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Mobile quantum impurities interacting with a fermionic bath form quasiparticles known as Fermi
polarons. We demonstrate that a force applied to the bath particles can generate a drag force of similar
magnitude acting on the impurities, realizing a novel, nonperturbative Coulomb drag effect. To prove this,
we calculate the fully self-consistent, frequency-dependent transconductivity at zero temperature in the
Baym-Kadanoff conserving approximation. We apply our theory to excitons and exciton polaritons
interacting with a bath of charge carriers in a doped semiconductor embedded in a microcavity. In external
electric and magnetic fields, the drag effect enables electrical control of excitons and may pave the way for
the implementation of gauge fields for excitons and polaritons. Moreover, a reciprocal effect may facilitate
optical manipulation of electron transport. Our findings establish transport measurements as a novel,
powerful tool for probing the many-body physics of mobile quantum impurities.
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I. INTRODUCTION

Polaritons are composite bosonic particles formed by
hybridization of propagating photons and quanta of polari-
zation waves in a solid. A particular realization that has
recently been extensively studied involves two-dimensional
(2D) cavity exciton polaritons, implemented in monolithic
III–V semiconductor heterostructures [1], as well as in tran-
sition metal dichalcogenide (TMD) monolayers embedded
in open dielectric cavities [2–5]. Remarkably, these cavity-
polariton excitations combine an ultralight effective mass
dictated by their photonic content with a sizable interparticle
interaction strength stemming from their excitonic character.
This unique combination allows for the realization of a
driven-dissipative interacting bosonic system that has been
shown to exhibit a myriad of many-body phenomena such as
nonequilibrium condensation [6–10], superfluidity [11], and
the Josephson effect [12].

Recent progress in the realization of topological states
of polaritons [13–15] demonstrates the importance of
implementing effective gauge fields in photonic systems.

Exciton polaritons are charge-neutral particles, and hence
their center-of-mass motion does not couple directly to dc
electric or magnetic fields. Prior work has exploited a
combination of spin-orbit coupling of light and magnetic
field response of a polariton polarization degree of freedom
in lattice structures. Alternatively, it might be possible to
exploit the interaction of polaritons with charge carriers to
induce effective photonic gauge fields that are linearly
proportional to the external fields. In this regard, semi-
conducting TMD monolayers are a particularly promising
platform featuring exceptionally large exciton binding
energies and strongly attractive interactions between exci-
tons and charge carriers.
In a simple picture, excitons in the presence of degen-

erate electrons can be considered as mobile impurities
interacting with a Fermi sea, which constitutes a funda-
mental problem of many-body physics [16–25]. To lower
its energy, an exciton can bind an additional charge carrier
forming a charged trion. Alternatively, the exciton can,
however, also create a polarization cloud in its environ-
ment, forming an attractive exciton polaron, shortly
referred to as a polaron. In this case, the exciton remains
a neutral particle that is dressed by fluctuations of the Fermi
sea, which renormalize its energy and effective mass.
The competition of trion formation and polaronic dressing
was previously observed in cold atomic systems near a
Feshbach resonance in two and three dimensions [26–29].
Recently, it was demonstrated both theoretically [4,30] and
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experimentally [4,31] that polaron physics also plays a key
role in semiconductor photonic materials hosting a two-
dimensional electron system (2DES). In particular, absorp-
tion experiments in TMD monolayers show one of the key
signatures of Fermi polaron formation: a redshifted optical
resonance with an oscillator strength that increases with
increasing electron density ne, which is accompanied by a
strong blueshift and broadening of the bare-exciton reso-
nance [31]. These observations demonstrate that the optical
excitation spectrum should be described in terms of
attractive and repulsive exciton polarons. In contrast, trion
states have negligible weight in absorption spectra due to
their vanishing oscillator strength. Moreover, we remark
that the polaron states introduced in Ref. [4] correspond to
the mixed exciton-trion states previously introduced by
Suris et al. in Ref. [32] to explain the optical spectrum of
doped quantum wells.
In this work, we propose to use exciton polarons as a new

means to control photons by dc electric or magnetic fields.
In contrast to trions, polarons are amenable to polariton
formation, and recent TMD-cavity experiments have dem-
onstrated strong coupling of exciton polarons and light [4].
We find that, although polarons are charge-neutral optical
excitations, their interaction with the Fermi sea forces them
to follow the motion of charge carriers in an electric or
magnetic field. This phenomenon bears similarity to
Coulomb drag between two semiconductor layers [33–36],
motivating us to coin the term polaron drag. A key
difference to previous work on photon drag [36–38]
originates from the nonperturbative nature of the polaronic
coupling, which gives rise to a remarkably efficient drag
mechanism. Indeed, we find that the zero-temperature
(T ¼ 0) drag conductivity of polarons can ideally be of
the same order as the electron conductivity, implying the
realization of sizable photonic gauge fields.
From a more general perspective, our work addresses

the problem of nonperturbative Coulomb drag, and it is
unique in that it analyzes the drag effect in the regime
of strong interactions that can lead to the formation of
interspecies molecular bound states (trions in our setup) as
well as many-body optical excitations (exciton polarons).
Although in this work we treat the regime of large density
imbalance between the different species, which allows us to
model the problem using the quantum impurity framework,
our results will likely be relevant even in the balanced
density regime [39]. As mentioned previously, there are
two types of emerging quasiparticles in this system, which
have very different drag properties.
The drag of the molecular states is closely related to

previous work on indirect excitons in bilayer systems in the
quantum Hall regime, where the phenomenon of perfect
Coulomb drag has been observed [36,40]. In these systems,
one of the layers hosts holes, while the other contains
electrons. The strong interlayer attractive interaction leads
to the formation of bound molecular states known as

indirect excitons. Because of the pairing process, any force
applied on one of the particles is felt by the molecule as a
whole, leading to the emergence of phenomena such as
perfect Coulomb drag. The direct analog in our system is
provided by trions—a bound molecular state of an exciton
and a single electron; we expect the trion to respond as a
charged particle to any applied electric field and exhibit
perfect Coulomb drag.
The drag of polarons, on the other hand, which is the

focus of the present work, is more subtle and was not
analyzed previously. We find that the response of polarons,
which are many-body optical excitations, is very different
from the response of trions, which are two-body bound
molecular excitations. Indeed, in equilibrium setups with
disorder and static electric fields, polarons do not respond
at all to a force on the bath particles (at zero temperature).
Remarkably, however, in the case of dynamical fields (more
specifically, when the frequency of the field is much larger
than the inverse disorder lifetime of the bath particles) or in
nonequilibrium scenarios where the impurities have a finite
lifetime, the response of the polarons can be as large as the
response of the molecules. The (zero-temperature) polaron
drag effect that we investigate can be understood as arising
from a shift in the polaron dispersion proportional to the
velocity of the majority particles and therefore can be
understood as an effective gauge potential for the impurity
particles.
Furthermore, our work establishes transport measure-

ments as powerful tools to probe the nature of the many-
body ground state in mobile impurity experiments, and it
should be of central interest to a large subset of low energy
physics, ranging from ultracold atoms through semicon-
ductor quantum optics to strongly correlated materials.
Indeed, the fundamentally different transport response of
polarons compared to molecules provides a way of exper-
imentally identifying the polaron-to-molecule transition in
two dimensions, as well as also providing a way to measure
the mass of the polaron or molecule quasiparticles.
Arguably, the most important aspect that distinguishes

our work is the extension to nonequilibrium drag. As an
experimental realization, we assume that exciton polarons
are injected resonantly by laser fields at a given point in the
sample. The exciton-polaron drag leads to a spatial dis-
placement of the emission generated as the excitons decay
into photons propagating out of the plane (Fig. 1). Hence,
spatially resolved excitation and detection of emission from
the sample constitute the equivalent of source and drain
contacts to the exciton system, enabling us to measure the
drag-induced displacement and thereby giving a physical
meaning to the transconductivity.

We start our analysis by a heuristic derivation of the
polaron drag force based on intuitive arguments in Sec. II.
Moreover, we solve the semiclassical equations of motion
of a polaron in an electric field. In Sec. III, we corroborate
these results by a microscopic calculation of the polaron
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drag conductivity in an electric field using diagrammatic
perturbation theory within the Kadanoff-Baym conserving
approximation. To make this paper self-contained, we start
this section by reviewing the Fermi polaron problem as well
as the conserving approximation. In Sec. IV, we extend our
results to polaritons and comment on nonequilibrium
effects in Sec. V. After discussing the extension of our
analysis to the case of magnetic field response in Sec. VI,
we conclude by presenting an outlook on possible exten-
sions of our work. We remark that the theoretical calcu-
lations in Secs. II–IV and VI assume an equilibrium
scenario where the impurity does not decay radiatively,
and therefore these results do not apply directly to the
experimental scenario that we proposed. Our purpose for
taking this approach was twofold. First, this keeps the
discussion completely general and allows our results to be
directly applied to the usual bilayer systems or to cold-atom
experiments. Second, it allows us to identify the physical
process responsible for Coulomb drag and then analyze
the polaron-polariton drag using a Boltzmann equation in
Sec. V, without performing an even more cumbersome
nonequilibrium diagrammatic calculation.

II. HEURISTIC DERIVATION
OF POLARON DRAG

We consider a mobile exciton with mass mx interacting
with a Fermi sea of electrons with mass me. For simplicity,
we neglect the finite radiative lifetime of the exciton in this
section. Applying a force on the electrons causes an
acceleration ae of the Fermi sea. We now go to the rest
frame of the electrons. Because this is a noninertial
reference frame, a fictitious force acts on the exciton
F ¼ −mxae accelerating it. Crucially, the force is propor-
tional to the bare mass of the exciton. The interaction with
the electrons, however, impairs the motion of the exciton,
and hence, the dressed exciton quasiparticle is heavier than

the bare exciton with an effective mass m�
x. The accel-

eration of this quasiparticle in the electron rest frame is thus
F=m�

x ¼ −aemx=m�
x. Going back to the lab frame, we have

to add the acceleration of the reference frame, and we thus
arrive at an exciton acceleration

ax ¼
�
1 −

mx

m�
x

�
ae: ð1Þ

This equation relates any force acting on the electron
system to a somewhat smaller force on the dressed exciton.
This force can be qualitatively understood as friction
between electrons and excitons, which originates from
the ability of the excitons to minimize their energy by
following the dressing cloud surrounding them.
The above discussion is completely general and does not

make any assumptions regarding the nature of the quasi-
particles, and therefore it is equally valid for both molecules
and polarons. This is because we assumed that all electrons
accelerate with ae. However, in the presence of disorder,
this is no longer the case, leading to the emergence of a
distinction between the trion and polaron response. For
trions, the situation is relatively simple: Because the trion is
a two-particle bound state, formed by an exciton that binds
to a single electron from the Fermi sea, it follows the
motion of this particular electron. Therefore, the trion
motion is still described by Eq. (1) as long as we let ae
denote the instantaneous acceleration of one electron. This
means that trions will respond to applied fields like charged
particles, and they will exhibit drag properties similar to the
ones investigated in the work of Ref. [40]. In contrast, we
recall that exciton polarons are many-body excitations
where an exciton is dressed with a polarization wave of
the electron system. Since all electrons in the Fermi sea
contribute to this polarization wave, we can describe the
polaron motion using Eq. (1) if and only if we let ae denote
the average acceleration of the electron system. This
interpretation is justified a posteriori by the rigorous
diagrammatic calculation in the following section. In the
following, we focus only on the response of polarons.
We remark that the electrons should also experience a drag

force when the excitons are accelerated by an external force.
Equation (1) corresponds to the combined force all electrons
exert on a single polaron. Hence, the average inverse drag
force on an electron in the Fermi sea in the presence of an
exciton force Fx should be ðnx=neÞð1 −mx=m�

xÞFx, where
ne;x is the density of electrons (excitons).
We can write down general semiclassical equations of

motion for the coupled electron and polaron motion:

me
d
dt

veðtÞ ¼ FeðtÞ þ
nx
ne

ðm�
x −mxÞ

FxðtÞ
m�

x
; ð2Þ

m�
x
d
dt

vxðtÞ ¼ FxðtÞ þ ðm�
x −mxÞ

FeðtÞ
me

: ð3Þ

FIG. 1. Schematic of the experimental setup. A photon is
absorbed by the TMD monolayer, forming a polariton that is then
dragged by the drifting electrons and subsequently emitted at a
different position.
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We can evaluate the polaron drag conductivity in an ac
electric field EðtÞ in the presence of disorder for both
electrons and excitons by choosing

FeðtÞ ¼ −eEðtÞ −meveðtÞ
τe

; FxðtÞ ¼ −
m�

xvxðtÞ
τ�x

; ð4Þ

where τeðτ�xÞ is the transport lifetime of electrons (exciton
polarons).
To leading order in the polaron density, we can ignore the

drag force on electrons. The solution in Fourier space reads

veðΩÞ ¼
−eEðΩÞ

me

τe
1 − iΩτe

; ð5Þ

vxðΩÞ ¼
�
1 −

mx

m�
x

��
−iΩτ�x
1 − iΩτ�x

�
veðΩÞ: ð6Þ

Notice that in the absence of excitonic disorder, τ�x → ∞,
the drag is the only force acting on the excitons, and their
drift velocity is simply vx ¼ ð1 −mx=m�

xÞve. This case is
particularly relevant for exciton polaritons, which are
expected to be largely immune to exciton disorder (see
Sec. IV). We emphasize that this result only holds at small
polaron densities as we neglect electron drag forces
generated by polarons. From the exciton drift velocity,
we obtain the transconductivity to first order in the polaron
density nx:

σxeðΩÞ ¼
enx
me

�
1 −

mx

m�
x

�
iΩτeτ�x

ð1 − iΩτeÞð1 − iΩτ�xÞ
: ð7Þ

As mentioned above, the reverse effect also exists. An
electric current should flow in response to an ac force fxðtÞ
applied to the excitons. Such a force can be affected by
applying an ac field perpendicular to the 2D plane that
modifies the exciton energy through a quantum-confined
Stark effect with a spatial and/or time dependence deter-
mined through the applied laser field [41]. We can find the
drag conductivity of electrons from Eqs. (2) and (3) with

FeðtÞ ¼ −
meveðtÞ

τe
; FxðtÞ ¼ fxðtÞ −

m�
xvxðtÞ
τ�x

: ð8Þ

In this case, we need to include the drag force on electrons
in Eq. (2). We can, however, neglect the drag term in the
polaron equation of motion (3) since Fe ∝ ve ∝ nx=ne only
contributes at higher order in polaron density. With this
method, we again arrive at the transconductivity given by
Eq. (7), as guaranteed by Onsager’s reciprocity principle.
An experimentally more relevant quantity is the electric
voltage that builds up as a response to an exciton force
when no current can flow. The electric field can be found by
setting ve ¼ 0 in the equations of motion, which yields

eEðΩÞ ¼ nx
ne

�
1 −

mx

m�
x

��
−iΩτ�x
1 − iΩτ�x

�
fxðΩÞ: ð9Þ

The polaron drag force in Eq. (1) is fully determined by
the force acting on the electrons and the mass renormal-
ization, and specifically, it does not depend on the exciton
velocity. This enables us to reinterpret the polaron drag
effect as a consequence of an effective gauge field. This
interpretation is further supported by a microscopic inves-
tigation of the drag mechanism. As we show in the
Appendixes B and C, the exciton-polaron dispersion ζk
shifts by an amount proportional to the electron drift
velocity (implying that k ¼ 0 excitons experience a finite
group velocity). We can introduce a gauge potential AxðtÞ
to write the new dispersion as ζ̃k ¼ ζk−eAx

. In the case of a
time-dependent drive, this gauge potential is given by

eAxðtÞ ¼ ðm�
x −mxÞveðtÞ ¼

m�
x −mx

me

−eτeEe−iΩt

1 − iΩτe
; ð10Þ

which corresponds to an effective electric field Ex given by

eExðtÞ ¼ −e _AðtÞ ¼ m�
x −mx

me

iΩτeeEe−iΩt

1 − iΩτe
: ð11Þ

Although the field strength vanishes in the dirty regime
Ωτe ≪ 1, the finite (constant) gauge potential can still have
measurable effects. Indeed, in Sec. V, we discuss at length
the role of this gauge potential on photon transport and
show, for a conservative choice of material, that photons
could be dragged for distances of a few hundred
nanometers.
We now investigate the magnitude of the polaron drag

effect and the role played by the trion binding energy,
which determines the energy scale of the exciton-electron
interaction in the limit of vanishing electron density.
Figure 2 shows the dependence of the (normalized) polaron
mass m�

x=me on the ratio of the Fermi energy (ϵF) to the
trion binding energy (ϵT): Since the magnitude of the
effective electric field seen by the polaron is proportional to
½ðm�

x −mxÞ=me�, we conclude that for a given electron
density, a stronger trion binding leads to a larger mass
renormalization for the polaron and, consequently, to a
more efficient drag. Remarkably, the polaron drag can
ideally be even more efficient than the drag of trions.
It is important to note that our analysis so far has

neglected incoherent scattering of electrons and polarons.
In addition to coherent scattering of electrons and excitons
that lead to polaron formation, there may also be incoherent
scattering events that lead to a finite lifetime of polarons in
an excited state. We investigate this effect in more detail in
Secs. III E and V B, and discuss in what parameter regimes
it can be neglected.
To conclude this section, we emphasize that in the

exciton-polaron transconductivity problem we are
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analyzing, the drag process takes place in an interacting
system consisting of a fixed number of excitons and
electrons. Even in the case of a finite exciton or polariton
lifetime, an underlying assumption is that laser excitation
leads to creation of real particles with a lifetime much
longer than the characteristic timescales associated with
their interactions with electrons. This case is in stark
contrast to polarons in an interacting electron-phonon
system where dynamic screening of the electron by the
lattice can be described in terms of virtual phonon emission
and absorption processes. Consequently, in the limit of
linear response at vanishing temperature, there is no natural
setting to talk about drag conductivity of phonons. The
opposite limit of large applied electric fields, on the other
hand, constitutes a very interesting problem where electron
transport can be associated with multiple real phonon
emission and absorption processes and the associated
phonon drag could have signatures in current noise [42,43].
Before proceeding, we summarize the consequences of

our results:
(i) The polaron drag can be extremely efficient, prom-

ising a drag mobility of the same order as the
electron mobility. This result is a consequence of
the nonperturbative interaction that is responsible for
the polaron formation, which leads to a drag trans-
conductivity proportional to the mass renormaliza-
tion of the polaron.

(ii) When the interspecies interaction is weak, the mass
renormalization of the polaron is proportional to V2

(where V denotes the interspecies interaction
strength; the contribution linear in V can only lead
to a shift of the polaron energy and will not affect the
polaron mass). According to Eq. (7), this conse-
quence will result in a zero-temperature drag
transconductivity proportional to V2. While in the
(dirty) limit (Ωτe, Ωτ�x ≪ 1) the transconductivity is

proportional to Ω, in the opposite (clean) limit (Ωτe,
Ωτ�x ≫ 1), the transconductivity is proportional to
1=Ω. This clean limit result shows that second-order
processes do not vanish as Ω → 0 at T ¼ 0, in
contrast to previous claims that in these limits the
only nonzero contributions to drag (in both the clean
and dirty regime) must be higher order in the
interspecies interaction [35,36]. It would be inter-
esting to check whether our result holds also in the
regime of balanced interspecies densities analyzed
in Ref. [35].

(iii) The electrons should also experience a drag force,
when the excitons are accelerated by an external
force, in accordance with Onsager’s reciprocity
principle.

(iv) The drag effect that we investigate emerges from an
effective gauge potential that the exciton polaron
experiences due to the motion of the electrons. Even
in the Ωτe ≪ 1 limit, when the effective electric
field vanishes, the finite gauge potential still has
important consequences for the exciton-polaron
transport (Sec. V).

(v) The semiclassical analysis presented here can be
extended to include an external magnetic field (see
also Refs. [44,45]). The drag force could then give
rise to a Hall effect and a cyclotron resonance of
exciton polarons, a phenomenon that we discuss at
length in Sec. VI.

III. DIAGRAMMATIC CALCULATION OF
TRANSCONDUCTIVITY USING THE
CONSERVING APPROXIMATION

We now evaluate polaron drag within a microscopic
theory in order to verify the heuristic results discussed in
the previous section. To this end, we use diagrammatic
perturbation theory, taking into account the effect of
electron-exciton interactions as well as disorder for electrons
and excitons. We are interested in the nonperturbative effect
of the interaction and must therefore proceed with care.
Simply evaluating a certain class of diagrams might lead to
erroneous results, as an incomplete set of diagrams does not
necessarily satisfy the conservation laws of the physical
systems. A powerful technique to generate diagrams obeying
conservation laws is the conserving approximation (see
Ref. [46] for a pedagogical introduction).
We start by introducing the Hamiltonian of the exciton

electron system and by discussing the polaron problem in
the absence of fields. We then review the basic principles
of the conserving approximation and use it to find an
approximation to the drag conductivity within linear
response. As a crucial simplification, we focus on the limit
of small polaron density. This limit is also implicitly
assumed in the semiclassical analysis in Sec. II, as we
neglect interactions between polarons. Moreover, the
quasiparticle picture of polarons eventually breaks down

FIG. 2. Polaron mass as a function of Fermi energy. For this
plot, we used a contact interaction model for exciton-electron
interaction and solved the polaron problem using the non-self-
consistent T-matrix approach developed in Ref. [23]. We took the
exciton mass to be twice as large as the electron mass mx ¼ 2me.
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at sufficiently high densities. A small polaron density also
justifies the standard diagrammatic description of polarons
in the ladder approximation presented in Sec. III A. Hence,
our calculation will only include contributions to leading
order in the polaron density.

A. Exciton-polaron problem

We consider noninteracting excitons coupled via contact
interactions of strength V to a Fermi sea of noninteracting
electrons. To be specific, we focus on the two-dimensional
case; however, our results for the transconductivity apply to
three dimensions as well. We focus on the limit of very
small exciton density, where the statistics of excitons
becomes irrelevant. We exploit this fact by treating the
low-density excitons as an effective Fermi gas, which
allows us to simplify calculations. Since we are moreover
interested in the regime where no exciton condensation
takes place, treating excitons effectively as fermions allows
us to take the corresponding limit of T → 0 without
technical complications from Bose condensation. We
emphasize that all results are independent of the statistics.
Our system is described by the Hamiltonian

H ¼
Z

dr

�
Ψ†

eðrÞ
�
−

∇2

2me
− μe

�
ΨeðrÞ

þ Ψ†
xðrÞ

�
−

∇2

2mx
− μx

�
ΨxðrÞ

þ VΨ†
xðrÞΨxðrÞΨ†

eðrÞΨeðrÞ þ Ψ†
eðrÞΨeðrÞUðeÞðrÞ

þ Ψ†
xðrÞΨxðrÞUðxÞðrÞ

�
; ð12Þ

where we introduced the creation operators of the electrons
and excitons Ψ†

e and Ψ†
x and the chemical potentials μe;x.

We model the disorder potentials Uðe;xÞ by Gaussian ensem-
bles with zero means and variances hUðe;xÞðrÞUðe;xÞðr0Þi ¼
γe;xδðr − r0Þ, where γ parametrizes the strength of disorder.
We introduce the exciton and electron Green’s functions

Ge;xðr0t0; r; tÞ ¼ −ihTΨ†
e;xðr0; t0ÞΨe;xðr; tÞi: ð13Þ

After disorder averaging, the system is translationally
invariant, which allows us to work in Fourier space,

Ge;xðr; tÞ≡
Z

dpGe;xðpÞeipr−iωt; ð14Þ

where we have introduced p≡ ðp;ωÞ for notational sim-
plicity [we will later also use k≡ ðk; ϵÞ]. Moreover, we
incorporate factors of 1=2π into the definition of the
integral measure such that dp ¼ dpdω=ð2πÞ3. The effect
of disorder and interactions is taken into account by
introducing self-energy corrections to the Green’s functions
shown in Fig. 3(a),

G−1
e ðpÞ ¼ ω − ξp − Σdis;eðpÞ; ð15Þ

G−1
x ðpÞ ¼ ω − ωp − ΣintðpÞ − Σdis;xðpÞ; ð16Þ

where we introduced the dispersions of electrons ξp ¼
p2=ð2meÞ − μe and excitons ωp ¼ p2=ð2mxÞ − μx and the
exciton self-energy from interactions with electrons Σint, as
well as the disorder self-energies Σe;dis and Σx;dis. Assuming
a small density of polarons in the system, we can neglect
the effect of excitons on the electron system.
The calculation of the self-energies requires some

approximations. We treat the effect of disorder in the
self-consistent Born approximation and therefore ignore
any quantum interference effects such as weak localization.
For the evaluation of the interaction self-energy Σint, we use
the self-consistent T-matrix approach in the ladder approxi-
mation displayed in Fig. 3(b). This choice gives the leading
contribution in the limit of small exciton density [47]
and has been successfully used to describe the physics
of Feshbach resonances in cold atomic systems [22,48].
The T matrix does not have any vertex corrections due to
disorder because of our choice of Gaussian-correlated
white-noise disorder. We will see in Sec. III B how these
self-energies can be obtained within a conserving approxi-
mation. We point out that the non-self-consistent T-matrix
approximation is equivalent to the Chevy ansatz for the
variational polaron wave function [49,50].
The disorder self-energies can be evaluated as

Σdis;e=xðpÞ ¼
Z

dk
ð2πÞ2 γe=xGe=xðkÞjϵ¼ω ¼ −i

2τe=x
sgnðωÞ;

ð17Þ

where the lifetimes are defined as

τe;x ¼
1

2πρe;xγe;x
; ð18Þ

with ρe;x the densities of states per unit volume at the Fermi
surface. Importantly, in the self-consistent theory, the
exciton Green’s function in Eq. (17) is dressed by disorder
and interactions, and hence ρx refers to the renormalized
exciton dispersion to be determined below.

(a)

(b)

FIG. 3. The Green’s functions and T matrix.
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The exciton self-energy due to interactions can be
evaluated in the self-consistent T-matrix approximation

ΣintðpÞ ¼ −i
Z

dkGeðkÞTðkþ pÞ; ð19Þ

where we introduced the self-consistent T matrix shown in
Fig. 3(b),

TðpÞ ¼ V þ iV
Z

dkGeðkÞGxðp − kÞTðpÞ: ð20Þ

The contact interaction allows for a simple solution,

T−1ðpÞ ¼ V−1 − i
Z

dkGeðkÞGxðp − kÞ: ð21Þ

In two dimensions, a bound state of electrons and excitons
(i.e., a trion) exists for arbitrarily weak interactions in the
limit of a single exciton, and its energy ϵT is determined by
the pole of the T matrix.
At vanishing exciton density (i.e., nx ¼ 0), we can

evaluate the self-energy by replacing Gx → GR
x in the

above equations (for more details about this step, see
Sec. III C). We can evaluate all frequency integrals by
closing the contour in the upper half-plane, where the
retarded exciton Green’s function is analytical, and obtain

Σð0Þ
int ðpÞ ¼

Z
dk

ð2πÞ2 nFðξkÞT
ð0Þðωþ ξk;kþ pÞ; ð22Þ

Tð0ÞðpÞ−1 ¼ V−1 þ
Z

dk
ð2πÞ2 ½1 − nFðξkÞ�

×GR
x ðω − ξk;p − kÞ; ð23Þ

where the superscript ð0Þ denotes quantities at nx ¼ 0 and
nFðxÞ is the Fermi-Dirac distribution function. In order
to regularize the contact interaction V, we introduce a UV
momentum cutoff Λ. The interaction strength is then
related to the experimentally accessible trion binding
energy ϵT at zero electron density by [23]

V−1 ¼ −
Z
jkj<Λ

dk
ð2πÞ2

1

ϵT þ k2

2me
þ k2

2mx

: ð24Þ

We solve Eq. (22) self-consistently, by discretizing momen-
tum and energy and using an iterative method. The self-
consistent exciton spectral function AðpÞ ¼ −π−1ImGR

x ðpÞ
for nx ¼ 0 and μe ¼ ϵT=2 is plotted in Fig. 4.
The plot shows two spectral features: At negative

frequencies, the attractive polaron is a well-defined quasi-
particle excitation at sufficiently low momenta, while a
second well-defined, metastable repulsive polaron quasi-
particle exists at positive energies. Both excitations have
been observed in transition metal dichalcogenides [4] and

cold atomic quantum gases close to Feshbach resonances
[24,27,29,51,52].

1. Attractive polaron quasiparticles

The ground state of a single exciton described by
the model in Eq. (12) depends on the dimensionless
interaction strength given by the ratio ϵF=ϵT of Fermi
energy of electrons and trion energy. While the attractive
polaron is stable at higher electron densities, diagrammatic
Monte Carlo simulations predict a trion ground state for
Fermi energies below 0.1ϵT for contact interaction models
[53,54]. We henceforth assume a sufficiently large electron
density so that the physics at low exciton densities is
dominated by the formation of attractive polarons. In this
regime, it is instructive to introduce an effective (or
projected) Green’s function Ḡx, describing the propagation
of attractive polaron quasiparticles (see Appendix A):

ḠxðpÞ ¼
1

ω − ζp þ i=2τ�xðpÞsgnðωÞ
: ð25Þ

Here, we have introduced the polaron dispersion

ζp ¼ p2

2m�
x
− μ�x; ð26Þ

with the polaron chemical potential μ�x measured from the
bottom of the polaron band. Moreover, we have defined
the effective polaron mass m�

x, the polaron lifetime τ�xðpÞ,
and the quasiparticle weight Z as

ðm�
xÞ−1 ¼ Zm−1

x þ Z∂2
pReΣintðp; 0Þjp¼pF

; ð27Þ

1=2τ�xðpÞ ¼ Z=2τx − ZImΣintðp; ζpÞ; ð28Þ

Z−1 ¼ 1 − ∂ωΣintðpF;ωÞjω¼0; ð29Þ

where we introduced the exciton Fermi momentum pF. The
polaron density of states in Eq. (18) is hence ρx ¼ m�

x=2π.

FIG. 4. Self-consistent spectral function of excitons at zero
exciton density, μe ¼ ϵT=2, mx ¼ 2me, and disorder broad-
ening 1=2τx ¼ ϵT=100.
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The polaron lifetime has a constant part from disorder
scattering, as well as a momentum-dependent part due to
incoherent electron-polaron scattering [see Appendix D for
an estimate of ImΣintðpÞ, as well as the discussion in
Ref. [48] ]. We emphasize that it is crucial to evaluate
the polaron self-energy self-consistently to obtain the
momentum-dependent lifetime.
In Sec. III E, we make use of the fact that the full exciton

Green’s function can be approximated by the effective
expression, GxðpÞ ≃ ZḠxðpÞ near the resonance ω ≃ ζp
and jpj ≪ kF. The interaction vertex between electrons and
polarons, however, is determined by virtual transitions to
excited states, and knowledge of the full exciton Green’s
function is required to accurately determine the vertex
functions.

B. Conserving approximation

We now turn to finding an expression for the trans-
conductivity within the conserving approximation [46,55].
We first review the basic principles of the conserving
approximation and then apply this formalism to the polaron
problem. In this section, we temporarily adopt the Keldysh
notation, which is most convenient for this purpose.
Intuitively, an approximation that satisfies conservation

laws can be derived from a quantity that is invariant under
symmetry operations. In the diagrammatic language, such
quantities are represented by vacuum diagrams, i.e., dia-
grams that appear in the expansion of the thermodynamic
potential. Our starting point is a functional Φ½G� of the
Green’s function defined as the sum of certain two-particle
irreducible connected vacuum diagrams. The choice of
diagrams determines the accuracy of the approximation.
We can obtain a self-energy from the generating func-

tional Φ½G� by a functional derivative

Σð1; 2Þ ¼ δΦ½G�
δGð2; 1Þ ; ð30Þ

where the arguments are space-time coordinates on the
Keldysh contour. In a diagrammatic language, this pro-
cedure amounts to simply cutting a Green’s function line in
the vacuum diagrams leading to the desired self-energy,
which is called Φ derivable. Crucially, the Green’s function
obtained from a Dyson equation with this self-energy turns
out to be conserving; i.e., physical quantities constructed
with this Green’s function obey conservation laws such as
the continuity equation [56]. Importantly, Σ needs to be
evaluated self-consistently, which means that all internal
Green’s function lines in Σ represent full lines dressed by
the self-energy.
Response functions can also be derived within the

conserving approximation (for a detailed discussion, see
Ref. [46]). We start from the equation of motion

Z
d2G−1ð1; 2ÞGð2; 3Þ ¼ δð1; 3Þ; ð31Þ

where we have defined the operator

G−1ð1; 2Þ ¼ ½i∂τ − hð1Þ�δð1; 2Þ − Σð1; 2Þ; ð32Þ

where h is the single-particle Hamiltonian and τ a time on
the Keldysh contour. We now consider the variation δG of
the Green’s function with respect to some perturbation
of the single-particle Hamiltonian δh. From Eq. (31), we
obtain

Z
d2½δG−1ð1; 2ÞGð2; 3Þ þ G−1ð1; 2ÞδGð2; 3Þ� ¼ 0; ð33Þ

and thus

δGð1; 3Þ ¼
Z

d2d4Gð1; 2ÞδG−1ð2; 4ÞGð4; 3Þ ð34Þ

¼ −
Z

d2d4Gð1; 2Þ½δð2; 4Þδhð4Þ þ δΣð2; 4Þ�

×Gð4; 3Þ; ð35Þ

with δΣ ¼ Σ½Gþ δG� − Σ½G�. Equation (35) defines a
recursive relation for δG as we can write δΣð1; 2Þ ¼R
d3d4Kð1; 3; 2; 4ÞδGð3; 4Þ, where K ¼ δ2Φ=δG2 is the

irreducible two-particle vertex, which is obtained from Φ
by cutting two lines. We can reorganize Eq. (35) to find

δGð1; 3Þ ¼ −
Z

d2d4δð2; 4Þδhð4ÞLð1; 2; 3; 4Þ; ð36Þ

where Lð1; 2; 3; 4Þ is a reducible vertex function, which is
related to the irreducible vertex K via the Bethe-Salpeter
equation

Lð1; 2; 3; 4Þ ¼ Gð1; 4ÞGð2; 3Þ

þ
Z

d5d6d7d8Gð1; 5ÞGð6; 3Þ

× Kð5; 8; 6; 7ÞLð7; 2; 8; 4Þ ð37Þ

shown in Fig. 5(c).
The two-particle function L relates the change of the

Green’s function to a perturbation in the single-particle
Hamiltonian and can be used to calculate arbitrary response
functions. For instance, the current response to a vector
potential reads

δJμð1Þ ¼
Z

d2χμρð1; 2ÞδAρð2Þ; ð38Þ
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where the Einstein sum convention is implied and

χμρð1;2Þ¼−i
�
p1;μ−p10;μ

2m1

��
p2;ρ−p20;ρ

2m2

�
Lð1;2;10;20Þ

����
10→1
20→2

:

ð39Þ

Diagrammatically, this amounts to connecting pairs of
outer legs of the two-point function L to current vertices
as shown in Fig. 5(d).
We now derive the transconductivity diagrams for the

electron-exciton system. Our starting point is the functional
Φ depicted in Fig. 5(a). The prefactors of the individual
terms are determined by the number of symmetry oper-
ations of each diagram. The choice of the diagram is
motivated by the ladder approximation for the T matrix
discussed above. Summing over all possible ways to cut a
single line in this diagram, we obtain the disorder self-
energies for excitons and electrons as well as the polaron
self-energy in the ladder approximation. The resulting
Green’s functions are displayed in Fig. 3(a). By cutting

all possible pairs of lines in Φ, we obtain a set of diagrams
that form the irreducible vertexK shown in Fig. 5(b), which
is the kernel of the Bethe-Salpeter equation (37). Note that
K includes exciton-electron as well as exciton-exciton
vertices. Here, we have neglected any self-energy or vertex
corrections of the electronic Green’s function due to
interactions, anticipating that these do not contribute to
the transconductivity to leading order in the polaron
density. For the same reason, we restrict the response
function to diagrams with a single polaron loop. Moreover,
we have used the fact that vertex corrections due to disorder
are absent for Gaussian white noise.
The solution of the Bethe-Salpeter equation (37) shown

in Fig. 5(c) is the reducible two-particle vertex L, which is
directly related to the response function by Eq. (39). As a
result, we obtain two types of diagrams, displayed in
Fig. 5(d). We emphasize that these are the only diagrams
contributing to the linear order in the polaron density nx
within the conserving approximation, as any diagram with
an additional internal exciton loop would yield a result
proportional to n2x. These diagrams are closely related to
the so-called Maki-Thompson and Aslamazov-Larkin dia-
grams that describe superconducting fluctuations (similar
diagrams appear in Ref. [57], which considers transport in a
two-component Fermi gas). We point out that these dia-
grams recover the perturbative Coulomb drag results if
expanded to lowest order in the interaction [34,35].
Crucially, however, we need to include vertex corrections
for the polarons, which arise from the third diagram in
Fig. 5(b). Moreover, we emphasize that the T matrices are
to be evaluated self-consistently in order to remain within
the conserving approximation. Indeed, one can readily
verify that the self-consistent self-energy and the vertex
corrections at zero external frequency satisfy the Ward
identity (cf. Sec. III D). Finally, we point out that, while
there are no vertex corrections from disorder, the effect of
impurities is included as a broadening of the electron and
exciton Green’s functions [see Fig. 3(a)].
We now switch to Fourier space to make use of the

translational symmetry restored after disorder averaging.
The transconductivity is related to the response function
χ in Fig. 5(d) by

σαβðΩÞ ¼
e
iΩ

χαβðΩÞ; ð40Þ

and the response function reads

χαβðΩÞ ¼ −i
Z

dpπαðp;ΩÞGxðpÞGxðpþΩÞΓβðp;ΩÞ;

ð41Þ

where pþ Ω≡ ðp;ωþ ΩÞ. Here, we have defined the
exciton current vertex

(a)

(b)

(c)

(d)

FIG. 5. Linear response theory for polaron drag within the
conserving approximation to lowest order in polaron density.
(a) The functional Φ. Dashed (wavy) lines represent disorder
(interactions). Blue (dark gray) lines indicate dressed electron
propagators, and red (light gray) lines indicate dressed exciton
propagators as defined in Fig. 3. (b) The irreducible two-particle
vertex K ¼ δ2Φ=δG2. Only diagrams to leading order in exciton
density are retained. (c) The Bethe-Salpeter equation (37) for the
reducible two-particle vertex L. (d) The transconductivity dia-
gram obtained from Eq. (39). The second and third lines show the
solution for L based on the irreducible vertex K in panel (b).
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Γðp;ΩÞ ¼ p
mx

þ
Z

dkdk0GeðqÞGeðpþ k0 − kþ ΩÞ

× Tðpþ k0ÞTðpþ k0 þ ΩÞGxðkÞ
× Gxðkþ ΩÞΓðk;ΩÞ: ð42Þ

The vertex Γ describes the renormalization of the exciton
velocity due to many-body interactions [see Fig. 5(d)]. The
vertex function π describes the coupling of excitons to an
electric current and is given by

πðp;ΩÞ ¼ −i
Z

dk
k
me

GeðkÞGeðkþΩÞ
�
Tðpþ kþ ΩÞ

þ i
Z

dk0Geðk0ÞTðpþ k0ÞTðpþ k0 þΩÞ

×Gxðpþ k0 − kÞ
�
: ð43Þ

C. Low exciton density expansion

Before embarking on the evaluation of the response
function, we clarify the regime of validity of our calcu-
lation. As mentioned above, we are interested in the result
to linear order in the exciton density nx ∝ μ�x. Nevertheless,
we assume both electron and exciton Fermi levels to exceed
the frequency and disorder scattering rate, which allows us
to linearize the dispersions around the Fermi levels and
neglect localization effects. To be precise, we consider the
limiting case Ω, 1=τx ≪ μ�x and Ω, 1=τe ≪ μe. At the same
time, we assume μ�x ≪ μe, which ensures that the Fermi-
polaron picture remains valid.
Within this approximation, we can simply set Tðpþ

ΩÞ ≃ TðpÞ to lowest order in Ω. The external frequency
thus only enters in products of Green’s functions,
GxðpÞGxðpþ ΩÞ and GeðkÞGeðkþ ΩÞ, where Ω separates
the branch cuts of the two Green’s functions. We can now
write the exciton current vertex as

Γðp;ΩÞ ¼ p
mx

þ
Z

dkwðp; kÞGxðkÞGxðkþΩÞΓðk;ΩÞ;

ð44Þ

where we introduced the kernel

wðp;kÞ¼ δΣintðpÞ
δGxðkÞ

¼
Z

dqGeðqÞGeðpþq−kÞT2ðpþqÞ; ð45Þ

which corresponds to the last term in Fig. 5(b). The vertex
function π reads

πðp;ΩÞ ¼ −i
Z

dk
k
me

GeðkÞGeðkþΩÞ δΣintðpÞ
δGeðkÞ

ð46Þ

¼ −i
Z

dk
k
me

GeðkÞGeðkþ ΩÞ
�
Tðpþ kÞ

þ i
Z

dk0Geðk0ÞTðpþ k0Þ2Gxðpþ k0 − kÞ
�
:

ð47Þ

We can alternatively apply the vertex corrections to the
vertex π and rewrite Eq. (41) as

χαβðΩÞ ¼ −i
Z

dpΠαðp;ΩÞGxðpÞGxðpþ ΩÞ pβ

mx
; ð48Þ

where we introduced the dressed vertex Π defined by

Πðp;ΩÞ

¼ πðp;ΩÞ þ
Z

dkΠðk;ΩÞGxðkÞGxðkþΩÞwðk; pÞ:

ð49Þ

We now outline our strategy for expanding Eqs. (41)
and (44) to linear order in nx. While we have restricted
the calculation to diagrams with only a single exciton
loop, thereby neglecting certain higher-order contributions,
single-loop diagrams may still contain terms nonlinear in
nx that should be eliminated. Our starting point is the
following decomposition of the exciton Green’s function

GxðpÞ ¼ GR
x ðpÞ þ 2iImGA

x ðpÞθð−ωÞ: ð50Þ

In the diagrams, each Green’s functionGx appears inside
a frequency integration, and we can write

Z
dpfðpÞGxðpÞ ¼

Z
dpfðpÞGR

x ðpÞ

þ
Z

dpfðpÞ2iImGA
x ðpÞθð−ωÞ; ð51Þ

where the second term is proportional to nx for any function
fðpÞ that does not have poles in the lower half-plane
ω < 0. Hence, we can use Eq. (51) to expand a loop
diagram in powers of nx. The zeroth order is given by
replacing all exciton Green’s functions in a loop by retarded
functions. This contribution to the transconductivity trivi-
ally vanishes. The decomposition (51) thus suggests a
simple recipe to generate the diagrams at first order in nx:
Consider all diagrams, where a single exciton line is
replaced by ImGA

x ðpÞθð−ωÞ and all others are assumed
to be retarded functions.
Indeed, this recipe works for the functions wðp; kÞ and

πðp;ΩÞ in Eqs. (45) and (47) as all exciton Green’s
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functions in these expressions, including the internal
Green’s functions in the definition of the T matrix, are
of the form of Eq. (51). The only exception to this simple
expansion rule are the expressions in Eqs. (41) and (44),
where products of two exciton Green’s functions within the
same frequency integral appear. The expansion of such
terms will be derived in Sec. III E below.
To simplify bookkeeping, we consider π and w to be

functionals of Gx. The expansion π ≃ πð0Þ þ πð1Þ can then
be expressed to first order in nx as

πð0Þ ¼ π½GR
x �; ð52Þ

πð1Þ ¼
Z

dp
δπ½GR

x �
δGR

x ðpÞ
2iImGA

x ðpÞθð−ωÞ; ð53Þ

where π½GR
x � means that all exciton Green’s functions

inside the vertex have been replaced by retarded functions.
Similarly, the function w can be expressed as w≃
wð0Þ þ wð1Þ, with

wð0Þ ¼ w½GR
x �; ð54Þ

wð1Þ ¼
Z

dp
δw½GR

x �
δGR

x ðpÞ
2iImGA

x ðpÞθð−ωÞ: ð55Þ

Naively, it may seem cumbersome to expand all exciton
Green’s functions as described above for both diagrams
shown in Fig. 5(d); however, we can considerably simplify
the solution by symmetry arguments. Importantly, both
diagrams have been derived by functional derivatives of
the Φ functional, and therefore, the representation of the
expansion in nx in terms of functional derivatives is
particularly suitable for our problem. Most terms in the
expansion simply correspond to some higher-order deriv-
atives of the Φ functional or the self-energy. The fact that
the order of differentiation does not matter leads to
important symmetry properties, for instance, wðp; p0Þ ¼
δΣðpÞ=δGxðp0Þ ¼ wðp0; pÞ, which can be readily verified
from Eq. (45). Moreover, this relation is immediately
obvious from the diagrammatic representation of w, shown
as the last term in Fig. 5(b).
We make use of symmetry properties as well as the Ward

identity in the evaluation of the transconductivity below.
Indeed, we find at the end of Sec. III E that the various
contributions from the expansion of the self-energy and
vertex corrections eventually combine into a simple final
expression that can be readily computed. As mentioned
above, however, the product GxðpÞGxðpþΩÞ cannot be
simply expanded using functional derivatives. This term
accounts for the mobility of excitons and depends sensi-
tively on the parameter Ωτx. A similar expression,
∼GeðkÞGeðkþ ΩÞ, occurs in the definition of πðp;ΩÞ in
Eq. (46) and contains information about the electron
mobility. The latter expression can be simplified by

expanding the Green’s functions in terms of delta functions
around the quasiparticle resonance ϵ ¼ ξk. In Appendix F,
we show that the approximation

k
me

GeðkÞGeðkþ ΩÞ ≃
ðiτeΩ k

me
∂ϵ þ ∂kÞGeðkÞ
1 − iτeΩ

ð56Þ

is valid to leading order in Ω; 1=τe ≪ μe. We cannot
immediately use this relation for the exciton Green’s
function because its nonperturbative interaction self-energy
correction precludes a description in terms of on-shell
properties only. We discuss this issue in more detail in
Sec. III E below.

D. Evaluation of the vertex functions
to zeroth order in nx

We begin with the evaluation of the vertex functions
Γðp;ΩÞ, πðp;ΩÞ, and Πðp;ΩÞ to zeroth order in the
polaron density by simply replacing all exciton Green’s
functions by retarded functions. Equation (44) reads, at
zeroth order in nx,

Γð0ÞðpÞ ≃ p
mx

þ
Z

dkwð0Þðp; kÞΓð0ÞðkÞGR
x ðkÞ2; ð57Þ

where we have approximated GR
x ðkÞGR

x ðkþΩÞ → GR
x ðkÞ2

to lowest order in Ω. Using the chain rule

∂pΣ
ð0Þ
int ðpÞ ¼

Z
dq

δΣð0Þ
int ðpÞ

δGR
x ðqÞ

∂qGR
x ðqÞ; ð58Þ

which immediately follows from the definition of Σint and T

in Eqs. (19) and (21), as well as δΣð0Þ
int ðpÞ=δGR

x ðqÞ ¼
wð0Þðp; qÞ, we can readily verify that the solution of
Eq. (57) is given by the Ward identity

Γð0ÞðpÞ ¼ p
mx

þ ∂pΣ
ð0Þ
int ðpÞ ð59Þ

¼ ½GR
x ðpÞ�−2∂pGR

x ðpÞ: ð60Þ

In order to evaluate πð0Þðp;ΩÞ, defined by Eq. (47), we
employ Eq. (56) and write

πð0Þðp;ΩÞ ¼ i
Z

dkGeðkÞ
iτeΩ k

me
∂ϵ þ ∂k

1− iτeΩ

�
Tð0Þðpþ kÞ

þ i
Z

dk0Geðk0ÞTð0Þðpþ k0Þ2GR
x ðpþ k0 − kÞ

�
;

ð61Þ

where we have performed a partial integration. Using
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∂pTðpÞ ¼ i
Z

dkT2ðpÞGeðkÞ∂pGxðp − kÞ; ð62Þ

which follows directly from the definition of the T matrix in
Eq. (21), we find that the momentum derivative in Eq. (61)
drops out, and we obtain

πð0Þðp;ΩÞ ¼ −iτeΩ
1 − iτeΩ

Z
dk

k − p
me

wðk; pÞ∂ϵGR
x ðkÞ: ð63Þ

The dressed vertex Πð0Þðp;ΩÞ at zero polaron density can
be determined by plugging this expression into Eq. (49) and
approximating GR

x ðkÞGR
x ðkþ ΩÞ ≃ ½GR

x ðkÞ�2. Using the
chain rule

∂ωΣ
ð0Þ
int ðpÞ ¼

Z
dkwð0Þðp; kÞ½GR

x ðkÞ�2∂ϵ½GR
x ðkÞ�−1 ð64Þ

and an analogous identity for ∂pΣ
ð0Þ
int ðpÞ as well as ½GR

x �−1¼
ω−ωpþði=2τxÞ−Σð0Þ

int ðpÞ, one can readily verify that
Eq. (49) is satisfied by the expression

Πð0Þðp;ΩÞ ¼ iτeΩ
1 − iτeΩ

�
mx

me
∂p þ

p
me

∂ω

�
Σð0Þ
int ðpÞ: ð65Þ

E. Evaluation of transconductivity to first order in nx
With the results above, we are prepared to evaluate the

response function χαβ in Eq. (41) to linear order in nx. As
outlined previously, we can use the representation of the
exciton Green’s function in Eq. (51). By expanding the
different terms of Eq. (41) separately, we obtain three
contributions

χα;βðΩÞ ¼ χiα;βðΩÞ þ χiiα;βðΩÞ þ χiiiα;βðΩÞ þOðn2xÞ; ð66Þ

χiα;βðΩÞ ¼ −i
Z

dpπð1Þα ðp;ΩÞGR
x ðpÞ2Γð0Þ

β ðpÞ; ð67Þ

χiiα;βðΩÞ ¼ −i
Z

dpdkΠð0Þ
α ðp;ΩÞGR

x ðpÞ2Wð1Þðp; kÞ

×GR
x ðkÞ2Γð0Þ

β ðkÞ; ð68Þ

χiiiα;βðΩÞ ¼ −i
Z

dpΠð0Þ
α ðp;ΩÞΓð0Þ

β ðpÞGxðpÞGxðpþΩÞ:

ð69Þ

To evaluate the first contribution, we use Eq. (53) as well as
the Ward identity for Γð0Þ in Eq. (60) and obtain

χiα;βðΩÞ ¼ 2

Z
dpdp0 δπ

ð0Þ
α ðp;ΩÞ
δGR

x ðp0Þ ImGA
x ðp0Þθð−ω0Þ

× ∂pβ
GR

x ðpÞ: ð70Þ

Writing the first-order term in nx as a functional derivatives
turns out to be very useful. We first use Eq. (46) to express
the vertex παðpÞ in terms of the self-energy Σint, and we
subsequently have to evaluate δΣintðpÞ=δGxðp0Þ ¼
Wðp; p0Þ. From its definition in Eq. (45), however, we
immediately observe that the function Wðp; p0Þ is sym-
metric under the exchange of momentum arguments, which
implies the simple relation

δπαðp;ΩÞ
δGxðp0Þ ¼ δπαðp0;ΩÞ

δGxðpÞ
: ð71Þ

Making use of this expression together with the chain rule

Z
dp0 δπαðp;ΩÞ

δGxðp0Þ ∂p0Gxðp0Þ ¼ ∂pπαðp;ΩÞ; ð72Þ

we find

χiα;βðΩÞ ¼ 2

Z
dpImGA

x ðpÞθð−ωÞ∂pβ
πð0Þα ðp;ΩÞ: ð73Þ

The structure of the second term given by Eq. (68) is
similar to the first contribution. Using the Ward identity as
well as the expansion of w in Eq. (55), we obtain

χiiα;βðΩÞ ¼ 2

Z
dpdkdk0Πð0Þ

α ðp;ΩÞGR
x ðpÞ2θð−ϵ0Þ

× ImGA
x ðk0Þ

δwð0Þðp; kÞ
δGR

x ðk0Þ
∂kβG

R
x ðkÞ: ð74Þ

We now use the identities

δwðp; kÞ
δGxðk0Þ

¼ δ2ΣintðpÞ
δGxðkÞδGxðk0Þ

¼ δwðp; k0Þ
δGxðkÞ

; ð75Þ

ð∂p þ ∂kÞwðp; kÞ ¼
Z

dk0
δwðp; kÞ
δGxðk0Þ

∂k0Gxðk0Þ; ð76Þ

where the second line immediately follows from the
definition of T and w in Eqs. (21) and (45). We arrive at

χiiα;βðΩÞ ¼ 2

Z
dpdkΠð0Þ

α ðp;ΩÞGR
x ðpÞ2θð−ϵÞ

× ImGA
x ðkÞð∂pβ

þ ∂kβÞwð0Þðp; kÞ: ð77Þ

The third contribution χiii in Eq. (66) contains a term
GxðpÞGxðpþ ΩÞ, which cannot be expanded by the simple
recipe in Eq. (51) because two exciton Green’s functions
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are evaluated at nearby frequencies. A similar expression
for the electronic Green’s function has been evaluated in
Eq. (56); however, we cannot use the same formula for
excitons because their self-energy has an energy-dependent
imaginary part. In particular, when evaluated away from the
polaron resonance at ω ¼ ζp, ImΣintðpÞ is not necessarily
small. Hence, the imaginary part of the exciton Green’s
function cannot be simply replaced by a delta function at
the polaron resonance, and the energy integral has both on-
shell and off-shell contributions.
The evaluation of the on-shell contribution, where

Gx ≃ Ḡx given by Eq. (25), is further complicated by the
momentum-dependent lifetime broadening 1=2τx þ
ImΣintðpÞ of the polarons. For simplicity, we neglect this
momentum dependence in the following, writing

ḠxðpÞ ≃
1

ω − ζp þ i=2τ�xsgnðωÞ
ð78Þ

with 1=τ�x ¼ Z=τx, which is formally justified in the limit
ImΣintð0;−μ�xÞ ≪ 1=2τx. This approximation ignores the
effect of electron-polaron scattering on transport, which is
expected to be suppressed at small external frequencies due
to the small available phase space. We discuss this issue in
more detail in Sec. III F below.
The distinction between on- and off-shell contributions

can now be made explicit by writing

ImGxðpÞ ¼ ZImḠx þ jGRðpÞj2ImΣintðp;ωÞ: ð79Þ

For the relevant energies ω < 0, the first term is entirely
determined by on-shell contributions, whereas the second
term vanishes near the polaron resonance. With the help of
Eq. (50), we find

GxðpÞGxðpþ ΩÞ
≃ ½GR

x ðpÞ þ 2iZImḠxðpÞθð−ωÞ�
× ½GR

x ðpþ ΩÞ þ 2iZImḠxðpþ ΩÞθð−ωÞ�
þ 4iGR

x ðpÞjGRðpÞj2ImΣintðp;ωÞθð−ωÞ; ð80Þ

where we have approximated ωþΩ → ω in the second
term and we have neglected terms of order ImΣintðpÞ2 ∝ n2x.
Using this expression, we can rewrite Eq. (69) as

χiiiα;βðΩÞ ¼ −i
Z

dpΠð0Þ
α ðp;ΩÞΓð0Þ

β ðpÞ½Z2ḠxðpÞḠxðpþΩÞ

þ 4iReGxðpÞjGR
x ðpÞj2ImΣintðpÞθð−ωÞ�; ð81Þ

where we have replaced Gx → ZḠx in the first term as this
integral is dominated by on-shell contributions. The second
term has only off-shell contributions, and we can therefore
write, to leading order, ReGxðpÞjGR

x ðpÞj2 ≃GR
x ðpÞ3. We

obtain

χiiiα;βðΩÞ ¼ −i
Z

dpΠð0Þ
α ðp;ΩÞΓð0Þ

β ðpÞ½Z2ḠxðpÞḠxðpþ ΩÞ

þ 4i½GR
x ðpÞ�3ImΣintðpÞθð−ωÞ�: ð82Þ

To make a connection with Eq. (77), we express ImΣðpÞ
in terms of ImGxðpÞ using straightforward manipulations
(see Appendix E), and employing the Ward identity, we
arrive at

χiiiα;βðΩÞ ¼
Z

dpΠð0Þ
α ðp;ΩÞf−iΓð0Þ

β ðpÞZ2ḠxðpÞḠxðpþ ΩÞ

þ 2ImGxðkÞθð−ϵÞwð0Þðp; kÞ∂p½GR
x ðpÞ�2g: ð83Þ

Adding all three contributions, we obtain

χα;βðΩÞ ¼ −iZ2

Z
dpΠð0Þ

α ðp;ΩÞΓð0Þ
β ðpÞḠxðpÞḠxðpþ ΩÞ

þ 2Z
Z

dpImḠxðpÞθð−ωÞ∂pβ
Πð0Þ

α ðp;ΩÞ

þ 2

Z
dpdkΠð0Þ

α ðk;ΩÞθð−ωÞ

× ImGA
x ðpÞ∂kβ ½wð0Þðp; kÞGR

x ðkÞ2�: ð84Þ

We can perform a partial integration in the last term, and
using

R
dkwð0Þðp; kÞGR

x ðkÞ2 ≃ −Z∂ωΣðωÞ ≃ 1 − Z, we can
write the response function in the form

χα;βðΩÞ ¼ −iZ2

Z
dpΠð0Þ

α ðp;ΩÞΓð0Þ
β ðpÞḠxðpÞḠxðpþ ΩÞ

þ Z
Z

dpḠxðpÞ∂pβ
Πð0Þ

α ðp;ΩÞ; ð85Þ

where we have used Eq. (51) and
R
dpGxðpÞ ¼R

dpḠxðpÞ.
We have arrived at an expression that depends exclu-

sively on the on-shell Green’s function ḠxðpÞ. Using the
explicit expression in Eq. (78), we can rewrite Eq. (85)
using Eq. (56) as

χα;βðΩÞ ¼ −iZ
Z

dpḠxðpÞ∂pβ
Πð0Þ

α ðp;ΩÞ

− iZ2

Z
dpΠð0Þ

α ðp;ΩÞΓð0Þ
β ðpÞ

×
ðΩ pβ

m�
x
∂ω þ ∂pβ

i=τ�xÞḠxðpÞ
Ωþ i=τ�x

: ð86Þ

Moreover, the vertex functions in Eqs. (60) and (65) can be
evaluated explicitly,

Γð0Þðp; ζpÞ ¼
p

Zm�
x
; ð87Þ
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Πð0Þðp; ζp;ΩÞ ¼
−iτeΩ
1 − iτeΩ

p
Zme

�
1 −

mx

m�
x

�
: ð88Þ

Using these expressions and the identities −i
R
dpḠxðpÞ ¼

nx and
R
dω∂ωḠxðωÞ ¼ 0 as well as integration by parts,

we readily obtain

χαβ ¼ −
δαβnx
me

�
1 −

mx

m�
x

�
τeτ

�
xΩ2

ð1 − iτeΩÞð1 − iτ�xΩÞ
: ð89Þ

The longitudinal transconductivity σxe ¼ eχαα=iΩ thus
reads

σxeðΩÞ ¼
enx
me

�
1 −

mx

m�
x

�
iΩτeτ�x

ð1 − iΩτeÞð1 − iΩτ�xÞ
; ð90Þ

which is identical to the expression in Eq. (7).

F. Transconductivity in terms of
low-energy excitations

We can rederive the result in Eq. (85) starting from an
effective theory based on attractive polarons as the only
low-energy excitations of the system. The effective low-
energy Hamiltonian in terms of the attractive polaron
operators ap in the absence of electric fields reads

H0 ¼
X
p

ζpa
†
pap þ

X
p;q;j

Ueiqrja†pþqap; ð91Þ

where the first term denotes the dispersion of polarons,
while the second term corresponds to disorder scattering of
polarons. The effective polaron Green’s function can be
written as ḠxðpÞ ¼

R
dωe−iωth0jTapðtÞa†pð0Þj0i.

In the presence of an electric field EðtÞ ¼ Ee−iΩt, the
polaron quasiparticles are no longer eigenstates of the
system as the field induces a drift in the Fermi sea. Solving
the polaron problem with average electron velocity ve, we
find that the polaron dispersion is shifted in momentum
space p→pþveðm�

x−mxÞ (see Appendix B for a detailed
calculation). This shift can be interpreted as an effective
vector potential for polarons induced by the electric field.
Assuming an electronic drift velocity ve ¼ −eτeEe−iΩt=
með1 − iΩτeÞ, we can account for the shifted dispersion by
introducing an additional term in the effective polaron
Hamiltonian

H0 ¼ −
X
p

a†papZΠð0Þðp; ζp;ΩÞ ·AðtÞ; ð92Þ

where Πð0Þ is the vertex evaluated at vanishing exciton
density given by Eq. (88) and AðtÞ ¼ Ee−iΩt=iΩ is the
electric vector potential.
Alternatively, Eq. (92) can be derived by evaluating

the effective electron current vertex of polarons. Following

the same arguments as in Sec. III B, one can readily
convince oneself that this vertex is given by ZΠ ¼
½∂=ð∂AÞ�Σint½GeðAÞ�jA¼0. The evaluation of the vertex
Πð0Þ is straightforward and has been performed in
Sec. III D.
The attractive polaron current resulting from the

Hamiltonian H0 is

Ĵx ¼
X
p

�
p
m�

x
þ eEe−iΩt

iΩ
Z∂pΠð0Þðp; ζp;ΩÞ

�
a†pap

¼ ĵx þ
eEeiΩt

iΩ
Z∂pΠð0Þðp; ζp;ΩÞn̂x; ð93Þ

where we introduced ĵx ≡P
pðp=m�

xÞa†pap, and we used

the fact that ∂pΠð0Þðp; ζp;ΩÞ does not depend on momen-
tum. The first term corresponds to the paramagnetic
contribution that can be evaluated using Kubo’s formula.
The second term is the diamagnetic contribution that
originates from the change in polaron velocity due to the
shift of the dispersion implied by Eq. (92). These two terms
precisely recover Eq. (85).
We can hence interpret Eq. (85) as the paramagnetic

and diamagnetic contributions to the conductivity in terms
of effective polaron quasiparticles with propagator Ḡx.
In the derivation of this equation in Sec. III E, we have
neglected the momentum dependence of the lifetime,
thereby ignoring incoherent electron-polaron scattering.
Here, we have not made such an assumption, which
suggests that Eq. (85) holds even for a more general
momentum-dependent lifetime.
Nevertheless, the result for the transconductivity remains

unchanged. Obviously, only quasiparticles within a thin
shell with width of about Ω around the Fermi energy
contribute to the conductivity. In close analogy to Landau
Fermi liquid theory, we find that the electron scattering rate
of an attractive polaron of energy Ω is proportional to Ω2

(see Appendix D). In accordance with our expansion to
lowest order inΩ, the electron-scattering lifetime ImΣintðpÞ
of the quasiparticles relevant for transport can therefore
be neglected.

IV. TRANSCONDUCTIVITY OF
POLARON POLARITONS

The above calculation can be readily generalized to the
case of exciton-polaron polaritons. We simply add a term
Φxν describing the coupling of excitons to the cavity mode
to the functional Φ discussed in Sec. III B. The term is
depicted in Fig. 6 and reads explicitly

Φxν ¼ g2
Z

d1d2Gxð1; 2ÞGνð2; 1Þ; ð94Þ

where the photon propagator is defined as
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GνðkÞ−1 ¼ ω − νk þ i0sgnðωÞ ð95Þ

and we introduced the dispersion of cavity photons,
νk ¼ k2=2mν þ Δ, where mν ≃ 10−5me and we assume
for simplicity that photons have an infinite lifetime. The
functional Φxν leads to an additional self-energy for the
exciton

ΣxνðkÞ ¼ g2GνðkÞ ¼
g2

ω − νk þ i0sgnðωÞ ; ð96Þ

and the exciton propagator is changed accordingly,

GxðpÞ ¼
1

ω − ωp − ΣintðpÞ − Σdis;xðpÞ − ΣxνðpÞ
: ð97Þ

To make connection with our previous result, we assume
that we can describe the exciton as an attractive polaron
neglecting other excitations such as the trion. In our
approach, this is formally justified if g is much smaller
than the energy difference between the attractive polaron
and trion. Nevertheless, we expect our results to be valid
also at somewhat stronger couplings because, in reality, the
coupling strength between cavity photons and trions is
vanishingly small, even though this fact is not captured by
our simple model.
Hence, approximating the bare exciton Green’s function

by the attractive polaron Green’s function in Eq. (25),
we find

GxðpÞ ≃
Z

ω − ζp − iZIm½ΣintðpÞ þ Σdis;xðpÞ� − ZΣxνðpÞ
:

ð98Þ

The resonances of Gx are determined by the equation

ðω − ζpÞðω − νkÞ ¼ Zg2: ð99Þ

Near zero momentum, the lower-energy branch can be
approximated by a quadratic dispersion

γp ¼ γ0 þ
p2

2mγ
: ð100Þ

Hence, near the lower polariton resonance, Gx takes the
approximate form

GγðpÞ ¼
Zγ

ω − γp − iZγIm½ΣintðpÞ þ Σdis;xðpÞ�
: ð101Þ

When the cavity photon is tuned into resonance with the
attractive polaron, Δ ¼ ζ0, we find

γ0 ¼ Δ − g
ffiffiffiffi
Z

p
; ð102Þ

1

mγ
¼ 1

2

�
1

m�
x
þ 1

mν

�
; ð103Þ

Zγ ¼
Z
2
: ð104Þ

We have arrived at an effective polariton Green’s
function that is formally identical to the attractive polaron
Green’s function in Eq. (25), albeit with renormalized para-
meters. We emphasize that the broadening Im½ΣintðpÞ þ
Σdis;xðpÞ� has to be calculated self-consistently, and thus
disorder scattering as well as electron scattering will be
strongly suppressed due to the small polariton density of
states ∼mν ≪ m�

x.
The calculation of the transconductivity between elec-

trons and polaron polaritons is closely related to the one for
polarons. The relation for the exciton current vertex in
Eq. (44) acquires an additional term and reads

Γðp;ΩÞ ¼ p
mx

þ g2GνðpÞGνðpþΩÞ p
mν

þ
Z

dkWðp; kÞGxðkÞGxðkþ ΩÞΓðk;ΩÞ:

ð105Þ

This equation is also displayed in Fig. 6. Following the
same steps as in Sec. III D, we can verify that the vertex at
zeroth order in the polariton density satisfies the Ward
identity

Γð0ÞðpÞ ¼ ½GR
γ ðpÞ�−2∂pGR

γ ðpÞ: ð106Þ

For small wave vectors jpj ≪ ffiffiffiffiffiffiffiffimγg
p , where GxðpÞ≃

GγðpÞ, we have

Γð0ÞðpÞ ¼ p
Zγmγ

: ð107Þ

In contrast, the derivation of the vertex function Πð0Þðp;ΩÞ
in Eq. (65) remains unchanged. Moreover, the real part of

T

T

FIG. 6. Functional describing the exciton-photon interaction
Φxν½Gx;Gν� and the vertex correction Γ for polaritons with
photon propagators represented by green (dark gray) lines.
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the self-energy ReΣintðpÞ is largely independent of the
cavity coupling, and hence the on-shell expression for
Πð0Þðp;ΩÞ in Eq. (88) is retained.
In Sec. III E, most expressions involving Gx remain

unchanged as they involve an integral over a large area in
momentum space. The only exceptions occur after Eq. (79),
where the on-shell Green’s function Ḡ of occupied states is
used. In these expressions, we can thus simply substitute
ZḠx with ZγḠγ . These changes result in an additional factor
Zγ=Z in the final result, Eq. (90). In addition, the lifetime τx
is replaced by the polariton lifetime τγ ¼ τxm�

x=mγ ≫ τx.
Based on these considerations, we finally arrive at the
transconductivity between electrons and polaritons

σγeðΩÞ ¼
Zγ

Z
enx
me

�
1 −

mx

m�
x

�
iΩτeτγ

ð1 − iΩτeÞð1 − iΩτγÞ
: ð108Þ

The additional factor Zγ=Z takes into account the fact that
the drag requires a finite excitonic quasiparticle weight. At
resonance, this factor reduces the polaron velocity to half its
value. Moreover, we emphasize that polariton drag is much
less affected by excitonic disorder because the small density
of states of polaritons suppresses disorder scattering.

V. NONEQUILIBRIUM EFFECTS

We have seen that our intuitive picture of polaron drag
developed in Sec. II correctly reproduces the results of the
fully microscopic model presented in Sec. III. This is
encouraging as the semiclassical theory can be extended to
include other effects that could not be captured within the
linear-response calculation but that are potentially relevant
for experiments. Most notably, optically excited excitons
have a finite lifetime due to recombination processes,
which requires a nonequilibrium calculation.
For exciton polarons in monolayer TMDs, an ultrashort

radiative lifetime of about 1 ps for low-momentum excitons
implies that the assumption of an equilibrium exciton gas is
not justified. Moreover, disorder scattering in state-of-the-
art samples is comparable to the radiative decay rate,
rendering it unlikely that a spatial displacement in exciton
photoluminescence induced by an applied low-frequency
electric field can be observed.
In general, we envision three different experimental

scenarios, where our findings are potentially observable:
(i) In the case of interlayer excitons in TMD hetero-

bilayers, where electrons and holes occupy conduc-
tion and valence band states in different monolayers,
the exciton lifetime can be tuned electrically and can
well exceed 100 ns. Since timescales for disorder
scattering are considerably shorter, we expect the
interlayer excitons to be in equilibrium. Provided
that the spatially indirect trion state remains bound,
our results could also be used to describe drag of
indirect exciton polarons, where disorder or electron

scattering times can be shorter than the radiative
lifetime. In this case, the resonantly generated polar-
ons will be scattered to momentum states outside
the light cone, where they can decay nonradiatively
or by phonon-assisted radiative decay. The nonzero
drag velocity may be detected in photolumi-
nescence.

(ii) Alternatively, our results may be relevant to hetero-
bilayers at very large electron density. In this limit,
screening of the interaction between valence band
holes and conduction band electrons has to be taken
into account, which invalidates our assumption that
excitons can be regarded as rigid quasiparticles.
Instead, we may consider the valence band hole as a
quantum impurity interacting with a Fermi sea of
conduction band electrons. For sufficiently high
electron densities, it may become favorable for
the hole to form a polaron rather than an exciton.
This approach bears some similarity with Ref. [58],
and it can be used to analyze the Fermi-edge
singularity problem within the framework of Fermi
polarons. Our analysis of the transport problem
carries over to the case of hole polarons with the
trion binding energy replaced by the screened
exciton binding energy. To ensure that Ωτ > 1 is
satisfied, it may be possible to use microwave or
terahertz irradiation and monitor the polaron re-
sponse as sidebands in optical response.

(iii) Arguably, the most promising platform for the
observation of electric-field-induced displacement
of neutral optical excitations is provided by exciton-
polaron polaritons observed when a monolayer with
a 2DES is embedded inside a 2D microcavity [2–4]
or when a monolayer is embedded in a dielectric
structure that supports in-plane propagating pho-
tonic modes [59]. Small-momentum excitations in
the lower-energy polaron-polariton branch have two
striking features: First, because of their extremely
small effective mass, polaritons are, to a large extent,
protected from disorder scattering. This effect was
observed in exciton polaritons in the 1990s in GaAs
heterostructures [60,61]. Second, low-momentum
polaritons can only decay radiatively through cavity
mirror loss: It is therefore possible to ensure that the
polariton lifetime is much longer than that of excitons
by using high-quality-factor cavities. Nevertheless,
interactions between polaritons are also weak, and we
cannot expect a low density of polaritons to thermal-
ize, rendering it essential to develop a nonequilibrium
description of transport.

A. Boltzmann equation

Our aim is to develop a kinetic theory for the distribu-
tion function gkðr; tÞ of exciton polarons, including the
effects of pumping, recombination, and disorder as well as
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a nonzero electron drift velocity veðtÞ due to an electric
field EðtÞ. In the most general case, we can write the
Boltzmann equation as

dgkðr; tÞ
dt

¼ ∂gkðr; tÞ
∂t þ _k

∂gkðr; tÞ
∂k þ _rk

∂gkðr; tÞ
∂r : ð109Þ

Importantly, the electric field does not exert a direct force
on polarons, whose canonical momentum k is conserved.
Instead, it shifts the polaron dispersion by changing the
electron velocity. A straightforward solution of the polaron
problem discussed in Sec. III A in the presence of an
electron drift (see Appendix B) yields the dispersion

ζ̃kðtÞ ¼ ζkþðm�
x−mxÞveðtÞ; ð110Þ

which is shifted from the equilibrium dispersion ζk ¼
k2=2m�

x such that the polaron state at k ¼ 0 has a velocity
ð1 −mx=m�

xÞveðtÞ. Even though an electric field does not
affect the conjugate momentum of the polaron, _k ¼ 0, it
changes its kinetic momentum m�

xvxðk; tÞ with the polaron
velocity

vxðk; tÞ ¼
∂ζ̃kðtÞ
∂k ¼ k

m�
x
þ
�
1 −

mx

m�
x

�
veðtÞ: ð111Þ

For simplicity, we assume a spatially homogeneous dis-
tribution, ∂rgkðr; tÞ ¼ 0, and we suppress the spatial
dependence in the following. Hence, the distribution
function does not have an implicit time dependence, and
Eq. (109) can be written as

dgkðtÞ
dt

¼ RδðkÞ − gkðtÞ
τr

þ
�∂gkðtÞ

∂t
�

dis
þ
�∂gkðtÞ

∂t
�

int
:

ð112Þ

The first term is due to pumping of polarons at a rate R in
the polaron state at k ¼ 0 by resonant laser absorption. The
incidence angle of a collimated laser field determines the
in-plane momentum of the exciton polarons, which is, in
turn, much smaller than the other characteristic momentum
scales in the problem, such as kF and meve. By tuning the
frequency of a normal-incidence single-mode laser field, it
is possible to ensure that only k ¼ 0 attractive polarons
can be created. The second term in Eq. (112) corresponds to
the loss of attractive polarons due to the recombination
processes at a rate 1=τr. In general, τr is expected to depend
on momentum since the recombination rate should be
strongest for small momenta k that lie inside the light cone,
whereas the decay from states outside the light cone
requires the generation of additional excitations such as
phonons. Here, we neglect the momentum dependence of
τr, for simplicity, although the generalization of our results
to include this effect is straightforward. The last two terms
in Eq. (112) conserve the number of polarons and

correspond to collision processes, either due to exciton
disorder or incoherent scattering off electrons. These terms
will be discussed in more detail below.
Integrating Eq. (112) over momentum space, we obtain

the time evolution of the exciton density nðtÞ≡ nxðtÞ ¼R ðdk=4π2ÞgkðtÞ as
_nðtÞ ¼ R −

nðtÞ
τr

; ð113Þ

where we have used that the collision integrals conserve
the number of polarons. Moreover, we are interested in
evaluating the exciton current density defined as

nðtÞv̄xðtÞ ¼
Z

dk
ð2πÞ2 gkðtÞvxðk; tÞ: ð114Þ

Differentiating with respect to time, we obtain

nðtÞ dv̄xðtÞ
dt

þ _nðtÞv̄xðtÞ ¼
Z

dk
ð2πÞ2

�
gkðtÞ

dvxðk; tÞ
dt

þ dgkðtÞ
dt

vxðk; tÞ
�
: ð115Þ

The first term on the right-hand side can be readily
evaluated using Eq. (111) and _k ¼ 0 as

Z
dk

ð2πÞ2 gkðtÞ
dvxðk; tÞ

dt
¼ nðtÞm

�
x −mx

m�
xme

FeðtÞ; ð116Þ

with Fe ¼ me _veðtÞ. The second integral in Eq. (115) can be
evaluated using the Boltzmann equation (112) and, with the
help of Eq. (113), we obtain

m�
x
dv̄xðtÞ
dt

¼ R
nðtÞ ½ðm

�
x −mxÞveðtÞ −m�

xv̄xðtÞ�

þm�
x −mx

me
FeðtÞ þ FdisðtÞ þ FintðtÞ; ð117Þ

In this expression, the first and second terms account
for polarons in the k ¼ 0 state with velocity vxð0; tÞ ¼
ð1 −mx=m�

xÞveðtÞ that are generated by the laser or lost by
the recombination of excitons, respectively. The third term
corresponds to the drag force acting on the exciton system
due to the polaronic coupling to electrons, which was the
main focus of the equilibrium calculation in Sec. III. The
last two terms correspond to the friction due to exciton
disorder and incoherent scattering with electrons,

FdisðtÞ ¼
m�

x

nðtÞ
Z

dk
ð2πÞ2

�∂gk
∂t

�
dis
vxðk; tÞ; ð118Þ

FintðtÞ ¼
m�

x

nðtÞ
Z

dk
ð2πÞ2

�∂gk
∂t

�
int
vxðk; tÞ: ð119Þ
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These forces depend sensitively on the polaron distribution
and can lead to nonlinear effects in the time evolution. We
discuss them in more detail in the next section.

B. Estimation of the friction forces from disorder
and incoherent scattering with electrons

Friction from excitonic disorder can be described by the
collision integral

�∂gk
∂t

�
dis

¼
Z

dk0

ð2πÞ2 ½gk0 ðtÞ − gkðtÞ�M̃kk0 ; ð120Þ

where M̃kk0 denotes the matrix element corresponding to
the scattering of a polaron from state k to state k0. In the
simplest case, we can assume Gaussian white noise as in
Sec. III A, and we obtain

M̃kk0 ¼ 1

ν�xτ�x
δ½ζ̃kðtÞ − ζ̃k0 ðtÞ�: ð121Þ

Note that the matrix elements depend on the shifted
dispersion in the presence of the electric field. With this
approximation, the collision integral simplifies to

�∂gk
∂t

�
dis

¼ 1

ν�xτ�x

Z
dk0

ð2πÞ2 gk0 ðtÞδ½ζ̃kðtÞ − ζ̃k0 ðtÞ� − gkðtÞ
τ�x

;

ð122Þ

and the friction force reads

FdisðtÞ ¼ −
m�

xv̄xðtÞ
τ�x

: ð123Þ

Hence, for Gaussian white noise correlated disorder, the
polaron disorder scattering time is also the relaxation time
for the drift velocity of the exciton system. We emphasize
that this result holds, even though we cannot treat the
collision integral in Eq. (120) in the relaxation time
approximation.
The force introduced in Eq. (119) corresponds to an

additional drag force originating from the residual inter-
action between electrons and polarons. While coherent
scattering events of electrons and excitons result in polaron
formation and the polaron drag phenomenon described in
Secs. II and III, incoherent collisions lead to a lifetime
broadening of the polarons. This broadening appears as a
term ImΣintðpÞ in the Green’s function description of
polarons discussed in Sec. III A.
The qualitative effect of incoherent broadening can be

estimated from a simple argument by temporarily disre-
garding polaronic disorder. For concreteness, we imagine a
narrow distribution of polarons around zero momentum,
which corresponds to the distribution shortly after the
laser has been switched on. In the comoving frame of
the electrons, the zero-momentum polarons have a velocity

−vemx=m�
x and thus are in an excited state. Excited polaron

states, however, have a finite lifetime due to the interaction
with electrons and will decay into lower-energy states,
which also have a smaller absolute velocity. Hence,
incoherent electron-polaron scattering will lead to a relax-
ation of the polaron velocity to zero in the comoving frame.
In the lab frame, this case corresponds to an acceleration of
polarons until they reach a velocity ve, which justifies the
following ansatz for the electron friction force on the
polarons,

Fint ¼ −m�
x
v̄xðtÞ − ve
τintðtÞ

; ð124Þ

with an effective timescale τint that depends on details of the
polaron distribution at time t. A rough estimate for τint is
given by the interaction lifetime of an excited polaron state
with velocity −mxve=m�

x. After this time, all the polarons at
zero momentum have scattered at least once. In the comov-
ing frame of electrons, the scattering probability does not
have a very strong dependence on the direction of the final
polaron momentum. Hence, the polaron reaches an average
velocity similar or equal to ve already after a few scattering
events, even though the time for each individual polaron to
reach that velocity is expected to be much longer.
The expression for the friction force in Eq. (124)

captures the conventional Coulomb drag effect, e.g., in
electron bilayer systems [33–36]. Indeed, for perturbative
interactions, Fint is the only contribution to drag. As we
have shown in Sec. III, nonperturbative interactions result
in an additional polaron drag effect that dominates at low
temperatures and frequencies, whereas the drag force in
Eq. (124) is a subleading correction that we have neglected
in the linear response calculation in Sec. III. We emphasize
that in nonequilibrium systems or at finite temperatures,
Fint cannot necessarily be ignored.
An explicit expression for the collision integral reads

�∂gk
∂t

�
int

¼
Z

dk0

ð2πÞ2 ½gk0 ð1 − gkÞQ̃k0k − gkð1 − gk0 ÞQ̃kk0 �;

ð125Þ

where the transition probability Q̃kk0 denotes the scattering
rate of an attractive polaron of momentum k to a momen-
tum k0 due to interactions with an electron Fermi sea
drifting at velocity ve. In order to derive an expression for
Q̃pp0 , we first consider the polaron scattering rate Qpp0

when the electron drift velocity is zero. The electron-polaron
scattering amplitude is simply given by the T matrix, and,
hence, Fermi’s golden rule yields

Qpp0 ¼ Z2π

Z
dk

ð2πÞ2 jTðpþ k; ζp þ ϵkÞj2fk½1 − fkþp−p0 �

× δðζp − ζp0 − εkþp−p0 þ εkÞ; ð126Þ

OVIDIU COTLEŢ et al. PHYS. REV. X 9, 041019 (2019)

041019-18



where f denotes the equilibrium electron distribution.
One can readily verify that this scattering rate reproduces
the lifetime broadening of the on-shell polaron Green’s
function (see Appendix D 3 for the case of an empty polaron
band),

ImΣintðp; ζpÞ ¼
Z

dk0

ð2πÞ2 ð1 − gk0 ÞQ̃kk0 : ð127Þ

In the presence of a nonzero electron drift velocity,
Eq. (126) has to be modified by shifting both the polaron
dispersion ζp → ζ̃p and the electron distribution fk →
fk−meveðtÞ. A straightforward calculation along the lines of
Appendix B establishes a relation between the scattering
amplitude with and without an electric field,

Q̃pp0 ¼ Qp−mxveðtÞ;p0−mxveðtÞ: ð128Þ

Indeed, this result confirms the intuition that the friction
between polarons and electrons results in the relaxation of
the polaron velocity in the comoving frame of electrons. To
see this result, we observe that the lowest energy state has an
infinite lifetime, i.e., Q0;k ¼ 0. In the presence of an electric
field, this means a polaron state with momentum p ¼ mxve
is stable with respect to scattering off electrons. According to
Eq. (111), this state has a velocity ve; i.e., it is moving at the
same speed as the electron Fermi sea.
In order to obtain an estimate for the friction force Fint

in Eq. (119) on a narrow distribution centered at zero
momentum, gk ≃ nδðkÞ, we can make the same approxi-
mation as above that the average velocity after a single
scattering event is ve. We can hence write the force from the
first term in Eq. (125) as

m�
x

nðtÞ
Z

dk
ð2πÞ2

dk0

ð2πÞ2 vxðk; tÞgk0 ð1 − gkÞQ̃k0k ≃
m�

xve
τintðtÞ

;

ð129Þ

and for the second term, we obtain

m�
x

nðtÞ
Z

dk
ð2πÞ2

dk0

ð2πÞ2 vxðk; tÞgkð1 − g0kÞQ̃kk0 ≃
m�

xv̄x
τintðtÞ

:

ð130Þ

Here, we have defined the scattering time

1

τintðtÞ
¼

X
k0

Q̃0k0 ; ð131Þ

which is identical to the interaction lifetime of a polaron at
momentum −mxve. With these results, we indeed re-
cover Eq. (124).
To obtain a rough estimate of τint, we can approximate

the T matrix by a constant ZTðpþ k; ζp þ εkÞ ≃U≡

ZTðkF; 0Þ, which is valid in the relevant limit jpj ≪ kF
and jkj ≃ kF. The scattering time at zero temperature
can then be obtained from a straightforward calculation
(assuming m≡mx ≃me, see Appendix D) as

1

τintðtÞ
∼ ρeU2

ðmveÞ3
kF

: ð132Þ

At frequencies close to the trion energy, the T matrix is
dominated by the trion pole. The interaction between
attractive polarons and electrons originates from virtual
scattering events into a higher energy state comprising a
trion and a hole, which results in an effective attractive
interaction. This yields the estimate

U ≃ −
ZϵT
ρeΔ

; ð133Þ

where Δ is the energy separation between the trion-hole
continuum and the attractive polaron. Assuming a quasi-
particle weight Z ≃

ffiffiffiffiffiffiffiffiffiffiffiffi
μe=ϵT

p
, the friction force on polarons

at zero momentum is of the order of

Fint ≃
m2kFϵT
Δ2

v3eve: ð134Þ

The friction force therefore scales with the electric field as
Fint ∝ E4, which illustrates why this effect has not been
captured in the linear response calculation in Sec. III.
We emphasize that this result is valid at zero temperature.

At finite temperatures, the friction force is still expected to
have the form in Eq. (124), but the scattering rate acquires
an additional temperature-dependent contribution due to
the enhanced phase space available for electron-polaron
scattering.

C. Equations of motion for polarons and polaritons

After the pump has been switched on for a time of about
τr, the polaron density saturates to the value n ¼ Rτr. Even
though the density has reached a steady-state value, the
solution of the nonlinear Boltzmann equation (112)
depends sensitively on the ratio of the various timescales
and, in general, requires numerical calculations. To ensure a
strong hybridization of polarons and photons, it is desirable
to work in a limit where the radiative lifetime is the shortest
timescale, τr ≪ τ�x, τint. In this case, the polarons remain
mostly near k ¼ 0 and therefore within the light cone, as
disorder and electron scattering, which change the polaron
momentum, are suppressed.
This limit guarantees that the friction caused by electrons

can be described by Eq. (124), and we can make the
connection to the semiclassical equations in Sec. II more
explicit. Assuming a density nðtÞ ¼ Rτr, Eq. (117) can be
written as
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m�
x
dv̄xðtÞ
dt

¼ ðm�
x −mxÞveðtÞ

τr
−
m�

xv̄xðtÞ
τr

−
m�

xv̄xðtÞ
τ�x

þm�
x −mx

me
FeðtÞ −

m�
x(v̄xðtÞ − ve)

τintðtÞ
: ð135Þ

A comparison with the corresponding Eq. (3) in Sec. II
reveals three extra contributions in the nonequilibrium
case. The first term originates from pumping polarons
into the state k ¼ 0 with velocity vxðk ¼ 0; tÞ ¼
ð1 −mx=m�

xÞveðtÞ. The second term describes recombina-
tion of polarons. Finally, the last term originates from
incoherent scattering of electrons, which has been neg-
lected in Sec. II. This assumption is justified in the limit of
weak electric fields.
Equation (135) can be readily generalized to polaritons.

As has been argued in Sec. IV, polaritons are much less
affected by scattering processes because of their ultra-low
mass and the correspondingly small scattering phase space.
Resonant coupling between polarons and the cavity mode
creates a local minimum near zero momentum in the
polariton dispersion. For a sufficiently strong coupling
[g > ðmxveÞ2=2m�

x in the notation of Sec. IV], disorder or
interaction scattering of low-energy polaritons to large
momenta of about mxjvej is energetically forbidden. In
this case, the polariton scattering rates 1=τ�x and 1=τint are
reduced by a factor ðmγ=m�

xÞ compared to exciton polarons.
As typical values are ðmγ=m�

xÞ ∼ 10−5, we conclude that
such scattering processes can be neglected. Following
similar steps as above, we arrive at the equation of motion
for polaritons,

dv̄xðtÞ
dt

¼
�
1 −

mx

m�
x

�
veðtÞ
2τr

−
v̄xðtÞ
τr

þ
�
1 −

mx

m�
x

�
FeðtÞ
2me

:

ð136Þ

The additional factor of 1=2 in the first and third terms
reflects the ratio of the polariton and polaron quasiparticle
weights. This equation can be readily solved. Assuming a
static electric field, such that FeðtÞ ¼ 0, the polaritons
move at a velocity v̄x ¼ ð1 −mx=m�

xÞveðtÞ=2 during their
entire lifetime, which corresponds to an approximate
distance Δ ¼ ð1 −mx=m�

xÞveðtÞτr=2.
We also perform a quick estimate of the magnitude of Δ.

The ratio mx=m�
x depends on the Fermi energy but is of

the order 1, and therefore we can conservatively take
mx=m�

x ¼ 1=2. The electron drift velocity can be calculated
from ve ¼ Eμ. In TMDs, the applied source-drain electric
field E can be of the order of 1000 V=cm, while the
electron mobilities can reach μ ¼ 104 cm2=ðV sÞ [62,63],
which results in drift velocities of the order of ve ¼
105 m=s. Assuming a polariton lifetime of τr ≈ 10 ps,
we obtain a drag-induced polariton displacement of
roughly Δ ≈ 250 nm. We envision an experiment where
polaritons are injected with a finite group velocity using a

resonant laser field, upon which they travel distances
exceeding 10 μm while decaying due to cavity losses:
By interfering, the polariton emission with the same laser
field, drag-induced polariton displacement of the order of
30 nm can be easily measured [64]. The photonic dis-
placement induced by the applied electric field can easily
be increased by using higher quality cavities leading to
longer polariton lifetimes [65].

VI. MAGNETIC FIELD RESPONSE
OF EXCITON POLARONS

We can include the effect of a dc magnetic field by
adding a Lorentz force to Eq. (2),

d
dt

veðtÞ ¼ aeðtÞ ¼ −
eEðtÞ
me

− veðtÞ ×
eB
me

−
veðtÞ
τe

: ð137Þ

We can readily solve this equation and find

veðΩÞ ¼
e
me

EðΩÞ × eB=me −EðΩÞðτ−1e − iΩÞ
ðτ−1e − iΩÞ2 þ ω2

c
; ð138Þ

where ωc ¼ eB=me is the cyclotron frequency. As the
magnetic field does not directly couple to excitons, Eq. (6)
remains valid. Hence, when ωc ≫ Ω; 1=τe and Ωτx ≫ 1,
the electrons and polarons drift in the direction perpen-
dicular to the electric and magnetic fields realizing a Hall
effect of neutral excitons.
More generally, Eq. (6) predicts that excitons will follow

the trajectory of electrons (scaled by a factor) on timescales
shorter than the exciton impurity scattering time. In the
absence of an electric field, excitons should therefore move
in cyclotron orbits, which suggests that polarons could
experience a phenomenon similar to Landau quantization.
Equivalently, one can argue that excitons should be affected
by the quantizing magnetic field as they are dressed by
particle-hole excitations with a discrete energy spectrum due
to electronic Landau levels. A signature of this case would be
a polaron spectral function with a series of peaks on top of an
incoherent background present at higher energies roughly
spaced by the cyclotron frequency.A related phenomenon has
been discussed in the context of Bose polarons, in particular,
for electrons strongly coupled to dispersionless phonons. In
this case, phonon shake-off processes lead to a series of broad
peaks in the polaron spectral function separated in energy by
multiples of the phonon frequency [66].
Observation of Landau levels in the absorption spectrum

where the energy separation is given by the electron
cyclotron frequency would represent yet another manifes-
tation of the central role played by polaron physics in
optical excitations out of a 2DES. If bound trions were
observable in absorption, the observed Landau-level spacing
would be determined by the trion mass, which is a factor
of 3 larger than that of the electron in TMD monolayers.
In the opposite limit of very high electron densities, we
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expect screening to lead to ionization of excitons: In this
regime, the level separation will be determined by the
reduced mass of electron-hole pairs.
Conversely, the motion of electrons in a magnetic field

can be influenced by the presence of excitons. Excitons at
an appreciable density can lead to a polaronic dressing of
electrons, thereby increasing their effective mass, which
could be detected in Shubnikov–de Haas oscillations or
cyclotron resonance measurements. With increasing den-
sity of excitons, the electronic resonance frequency is
expected to shift as a result of a polaronic dressing. In
contrast, bound trions would appear as a new resonance in
addition to the bare electron resonance, and no shift is
expected as a function of trion density.

VII. OUTLOOK AND CONCLUSION

Our work opens up new frontiers in nonequilibrium
many-body physics by showing that external electric and
magnetic fields could be used to control and manipulate
elementary optical excitations such as excitons or polar-
itons. The requisite element leading to this intriguing
functionality is the presence of nonperturbative interactions
between excitons and electrons, leading to the formation of
exciton polarons. In addition to the potential applications in
realizing effective gauge fields for photonic excitations
that we already highlighted, we envision several extensions
of our work that, by themselves, constitute open theory
problems.
Arguably, the most interesting extension of our work is

the investigation of the degenerate Bose-Fermi mixture
regime, which can be accessed by increasing the optical
pump strength. In the limit of perturbative electron-exciton
interactions, this problem could be formulated as a cou-
pling between Bogoliubov excitations out of a polariton
condensate and electrons close to the Fermi surface [67].
In the opposite limit of nonperturbative exciton-electron
interactions and polariton density np lower than that of
electrons ne, the ground state could be described as a
polaron-polariton condensate. We expect the confluence of
these two approaches to give rise to new physics where the
nature of polariton screening by electrons could be dra-
matically modified due to degeneracy favoring a high
quasiparticle weight. Moreover, it is precisely in this regime
that the modification of the electronic transport properties
due to degenerate-polaron formation would become signifi-
cant. It is possible that the previous proposals for polariton-
mediated superconductivity may have to be revisited in light
of new features that emerge from a rigorous analysis of
polaron-polariton condensation [67–69]. Last but not least, a
gradual increase (decrease) of polariton (electron) density
from the np ≪ ne to np ≫ ne regime takes us from a Fermi-
polaron problem to a Bose-polaron problem: The exciton-
polariton system allows for such tuning by changing the
optical pump strength together with applied gate voltages
that control the electron density.

Another exciting extension of our work is the analysis of
the regime of a strong ac drive of the interacting electron-
polariton system where electrons occupy Floquet bands.
We expect a particularly strong modification of polaron
formation if the external field resonantly drives plasmon
resonance of degenerate electrons. Introduction of spatial
modulation of the electron density using Moire patters or
surface acoustic waves could be used to engineer nontrivial
band structure for electrons: It is thereby possible to realize
either stationary or Floquet topological bands for electrons,
which will, in turn, modify exciton-polaron transport. An
alternative strategy to investigate the interplay between
topological order and polaron formation is to study optical
excitations from fractional quantum Hall states.
As we highlighted earlier, application of our formalism

to 2D materials is particularly exciting: On the one hand,
these materials exhibit a valley pseudospin degree of
freedom and a nontrivial band geometry with a sizable
Berry curvature. On the other hand, they allow for creating
hybrid materials combining different functionalities; an
exciting recent example is a heterostructure based on
exchange coupled semiconducting and a ferromagnetic
monolayers. Optical excitations in such a system will be
Bose polarons where the magnetic moments of valley
excitons are screened by magnon excitations out of the
ferromagnet.
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Note added.—Recently, an experimental work was posted
[70] reporting a response of polaritons to external electric
fields. At this point, it is not clear to us if the observed
response is related to the polaron drag we predict.

APPENDIX A: EFFECTIVE ATTRACTIVE
POLARON PROPAGATOR

In this section, we show, starting from the full Green’s
function Gx, how one can introduce an effective (or
projected) propagator, which describes the propagation
of the low-energy excitations (i.e., the attractive polarons).
Starting from the general Green’s function
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GxðpÞ ¼
1

ω − ωp − ΣintðpÞ þ i=2τxsgnω
; ðA1Þ

we introduce the dispersion of attractive polarons as the
lowest-energy pole of the above, i.e.,

ζp ≡ ωp þ ReΣintðp; ζpÞ ≃
p2

2m�
x
− μ�x; ðA2Þ

where we introduced the polaron mass m�
x and also

introduced a new chemical potential μ�x, measured from
the bottom of the attractive polaron dispersion. The above
equation is correct for small momenta p ≪ kF, while for
larger momenta, it will start to deviate from a quadratic
dispersion.
Expanding the self-energy Σðp;ωÞ to linear order in ω,

we can write

GxðpÞ ≃
1

ω − ωp − ReΣintðp; ζpÞ − iImΣintðp; ζpÞ þ ðω − ζpÞ∂ωΣintðp;ωÞjω¼ζp
þ i=2τxsgnðωÞ

¼ 1

ω − ζp þ ðω − ζpÞ∂ωΣintðp;ωÞjω¼ζp
þ i=2τxsgnðωÞ − iImΣintðp; ζpÞ

¼ Zp

ω − ζp þ iZp=2τxsgnðωÞ − iZpImΣintðp; ζpÞ
; ðA3Þ

where we introduced the renormalization factor Z−1
p ≡

1 − ∂ωΣintðp;ωÞjω¼ζp
. It is clear from this definition that,

in general, the renormalization factor Zp is complex (jZpj
denotes the quasiparticle weight) since the self-energy is
complex. However, as long as

∂ωImΣintðp;ωÞjω¼ζp
≪ ImΣintðp; ζpÞ; ðA4Þ

we can neglect the complex part of Zp. We prove that the
above condition is satisfied for small momenta jpj ≪ kF in
Appendix D, where we explicitly evaluate the imaginary
part of the self-energy. In this limit, we can approximate the
quasiparticle weight by a constant:

Z−1
p ≃ 1 − ∂ωReΣintðp;ωÞjω¼ζp

≃ 1 − ∂ωReΣintðpF;ωÞjω¼0 ≡ Z−1: ðA5Þ

We can also introduce the lifetime of the attractive
polaron as

1=2τ�xðpÞ ¼ iZ=2τx þ iZjImΣintðp; ζpÞj; ðA6Þ

where we introduced the absolute value of the imaginary
part of the self-energy, which changes sign at ω ¼ 0. Using
the above, we can rewrite the exciton propagator for low
momenta as

GxðpÞ ≃
Z

ω − ζp þ iτ�xðpÞsgnðωÞ
≡ ZḠxðpÞ; ðA7Þ

which defines the projected operator ḠxðpÞ.
In the main text, we sometimes need to evaluate the

partial derivatives of ΣðpÞ on shell, i.e., at p ¼ ðp; ζpÞ.
From Eq. (A5), we immediately have

∂ωΣintðp;ωÞjω¼ζp
≃ 1 − Z−1: ðA8Þ

To evaluate the momentum derivative, we solve Eq. (A2) to
obtain

dζp
dp

¼ p
m�

x

¼ dωp

dp
þ dðReΣintðp; ζpÞÞ

dp

¼ p
mx

− ∂pReΣintðp; ζpÞ þ
dζp
dp

∂ωReΣintðp;ωÞ
����
ω¼ζp

:

ðA9Þ

From the above, we immediately obtain

∂pReΣintðp; ζpÞ ¼ Z−1 p
m�

x
−

p
mx

: ðA10Þ

It is useful to obtain an explicit expression for the
polaron dispersion ζp with respect to the value (and
derivatives) of the self-energy at the Fermi surface
p ¼ pF, by expanding the self-energy in a Taylor series
with respect to these points:

ReΣintðp;ωÞ ≃ ReΣintðpF; 0Þ þ p∂pReΣintðp; 0Þjp¼pF

þ p2

2
∂2
pReΣintðp; 0Þjp¼pF

þ ω∂ωReΣintðpF; 0Þjω¼0: ðA11Þ

The pole ω of Eq. (A1), which yields ζp, therefore satisfies
the equation
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ω − ωp − ReΣintðpF; 0Þ − p∂pReΣintðp; 0Þjp¼pF

−
p2

2
∂2
pReΣintðp; 0Þjp¼pF

− ω∂ωReΣintðpF; 0Þjω¼0 ¼ 0;

ðA12Þ

which can be solved to obtain

ζp ¼ Z

�
ωp þ ReΣintðpF; 0Þ þ

p2

2mx
− p∂pReΣintðp;0Þjp¼pF

−
p2

2
∂2
pReΣintðp; 0Þjp¼pF

�
; ðA13Þ

where we introduced ζ0. From the above, it is clear that the
renormalized mass of the polaron can be written as

1

m�
x
¼ Z

�
1

mx
þ ∂2

pReΣintðp; 0Þjp¼pF

�
: ðA14Þ

APPENDIX B: POLARON DISPERSION FOR A
DRIFTING FERMI SEA

Here, we determine the polaron dispersion, when the
electrons are drifting at velocity ve. For simplicity, we
restrict ourselves to the case of zero polaron density,
μ�x ¼ 0. Moreover, we focus on sufficiently low energies
(i.e., below the trion energy) such that we can represent the
exciton Green’s function by the effective polaron Green’s
function

ḠR
x ðpÞ ¼

1

ω − ζp þ iZ=2τx − iZImΣintðpÞ
; ðB1Þ

where ζp ¼ p2=2m�
x is the polaron dispersion at zero

density, when the electron Fermi sea is at rest.
According to Eq. (22), we can write the self-energy in
the absence of a drift as

Σð0Þ
int ðω;pÞ ¼

Z
dk

ð2πÞ2 nFðξkÞT
ð0Þðωþ ξk;kþ pÞ: ðB2Þ

The T matrix in Eq. (23) can be expressed as

T−1ðω;pÞ ¼ V−1 þ
Z

dq
ð2πÞ2

nFðξqÞ − 1

ω − ξq − ζp−q þ iZ=2τx − iZImΣintðω − ξq;p − qÞ ; ðB3Þ

where we have substituted the exciton Green’s function by Eq. (B1). This method is justified because, in the domain
of integration, the energy argument of Gx always remains smaller than ω, and hence Eq. (B1) is a good approximation.
We can now simply introduce a drift velocity of the Fermi surface of electrons by shifting the distribution function
nFðξkÞ → nFðξk−AÞ with A ¼ veme. We denote the self-energy with a shifted Fermi surface as Σ̃ and find

Σ̃ð0Þ
int ðω;p;AÞ ¼

Z
dk

ð2πÞ2 nFðξk−AÞT̃ðωþ ξk;kþ p;AÞ: ðB4Þ

The self-consistent T matrix needs to be changed accordingly,

T̃−1ðω;p;AÞ ¼ V−1 þ
Z

dq
ð2πÞ2

nFðξq−AÞ − 1

ω − ξq − ζ̃p−q þ iZ=2τx − iZImΣ̃intðω − ξq;p − q;AÞ ; ðB5Þ

where we have defined the polaron dispersion in the presence of a Fermi sea ζ̃p that we seek to obtain. Shifting the variable
of integration, the self-energy reads

Σ̃ð0Þ
int ðω;p;AÞ ¼

Z
dk

ð2πÞ2 nFðξkÞT̃ðωþ ξkþA;kþAþ p;AÞ; ðB6Þ

with

T̃−1ðωþ ξkþA;kþAþ p;AÞ

¼ V−1 þ
Z

dq
ð2πÞ2

nFðξqÞ − 1

ωþ ξkþA − ξqþA − ζ̃kþp−q þ iZ=2τx − iZImΣ̃intðωþ ξkþA − ξqþA;kþ p − q;AÞ : ðB7Þ
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We make the following general ansatz for the new polaron
dispersion:

ζ̃p ¼ ðpþ δpÞ2
2m�

x
þ δE; ðB8Þ

where δp and δE are constants to be determined. It is
straightforward to rewrite the real part of the denominator
of Eq. (B7) as

ωþ ξkþA − ξqþA − ζ̃kþp−q ¼ ω0 þ ξk − ξq − ζkþp0−q;

ðB9Þ

where we have introduced

p0 ¼ pþ δp −Am�
x=me; ðB10Þ

ω0 ¼ ω −
ðpþ δpÞA

me
þ A2m�

x

2m2
e
− δE: ðB11Þ

Notice that the right-hand side of Eq. (B9) involves the bare
polaron dispersion at zero electron drift velocity. Using this
relation, we can express the T matrix in the presence of an
electron drift by the bare T matrix at shifted energy and
momentum arguments, T̃ðωþ ξkþA;kþAþ p;AÞ ¼
Tðω0 þ ξk;kþ p0Þ. Similarly, the self-energy can be ex-
pressed as

Σ̃ð0Þ
int ðω;p;AÞ ¼ Σð0Þ

int ðω0;p0Þ: ðB12Þ

Here, we have used the relation

ImΣ̃intðωþ ξkþA − ξqþA;kþ p − q;AÞ
¼ ImΣintðωþ ξk − ξq;kþ p − qÞ; ðB13Þ

which can be verified straightforwardly using Eqs. (B6)
and (B7). We can now determine the polaron dispersion in
Eq. (B8) from the pole of the Green’s function

�
ω −

p2

2mx
þ μx − ReΣ̃ðω;p;AÞ

�
ω¼ζ̃p

¼ 0: ðB14Þ

Near the polaron pole, we can write

ReΣ̃ð0Þ
int ðω;p;AÞ ¼ ReΣð0Þ

int ðω0;p0Þ

≃ ð1 − Z−1Þω0 þ Z−1ζp0 −
p02

2mx
þ μx:

ðB15Þ

SubstitutingA ¼ meve, we find, after some straightforward
manipulations,

δp ¼ veðm�
x −mxÞ; ðB16Þ

δE ¼ −
v2eðm�

x −mxÞ
2

; ðB17Þ

and hence the polaron dispersion when the electrons are
drifting at a constant velocity reads

ζ̃p ¼ (pþ veðm�
x −mxÞ)2

2m�
x

−
v2eðm�

x −mxÞ
2

: ðB18Þ

APPENDIX C: POLARON TRANSPORT USING
A VARIATIONAL APPROACH

A complementary way to show the emergence of this
force is using a variational approach. We start from the
following Hamiltonian, which incorporates the interaction
between excitons and electrons in the presence of an
electric field. We use the Coulomb gauge, such that the
effect of the electric field is to shift the electron dispersion
and therefore preserve translational invariance. We obtain

HðtÞ ¼
X
k

ξkþmeveðtÞc
†
kck þ

X
k

ωkx
†
kxk

þ
X
k;k0;q

V
A
x†kþqc

†
k0−qck0xk; ðC1Þ

where c† is the electron creation operator, while x† denotes
the creation of an excitonic impurity. Furthermore, ξk ¼
½k2=ð2meÞ� − μe is the electron dispersion, while ωk ¼
½k2=ð2mxÞ� − μx denotes the impurity dispersion. Notice
that we investigate only the case of vanishing exciton
density, i.e., μx < 0. We remark that the total conjugate
momentum p̂T ≡P

k kðx†kxk þ c†kckÞ is an integral of
motion, and we can simply replace it by its eigenvalue pT .
Strictly speaking, the above Hamiltonian is valid only

when disorder can be neglected, and in this case, veðtÞ is the
velocity acquired by electrons due to the acceleration by
the electric field: veðtÞ ¼ Re½e=ðiΩmeÞ�Ee−iΩt. However,
we can also include the effect of disorder on the electron
system, heuristically, by assuming that the velocity veðtÞ is
the steady-state electron velocity in the presence of an
electric field and disorder [as calculated in Eq. (5)].
It is instructive to first solve the problem in the absence

of an electric field. To solve the problem, we introduce a
Chevy ansatz, which is completely equivalent to a non-self-
consistent T-matrix approach:

jΨpi¼a†pj0i¼
�
ϕpx

†
pþ

X
k;q

ϕp;k;qx
†
pþq−kc

†
kcq

�
j0i: ðC2Þ

To obtain the ground-state energy, we have to minimize
hΨpjH − EjΨpi, where the energy E is the Lagrange
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multiplier ensuring the normalization of the wave function.
The minimization will yield the dispersion of the polarons
ζpðtÞ ¼ ζ0 þ p2=ð2m�

xÞ (see Refs. [4,49] for details regard-
ing the minimization procedure; the mass m�

x might not be
the same as the m�

x obtained self-consistently since this is a
non-self-consistent derivation).
Having solved the problem in the absence of the electric

field, we now find a mapping from the instantaneous
eigenstates of the Hamiltonian in the presence of an electric
field to the states in the absence of any field. To show this
mapping we first go to a frame that is comoving with the
electrons with the unitary UðtÞ ¼ eiSðtÞ, where SðtÞ ¼
reðtÞp̂T , with reðtÞ ¼

R
t
0 dt

0veðt0Þ. Since UðtÞxkU†ðtÞ ¼
xke−ikreðtÞ, the conservation of total conjugate momentum
implies that UðtÞHU†ðtÞ ¼ H, so the only contribution to
the Hamiltonian comes from the time dependence of the
transformation −iUðtÞf½∂U†ðtÞ�=ð∂tÞg¼f½∂SðtÞ�=ð∂tÞg¼
ðe=meÞAðtÞp̂T . The new Hamiltonian becomes

HðtÞ ¼
X
k

ξkc
†
kck þ

X
k

ωk−mxveðtÞx
†
kxk

þ
X
k;k0;q

V
A
x†kþqe

†
k0−qek0xk; ðC3Þ

where now the exciton dispersion is shifted by an
amount −mxveðtÞ. Assuming that the electric field is small
enough, the system will remain in the many-body ground
state, according to the adiabatic theorem. To determine
the instantaneous ground state of HðtÞ, we have to
minimize hΨpðtÞjHðtÞ − EjΨpðtÞi, where the Chevy ansatz
is given by

jΨpðtÞi ¼ a†pj0i

¼
�
ϕpðtÞx†p þ

X
k;q

ϕp;k;qðtÞx†pþq−kc
†
kcq

�
j0i:

ðC4Þ

One can check that, up to some irrelevant constants,
hΨpðtÞjHðtÞjΨpðtÞi ¼ hΨp−mxveðtÞjHjΨp−mxveðtÞi (one way
to see this is to explicitly expand these terms and compare
them), which illustrates the mapping to the states in the
absence of an electric field. From the above, we immedi-
ately see that

ζ̃pðtÞ ¼ ζp−mxveðtÞ ¼
ðp −mxveðtÞ)2

2m�
x

− μ�x; ðC5Þ

where we used a tilde to denote the dispersion in the frame
co-moving with the electrons. We remark that polarons
acquire a backward velocity −mx=m�

xveðtÞ, which is
smaller than the electron velocity due to the mass renorm-
alization. Moving back to the lab frame, the dispersion
becomes

ζpðtÞ ¼
(pþ ðm�

x −mxÞveðtÞ)2
2m�

x
− μ�x: ðC6Þ

Assuming that the electric field is small enough, the
evolution is adiabatic, and we can focus only on the
attractive-polaron states and ignore all the other higher
lying states; therefore, we can write down an effective
Hamiltonian in terms of attractive polarons:

HðtÞ ¼
X
p

�½pþ ðm�
x −mxÞveðtÞ�2
2m�

x
− μ�x

�
a†pap; ðC7Þ

which is similar to the Hamiltonian introduced in Sec. III F.

APPENDIX D: POLARON LIFETIME

In this Appendix, we investigate the residual interac-
tions between polarons and the Fermi sea and calculate
the corresponding scattering rates associated with these
processes. We first calculate the scattering lifetime using
Fermi’s golden rule since it is more transparent, but then we
show that the same result can be obtained by explicitly
evaluating ImΣðp; ξpÞ. In the following, we are interested
in the case of only one polaron in the system with
momentum jpj ≪ kF, and therefore we choose μ�x < 0.

1. Interaction between polarons and electrons

The interaction between this polaron and an electron of
momentum k is given by

Uðp;kÞ ¼ ZTðpþ k; ζp þ ξkÞ; ðD1Þ

where Z is the quasiparticle weight of the polaron. Since,
by assumption, the polaron has a small energy ζp ≪ eF, the
polaron will only be able to scatter electrons in a thin shell
around the Fermi surface. Therefore, for our purposes, we
have k ≃ kF, and thus,

U ≃ ZTðkF; 0Þ: ðD2Þ

In the above, T denotes the self-consistent T matrix. We
know that the T matrix has a a simple pole at the trion
resonance ωTðkÞ. Therefore, for energies in the vicinity of
the trion resonance, we can approximate the T matrix by

Tðk;ωÞ ≃ C
ω − ωTðkÞ þ iγT

; ðD3Þ

where ωTðkÞ is the trion energy measured from the exciton
chemical potential μx, and γT denotes the lifetime of the
trion state.
Since it is not immediately obvious how to calculate C

for the self-consistent T matrix, we proceed to estimate it.
Since the self-consistent T matrix cannot be too much
different than the non-self-consistent T matrix T0 (which
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we know how to calculate exactly), we use the analytical
expression of T0 to obtain an order-of-magnitude estima-
tion for T. Considering, for simplicity, the case mx ¼ me,
we know that [23]

T0ð0;ωÞ ¼
2

ρeðlnð ϵT
ωþμx

Þ þ iπÞ

¼ 2ϵT
ρe

1

ωþ ϵT þ μx
þO

��
ωþ ϵT þ μx

ϵT

�
2
�
;

ðD4Þ

which shows that C ≃ 2ϵT=ρe. Denoting the energy differ-
ence between the trion of momentum kF and the attractive
polaron of momentum p with Δ, we can approximate the
interaction U as

U ≃ −
2ZϵT
ρeΔ

: ðD5Þ

2. Polaron lifetime using Fermi’s golden rule

According to Fermi’s golden rule, the scattering rate
from a state of momentum p is given by

Γ ¼ 2πU2
X

jp0j<jpj;k
δðζp − ζp0 − ξkþp−p0 þ ξkÞ

× ½nFðξkÞ − nFðξkþp−p0 Þ�; ðD6Þ

where we used the fact that a polaron can scatter by creating
electron-hole pairs in the Fermi sea. We can write the above
more compactly by introducing the electron response
function:

χðq;ωÞ≡ −
X
k

nFðξkÞ − nFðξkþqÞ
ω − ξkþq þ ξk þ i0þ

; ðD7Þ

which allows us to rewrite Γ as

Γ ¼ 2U2
X

jp0j<jpj
Imχðp − p0; ζp − ζp0 Þ

¼ 2U2
X
jqj<jpj

Imχðq; ζp − ζp−qÞθðζp − ζp−qÞ: ðD8Þ

Since jqj < jpj ≪ kF and therefore ζp − ζp−q ≪ μe, we
can use the low-frequency expansion:

Imχðq;ωÞ ≃ 2ρe
ω

μe

kF
jqj ; ðD9Þ

which, in our case, means that

Γ ≃ 4ρeU2

Z
p

0

dqq
Z

2π

0

dϕIm2ρe
2pq cosϕ − q2

2m�
xμe

×
kF
jqj θð2pq cosϕ − q2Þ ðD10Þ

¼ 4ρeU2
p3kF
2m�

xμe

Z
1

0

dq

×
Z

2π

0

dϕð2q cosϕ − q2Þθð2q cosϕ − q2Þ: ðD11Þ

The integral is easy to evaluate, and it is similar to or equal
to 1. Since Z ≃

ffiffiffiffiffiffiffiffiffiffiffiffi
μe=ϵT

p
, we finally obtain

Γ ∼
ϵT
Δ2

p3kF
mem�

x
: ðD12Þ

3. Polaron lifetime from self-energy

The same expression can be derived by explicitly evalu-
ating the imaginary part of the self-energy. To evaluate the
imaginary part, one can use the optical theorem. In our case,
it is just as simple to directly evaluate the imaginary part of
the self-energy. The polaron broadening due to interaction
with the Fermi sea is related to the self-energy by

Γ ¼ ZImΣðp; ζpÞ; ðD13Þ

where

Σðp;ωÞ ¼
Z

d2k
ð2πÞ2 nFðξkÞTðpþ k;ωþ ξkÞ ðD14Þ

and the T matrix is given by

Tðp;ωÞ−1

¼ V−1 −
Z

d2k
ð2πÞ2 (1 − nFðξkÞ)GR

x ðp − k;ω − ξkÞ:

ðD15Þ

From the above equations, we conclude that

ImTðp;ωÞ−1

¼
Z

d2k
ð2πÞ2 (1 − nFðξkÞ)ImGA

x ðp − k;ω − ξkÞ; ðD16Þ

ImTðp;ωÞ ¼ jTðp;ωÞj2ImTðp;ωÞ−1
≃ Tðp;ωÞ2ImTðp;ωÞ−1; ðD17Þ

OVIDIU COTLEŢ et al. PHYS. REV. X 9, 041019 (2019)

041019-26



ImΣðp;ωÞ ¼
Z

d2k
ð2πÞ2

d2k0

ð2πÞ2 Tðpþ k;ωþ ξkÞ2

× (1 − nFðξ0kÞ)nFðξkÞ
× ImGA

x ðpþ k − k0;ωþ ξk − ξk0 Þ ðD18Þ

¼
Z

d2k
ð2πÞ2

d2k0

ð2πÞ2 Tðpþ k;ωþ ξkÞ2(1 − nFðξ0kÞ)

× nFðξkÞπZδðω − ζpþk−k0 þ ξk − ξk0 Þ: ðD19Þ

We see that the polaron broadening is

Γ ¼ ZImΣðp; ζpÞ

¼ Z2π

Z
d2k
ð2πÞ2

d2k0

ð2πÞ2 Tðpþ k; ζp þ ξkÞ2(1 − nFðξ0kÞ)

× nFðξkÞδðζp − ζpþk−k0 þ ξk − ξk0 Þ; ðD20Þ

which can be directly related to Eq. (D6) through the change
of coordinates k0 → −p0 þ kþ p and using the approxi-
mation Tðpþ k; ζp þ ξkÞ ≃ TðkF; 0Þ, which is valid
for jpj ≪ kF.

4. Polaron lifetime at finite exciton density

The above calculation was performed in the limit of
vanishing exciton density, but we can use the same method
to calculate the lifetime in the presence of a finite density of
excitons. We therefore calculate the imaginary part of the
interaction self-energy for a polaron of frequency ω < 0
and momentum jpj < jpFj. This corresponds to a hole of

energy −ω and momentum −p, which can scatter into
states with momenta p0 obeying the condition 0 ≥ ζp0 ≥ ω
by creating electron-hole pairs.
Using similar arguments as in Appendix D 2, the

scattering rate can be calculated using Fermi’s golden
rule:

Γðp;ωÞ ¼ 2U2
X

p0;jp0j<jpFj
Imχðp − p0;ω − ζp0 Þθðζp0 − ωÞ

≃ Γðp; ζpÞ þ ðω − ζpÞ∂ωΓðp;ωÞω¼ζp
; ðD21Þ

where we expanded Γ in a Taylor series in frequency
around ζp and kept only the first term:

Γðp; ζpÞ ¼ 2U2
X

p0;jp0j<jpF j
Imχðp − p0; ζp − ζp0 Þθðζp0 − ζpÞ;

ðD22Þ

∂ωΓðp;ωÞω¼ζp

¼2U2∂ω

�X
p0;jp0j<jpF jImχðp−p0;ω−ζp0 Þθðζp0 −ωÞ

�
ω¼ζp

:

ðD23Þ
Introducing q ¼ p − p0 and using the low-frequency and
momentum expansion of the response function χ, as given
in Eq. (D9), we obtain

Γðp; ζpÞ ≃
4U2ρekF

μe

X
q;jp−qj<pF

ζp − ζp−q
jqj θðζp−q − ζpÞ ðD24Þ

¼ U2ρekF
μeπ

2

Z
2pF

0

dqq
Z

2π

0

dϕ
q2 − 2pq cosϕ

2m�
x

1

q
θðq2 − 2pq cosϕÞθðp2

F þ 2pq cosϕ − p2 − q2Þ ðD25Þ

¼ U2ρekF
μeπ

2

p3
F

2m�
x
I0ðp=pFÞ; ðD26Þ

where we introduced the integral of order 1:

I0ðuÞ≡
Z

2

0

dq
Z

2π

0

dϕðq2 − 2qu cosϕÞθðq2 − 2qu cosϕÞθð1þ 2uq cosϕ − u2 − q2Þ: ðD27Þ

In the above, one of the theta functions ensures that ζp0 ≥ ω, while the other theta function ensures that jp0j < pF. It is useful
to investigate the energy of hole quasiparticles with −ω ¼ ζp ≪ μ�x. For these particles, p=pF ≃ 1 − ω=2μ�x. Introducing
δ ¼ ω=μ�x, one can easily check that I0ð1 − δ=2Þ ¼ Cδ2 þOðδ3Þ. This proves that, in analogy to Fermi liquid theory, the
polaron excitations are well-defined quasiparticles, with lifetime proportional to ω2.
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The derivative of Γ can be evaluated similarly using Eq. (D9):

∂ωΓðp;ωÞω¼ζp
¼ 4U2ρekF

μe
∂ω

�X
q;jp−qj<pF

ω − ζp−q
jqj θðζp−q − ωÞ

�
ω¼ζp

ðD28Þ

¼ 4U2ρekF
μe

� X
q;jp−qj<pF

1

jqj θðζp−q − ζpÞ −
ζp − ζp−q

jqj δðζp−q − ζpÞ
�
: ðD29Þ

Similarly to the evaluation of Γ, we can evaluate the above by turning the sum into integrals. We immediately see that the
last term in the brackets vanishes, and we are left with

∂ωΓðp;ωÞω¼ζp
¼ U2ρekF

μeπ
2

pFI1ðp=pFÞ; ðD30Þ

where we introduced the integral of order 1:

I1ðuÞ≡
Z

2

0

dq
Z

2π

0

dϕθðq2 − 2qu cosϕÞθð1þ 2uq cosϕ − u2 − q2Þ; ðD31Þ

APPENDIX E: RELATION BETWEEN ImΣint AND ImGx

In Sec. III E of the main text, we encounter an expression of the type
Z

dpA½GR
x ðpÞ�ImΣintðpÞθð−ωÞ; ðE1Þ

where A is a functional of GR
x . In this Appendix, we show that this expression can alternatively be written as

I ≡
Z

dpA½GR
x ðpÞ�ImΣintðpÞθð−ωÞ ¼

Z
dpdkA½GR

x ðpÞ�ImGA
x ðkÞwð0Þðk; pÞθð−ϵÞ

¼
Z

dpdkdk0A½GR
x ðpÞ�ImGA

x ðkÞGeðk0ÞGeðpþ k0 − kÞ½TRðpþ k0Þ�2θð−ϵÞ; ðE2Þ

where A is a functional of GR
x . We first derive an expression for the imaginary part of the self-energy. Using GeðkÞ ¼

GR
e ðkÞ þ 2iImGeðkÞθð−ϵÞ and a similar relation for the T matrix, we can write the self-energy as

ΣintðpÞθð−ωÞ ¼ −iθð−ωÞ
Z

dk½GR
e ðkÞTRðkþ pÞ þ GR

e ðkÞ2iImTAðkþ pÞθð−ω − ϵÞ

þ 2iImGA
e ðkÞθð−ϵÞTRðkþ pÞ − 4ImGA

e ðkÞImTAðkþ pÞθð−ω − ϵÞθð−ϵÞ� ðE3Þ

¼ 2θð−ωÞ
Z

dkfReGeðkÞImTAðkþ pÞθð−ω − ϵÞ þ ImGA
e ðkÞReTðkþ pÞθð−ϵÞ

þ iImGA
e ðkÞImTAðkþ pÞ½θð−ω − ϵÞ − θð−ϵÞ�g: ðE4Þ

The imaginary part of the T matrix is

ImTðkþ pÞ ¼ 2jTðkþ pÞj2
Z

dk0ImGA
e ðk0ÞImGA

x ðkþ p − k0Þθð−ϵ0Þθðϵ0 − ω − ϵÞ: ðE5Þ

With this result, we can express the imaginary part of the self-energy as

ImΣintðpÞθð−ωÞ ¼ 4θð−ωÞ
Z

dkdk0jTðkþ pÞj2ImGA
e ðkÞImGA

e ðk0ÞImGA
x ðpþ k − k0Þ ðE6Þ

× θð−ϵ0Þ½θð−ω − ϵÞ − θð−ϵÞ�θðϵ0 − ϵ − ωÞ: ðE7Þ
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To prove Eq (E2), we make the replacement Geðpþk0−kÞ¼GR
e ðpþk0−kÞþ2iImGA

e ðpþk0−kÞθðϵ−ω−ϵ0Þ. The first
term is canceled by the integral over ω since all poles are located in the same complex half-plane; hence, after shifting
k0 → k0 − p, we find

I ¼ 2i
Z

dpdkdk0A½GR
x ðpÞ�ImGA

x ðkÞGeðk0 − pÞImGA
e ðk0 − kÞ½TRðk0Þ�2θð−ϵÞθðϵ − ϵ0Þ: ðE8Þ

The shift of variables conveniently allows us to repeat the same trick writing Geðk0 − pÞ ¼ GA
e ðk0 − pÞ−

2iImGA
e ðk0 − pÞθðϵ0 − ωÞ. The first term is again canceled by the ω integration, and we find, after returning to the

original integration variables,

I ¼ 4

Z
dpdkdk0A½GR

x ðpÞ�ImGA
x ðkÞImGA

e ðk0ÞImGA
e ðpþ k0 − kÞ½TRðk0 þ pÞ�2θð−ϵÞθðϵ0Þθðϵ − ϵ0 − ωÞ: ðE9Þ

By comparison with Eq. (E7) and using the simple identity

θð−ϵÞθðϵ0Þθðϵ − ϵ0 − ωÞ ¼ θð−ϵ0Þ½θð−ω − ϵÞ − θð−ϵÞ�θðϵ0 − ϵ − ωÞθð−ωÞ; ðE10Þ

we arrive at

Z
dpA½GR

x ðpÞ�ImΣð0Þ
int ðpÞθð−ωÞ ¼

Z
dpdkA½GR

x ðpÞ�ImGA
x ðkÞwð0Þðk; pÞθð−ϵÞ: ðE11Þ

1. Exciton density

We now show that the integral −i
R
dpGxðpÞ over the exciton Green’s function indeed yields the correct polaron density

nx ≡ h
X
p

x†pðtÞxpðtÞi ¼
X
p

nxðpÞ ¼
X
p

hT½xpðtÞx†pðtþ 0þÞ�i ¼ −i
X
p

Z
dω
2π

Gxðp;ωÞeiω0þ ; ðE12Þ

where the infinitesimal ω0þ originates from time ordering and ensures that the contour is closed in the upper-half plane.
Using the decomposition GðpÞ ¼ GRðpÞ þ 2iImGAðpÞθð−ωÞ, we find

−i
Z

dpGxðpÞ ¼ 2

Z
dpImGA

x ðpÞθð−ωÞ ¼
Z

dp
1

τ�x
jGR

x ðpÞj2θð−ωÞ þ 2

Z
dpImΣð0Þ

int ðpÞθð−ωÞ½GR
x ðpÞ�2; ðE13Þ

where we have expanded the second term to lowest order in nx. As 1=τ�x is a small parameter, the first term is dominated by
on-shell contributions ω ≃ ζp, and we can write

1

τ�x
jGR

x ðpÞj2θð−ωÞ ≃ 2πZ
1=2τ�x

1=2τ�x þ ImΣintðpÞ
δðω − ζpÞθð−ωÞ ≃ 2πZθð−ωÞδðω − ζpÞ; ðE14Þ

where the last equality follows from ImΣintðpÞ ≪ 1=τ�x for on-shell energies ζp ≃ ω ≤ 0 consistent with the assumptions
made in Sec. III E. The second term can be replaced by Eq. (E11), which yields

−i
Z

dpGxðpÞ ¼ Znx þ 2

Z
dpImGA

x ðkÞθð−ϵÞWð0Þðk; pÞ½GR
x ðpÞ�2; ðE15Þ

where the density is nx ¼ μ�xν�x. We have
R
dpWð0Þðk; pÞ½GR

x ðpÞ�2 ¼ −Z∂ωΣðpÞ ¼ 1 − Z, and hence,

−i
Z

dpGxðpÞ ¼ nx: ðE16Þ
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APPENDIX F: PROOF OF EQ. (56) IN MAIN TEXT

We now demonstrate Eq. (56) of the main text, which reads

k
me

GeðkÞGeðkþ ΩÞ ≃
ðiτeΩ k

me
∂ϵ þ ∂kÞGeðkÞ
1 − iτeΩ

ðF1Þ

to leading order in Ω and 1=τe, where Ge ¼ ½ϵ − ξk þ ið1=2τeÞsgnϵ�−1. We start by writing GeðkÞ ¼ GR
e ðkÞþ

2iImGA
e ðkÞθð−ϵÞ, and we obtain

GeðkÞGeðkþ ΩÞ ¼ GR
e ðkÞGR

e ðkþ ΩÞ þ ReGR
e ðkÞ2iImGA

e ðkþΩÞθð−ϵ −ΩÞ
þ ReGR

e ðkþΩÞ2iImGA
e ðkÞθð−ϵÞ þ 2ImGA

e ðkÞImGA
e ðkþΩÞ½θð−ϵÞ − θð−ϵ −ΩÞ�: ðF2Þ

We are interested in a result to zeroth order inΩ and 1=τe. At this order, all but the first term vanish everywhere except when
ϵ ¼ ξk. Our strategy is to expand these expressions in terms of δ functions around the resonance; for instance, we write

ReGR
e ðkÞImGA

e ðkþΩÞ ¼ α0δðϵ − ξkÞ þ α1δ
0ðϵ − ξkÞ þ α2δ

00ðϵ − ξkÞ þ… ðF3Þ

We can obtain the coefficients from the following integrals:

α0 ¼
Z

dϵReGR
e ðkÞImGA

e ðkþ ΩÞ ¼ −πΩ
τ−2e þ Ω2

; ðF4Þ

α1 ¼ −
Z

dϵðϵ − ξkÞReGR
e ðkÞImGA

e ðkþΩÞ ¼ −
π½2ð2τeÞ−2 þ Ω2�

τ−2e þ Ω2
; ðF5Þ

α2 ¼
Z

dϵðϵ − ξkÞ2ReGR
e ðkÞImGA

e ðkþ ΩÞ ¼ −
πΩ½3ð2τeÞ−2 þ Ω2�

τ−2e þ Ω2
: ðF6Þ

The second order is already linear in the small parameters and can hence be ignored. The expansion then reads

ReGR
e ðkÞImGA

e ðkþΩÞ ≃ π

τ−2e þΩ2

�
−Ωδðϵ − ξkÞ −

�
1

2τ2e
þ Ω2

�
δ0ðϵ − ξkÞ

�
: ðF7Þ

Similar considerations yield

ReGR
e ðkþ ΩÞImGA

e ðkÞ ≃
π

τ−2e þ Ω2

�
Ωδðϵ − ξkÞ −

1

2τ2
δ0ðϵ − ξkÞ

�
; ðF8Þ

ImGA
e ðkÞImGA

e ðkþ ΩÞ ≃ π

τ−2e þ Ω2

�
1

τe
δðϵ − ξkÞ þ

Ω
2τe

δ0ðϵ − ξkÞ
�
: ðF9Þ

Substituting these relations in Eq. (F2), we find

GeðkÞGeðkþΩÞ ≃ GR
e ðkÞ2 − 2iπδ0ðϵ − ξkÞθð−ϵÞ þ

2πΩτe
1 − iΩτe

δðϵ − ξkÞδðϵÞ; ðF10Þ

where we have expanded the step function θð−ϵ −ΩÞ ≃ θð−ϵÞ −ΩδðϵÞ. The right-hand side of Eq. (F1) can be evaluated
explicitly using GeðkÞ ¼ GR

e ðkÞ þ 2πiδðϵ − ξkÞθð−ϵÞ. We obtain

�
iτeΩ

k
me

∂ϵ þ ∂k

�
GeðkÞ ¼ ð1 − iτeΩÞ

k
me

�
GR

e ðkÞ2 − 2πiδ0ðϵ − ξkÞθð−ϵÞ þ
2πτeΩ
1 − iΩτe

δðϵ − ξkÞδðϵÞ
�
; ðF11Þ

which concludes the proof.
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Kéna-Cohen, and V. M. Menon, Strong Light-Matter Cou-
pling in Two-Dimensional Atomic Crystals, Nat. Photonics
9, 30 (2015).

[3] S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P.
Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith,
K. S. Novoselov, M. S. Skolnick et al., Valley-Addressable
Polaritons in Atomically Thin Semiconductors, Nat. Pho-
tonics 11, 497 (2017).

[4] M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M.
Kroner, E. Demler, and A. Imamoğlu, Fermi Polaron-
Polaritons in Charge-Tunable Atomically Thin Semicon-
ductors, Nat. Phys. 13, 255 (2017).

[5] C. Schneider, M. M. Glazov, T. Korn, S. Höfling, and B.
Urbaszek, Two-Dimensional Semiconductors in the Regime
of Strong Light-Matter Coupling, Nat. Commun. 9, 2695
(2018).

[6] A. Imamoğlu, R. J. Ram, S. Pau, and Y. Yamamoto, Non-
equilibrium Condensates and Lasers without Inversion:
Exciton-Polariton Lasers, Phys. Rev. A 53, 4250 (1996).

[7] J. J. Baumberg, P. G. Savvidis, R. M. Stevenson, A. I.
Tartakovskii, M. S. Skolnick, D. M. Whittaker, and J. S.
Roberts, Parametric Oscillation in a Vertical Microcavity:
A Polariton Condensate or Micro-optical Parametric
Oscillation, Phys. Rev. B 62, R16247 (2000).

[8] I. Carusotto and C. Ciuti, Spontaneous Microcavity-
Polariton Coherence Across the Parametric Threshold:
Quantum Monte Carlo Studies, Phys. Rev. B 72, 125335
(2005).

[9] J. Kasprzak, M. Richard, S. Kundermann, A. Baas,
P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H.
Szymańska, R. Andre, J. L. Staehli et al., Bose-Einstein
Condensation of Exciton Polaritons, Nature (London) 443,
409 (2006).

[10] H. Deng, H. Haug, and Y. Yamamoto, Exciton-Polariton
Bose-Einstein Condensation, Rev. Mod. Phys. 82, 1489
(2010).

[11] A. Amo, J. Lefrère, S. Pigeon, C. Adrados, C. Ciuti, I.
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