The right-hand side of Eq. (F1) can be evaluated
explicitly using G, (k) = GR(k) + 2zid(e — & )0(—€). We obtain

2rt,Q
1 -iQr,

<ire§2nl;6‘€ + ak> G, (k) = (1 — it,Q) {Gf(k)2 — 278 (€ — &)0(—€) + (e — gk)a(e)}, (F11)

k
m€

which concludes the proof.
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