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ABSTRACT ARTICLE HISTORY
Detecting the emergence of an abrupt change-point is a classic Received 11 January 2019
problem in statistics and machine learning. Kernel-based nonpara- Revised 13 September 2019

metric statistics have been used for this task, which enjoys fewer  Accepted 21 October 2019
assumptions on the distributions than the parametric approach and
can hgndle high-dimensional data. In this artic!e, we focus on the Change-point detection;
scenario whgn the amount of background dat_a is large and propose false-alarm control;
a computationally efficient kernel-based statistics for change-point kernel-based statistics;
detection, inspired by the recently developed B-statistics. A novel online algorithm
theoretical result of the article is the characterization of the tail prob-
ability of these statistics using the change-of-measure technique, SUBJECT
which focuses on characterizing the tail of the detection statistics =~ CLASSIFICATIONS
rather than obtaining its asymptotic distribution under the null distri-  Frimary 62L10; Secondary
bution. Such approximations are crucial to controlling the false alarm 62G10; 62632

pp g
rate, which corresponds to the average run length in online change-
point detection. Our approximations are shown to be highly accur-
ate. Thus, they provide a convenient way to find detection thresh-
olds for online cases without the need to resort to the more
expensive simulations. We show that our methods perform well on
both synthetic data and real data.

KEYWORDS

1. Introduction

Given a sequence of samples, xi,%,...,%;, from a domain X, we are interested in
detecting a possible change-point 7, such that before the change samples x; are inde-
pendent and identically distributed (i.i.d.) with a null distribution P, and after the
change samples x; are ii.d. with a distribution Q. Here, we consider two scenarios: the
time horizon ¢ is fixed, t = Ty, which we call the offline or fixed-sample change-point
detection, or the time horizon ¢ is not fixed, meaning that one can keep getting new
samples, which we call the online or sequential change-point detection. In the offline
setting, our goal is to detect the existence of a change. In the online setting, our goal is
to detect the emergence of a change as soon as possible after it occurs. Here, we restrict
our attention to detecting one change point. One such instance is seismic event
detection as studied by Ross and Ben-Zion (2014), where one would like to either detect
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the presence of a weak event in retrospect to better understand the geophysical struc-
ture or detect the event as quickly as possible for online monitoring.

Ideally, the detection algorithm should be free of distributional assumptions to be
robust when applied to real data. To achieve this goal, various kernel-based nonpara-
metric statistics have been proposed in the statistics and machine learning literature;
see, for example, Harchaoui et al. (2008), Enikeeva and Harchaoui (2014), S. Zou et al.
(2017), Kifer et al. (2004), Liu et al. (2013), and Desobry et al. (2005), which typically
work well with multidimensional real data because they are distributional free. Kernel
approaches are distribution free and more robust because they provide consistent results
over larger classes of data distributions, although they can be less powerful in settings
where a clear distributional assumption can be made. However, most kernel-based sta-
tistics cost O(n?) to compute over n samples. In the online change-point detection set-
ting, the number of samples grows with time and hence we cannot directly use the
naive approach. Recently, Zaremba et al. (2013) developed the so-called B-test statistic
to reduce computational complexity. The B-test statistic samples N pairs of blocks of
size B from the two-sample data, computes the unbiased estimates of the kernel-based
statistic between each pair, and then takes an average. The computational complexity of
the B-test statistic reduces to O(nB?) instead of O(n?).

In this article, we present two scan statistics related to B-test statistics customized for
offline and online change-point detection, which we call scan B-statistics. The proposed
statistics are based on kernel maximum mean discrepancy (MMD) in Gretton et al.
(2012) and Harchaoui et al. (2013). They are inspired by the B-test statistic but differ in
various ways to tailor to the need of change-point detection. Typically, there is a small
number of post change samples (for instance, seismic events are relatively rare, and in
online change-point detection, one would like to detect the change quickly). However,
there is a large amount of reference data. So when constructing the detection statistic,
we reuse the post change samples for the test block and construct multiple and disjoint
reference blocks. This leads to a non negligible dependence between the MMD statistics
being averaged over. Hence, we cannot use the existing approach based on the central
limit theorem to analyze them. Moreover, the scanning nature of the proposed statistic
also introduces non negligible dependence. We construct the reference and test blocks
in a structured way so that analytical expressions for false alarm can be obtained.

Our main theoretical contribution includes accurate theoretical approximations to the
false-alarm rate of scan B-statistics. Controlling false alarms is a key challenge in
change-point detection. Specifically, this means to quantify the significance level for off-
line change-point detection and the average run length (ARL) for online change-point
detection. Here, we cannot directly rely on the null property of the B-test statistic estab-
lished in the existing work, because the scan statistics take the maximum of multiple
statistics computed over overlapping data blocks, which causes strong correlations.
Hence, one cannot use the central limit theorem or even the martingale central limit
theorem. Instead, we adopt a recently developed change-of-measure technique by
Yakir (2013) for scan statistics that is capable of dealing with the more challenging
situation here.

Our contribution also includes (1) obtaining a closed-form variance estimator, which
allows easy calculation of the scan B-statistics, and (2) further improving the accuracy
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of our approximations by taking into account the skewness of the kernel-based statistics.
The accuracy of our approximations is validated by numerical examples. Finally, we
demonstrate the good performance of our method using real data, including speech and
human activity data.

1.1. Related work

Classic parametric approaches for change-point detection can be found in Siegmund
(1985) and Tartakovsky et al. (2014). There is an array of nonparametric change-point
detection methods. Notable nonparametric schemes for change-point detection include
Gordon and Pollak (1994) and Picard (1985), which are designed for scalar observations
and not suitable for vector observations. Brodsky and Darkhovsky (2013) provided a
comprehensive introduction to the methodologies and applications of nonparametric
change-point detection. Bibinger et al. (2017) constructed a nonparametric minimax-
optimal test to discriminate continuous paths with volatility jumps and prove weak con-
vergence of the test statistic to an extreme value distribution. In the online setting, Kifer
et al. (2004) presented a meta-algorithm that compares data in some “reference win-
dow” to the data in the current window, using empirical distance measures that are not
kernel based; Desobry et al. (2005) detected abrupt changes by comparing two sets of
descriptors extracted online from the signal at each time instant (the immediate past set
and the immediate future set) and then used a soft margin single-class support vector
machine to build a dissimilarity measure in the feature space between those sets without
estimating densities as an intermediate step, which is asymptotically equivalent to the
Fisher ratio in the Gaussian case; Song et al. (2013) presented a density ratio estimation
method to detect change points, fitting the density ratio using a nonparametric
Gaussian kernel model whose parameters are updated online via stochastic gradient des-
cent approach. Another important branch of nonparametric change-point detection
methods is based on the Kolmogorov-Smirnov test, as in Massey (1951) and Lilliefors
(1967), which has been used in Wang et al. (2014). The generalization of the
Kolmogorov-Smirnov test from the univariate setting to the multidimensional setting is
given by Fasano and Franceschini (1987), which, however, is less convenient to use
than the kernel-based statistic test.

Seminal works by Csorgé and Horvath (1989) studied a kernel-based U-statistic for
change-point detection. They showed that the statistic indexed by the assumed change-
point location parameter 7, after proper standardization and rescaling of time and
magnitude, converges in distribution to a Gaussian process under the null and converges
to a deterministic path in probability under the alternative distribution when the number
of samples goes to infinity. These results are useful for bounding the detection statistics
under the null with high probability (hence controlling the false detection) and for study-
ing the consistency of tests. Csorgé and Horvath (1997) and Serfling (2009) contain com-
prehensive discussions on asymptotic theory of nonparametric statistics including U-
statistics. Our scan B-statistic can also be viewed as a form of U-statistic using an appro-
priate definition of the kernel. The main differences between these classic works from
our proposed scan B-statistic are that (1) our statistic uses B-test block decomposition
and averaging to make the test statistic more computationally efficient; (2) our statistic is
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more challenging to analyze due to the block structure and correlation introduced by
scan statistics; and (3) our analytical approach is different: Csorgé and Horvath (1989)
leveraged the invariance principle to establish convergence of the entire sample path; we
focus on characterizing the tail probability of the statistic under the null and use the
change-of-measure technique to achieve good approximation accuracy.

Other existing works that also focus on establishing asymptotic distribution of the
detection statistic under the null for controlling the false alarm rate include the follow-
ing: Harchaoui et al. (2008) presented a maximum kernel Fisher discriminant ratio stat-
istic and studied its asymptotic null distribution; Dehling et al. (2015) investigated the
two-sample test U-statistic for dependent data. Our approach is different from those
above in that we focus on directly approximating the tail of the detection statistic under
the null, rather than trying to obtain its asymptotic distribution. Moreover, traditional
analyses are usually done for offline change-point detection, whereas our analytical
framework based on change-of-measure can be applied to both offline and online
change-point detection.

Change-point detection problems are related to the classical statistical two-sample
test. However, they are usually more challenging than the two-sample test because the
change-point location 7 is unknown. Hence, when forming the detection statistic, one
has to “take the maximum” of the detection statistics. The statistics being maxed over
are usually highly correlated because they are computed using overlapping data.

Our techniques for approximating false alarm rates differ from large-deviation techni-
ques in Dembo and Zeitouni (2010), which establish the exponential rate by which the
probability converges to zero. In certain scenarios, the first-order approximation
obtained from large-deviation techniques may not be sufficient for choosing a threshold.
Our method provides more refined approximations to include polynomial terms
and constants.

Finally, there are also works taking different approaches rather than hypothesis test
for change-point detection. For instance, Harchaoui and Cappé (2007) developed a
kernel-based multiple-change-point detection approach, where the optimal location to
segment the data was obtained by dynamic programming; Arlot et al. (2012) estimated
multiple change points by developing a kernelized linear model, and they provided a
nonasymptotic oracle inequality for the estimation error. In the offline setting, S. Zou
et al. (2017) studied a problem when there are s anomalous sequences out of n sequen-
ces to be detected, and the test statistic was constructed using MMD; Matteson and
James (2014) proposed a nonparametric approach based on U-statistics and adopted
hierarchical clustering, which is capable of consistently estimating an unknown number
of multiple change-point locations; C. Zou et al. (2014) proposed a nonparametric
maximum likelihood approach, with the number of change points determined from the
Bayesian information criterion and the locations of the change points estimated via
dynamic programming.

Our notations are standard. Let I, denote the identity matrix of size k x k. Let
E[A; B] = E[A1p] denote the expectation conditioned on event B, where 13 represents
the indicator function that takes a value of 1 when the event B happens and takes a
value of 0, otherwise. Let Var(-) and Cov(-) denote the variance and the covariance. Let
0 and e denote vectors of all zeros and all ones, respectively. Let [X]; denote the ijth
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element of a matrix X. In Section 4.1, Ep, Varg, and Covp denote the values computed
under the new probability measure Py after the change-of-measure, where B is the block
size. Similarly, in Section 4.2, E;, Var;, and Cov; denote the values obtained under the
new probability measure PP, after the change-of-measure, where ¢ is the time index.

2, Background

We first briefly review the reproducing kernel Hilbert space (RKHS) and the MMD. An
RKHS F on X with a kernel k(x,x’) is a Hilbert space of functions f(-): X—R
equipped with inner product (-,-) ». Its element k(x, -) satisfies the reproducing property
(f(-).k(x.-)) r =f(x) and, consequently, (k(x.-).k(x’,-))r = k(x,x’), meaning that we
can view the evaluation of a function f at any point x € X as an inner product.
Commonly used RKHS kernel functions include the Gaussian radial basis function
(RBF) k(x,x') = exp (—||x — ¥||*/26?), where ¢ > 0 is the kernel bandwidth, and poly-
nomial kernel k(x,x') = ((x.x/) +a)’, where a>0 and d € N (see Schélkopf and
Smola, 2001). RKHS kernels can also be defined for sequences, graphs, and other struc-
tured objects (see Scholkopf et al., 2004). In this article, if not otherwise stated, we will
assume that a Gaussian RBF kernel is used.

Assume that there are two sets X and Y, each with # samples taking value on a gen-
eral domain X, where X = {x,x,,...,x,} are iid. with a distribution P, and Y =
{y1,¥2, ..., yn} are iid. with a distribution Q. The MMD is defined as (Gretton et al.,
2012)

MMDIF, P, Q] := ;gﬁ{EX~P f(X)] = Ey[f(Y)]}.
An unbiased estimator of MMD? can be obtained using the U-statistic (Gretton et al.,
2012)

l n
n(n—1)4 5
where h(-) is the kernel for the U-statistic and it can be defined using an RKHS kernel
as

h(xis xj i ) = k(i %) + k(vio yj) — k(%35 5) — k(x5 yi). (2.2)
Intuitively, the empirical test statistic MMD? is expected to be small (close to zero) if
P = Q and large if P and Q are “far” apart. The complexity of evaluating MMD? is
O(nz), because we have to form the so-called Gram matrix for the data, which is of
size n x n. Under the null hypothesis, P = Q, the U-statistic is degenerate and has the
same distribution as an infinite sum of chi-square variables.

To improve computational efficiency, an alternative approach to eatimate MMD?,
called the B-test, was presented by Zaremba et al., (2013). The key idea is to partition
the n samples from P and Q into N nonoverlapping blocks, Xj,...,Xy and Yi,..., Yn,
each of size B. Then one computes MMD?[F,X;, Y;] for each pair of blocks and takes
an average:
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N
MMD3[F, X, Y] = % Z MMD2[F, X;, Y.

i=1
Because B is constant and N is on the order of O(n), the computational complexity of
MMD2[F, X, Y] is O(nB?), which is significantly lower than the O(n?) complexity of
MMD?[F, X, Y]. Furthermore, by averaging MMD?[F, X;, Y;] over blocks, when blocks
are independent, the B-test statistic is asymptotically normal under the null using cen-
tral limit theorem. This property allows a simple threshold to be derived for the B-test.

3. Scan B-statistics

Now we present our change-point detection procedure based on the scan B-statistic.
Consider a sequence of data {...,x_»,x_1,%p,X1,....,X; }, each taking values on a general
domain X. Let {..,x_5,x_1,x} denote the reference data that we know to follow a
given prechange distribution. Assume there is a large amount of reference data.

In offline change point detection, the number of samples is fixed, and our goal is to
detect the existence of a change point 7, such that before the change point, the samples
are ii.d. with a distribution P and after the change point, the samples are i.i.d. with a
different distribution Q. The location t where the change point occurs is unknown. In
other words, we are concerned with testing the null hypothesis

H()IX,‘NP, izl,...,t,
against the single change-point alternative

Q i>7

H1231§T<t Xi ~ .
P, otherwise.

Note that we are interested in the case of a sustained change: before the change, all
samples follow one distribution, and after the change all samples follow another distri-
bution and never switch back. In online change-point detection, the number of samples
is not fixed, and the goal is to detect the emergence of a change point as quickly as pos-
sible. In various change-point detection settings, the number of post change samples is
small, but the number of reference samples is large. Therefore, when constructing
MMD statistics over blocks, we will use a common post change block and multiple dis-
joint pre change reference blocks.

3.1. Offline change-point detection

For each possible change location 7, the post change block consists of the most recent
samples indexed from 7 to t. Because we do not know the change-point location, we
scan all possible change-point locations 7. This corresponds to considering a range of
post change block sizes B ranging from two (i.e., the most recent two samples are
post change samples) to Bp.x. Here, we exclude B=1 because the corresponding MMD
is unable to be computed.

The detection statistic is constructed as follows, also illustrated in Figure 1(a). Data
are split into N reference blocks and one test block, each block is size of By.x. Then we
select data from each block to form smaller subblocks of various size B, 2 < B < Bay.
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Figure 1. lllustration of (a) offline change-point detection: data are initially split into blocks of size Bmax;
we select data from each block to form smaller sub blocks of various size B, 2 < B < Bnax; (b)
online change-point detection: the most recent By samples constitute the test block, which is constantly
updated with new data; the reference blocks of the same size B, are sampled from the reference pool
of data.

i > E

[SENE—

The reference blocks are denoted as Xi(B) ,i=1,..,N, and the test block as Y). We
compute MMD? for each reference subblock with respect to the common postchange
block and take an average:

1 N
Zp = —S MMD?(x®) y®). 3.1
B N; (X ) (3.1)

Because the estimator MMD? is unbiased, under the null hypothesis P = Q, E[Zs] = 0.
Let Var[Zp] denote the variance of Zz under the null. The variance of Zp depends on
the block size B and the number of blocks N. To have a fair comparison, we normalize
each Zp by their standard deviation

Zl, = Z/(Var[Zg])"/?

and take the maximum over all B to form the offline scan B-statistic. The variance
Var[Zp] is given in Lemma 3.1. The closed-form expression facilitates the estimation
of the variance of the statistic. A change point is detected whenever the offline scan
B-statistic exceeds a pre specified threshold b:

max Zp > b {offline change point detection}. (3.2)

2<B<Bmax

3.2. Online change-point detection

In the online setting, new samples are sequential and we constantly test whether the incom-
ing samples come from a different distribution. To reduce computational burden, in the
online setting we fix the block size and adopt a sliding window approach. The resulted slid-
ing window procedure can be viewed as a type of Shewhart chart by Shewhart (1939).

The detection statistic is constructed as follows, also illustrated in Figure 1(b). At
each time t, we treat the most recent B, samples as the post change block. In online
change-point detection, we want to detect the change as quickly as possible. Hence, typ-
ically we will not wait until many post change samples are collected. On the other
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hand, there is a large amount of reference data. To utilize data efficiently, we utilize a
common test block consisting of the most recent samples to form the statistic with N
different reference blocks. The reference blocks are formed by taking NB, samples with-
out replacement from the reference pool. We compute MMD? between each reference
block with respect to the common post change block and take an average:

1 N
Zg,i =5 3 MMD(x,"0, y(®0), (3.3)
i=1

where B, is the fixed block size, XSB"’t) is the ith reference block at time ¢, and Y(Fo?) is
post change block at time t. When there are new samples, we append them to the post-
change block and purge the oldest samples. We show later that this construction allows
for an explicit characterization of the false alarm rate. We divide each statistic by its

standard deviation to form the online scan B-statistic:
1/2
Z;io,t = ZBo,t/(Var[ZBo,t]) / .

The calculation of Var[Zp, ;] can also be achieved using Lemma 3.1. The online change-
point detection procedure is a stopping time: an alarm is raised whenever the detection
statistic exceeds a prespecified threshold b > 0:

T =inf{t:Zy ,> b} {online change-point detection}. (3.4)
The online scan B-statistic can be computed efficiently. Note that the variance of the
Zg,,: only depends on the block size B, but is independent of t. Hence, it can be pre-

computed. Moreover, there is a simple way to compute the online B-statistic recursively,
as specified in Appendix A.

3.3. Analytical expression for Var|Zg|

We obtain an analytical expression for Var[Zp], which is useful when forming the
detection statistic in (3.2) and (3.4).

Lemma 3.1. (Variance of Zp under the null). Given block size B > 2 and the number of
blocks N, under the null hypothesis,

1
1 N-—-1
Var [Zp] = (1;) (NE[hz(x,x’,y,y')] —I—TCov[h(x,x’,y,y’),h(x”,x”’,y,y’)]),
(3.5)

where x, x', X", x"1, y, and y' are i.i.d. random variables with the null distribution P.

The lemma is proved by making a connection between MMD? and the U-statistic
in Serfling (2009) and utilizing the properties of the U-statistic. A detailed proof is
provided in Appendix B.1.

3.4. Examples of detection statistics

Below, we present a few examples to demonstrate that the B-statistics is quite robust in
various settings with different distributions.
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Figure 2. Examples of scan B-statistics with N=5. All thresholds (red lines) are theoretical values

obtained from Theorem 4.1 (offline) and Theorem 4.2 (online). (a) Gaussian to GMM, Tt = 250; (b)
graphs, T = 100; and (c) real seismic signal.
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Gaussian to Gaussian mixture. In Figure 2(a), P = N (0,1,), Q is a mixture Gaussian:
0.3N(0,1;) + 0.7A(0,0.11;), and t=250. The online procedure stops at time 270,
meaning that the change is detected with a small delay of 20 unit times.

Sequence of graphs. In Figure 2(b), we consider detecting the emergence of a
community inside a network, which is modeled using a stochastic block model, as con-
sidered by Maragoni-Simonsen and Xie (2015). Assume that before the change, each
sample is a realization of an Erd6s-Rényi random graph, with the probability of forming
an edge po = 0.1 uniformly across the graph. After the change, a “community” emerges,
which is a subset of nodes where the edges are formed in between these nodes with
much higher probability p; = 0.3. The postchange distribution models a community
where the members of the community interact more often. Our online procedure stops
at time 102, meaning that the change is detected with a small delay of 2 unit times.

Real seismic signal; effect of kernel bandwidth. In Figure 2(c), we consider a segment
of a real seismic signal that contains a change point. Using the seismic signal, we illus-
trate the effect of different kernel bandwidths. For Gaussian RBF kernel k(Y,Y’) =
exp (—||Y — Y'||*/262), the kernel bandwidth ¢ > 0 is typically chosen using a “median
trick” in Scholkopf and Smola (2001) and Ramdas et al. (2015), where ¢ is set to be the
median of the pairwise distances between data points.

4. Theoretical approximations
4.1. Theoretical approximation for significance level of offline scan B-statistic

In the offline setting, the choice of the threshold b involves a tradeoff between two
standard performance metrics: (1) significance level (SL), which is the probability that
the statistic exceeds the threshold b when the null hypothesis is true (i.e., when there is
no change), and (2) power, which is the probability that the statistic exceeds the thresh-
old when the alternative hypothesis is true.

We present an accurate approximation to the SL of the offline scan B-statistic, assum-
ing that the detection threshold b tends to infinity and the number of blocks N is fixed.
The following theorem is our main result.
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Theorem 4.1. (SL of offline scan B-statistic). When b — oo, and Bp.x — 00, with

b/(Bumax)'/* held as a fixed positive constant, the significance level of the offline B-statistic
defined in (3.2) is given by

B
e D (2B—1) 2B—1
P Zy> b =bet 30 b l+o(1)], (@41
{maf B } ¢ 3222\/2n3(3—1)y B(B—1) [1+o(W)),  (41)

where the special function

(2/p)(®(u/2) —0.5)
(1/2)®(u/2) + d(u/2)°

and ¢(x) and ®(x) are the probability density function and the cumulative distribution
function of the standard normal distribution, respectively.

Although the approximation (4.1) is derived in the asymptotic regime and under the
assumption that the collection of random variables {Z3}; , 5 form a Gaussian ran-

(4.2)

v(p) ~

dom field, we can show numerically that (4.1) is quite accurate in the nonasymptotic
regime. Consider synthetic data that are i.i.d. normal P = N (0,1). We set By to be
50, 100, 150, and in each case, N=5. We compare the thresholds obtained by (4.1) and
by simulation for a prescribed SL a. To obtain the threshold by simulation, we generate
Monte Carlo trials for offline B-statistics and find the (1 — o)-quantile as the estimated
threshold. Table 1 shows that for various choices of By, the thresholds predicted by
Theorem 4.1 match quite well with those obtained by simulation. The accuracy can be
further improved for smaller o values by skewness correction as shown in Section 6.

The complete proof of Theorem 4.1 can be found in Appendix 8, which leverages the
change-of-measure technique. In a nutshell, we aim to find the probability of a rare event:
under the null the distribution, the boundary exceeding event {max,<p<p, Z; > b} for a
large threshold b is rare (so that false alarm remains low). Because quantifying such a
small probability is hard under the null distribution, we consider an alternative probability
measure under which this boundary-exceeding event happens with much higher
probability. Under the new measure, one can use the local central limit theorem to obtain
an analytical expression for the probability. In the end, the original small probability will
be related to the probability under the alternative measure using Mill's ratio in
Yakir (2013).

The proof assumes that the collection of random variables {Z3}p ,  forms a
Gaussian random field (as an approximation). This means that the finite-
dimensional joint distributions of the collection of random variables are all
Gaussian, and they are completely specified by the mean and the covariance func-
tions, which we characterize below (this is useful for establishing Theorem 4.1).
These results will be used when we quantify the tail probability of the scan
B-statistics. Under the null distribution, the expectation E[Z}] is zero due to the
unbiased property of the MMD estimator. The covariance under the null distribu-
tion is given by the following lemma.

Lemma 4.1. (Covariance structure of Zj in the offline setting). Under the null distribution,
the covariance of {Zp}p_,  p is given by

veey
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Table 1. Thresholds for the offline scan B-statistics using synthetic data, obtained by simulation,
theory (Theorem 4.1), and theory with skewness correction (Section 6), respectively, for various SL
values o.

Bmax = 50 Bmax = 100 Bmax = 150
b b b (skewness b b b (skewness b b b (skewness
o (simulation) (theory) correction) (simulation) (theory) correction) (simulation) (theory) correction)
0.10 2.41 2.38 2.57 2.43 2.50 2.76 253 2.56 2.89
0.05 2.77 2.67 297 2.76 2.78 3.17 297 2.83 3.22
0.01 3.54 3.23 3.64 347 3.32 3.82 3.64 337 3.89

Tyv = COV(Z:,’ Z(,) = (;) <;>/<u;v>> 2 < u,v < Bhaxs (4.3)

where uvv = max{u, v}.
The proof can be found in Appendix B.2.

4.2. Theoretical approximation for ARL of online scan B-statistic

In the online setting, two commonly used performance metrics are (see, e.g., Y. Xie and
Siegmund, 2013): (1) the ARL, which is the expected time before incorrectly announc-
ing a change of distribution when none has occurred, and (2) the expected detection
delay (EDD), which is the expected time to fire an alarm when a change occurs imme-
diately at t=0. The EDD considers the worst case and provides an upper bound on the
expected delay to detect a change point when the change occurs later in the sequence of
observations.

We present an accurate approximation to the ARL of online scan B-statistics. The
approximation is quite useful in setting the threshold. As a result, given a target ARL,
one can determine the corresponding threshold value b from the analytical approxima-
tion, avoiding the more expensive numerical simulations. Our main result is the follow-
ing theorem.

Theorem 4.2. (ARL in online scan B-statistic). Let By > 2. When b — oo, the ARL of
the stopping time T defined in (3.4) is given by
-1

e (2Bp—1) 2(2By — 1) _
E[T] = v\ VarmG 1) " b BolBo 1) [1+0(1)]. (4.4)

The complete proof of Theorem 4.2 is given in Appendix C.

We verify the accuracy of the approximation numerically, by comparing the thresh-
olds obtained by Theorem 4.2 with those obtained from Monte Carlo simulation.
Consider several cases of null distributions: standard normal A(0,1), exponential dis-
tribution with mean 1, Erdés-Rényi random graph with 10 nodes and probability of 0.2
of forming random edges, as well as a Laplace distribution with zero mean and unit
variance. The simulation results are obtained from 5,000 direct Monte Carlo trials. As
shown in Figure 3, the thresholds predicted by Theorem 4.2 are quite accurate. Figure 3
also demonstrates that theory is quite accurate for various block sizes (especially for
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Figure 3. For a range of target ARL values, thresholds determined from simulation, from Theorem
4.2, and from theory with the skewness correction (Section 6) under various null distributions are
compared. Shaded areas represent standard deviations for skewness-corrected thresholds.

larger By). However, we also note that theory tends to underestimate the thresholds.
This is especially pronounced for small By; for example, By = 50. The accuracy of the
theoretical results can be improved by skewness correction, shown by black lines in
Figure 3, which is discussed later in Section 6.

Theorem 4.2 shows that ARL is O(¢”) and, hence, b is O(( log ARL)I/ %). Note that EDD is
typically on the order of b/A due to Wald’s identity (Siegmund, 1985), where A is the
Kullback-Leibler divergence between the null and the alternative distributions (a constant).
Hence, given the desired ARL (typically on the order of 5,000 or 10,000), the error in the esti-
mated threshold will only be translated linearly to EDD. This is a blessing because it means
that typically a reasonably accurate b will cause little performance loss in EDD. Similarly,

Theorem 4.1 shows that SL is O(e~*") and a similar argument can be made for the offline case.

5. Detection power study

In this section, we study the detection power and the expected detection delay of the offline
and online scan B-statistics, respectively, and compare them with classic methods.

5.1. Offline change-point detection: comparison with parametric statistics

We compare the offline scan B-statistic with two commonly used parametric test
statistics: Hotelling’s T° and the generalized likelihood ratio (GLR) statistics. Assume
samples {x1, %, ..., %, }.

Hotelling’s T statistic. For a hypothetical change-point location 7, we can define the
Hotelling’s T° statistic for samples in two segments [1, 7] and [t + 1, ] as

~-1

Wn=7) (% — %) (%, — x0),

TZ(T> — T( -

where x; = > [, x;/t,Xxf = > ., xi/(n— 1) and the pooled covariance estimator
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T n
£ =27 (Sl + 3 - w5,
i=1 i=t+1
Hotelling’s T° test detects a change whenever max,<,<,maxT?(t) exceeds a threshold.

The GLR statistic can be derived by assuming that the null and alternative distributions
are two multivariate normal distributions and both the mean and the covariance matrix
are all unknown. For a hypothetical change-point location 7, the GLR statistic is given by

{(t) = nlog |§n| —tlog |§T| —(n—1)log |§:|,

where ¥, =1 (XL (x—%)(—%)"), and T, =(n—1)""20r , (x—x)(x—x)".
The GLR statistic detects a change whenever max;<.<,¢(t) exceeds a threshold.

For our examples, we set n = Bp,x = 200 for the Hotelling’s T? and the scan B-
statistics, respectively. Let the change point occur at 7= 100 and choose the significance
level o =0.05. The thresholds for the offline scan B-statistic are obtained from
Theorem 4.1, and for the other two methods the thresholds are obtained from simula-
tions. Consider the following cases.

Case 1. (mean shift): Observe a sequence of observations in R, whose distribution
shifts from N (0, o) to N(0.1e, I).

Case 2. (mean shift with larger magnitude): Observe a sequence of observations in R,
whose distribution shifts from A(0, L) to N(0.2e, Ly).

Case 3. (mean and local covariance change): Observe a sequence of observations in
R*, whose distribution shifts from AN(eIy) to N(0.2e,X), where [Z], =2
and [Z]; =1, i=2,..,20.

Case 4. (Gaussian to Laplace): Observe a sequence of one-dimensional observations,
whose distribution shifts from A/(0, 1) to Laplace distribution with zero mean and unit
variance. Note that the mean and variance remain the same after the change.

We estimate the power for each case using 100 Monte Carlo trials. Table 2 shows that
the scan B-statistic achieves higher power than the Hotelling’s T> statistic as well as the
GLR statistic in all cases. The GLR statistic performs poorly, because when 7 is small or
closer to the end point, it estimates the prechange and postchange sample covariance
matrix using a very limited number of samples.

5.2. Online change-point detection: comparison with hotelling’s T Statistics

Now consider the online scan B-statistic with a fixed block-size By = 20. We compare the
online scan B-statistic with a Shewhart chart based on Hotelling’s T° statistic. Here we made
no comparison of the online scan B-statistic with the GLR statistic, because in our experi-
ments, Hotelling’s T° consistently outperformed GLR when the dimension was high. At each
time t, we form a Hotelling’s T> statistic using the immediately past B, samples in

[t — By + 1,1],
Tal
T(t) = Bo(% — 1) =y (%t — Ho)»

where %, = (3i_,_p, .1 %)/Bo, and Ji, and 3, are estimated from reference data. The
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Table 2. Comparison of detection power for offline change-point detection. Thresholds for all
methods are calibrated so that the significance level is « = 0.05.

Case 1 Case 2 Case 3 Case 4
B-statistic 0.71 1.00 1.00 0.44
Hotelling's T 0.18 0.88 0.87 0.03
GLR 0.03 0.05 0.12 0.04

Table 3. Comparison of EDD in online change-point detection. The parameter is By = 20 and thresh-
olds for all methods are calibrated so that ARL = 5,000. Dashes indicate that the procedure failed
to detect the change; that is, EDD was longer than 50.

Case 1 Case 2 Case 3 Case 4 Case 5
B-statistic 4.20 9.10 1.00 23.38 23.03
Hotelling's 7> 2.47 25.46 1.27 - -

procedure detects a change point whenever T?(t) exceeds a threshold for the first time.
The threshold for the online scan B-statistic is obtained from Theorem 4.2, and from
simulations for the Hotelling’s T statistic. To simulate EDD, let the change occur at the
first point of the testing data. Consider the following cases:

Case 1. (mean shift): Distribution shifts from A/(0, L) to AV(0.31, I).

Case 2. (covariance change): Distribution shifts from N(0,Iy) to N(0,X), where
£, =2i=1,2,..,5 and [Z], = 1, i =6,...,20.

Case 3. (covariance change): Distribution shifts from AN (0, Ip) to N(0,215).

Case 4. (Gaussian to Gaussian mixture): Distribution shifts from N(0, L) to mixture
Gaussian 0.3MN(0, Iy) + 0.7 (0,0.11).

Case 5. (Gaussian to Laplace): Distribution shifts from N(0,1) to a Laplace distribution
with zero mean and unit variance. For these difficult situations, we report the EDD
comparisons based on the selected 500 sequences where B-statistics successfully detected
the changes, defined as crossing the threshold within 50 steps from the time that the
change occurs. Hotelling’s T° failed to detect the changes for all sequences.

We evaluated the EDD for each case using 500 Monte Carlo trials. The results are
summarized in Table 3. Note that in detecting changes in either Gaussian mean or
covariance, the online scan B-statistic performed competitively with Hotelling’s T,
which is tailored to the Gaussian distribution. In the more challenging scenarios such as
case 4 and case 5, the Hotelling’s T° failed to detect the change point, whereas the
online scan B-statistic detected the change fairly quickly.

6. Skewness correction

We have shown that approximations to the significance level and ARL, assuming that ran-
dom variables {Z;}_, 5 form a Gaussian random field, are reasonably accurate. However,
Zj; does not converge to a normal distribution even when B is large (see Appendix 8) and it
has a non-vanishing skewness, as illustrated by the following numerical example. Form
10,000 instances of Zz computed using samples from N (0, Ip). Figures 4(a)-(b) show the
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Figure 4. Empirical distributions of Zz when B=2 and B=200, respectively. Note that although
Gaussian distribution seems to be a reasonable fit to the statistic, the skewness becomes larger for
larger values of B. (a) B=2, N = 5, empirical distribution; (b) B=200, N = 5, empirical distribution;
() B=2, N =5, Q-Q plot; and (d) B=200, N = 5, Q-Q plot.

empirical distributions of Zz when N=5 and B=2 or B= 200, respectively. Also plotted are
the Gaussian probability density functions with mean equal to the sample mean and the vari-
ance predicted by Lemma 3.1. Note that the empirical distributions of Zz match with the
Gaussian distributions to a certain extent but the skewness becomes larger for larger B.
Figures 4(c)-(d) show the corresponding Q-Q plots.

To incorporate the skewness of Zg, one can improve the accuracy of the approximations
for significance level in Theorem 4.1 and for ARL in Theorem 4.2. Note that the log
moment generating function (60) defined in (C.1) corresponds to the cumulant generating
function (McCullagh and Kolassa, 2009) and it has an expansion for 0 close to zero:

K K
Y(0) = 1,0 +7202 +3—?03 + o(6).

Because E[Z},] =0, the cumulants take values x; = E[Z}] = 0,k, = Var[Z}] = 1, k3 =
E[(2})°] — 3E[(Z,)JE[Z}] + 2(E[Zy))’ = E[(Z})’]. Recall that when deriving approxi-
mations using change-of-measurement, we choose parameter 0 such that (0) = b. If
7 is a standard normal, y(0) = 0°/2, and hence 0 = b. Now with skewness correction,
we approximate y(0) as 0>/2 + x30° /6 when solving for 0. Hence, we solve for

(0) = 0+E[(z)°]|?/2=b

and denote the solution to be 0p (note that this time the solution depends on B).
Moreover, with skewness correction, we will change the leading exponent term in (4.1)

and (D.4) from e 7"/2 to be /() ~0sb
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Table 4. Thresholds for the offline scan B-statistics using real speech data, obtained by simulation,
theory (Theorem 4.1), and theory with skewness correction, respectively, for various significance
levels o.

Bmax = 50 Bmax = 100 Bmax = 150
b b b (skewness b b b (skewness b b b (skewness
o (bootstrap) (theory)  correction) (bootstrap) (theory) correction) (bootstrap) (theory)  correction)
0.10 2.96 238 3.23 3.16 2.50 3.59 3.21 2.56 3.94
0.05 3.62 2.67 3.68 3.82 2.78 4.06 3.86 2.83 4.43
0.01 4.85 3.23 4.61 5.20 332 5.03 5.42 3.37 5.45

From numerical experiments, we find that the skewness correction is especially useful
when the significance level is small (e.g., « = 0.01) for the offline case, when block size
By is small (see Table 1 and Figure 3) and can be important for real data where the
data are noisy and the null distribution is more difficult to characterize.

For example, we consider real speech data from the CENSREC-1-C data set (more
details in Section 7). Here, the null distribution P corresponds to the unknown distribu-
tion of the background signal, and we are interested in detecting the onset of speech
signals. This case is more challenging because the true distribution can be arbitrary. In
the data set, there are 3,000 reference samples. We bootstrap these reference samples to
generate 10,000 resamples to estimate the tail of the detection statistic. Table 4 demon-
strates that the thresholds predicted by the expensive bootstrapping (by Theorem 4.1)
and by theory with skewness correction, respectively, for various SL values a. Note that
in this case, the accuracy improves significantly by skewness correction.

The remaining task is to estimate the skewness of the scan B-statistic. Because Zg is
zero-mean, the skewness of Z}, is related to the variance and third moment of Zp via

ks =E|(2)°] = Varlzs] PE[Z])].

We already know how to estimate the variance of Zz from Lemma 3.1. The following
lemma shows the third-order moment E[Z}] in terms of the moments of the kernel h
defined in (2.2):

Lemma 6.1. (Third-order moment of Zg).

8(B—2 1
B2 = oo | b £ (' W5 )

T B(B—1) | N?
20 D Rlh W, G 2, )
D i " )]
A . (6.1)
G _1) { N2 Elh(xx.7.9/)’]
2O g gy PGy

N2
N (N=1)(N-2)

N2 E[h(.x, x,,}/,y,)h(x”,x/”,y,y/)]’l(x””,x””’,y,yl)]}.
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The proof can be found in Appendix E. Lemma 6.1 enables us to estimate the skewness
efficiently, by reducing it to evaluating simpler terms in (6.1) that only requires estimat-
ing the statistic of the kernel function h(:, -, -,-) with tuples of samples.

Finally, although Zj; does not converge to Gaussian, the difference between its
moment generating functions and that of the standard normal distribution can be
bounded, as we show below. By applying an argument on page 220 of Yakir (2013), we

10

obtain that
’ 0’ 0
0z, _ : 13 2 112
E[e"%] <1+2> §m1n{—6 E[|ZB|],6E[|ZB}}.

If considering the skewness k3 of Z, we have a better estimation

< mm{ ﬁ—iﬂzhz;r‘}, S0PE[1Z1] }

, 0 0k
Ele%%] — (1 -~ —3)
[e?%s] +5

7. Real data

We test the performance of the scan B-statistics for change-point detection on real data.
Our data sets include (1) CENSREC-1-C: a real-world speech data set in the Speech
Resource Consortium corpora provided by National Institute of Informatics (Available
from http://research.nii.ac.jp/src/en/CENSREC-1-Chtml) and (2) Human Activity
Sensing Consortium (HASC) Challenge 2011 data (Available from http://hasc.jp/
hc2011). We compare our proposed scan B-statistics with a baseline algorithm, the rela-
tive density-ratio (RDR) estimate (Song et al., 2013). One limitation of the RDR algo-
rithm, however, is that it is not suitable for high-dimensional data because estimating
the density ratio in the high-dimensional setting is an ill-posed problem. To achieve
reasonable performance for the RDR algorithm, we adjust the bandwidth and the regu-
larization parameter at each time step and, hence, the RDR algorithm is computation-
ally more expensive than using the scan B-statistics. We adopt the standard area under
curve (AUC) as in Song et al. (2013) for our performance metric. The larger the AUC,
the better.

Our scan B-statistics demonstrate competitive performance compared with the base-
line RDR algorithm on the real data. Here we only report the main results and leave
the details in Appendix 8. For speech data, our goal is to online detect the emergence
of a speech signal from the background. The backgrounds are taken from real acoustic
signals, such as noise recorded on highways, in airports, and in subway stations. The
overall AUC for the scan B-statistic is 0.8014 and for the baseline algorithm it is
0.7578. For human activity detection data, our goal is to detect a transition from one
activity to another as quickly as possible. Each instance consists of six possible human
activity signals collected by portable three-axis accelerometers. The overall AUC for the
scan B-statistic is 0.8871 and for the baseline algorithm it is 0.7161.


http://research.nii.ac.jp/src/en/CENSREC-1-C.html
http://hasc.jp/hc2011
http://hasc.jp/hc2011
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8. Discussion

There are a few possible directions to extend our work. 1. Thus far, we have assumed that
data are i.i.d. from a null distribution P and, when the change happens, data are i.i.d. from an
alternative distribution Q. Under these assumptions, we have developed the offline and
online change-point detection algorithms based on the two-sample nonparametric test statis-
tic MMD. One may relax the temporal independence assumption and extend scan B-statistics
for dependent data by incorporating ideas from Chwialkowski and Gretton (2014). 2. We
have demonstrated how the number of blocks and block size affect the performance of scan
B-statistics. One can also explore how kernel bandwidth, as well as the dimensionality of the
data, would affect the performance. An empirical observation is that the performance of
the MMD statistic degrades with the increasing dimensions of data. Some recent results for
the kernel-based test can be found in Ramdas et al. (2015). We may adopt the idea of
Ramdas et al. (2015) to extend our scan B-statistics for detecting a change in high dimen-
sions. 3. For an exceedingly high-dimensional data set with large Gram matrix, one can per-
form random subsampling to reduce complexity similar to B. Xie et al. (2015).
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Appendix A: Recursive implementation of online scan B-statistic

The online scan B-statistic can be computed recursively via a simple update scheme. By its
construction, when time elapses from t to (t+ 1), a new sample is added to the postchange
block and the oldest sample is moved to the reference pool. Each reference block is updated simi-
larly by adding one sample randomly drawn from the pool of reference data, and the oldest sam-
ple is purged. Hence, only a limited number of entries in the Gram matrix due to the new

Time t: Time t+1:
X B0 yBon J X | ] yosed |
1 i
k(x(B(, ) XU? t))
\" B,(B, - 1),,2,‘,
(By.t) P, I (Bos+t
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Figure A.1. Recursive updating scheme to compute the online scan B-statistics. The online B-statistic
is formed with N background blocks and one testing block and, hence, we keep track of N Gram
matrices. For illustration purposes, we partition the Gram matrix into four windows (in red, black, and
blue, as shown on the left panel). At time t, to obtain MMDZ(X( o)y (o, 9), we compute the shaded
elements and take an average within each window. The dlagonal entrles in each window are
removed to obtain an unbiased estimate. At time t+ 1, we update X 509 and YE) with the new
data point and purge the oldest data point, and update the Gram matrix by moving the colored
window as shown in the right panel. We compute the elements within the new windows and take
an average. Note that we only need to compute the right-most column and the bottom row.
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sample will be updated. The update scheme is illustrated in Figure A.1 and explained in more
details therein. Similarly, the offline scan B-statistic can also be computed recursively by utilizing
the fact that Zp for B € {2, ..., Bynax } shares many common terms.

Appendix B: Variance and covariance calculation

Below X< ]>, where i =1,...,N, and ] = 2,...,Bmax, denotes the jth sample in the ith block X(B>
and Y ) denotes the jth sample in Y The superscript B denotes the block size. We start w1th
provmg Lemma B.1 and Lemma B.2, whlch are useful in proving Lemma 3.1.

Lemma B.1. (Variance of MMD, under the null.). Under the null hypothesis,

-1
Var MMDZ(XSB),Y“;))} = <’23> ER (x,x,,9)], i=1,..,N. (B.1)

Proof. For notational simplicity, below we drop the superscript B, which denotes the block size.
Furthermore, we wuse x, %, y and y to denote generic samples; that i,
X ="%X;;="x,Y,=%y,Y;="y and they are mutually independent of each other. Here the
notation = means two random variables have the same distribution. Below, we follow the same
convention. For any i = 1,2, ..., n, by definition of the U-statistic, we have

Var[MMDZ(X,-,Y)]:Var[( > > h(Xi 1 Xij Vi, -)}

I<j

< ) K ) ( ) <2 _ f)Var[Ex,y[h(x,x/,y,y/)” (B.2)
< > (z) (2 ) >Var[h(x’x/’)’>)/)}] :

Under a null distribution, Ey ,[h(x,x',y,y')] = 0. Thus, Var[E,,[h(x,x,y,))]] = 0, and
Var[h(x, ¥, 3,y/)] = E[I(x,,3,)] = E[h(x.x0,3.3)]" = B[R (x4, 3,5))].
Substitute these results into (B.2), and we obtain the desired result (B.1). O

Lemma B.2. (Covariance of MMD, under the null, different block index.). For s # 0, under a
null hypothesis

Cov[MMD? (X", Y®)), MMD*(x ("), y(8))]

-1
B
= <2) Covlh(x, X, y,y), h(x", x"1,3,¥)].

Proof. Fori=1,2,...,N, and s = (1 —i),(2 — i), ..., (N —i),s #0,
Cov[MMDZ(Xi, Y), MMD? (X, Y)]

-1
B
|:< ) Z h l I Xz 7> Yl) ’): (2> Z h(Xi+s,p)Xi+s,q> Yp) Yq)

I<j p<q

BRI
O O emimneon
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Under a null distribution,

Covlh(x, ', y,y), h(x", x"1, 3, y")]
- Jh(x, K,y Y (", Ky, )P (x, K XK1y, Y, )

_ J (Jh(x,x’, 3.9 )dB(<,y) ) dB(x) J (Jh(x”,x”’, 3y B, ) )dB(2") = 0.

=0 =0

Above, with a slight abuse of notation, we use dPP(-) to denote the probability measure of appro-
priate arguments. Finally, we have the desired results as shown in Lemma B.2. m]

B.1. Variance of scan B-statistics
Proof. for Lemma 3.1. Using results in Lemma B.1 and Lemma B.2, we have

1 R
Var[Zs] = Var NZ:MMD (X;,Y)

i=1

1
= {NVar [MMD?(X;, Y)] + ; Cov[MMD?(X;, Y; B), MMD?(X;, Y)}}
7

-1
B _
=( ) FE[hz(x)x’)y)y’)] il 1COV[h(x,x’,y,y’),h(x”,x”’,y)y’)]]-

2 N N

O
Next, we introduce Lemma B.3 and Lemma B.4, which are useful in proving Lemma 4.1.

Lemma B.3. (Covariance of MMD, different block sizes, same block index). For blocks with the
same index i but with distinct block sizes, under the null hypothesis we have

-1
Cov {MMDZ(XI-(B),Y(B)),MMDZ(XEBJ”'),Y<B+V>)] — <BV(BZ + ")> El(x,x,p.7).  (B3)

Proof. Note that
Cov {MMDZ (x®, y®), MMD?(x®), y B+ )}

—1 -1
B B B +y B+v
Cov { ( ) ) Zh(xi,l,xi,]‘, Y, Y)), ( 5 ) Zh(Xi,p>Xi,q, Y,, Y,)

[E—

I<j P<q
—1 —1
B B+V B B+v
- < ) ( ) COV[Zh(Xi,Z,X,»,j,Yl,Yj),Zh(X,»,p,X,;q,Yp,Yq)}
2 2 = =

() () (4t

2
where the second to last equality is due to a similar argument as before to drop block indices as
they are i.i.d. under the null. O
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Lemma B.4. (Covariance of MMD, different block sizes, different block indices). Under the null
we have

—1
Bv(B+v
Cov {MMDZ(XEB), y®), MMD? (x V),Y(B*V))} - ( (2 )>

Covlh(x, &, y,y), h(x", X", y,)].

Proof. Note that

COV{MMDz x® ()),MMDZ(Xfij),Y(BJ’V))}

-1 B B n
Z B B) (B) v Z (B+v) (B+v) 1 (B+V) 1(B+v
( th(l)’ z]’ >Yj ( ) h z+sp’Xz+sq’YP ’Yé+)):|

I<j p<q
= B) B+v) (B+v) (B+v) B+v
N Zh ll’ lJ’Yl > Zh l+SP’Xt+le’YP ’Yq( ))]

I<j p<q

14

) ()
Cov
() (B ) <BAB+ )COv[h(x,x'>)/,)")’h(x”>x,/”}”y,)]
_l’_

_ (BV(B v

where the second to last equality is due to a similar argument as before to drop block indices as
they are ii.d. under the null 0

_|_
2
) Covlh(x,x', 3, y), h(x",x"1, 3, )],

B.2. Covariance of offline scan B-statistics

Proof of Lemma 4.1. For the offline case, we have that the correlation
1 1

\/Var[Zp] \/Var[Zp,,]

TB,B+v ‘=

Cov([Zs, Zp+y)»

where

Cov(Zp, Zpy) = Cov ZMMDZ Xx®) ZMMDZ B+ Y(B+”>)

= NCOV[MMDZ(X(B y®), MMD? (X5, y(B+)]

ZCOV IMMD? (X", y®)), MMD? (X{**", Y ()],
%
Using results from Lemma B.3 and Lemma B.4, we have

Cov(Zp, Zpiy) = <BV(BZ+ K ) _ [;,E [ (%, %, 3.5/)]

N
+

-1 COV[I’I(X, x,7}/,}/)s h(x",x’",y,y’)]] )

Finally, plugging in the expressions for Var[Zg] and Var[Zp,,], we have (4.3) for the offline case.
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B.3. Covariance of online scan B-statistic

Similarly, for the online case we need to analyze p, ., := Cov(Zg, ', Zp,+s'). We adopt the
same strategy as the above for a fixed block size By to obtain

Cov (MMD2 (Xi(Bo, t)’ Y(BO, t))’ MMD2 (Xl(Bn, t+s)’ Y(BO, t+s) ))

-1 B,
:COV{( ) Zh Xz(tz» lt]),Y(t _ ( ) Zh H»s, t+s’YI()t+s)’Ytgt+s)) (B.4)

I<j pr<q

_ (BO ) B ( (Bo - 5)V0>Var[h(x,9/,y>y’)]-

2 2

Figure B.1 (a) demonstrates how MMD?(X™" y(e0) and MMD2(X% ) y(Bat+9)) are
constructed. The shaded areas represent the overlapping data.
Similarly, we have

Cov <MMD2 (x{P0, y Bty MMD? (X% 1),y (Borts ))
By \ ™ ) X0, ¥,y Bo\ T QrBe i) ylt45) it y(ces)
= Cov 2 I<k h(Xl Z’X' k> Y )’ 2 Zp<q h(X]',P ’Xj)q > YP i Yq )

B -2
= ( 20) ((By — s)v02)Cov(h(x,x',y,¥ ), h(x", ", y,)),

(B.5)

Figure B.1 (b) demonstrates how MMD?(X™"), y(8.9) and MMDZ(X;B”’HS), YBot5)) 5 oL i are
constructed. The shaded areas represent the overlapping data. Thus,

MMD?(x®), y(Bo) MMD? (X0, y(Bo)

IX{Bo.t} . IY(Bo.t} \ Xi{BO,t) IY(Bo,t) .

i

! 20y Bot+s) y(Bot+s)y ! |
MMD2(X, S yotre)y | MMD?(x P9, y(Bo0) | !

1

)

l 1 1
X_{Bo,tlﬁs} 1 ylBot+s) Xj(Bo,t+s} Y(B“'t:Jr s}
[
[
[
—— 1 1 —
Bo-s Bo-s Bo-s
(a) (b)

Figure B.1. (a) lllustration of how MMDZ(X,.(B"’O,Y(BO'O) and MMDZ(X,.(B“’HS),Y(B"'f*s)) are con-
structed in the online change-point detection, where the shaded areas represent the overlapping
data. (b) lllustration of how MMD?(X®", y(B0) and MMDz(X(B0 ) y(Bt+9)) i £, are con-
structed in the online change-point detection, where the shaded areas represent the overlapping
data.
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COV(ZBO’ ts ZBO, k+5)

1 1
= Cov [ 5 D MMD? (%", Y1), =% "MMD? (x{™ ), v t+9))
i=1 =1

-2
o Bg (BO - 5)V0 |:1 / / N-1 / / "o /
= <2> ( 5 ) NVar(h(x,x,y,y)) +7N Cov(h(x, %, ,9), h(x", 2", y,9))|.

Finally, plugging in the expressions for Var[Zp, ;| and Var[Zp, 15|, we have (D.2) for the online
case. O

Appendix C: Proof of Theorem 4.1

Below, we present the main steps in proving Theorem 4.1, including (1) exponential tilting; (2)
change-of-measure by the likelihood identity; (3) establishing properties of the local field and the
global term; and (4) performing asymptotic approximation using the localization theorem (the-
orem 5.1 in Siegmund et al. [2010] and section 3.4 in Yakir [2013]) by showing that the “global”
log likelihood and the “local process” are asymptotically independent. Finally, we collect terms
together to obtain the result.

C.1. Step 1: Exponential tilting

We first introduce exponential tilting, which creates a family of distributions that is related to
the original distribution of Zj. Let the log moment generating function of Z be

¥ (0) = log E[e"). (C.1)

Define a family of new measures

dPg = exp {0Z; — y(0)}dP, (C2)

where P represents the original probability measure of Zj, under the null distribution P, Pg is the
new measure after the transformation, and 6 parameterizes the family of the new measures. Note
that the new measures take the form of exponential family, with 0 being the parameter.

Recall that, under the null distribution, Z; has zero mean and unit variance. Given the
assumption that Zj is a standard Gaussian random variable, the corresponding log moment gen-
erating function is given by y(0) = 0*/2. One has the freedom to select the value of 0 to deter-
mine the new measure. We will set 0 such that the mean under the tilted measure is equal to a
given threshold b. This means that the new measure peaks at the threshold b, which enables us
to use the local central limit theorem later on. This can be done by choosing 0 such that y(0) =
b, and therefore 0 = b. Note that the solution 0 does not depend on B. Hence, we can set the
mean under the transformed measure to b, by uniformly choosing 0 = b for any B. Given such a
choice, the transformed measure is given by dPy = exp {bZj(x) — b*/2}dP. We also define, for
each B, the log-likelihood ratio log (dPs/dP) of the form

lg = bZjy — b*/2. (C.3)

This way, we have associated the detection statistic Z, with a likelihood ratio, even if Zj itself
does not come out of a likelihood ratio.

The following lemma shows that Z, under the new measure has the same unit variance and
its mean has been shifted to b. This key fact will lead to the desired exponential tail.



526 LI ET AL.

Lemma C.1. (Mean and variance under tilted measure). Define Eg and Varg as the expectation
and variance under the transformed measures

E3[U] = ElUe’], (C4)

Varg[U] = E[U?e"] — E2[U]. (C.5)
We have Eg[Z}] = b, and Varp[Z;] = 1.

Proof. First, Eg[Z,] = y/(b) = b by construction. To show Varg[Z,] = 1, note that log E[e?%s] =
b?/2. Taking the derivative of (6) with respect to b twice gives E[(Z)*et%] = &7'/2 + b2et’/2,
Hence, E[(Z,)*] = E[(Z})*e"% V)] = 1 + b, and Varg[Zy] = Eg[(Z,)*] — b* = 1. O

The following lemma shows that Zj under the new measure has the same unit variance with
the mean shifted to b. This key fact will lead to the desired exponential tail.

Lemma C.2. (Mean and variance under tilted measure). Define Eg and Varg as the expectation
and variance under the transformed measures

E3[U] = ElUe’], (C.6)

Var[U] = E[U?e"] — E2[U]. (C.7)
We have Ep[Z] = b and Varg[Zp] = 1.

Proof. First, Eg[Z,] = /(b) = b by construction. To show Varg[Z,] = 1, note that logE[e?%] =
b?/2. Taking the derivative of () with respect to b twice gives ]E[(Z’ )eb%) = eb 2 4 pPel/?,
Hence, Ep[(Zp)’] = E[(Z},)%e’% VW] =1 + 12, and Varp[Z] = Ep[(Z,)] — b = 1. =]

C.2. Step 2: Change-of-Measure

Now we are ready to analyze the tail probability P{max,<p<p, Z; > b}. The basic idea is to con-
vert the original problem of finding the small probability that the maximum of a random field
exceeds a large threshold to another problem: finding an alternative measure under which the
event happens with a much higher probability.

Here, the alternative measure will be a mixture of simple exponential tilted measures. Define the

maximum and the sum for likelihood ratio differences relative to a particular parameter value B:
Mp= max e S5= Z el (C.8)
5€{2, ., Bmax } $€{2, ... Bmax }

Also define a re-centered likelihood ratio, which we call the global term
(g =b(Z, - b).
With the definitions above and the log likelihood ratios /5 in (C.3), we have the following:

Brax 03
IF’{ max Z%>h} :IE[I; max Zg>b} :E[X:B;ze; max Z >b

2<B<Bmax 2<B<Bmax SB;‘;" e(s 2<u<Bmax
=1
B / Bnax / (€9)
= s E [;maxZ>b E L Es [;maxZ>b
Z S 2<u<Bmax Z S 2<u<Bmax

MB _(

— e—bz/z ZB:; ]EB |:S_Be KB-HogMB); ZB + IOgMB > 0:| ,
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where an intermediate step is done by changing the measure to P, and the last equality can be
verified by simple algebra. Recall our notation Eg[A; B] = E5[A1{B}] for a random quantity .4
and event B; 1 denotes an indicator function.

In a nutshell, the last equation in (C.9) converts the tail probability to a product of two terms:
a deterministic term e ”/? associated with the large deviation rate, and a sum of conditional
expectations under the transformed measures. A close examination of the conditional expecta-
tions of the form Eg[---;[ -] > 0] reveals that it involves a product of the ratio Mp/Sg and an
exponential function that depends on ¢, which plays the role of weight. Under the new measure
Pg, {5 has zero mean and variance equal to b? (shown in Lemma C.3) and it dominates the other
term log Mp and, hence, the probability of exceeding zero will happen with much higher prob-
ability. Next, we characterize the limiting ratio and the other factors precisely, by the localiza-
tion theorem.

C.3. Step 3: Establish properties of local and global terms

In (C.9), our target probability has been decomposed into terms that only depend on (i) the local
field {€; — ¢p},2 < s < Bnay, which are the differences between the log-likelihood ratio with par-

ameter B and with other parameter values s, 2 <'s < By, and (ii) the global term / B, which is
the centered and scaled likelihood ratio with parameter B. We need to first establish some useful
properties of the local field and the global term under the tilted measure. We will eventually
show that the local field and the global term are asymptotically independent.

The following property for the global term can be derived from Lemma C.2. The result shows

that under the tilted measure, the global term /5 has zero mean for any B, with variance diverg-
ing with b.

Lemma C.3. (Global term for offline scan B-statistic). The mean and variance of the global term
lg = b(Zy — b), for 2 < B < By, are given by

]EB[ZB} = 0, VarB[ZB] = bz. (CIO)

Assuming Zj is approximately normal, the local field ¢, — {5 (or, equivalently, b(Z, — Z})) and
the global term /5 (or, equivalently, b(Zj — b)) are also approximately normally distributed.

Lemma C.4. (Local field for offline scan B-statistic). The mean and variance of the local field
{l; — g}, for |s— B| = 0,1,2,..., are given by

EB[ES — EB] = *b2(1 — 7‘5,3), VarB[ZS — EB] = sz(l — 7’5,3),
with r, g defined in (4.3). For any s; and s,, the covariance between two local field terms is given by

COVB(ZS1 — EB,&Z — fB) = b2(1 + Vs, — Vs;,B — 7‘52,3).

Proof. Note that ¢, — (g = b(Z, — Z}), Eg[Z;] = b, Varg[Zy] = 1. Moreover, due to the normal
assumption of Zj, we have the following decomposition Ep[l; — ¢g] = E[b(Z. — Z})] =

Eg[b(rs,5Zy + (1 — riB)l/ZW —Zp)] = —b*(1 —r,p), where W is a zero-mean random variable
and independent of Z}, representing residual of regression. The variance and covariance can be
found using similar decompositions. 0

Remark. C.1 (Consequence of Lemma C.4). From the expression of the covariance in (4.3), we
have that for s — B > 0,

rop = [1+ (s = B)/B [+ (s = B)/(B - 1))]7/%
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and for s — B < 0,

rep =1+ (s = B)/B]"*[L+ (s — B)/(B—1)]'"%.
Consequently,

1. When |s— B| — oo, ryp — 0. Therefore, when |s — B| — oo, Eg[l; — l3] converges to —b?
and Varg[l; — (3] converges 2b*.

2. When |s — B| is small, assume s =B+j, j=0,*1,*2,.... Performing the Taylor expansion
of rgyj,p around 0, we have that

1 2B-1

—EmU\‘FO(UD- (C.11)

gy =1

Define

u=b{(2B—1)/[B(B - 1)]}'/*. (C.12)
Note that p depends on the threshold as well as B, the block size parameter. Using (C.11), we have

>

12
lim Ep[lgy; — 5] = — = |j
Jin B[l — €] = =5 U

&lim0 Varg [lp1j — ls] = 1[jl;
| o CovB(asjy = o, tasj, = Lp) = 12 (ljnlAlja]).
1—Us 2=
Therefore, when |j| is small (i.e., in the neighborhood of zero), we can approximate the local field

using a two-sided Gaussian random walk with drift p?>/2 and the variance of the increment
being u?:

051 — Cp éyzlﬂl O — 13j/2, j=*1,%2,.. (C.13)

where V; are i.i.d. standard normal random variables.

C.4. Step 4: Approximation using localization theorem

The remaining work is to compute the conditional expectations Eg[---;(---) > 0] for each B in
(C.9). In the following, we drop the subscript B in Ep for simplicity, and the approximation
results hold for each B. We assume b — 00, Byay — 00, and b?/Bpny is held to a fixed positive
constant. Introduce an abstract index x and let k = b?; this choice is because x!/2 is the multi-
plicative factor that balances the rate of convergence of the global term under the transformed
measure. Typically, « is equal to the variance of the global term /5 = b(Zj; — b), which is b as
shown in Lemma C.3; x is also associated with the drift and the variance of the incremental of
the local field {¢; — ¢g} for |[s — B| =0,1,2,..., as shown in Lemma C.4.

Using a powerful localization theorem (see theorem 3.1 in Siegmund et al. [2010] or theorem
5.2 in Yakir [2013]), we can obtain the limit for each term in the summand of (C.9), rewritten as
(by changing the index to «)

M, - ~
E S—Kez_““rl"g]\/[*);(,C + logM, > 0], (C.14)
K
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when x — oco. Basically, the localization theorem states that (C.14) scaled by x2 converges under
mild conditions when x — oo. N
The statement of the theorem involves a local o-algebra denoted as F :

Fe=0o{l;—0lg:|s—B| <g(x)}, (C.15)

where a function g(k) specifies the size of the local region. The choice of g(k) is critical and it
guarantees subsequent convergence. Following the analysis of scan statistics in Yakir [2013], we
choose g(k) = cb™2 for some large constant c. This local o-field is asymptotically independent of
/., and it carries all information needed to construct the local field.

Define M « and §K as the maximization and summation restricted to a smaller subset of par-
ameter values {s: |s — B| < g(x)}, and they are measurable with respect to . Note that M,
and §K serve as approximations to M, and S,. In the limit, the local random field converges to a
Gaussian random field, and the ratio ]E[]/\\/I K /gk} converges to a limit that can be determined with
the parameters of the Gaussian random field.

The localization theorem (theorem 5.1 in Siegmund et al. [2010] and section 3.4 in Yakir
[2013]) consists of the five conditions as follows.

Theorem C.1. (Localization Theorem). Given € > 0, if for all large x, all fo the following condi-
tions hold:

. Both 0 <M, <SS, <ooand(< M, <SS, < 00 hold in probability one.
. Denote A°= {|logM, — logM,| > e} U{[S/S. — 1| > €}. For some 0 < & that does not
depend on e:
max P[A N {Z, + log M, € x+ (0,0]} N {|m| < g(x)}] < ex™ /2,
<350
where i1, = min{ log M,, g(x)} — log (1 — ¢).
L. E[M,/S,] converges to a finite and positive limit denoted by IE[M/S}
IV. There exist g, € R and 6, € R such that for every 0 < €/, J, for any event E € F and
for all large enough «,

K'2P(0, € x4 (0,5, E) ——¢< )P(E)‘

sup
|x| <ex/2
V. P(|logM,| > ex'/?),P(|log M| > ex'/?) and P(log M, — log M, < —e) are all o(k~'/?).
Then
li 1/2 M, 7[5 +log M,]. _ -1
lim x E|l— < L+ logM, > 0| = 'p( = E[M/S] (C.16)

where ¢(-) is the density of the standard normal distribution.

Intuitively, the localization theorem says the following. To find the desired limit of
(C.14) as k — oo, one first approximates M, and S, by their localized versions, which
are obtained by restricting the maximization and summation in a neighborhood of par-
ameter values. Then one can show that the localized ratio M,./S, is asymptotically inde-
pendent of the global term /. as k — oc. The asymptotic analysis is then performed on
the local field and the global term separately. The expected value of the localized ratio
E[M,/Sk] converges to a constant independent of x, and the limiting conditional distri-
bution of ZK can be found using the local central limit theorem. Thus, one can calculate
the remaining conditional expectation involving £,.
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Checking conditions. Let us now verify the validity of the conditions in our setting. First,
Condition I is met because for Gaussian random variables, M, > 0,S, > 0 with probability 1,
and the maximization of a collection of nonnegative numbers is smaller than or equal to the
summation. Similar arguments hold for their counterparts M « >0 and /S\,C > 0 when the maxi-
mization and summation are over a smaller set. R N

Condition II describes that the localized versions M, and S, are good approximations of M,

and S, when « is sufficiently large, for properly defined F . In section 3.4.4 of Yakir (2013), the
corresponding Condition II has been rigorously checked, assuming a local region defined in the
same form of our local region and assuming Gaussian random field. Thus, checking Condition II
for our case will follow the same steps, using the properties established in Section 8. We omit the
details here.

Condition III is checked by applying the distributional approximations to the localized version
of M,/S.. We can show that the expectation of the ratio ]E[]/\\/I K/gx} converges to a finite and
positive limit denoted by E[M/S], which does not depend on . Because the increment /g, ; — {3
has negative mean as shown in Lemma C.4, the values of M, and S, will be determined by values
j close to 0, as is the ratio M,./S,. This implies that a relatively small local region centered on B
is sufficient.

From Remark C.1, the local field when the index is close to the shifted measure parameter B
can be approximated as a two-sided Gaussian random walk with drift —u?/2 and variance p?
(with u defined in (C.12)), which is denoted as W(p?j) below. Therefore, we have that with high
probability,

E{]\A/IK /EK} =E

maxijj<cp-2 eW i)
a2 €U |

When ¢ — oo, it approaches to a limit known as Mill’s ratio,

EM/S — E maxmeW“‘zj)
M/ = B ot |

with maximization and summation extending to the entire collection of negative and positive
integers. Mill’s ratio is related to the Laplace transform of the overshoot of the maxima of a
Gaussian random field over a threshold b, and an expression has been obtained based on nonlin-
ear renewal theory (see Siegmund [1985] and ch. 22 of (Yakir [2013]): E[M/S] =
exp (=23°7%, ®(—j'/11/2)). An easier numerical evaluation is given by E[M/S] ~ (12/2)v(u) for
a special function v(p) defined in (4.2).

Condition IV can be checked via a local multivariate central limit theorem that is local in one
component and nonlocal in others (theorem 5.3 in Yakir, [2013]). The theorem says the follow-
ing: assume that &; are independent and identically distributed random vector of dimension
d+ 1. Assume that the mean of each vector is zero, the variance of the first component converges
to a finite o, the covariance matrix of the last d components converges a finite matrix %, and the
correlation between these components and the first one converges to zero (hence, the overall
covariance matrix is block-diagonal). Define S, =) 7 &, and a d-dimensional vector with
element hy; = y~'/2¢,;;, for 1 <j < d. Then, under mild conditions,

lim y2P(S, € [Lul,h, € A) = %P(h €A (C.17)
a

—u
7= (2m)"

for any interval [[, 4] and an arbitrary set A.

Our setting matches exactly to the above distribution when we set the global term as the first
component and the local field as the remaining components. Using the properties in Section 8,
we have shown the finite mean and variance (covariance) of the global and local field terms. We
only need to show the global term, and the local fields are independent of each other
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asymptotically. It suffices to prove that the conditional covariance of {{p; — {5} given (5 con-
verges to the unconditional covariance, and the conditional means converges to the unconditional
one. With a slight abuse of notation, | = rg,j p and r, = rp,;, p and using the linear regression
decomposition, when conditioning on Zj (which is proportional to ?p), the two local field terms
are independent of each other:

COV(b(Z;;_H" - Z;;), b(ZIB+]z - Zg)|Z;3)

= Cov(b(rZy + (1 =)' P Wy = Z), b(rZy + (1 = )W, = Zp)|25) = 0,

where W; and W, are two mutually independent zero-mean random variables that represent the
regression residuals (they are also independent of Zj).

On the other hand, using the same decomposition, we can show that without conditioning,
the covariance is given by

COV(b(Z;H_jI — Zg), b(ZB+j2/ — Z%)) = bZ(I — 7’1)(1 — 1’2).

Hence, when b — oo, due to the property of local field in equation (C.11), for [j;| < cb™2, |j2| <
cb™?, the unconditioned covariance converges to zero given (C.11), which is equal to the condi-
tioned covariance. Similarly, we can show that the conditional means of {Z,; — Z;} condition-
ing on Zj converge to the unconditional ones. ~
Now we invoke the local central limit theorem. Because the density of the global term /3 is
approximately normal, we can calculate a desired form of the probability. From (C.10), the vari-
ance of the global term increases with b. The density of /5 can be uniformly approximated by
1/(2nb?)"/? within a small region around the origin |x| < 3(4/ 4 1+ ¢)logb (Yakir, 2013). Such
an approximation also holds for /5 — x given any value x that is not too large. Furthermore,

ls—lp

notice that log M, is very close to 0 and therefore is negligible; this is because e should attain

its maximal value when |s — B| close to 0 as analyzed before. Let p, = Ep[l,/b] =0 and o> =
Varg[l,/b] = 1. When x = b®> — oo, using local central limit theorem (C.17), we have that

- ~ 1 .
Kl/ZIP’(EK € x — logM, + (0,9)) H—(b(&) (C.18)
O-IC O-K
Condition V is checked as follows. Note that the terms inside the M, are likelihood ratios
with unit expectation because Eglexp ({5)] = 1. Thus, exp (¢; — ¢g) is a martingale and by a
standard martingale inequality, P(log M, > ex'/?) < exp (—ex'/?). Then using a similar argu-
ment as in Siegmund et al. (2010), one can show the other two inequalities, because I\A/I,C is an
approximation to M,.
Finally, because all conditions are met, we can now apply the localization theorem for b — oo
and put things together to obtain
Mg _[1,+108M5]. 7 © 1
Ep|——e stloeMsls gy 4 logMp > 0| ==
45y ot logM 2 0] =5V o
Substitute (C.19) back in to the likelihood ratio identity (C.9), and we arrive at the approxima-
tion in Theorem 4.1.

(1+o(1)). (C.19)

Appendix D: Proof of Theorem 4.2

The method for approximating the ARL is related to that used to analyze the offline scan B-stat-
istic. In addition, we need the following lemma.

Lemma D.1. (Asymptotic null distribution of T). Under the null, when b — oo, the stopping
time T defined in (3.4) is uniformly integrable and asymptotically exponentially distributed; that is,
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|P{T > m} — exp (—Aom)| — 0,
in the range where mly is bounded away from 0.

Proof. The proof is based on adapting arguments in Siegmund and Venkatraman (1995),
Siegmund and Yakir (2008), and Yakir (2009). The main idea is to show that the number of
boundary cross-events for the detection statistic over disjoint intervals converges to a Poisson
random variable in the total variation norm, resulting from the Poisson limit theorem (theorem
1 in Arratia et al., 1989) for dependent samples. First, we show that the stopping time T is
asymptotically exponentially distributed. The analysis of the distribution of the stopping time is
based on Poisson approximation. Define an indicator of the event 1; such that the event
{maxj_1)m<i<jmZp, ; > b}. Consider the time interval [0,x]. Note that the stopping time is not
activated in the interval [0,x], if and only if all of the relevant indicators are zero. For simplicity,

we assume that x is divisible by m. Define the random variable W= Z;C!l" 1;. Hence, {W =

0} = {T, > x}. Thus, to characterize the tail probability of the stopping time P{T, > x}, we
show that the sum of the indicator functions converges to a Poisson distribution. 0

Using Lemma D.1, we know that for large m, P{T < m} is approximately 1 — exp (—Aom) ~
Jom, and E{T} is equal to /;' asymptotically when b — co. So the remaining question is to
find the probability and the corresponding ;. Consider P{T < m} = P{maxy<;<mZp,i > b}.

Suppose m > By and logh < m < b~le’. We will adopt a similar strategy to approximate this
probability using the change-of-measure technique.

Note that the covariance structures for online and offline scan B-statistics are different, so
there will be different drift parameters when we invoke the localization theorem. Using exponen-
tial tilting, we introduce a likelihood ratio

{ =bZy ,— b2
Again using the change-of-measure by likelihood ratio identity, we obtain

m M/ - -
P{maxZ ,> b} =e "> E, [S—,’e—W“JgMJ; i+ logM > 0|, (D.1)

2<t<m ) t

where
’ L / (e ro— (R
M; = maxe="*, §, = E e *, and Ct*b(ZBO,t b).
2<s<m
2<s<m

Hence, one can again apply the localization theorem to find the approximation when b — oo,
and the only differences are in the definition and characterization of global and local field terms.

Lemma D.2. (Local field of online scan B-statistic). The mean, variance, and covariance of the

local field {{; — {;} are given by

Et[gs - gt} = _b2(1 - ps,t)’ Vart[és - gt] = 2b2(1 - ps,t)’
COVt(gsl - Ct)gsz - gt) = b2(1 + T O p52>l)’

where

(Bo — |t — s[)v0
: s|)v >

(%)

The proof can be found in Appendix B.3. Note that when |t — 5| is close to 0, E;[(; — {;] is close
to 0. With an increasing |t — s|,E;[(, — (;] decreases until |t —s| > By (when there are no

ps: = Cov(Zy Zp ) = < (D.2)
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overlapping test data in the sliding block) and then E,[{; — {,] becomes —b?. The values of M,
and Si as in the localization theorem will be determined by the values of |j| close to 0.

Now, again, we will use an argument based on Taylor expansion to find the drift term of the
local field. When |s — #| is close to 0, we can approximate {{; — {,} as a two-sided random walk.
Using Taylor expansion, we have

2By — 1

Prijie =1 *m[il + o(j). (D.3)

Let 2 = b[2(2By — 1)]/[Bo(Bo — 1)]1/ ?. Hence, we can show that the mean, variance, and covari-
ance of the local field are approximately

N

4

. A .
l}‘IE'IOIEt [CH,J‘ - Ct:l = T 5 I]l’
&\lino Var, [CH—j - gt] = /12 '|>
lim Covt(i_f,ﬂI — s Ct+j2 -4 = ;LZ(U1|/\U2|)~

lj1|—0, |j2]—0

As a result, by invoking the localization theorem through a similar set of steps, we obtain

e B _
P{Tgm}:m~bjﬁ%-u b % (1+0(1)). (D.4)

Matching this to the above, we know that 4, is the factor that multiplies m, and this leads to the
desired result.

For online scan B-statistics, the standard Poisson limit cannot be directly applied, because the
events {1;},j =1,...,x/m, are not independent, and we need the generalized Poisson limit the-
orem (Arratia et al., 1989), which allows for dependence between the variables. The setup for the
theorem is as follows. Let I be an arbitrary index set, and for o € I, let X, be a Bernoulli random
variable with p, = P(X, =1) > 0. Let W=}, X,. For each a € I, suppose that we choose
B, C I with o € B,. Think of B, as a “neighborhood of dependence” for each o, such that X, is
independent or nearly independent of all of the Xg for f¢&B, Define p =

D sel Z/ieB,pxplf’pZ = Za; Za;ﬁﬁeB, E(XGXp),p3 = e E[E(Xy — pulo(Xp: BEI—B,))|, where
o(-) represents the o-field generated by the corresponding random field. Loosely speaking, p;
measures the neighborhood size, p, measures the expected number of neighbors of a given occur-
rence, and p; measures the dependence between an event and the number of occurrences outside
its neighborhood. Then, we have the following theorem.

Theorem D.1. (Poisson approximation, theorem 1 in Arratia et al., 1989). Let W be the number
of occurrences of dependent events, and let Z be a Poisson random variable with
EZ=EW = /1> 0. Then the total variation distance between the distributions of W and Z is
bounded by

sup [ER(W) — Eh(Z)| < p1 + p2 + ps-
[[]|=1

hl| = supgsq [h(K)|-

The theorem is a consequence of the powerful Chen-Stein method.

Invoking the above theorem in our online scan B-statistics setting, we can bound the total
variation distance between the random variable, defined as the number of boundary cross-events
for the statistic over disjoint intervals and a Poisson random variable with the same rate. In our
setting, let I = {1,2,...,x/m} and N'(j) = {j — 1,j,j + 1} where j =2,...(x/m — 1) (with obvious
modifications for j=1 and j = x/m). Then we can specify

where h: ZT — R,
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pr=>_ > P{=1P{1; =1} =2(x/m—2)P{1, = 1}’ + 2P{1, = 1}, (D.5)
JET N G\}

p=Y, Y P{=1L1L=1}=2/m-1)P{1, =11, =1}, (D.6)
Jel N G\{)

ps =Y E{[E{Llo{1;:i ¢ N(j)}} —E{1;}]}. (D.7)
jel

We will show that p;, p,, and p; converge to 0 as b — co. For p;, the last summand in (D.5) is
associated with the two edge elements. It follows that p, is asymptotically to (2C + 2)P{1; = 1},
which will converge to zero as b — oo because P{1; = 1} converges to zero when m is sub-expo-
nential; that is, logh < m < b~'e’. Next, let us examine p, in (D.6). Redefine the parameter
sub-regions

S]Z[O,I’I’I—Bo/Z], SZZ[W[—B()/Z,W[—FB()/Z}, S3Z[M+Bo/2,2m],

and denote Y;, i=1, 2, 3 as {Y; = 1} = {maxc5,Z} , > b}, which are the indicator functions of
crossings of the threshold in the approximate sub-regions. Notice that the indicator functions Y,
and Y; are independent of each other and they share the same distribution. We use the fact that
unless the crossing occurs in a shared subregion, it must simultaneously occur in two disjoint
subregions in order to have double crossing. As a consequence, we obtain the upper bound 1, -
12 S Y2 -+ Y] . Y3, and

P{1, = 1,1, = 1} <P{Y, = 1} + P{Y, = 1}> < P{Y, = 1} + P{1, = 1}".

The probability P{Y, =1} is proportional to B, -be 3", Consequently, p, is asymptotically
bounded by 2C(By/m + P{1; = 1}). Hence, p, converges to zero if logh < m < b~ 'e” when-
ever b — oo. For p3 in (D.7), 1; and 1; are computed over nonoverlapping observations and are
therefore independent. Thus, the term p; vanishes.

Next prove that the collection of stopping times {T}} indexed by b is uniformly integrable.
Again consider the sequence of indicators {1;},j = 2k and k = 1,2, .... Define the random vari-
able 7 that identifies the index of the first indicator in the sequence that obtains the value one:
7 = inf{k : 1,4 = 1}. Note that t has a geometric distribution. Moreover, because T, < 2mt, we
obtain that

P{T, > x} <P{t>x/(2m)} = (1 —P(1, = 1))[X/<2M)J.

The conclusion then follows from that 1/m - P(1, = 1) converges to 0.

Appendix E: Skewness correction

In the following, Lemma E.1, Lemma E.2, and Lemma E.3 are used to derive the final expression
for the skewness of the scan B-statistic.

Lemma E.1. Under the null hypothesis,

E {(MMDZ(Xi, Y)) 3}

8(3_2) / / A/ a] " " 4
—— = Elh(x,x, p, Y V(& X" v, v h(x", %,y y)| + ————
sEh(x 2y, Y )h(x, 2"y, y (5, %,y y)] BB 1)

=FE_ ) E[h(x.%.y.y')’].
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Proof. Note that

)]« (7) =g o]

a<b

-3
B
= ( 2) zk: CiElhaphcaher],

where for simplicity we write hap = h(Xj 4, Xi b Ya» Yp) and define Cy as the corresponding num-
ber of combinations under specific structure. Most of the terms in E{hahaher| vanish under the

null. By enumerating all of the combinations, only two terms are nonzero: E[huhpchc,] and
Elhaphaphap). Then,

E [(MMDZ(Xi, Y)) 3] = <§) 7 (i ) 2(B — 2)E[haphpcheq] + (f) 7 <§>E[habhahhab]

8(B - 2)
:7Ehximxi aYavY hXx ’XiC)Y)YChXiC)Xia)YC>Ya
BZ(B—l)Z[(’ 6 Yar Yo ) (XG0, Xi e Yoo Yo (X e X, )]
4
—— _Eh(XiaXip Ya Y,)®
BB 1) ((Xi,0 X, Yo Yp)']
8(B —2)

_ / / A/ ] U " 4 / 3
TB(B_1) Efh(x X, y,y Yh(x x5y )h(x", %,y )] +7BZ(B - l)zE[h(x,x,y,)/) ]

Lemma E.2. Under the null hypothesis,

E[(MMD2(x, Y)) MMD?(X; V)],

8(B—2) / / A mo e g
=——=FElh(x,x,y,y ) h(x,x", ¥,y Yh(x", x"", y",
B(B_1) [h(x 'y, Y )R(x, X% ¥,y ) Yyl
4
Elh x)x/, : /2h x//,x///, ) / )
B(B_1) [h(x.x.7.5)"h( »))]

Proof. Note that

E[ (MMDZ(XZ-, Y)) 2MMDZ(XJs V)i

- (i) _ E [( > (o X Yo Yb))2 ( > h(Xw X Yo Yb))]

a<b a<b
-3
B
—( > ZCkE[hi,abhi,cdhj,ef]’
2 x

where for simplicity we write h; o = h(X; 0> Xi > Ya, Y5) and define Cy as the corresponding num-
ber of combinations under specific structure. Similarly, most of the terms in E[h; qh; cahj, of] van-

ish under the null. By enumerating all of the combinations, only two terms are nonzero:
E[hi,ubhi,bchj, cu] and E[hi,abhi,abhj,ub]' Then,
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= 7E[h(xi,mxi,b> Ya’ Yb)h(Xi,b)Xi,c’ Yb: Yc)h(Xl C,X, a> Y Y )]

Eh(X 0 Xib. Yo Yo) WX 0 X Yar V3]
2
— ﬁE[h(x, X/,y,y/)h(x/, x//,y/,y/l)h(x///, x////)y//,y)]

—IEhx,x', : /2h x//’x///, ] / )
BB 1) [h(x.".7.5')"h( 7))

Lemma E.3. Under the null hypothesis,
E[MMD?(X;, Y)MMD?(X;, Y)MMD?(X,. Y)], ..,
8(B—2)
=2 % Rk x,x/’ 3 / h x//’x///, /’ " h x////’x/////, //’
BB 1) [h(x, %', 3,y )h( bSOl Yl
4 nrr

+ 5acp T s X M )

Proof. Note that
E[MMD?(X;, Y)MMD?(X;, Y)MMD?(X,., Y)]

iitr
-3
_<]23> E[(Zh(xi,u,xi,b,n,n)(Zh " d,YC,Yd))(Zh(xr,e,x,,f,ye,yf))}
a<b i T

B -3
= Z CkIE[hi,abhj, cdhr, ef] .
2 k

Similarly, most of the terms in E[h; abhj, cahr, ef] vanish under the null. By enumerating all of the
combinations, only two terms are nonzero: E[h; aph; pchr, ca] and Elh; aphj aphy, ap). Then,

E[MMD?(X;, Y)MMD?(X;, Y)MMD?*(X,. Y)] ..,

C(BY (B Elhy b o Bithhh
= ) ) 2( —2) [,ab r,ca]—"_ 2 2 [1ab ab r,ab]

8(B
QE[}[(X: a> Xz b> Yay Yb)h()(j,bnxj ) Yb> Yc)h(Xr,er,a: Yw Ya)}
BX(B 1)’
4
+7Ehximxi, )YmY h(X; u:X )Ya)Y h Xr,u)Xr, ’Yu;Y
B(B_1) (X0, Xib b)h(Xj a0 Xt b)h( b b)]
B —
_ 8( ) E[h(xx 3,y )h(x”,x"',y’,y”)h(x””,x"”’,y”,y)]
CB(B-1)
4
+ Elh x,x', . "\h x//,x//,, : "\h x////, /////, : )
BB 1) [h(x. X', y, ¥ )h( ¥ )h( 7))
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Using results from Lemma E.1, Lemma E.2, and Lemma E.3, we can derive the final expression
for the skewness of the scan B-statistic, as summarized in Lemma 6.1.

Proof. We can write the raw third-order moment as

E[Z}] =E (% EN:MMDZ(X,-, Y))3
= I\%]E {(lﬁ;MMDZ(Xi, v)) (Ji:MMDZ (%.7)) (ﬁ;mm2 (X, Y))]

g ()2) e,

1 (N\(N-1\[N-2 . , ,
Tl ) E[MMD?(X;, Y)MMD*(X;, Y)MMD*(X,.. Y)] i,

1
1 [ 8(B-2) , 4 ,
N { mE[h(x, Xy ) WYy R %y y)] + ———— Elh(x.x ,y,y/f]}

B(B—1)
3(N—1) [ 8(B—2)
+ N2 { BZ (B - 1)2 ]:E[h(x, .x/,y,y,)h(.x/,x”,y’,y”)h(x,”, x/l/l’y//’y)]

4
+ mwh(x, x’,y,y’)zh(x”,x”’,y,y’)]}

(N-1)(N—2) [ 8(B—2)
+ N2 {32(31)2

E[h(.x, x,,y,y,)h(x”,xw,y,,y”)h(.x/”,,x’””,y”,y)]

4
+7Eh x,.xj, : ! h x//’x///’ . / h x////’x/////’ . / }'
BBE_1) [h(x %', 7, )h( 7y )h( »))]

Appendix F: Zz does not converge to gaussian

Note that the third-order moment of Zp scales as O(B~2) (due to (6.1)), but when dividing by its
variance, which scales as O(B~2), the skewness becomes a constant with respect to B. Furthermore,
examining the Taylor expansion of the moment generating function at 0 = 0, we have

2 3
Bl = 1+ E(z) 0+ S B[(Z,7] + SB[ ] + o(0).
—— 2 —_— 6

0 1

Recall that the moment generating function of a standard normal Z is given by E[¢%/] =
14 0%/2 + o(6). The difference between the two moment generating functions is given by

3 3
gz e+ o) > g ] v o), )

1] - £l -

where the inequality is due to the fact that e”% > 0 and we may assume that it is larger than an
absolute constant c. Note that the first term on the right-hand side of (F.1) is given by

(c0® /6)Var|Zp) >/ [E[Z5?]

, which is clearly bounded away from zero. Hence,
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, i IIN
‘E[egzﬂ} - (1 +7) ’ > %y + o(6%)

for some constant y > 0. This shows that the difference between the moment generating
functions of Zj and a standard normal is always nonzero and, hence, Zj; does not converge
to a standard normal in any sense. This explains why incorporating the skewness of Zy can
improve the accuracy of the approximations for SL in Theorem 4.1 and for ARL in
Theorem 4.2.

Appendix G: More details for real data experiments

G.1. CENSREC-1-C Speech Data Set

CENSREC-1-C is a real-world speech data set in the Speech Resource Consortium corpora pro-
vided by National Institute of Informatics. This data set contains two categories of data:

1. Simulated data. The simulated speech data are constructed by concatenating several utter-
ances spoken by one speaker. Each concatenated sequence is then added with seven differ-
ent levels of noise from eight different environments. So there are totally 56 different
types of noise. Each noise setting contains 104 sequences from 52 males and 52
females speakers.

2. Recording data. The recording data are from two real noise environments (in university res-
taurant and in the vicinity of highway), and with two signal-noise ratio (SNR) settings (lower
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Figure G.1. Examples of speech data set. The red vertical bar shown in the upper part of each figure
is the ground truth of the change point. The green vertical bar shown in the lower part is the change
point detected by our algorithm (the point where the statistic exceeds the threshold). We also plot
the threshold as a red dashed horizontal line in each figure. Once the statistics touch the threshold,
the detection is stopped.
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Table G.1. AUC results in CENSREC-1-C speech data set. Recording data are from RESTAURANT_SNR_HIGH
(RH), RESTAURANT_SNR_LOW (RL), STREET_SNR_HIGH (SH), and STREET_SNR_LOW (SL).

RH RL SH SL

False Positive Rate

S5

False Positive Rate

S6
Figure G.2. Curves comparison of ROC curves for speech data set.
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and higher). Ten subjects were employed for recording, and each one has four speech
sequence data.

Experiment Settings. We will compare our algorithm with the baseline algorithm from Song
et al. (2013). Song et al. (2013) only utilized 10 sequences from the “STREET_SNR_HIGH” set-
ting in recording data. Here we will use all of the settings in recording data, the SNR level
20dB, and clean signals from simulated data. See Figure G.1 for some examples of the testing
data, as well as the statistics computed by our algorithm. For each sequence, we decompose it
into several segments. Each segment consists of two types of signals (noise vs. speech). Given
the reference data from noise, we want to detect the point where the signal changes from noise
to speech.

Evaluation Metrics. We use the AUC to evaluate the computed statistics, as in Song
et al. (2013). Specifically, for each test sequence that consists of two signal distributions, we
will mark the points as change points whose statistics exceed the given threshold. If the
distance between the detected point and true change point is within the size of detection
window, then we consider it a true alarm (true positive). Otherwise, it is a false alarm
(false positive).

We use 10% of the sequences to tune the parameters of both algorithms and use the
remaining 90% for reporting AUC. The kernel bandwidth is tuned in {0.1dpeq,0.5dmeds
Amed> 2dmed> Sdmed > Where dmeq is the median of pairwise distances of reference data.
The block size is fixed to be 50, and the number of blocks is simply tuned in {10,
20, 30}

Results. Table G.1 shows the AUC of two algorithms on different background settings. Our
algorithm outperforms the baseline on most cases. Both algorithms are performing quite well on
the simulated clean data, because the difference between speech signals and background is more
significant than the noisy ones. The averaged AUC of our algorithm on all of these settings is
0.8014, compared to 0.7578 achieved by the baseline algorithm. See the ROC curves in Figure
G.2 for a complete comparison.

G.2. HASC Human activity data set

This data set is from HASC Challenge 2011. Data consist of human activity information
collected by portable three-axis accelerometers. Following the setting in Song et al. (2013),
we use the f{;-norm of three-dimensional data (i.e., the magnitude of acceleration) as
the signals.

We use the “RealWorldData” from HASC Challenge 2011, which consists of six kinds of
human activities:

walk/jog, stairUp/stairDown, elevatorUp/elevatorDown,
escalatorUp/escalatorDown, movingWalkway, stay.

We make pairs of signal sequences from different activity categories and remove the sequences
that are too short. We finally get 381 sequences. We tune the parameters the same way as in the
CENSREC-1-C experiment. The AUC of our algorithm is 0.8871, compared to 0.7161 achieved
by the baseline algorithm, which greatly improved the performance.

Examples of the signals are shown in Figure G.3. For some sequences it is easy to find the
change point; see Figures G.3, and (d). Some pairs of the signals are hard to distinguish visually;
see Figures G.3(b) and (c). The examples show that our algorithm can tell the change point from
walk to stairUp/stairDown or from stairUp/stairDown to escalatorUp/escalatorDown. There are
some cases when our algorithm raises a false alarm; see Figure G.3(h). It finds a change point
during the activity “elevatorUp/elevatorDown.” This is reasonable, because this type of action
contains the phase from acceleration to uniform motion, and the phase from uniform motion to
acceleration.
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Figure G.3. Examples of the HASC data set. The meaning of the markers in this figure is the same as
in Figure G.1. (a) A1 vs. A6, (b) A1 vs. A4, (c) A1 vs. A2, (d) A6 vs. A2, (e) A2 vs. A4, (f) A4 vs. A3, (g)
A6 vs. A4, (h) A3 vs. A1, and (i) A2 vs. Aé6.

Table G.2. Simulate data with low SNR, with noise from different environments.

al Q a Cc4 (&) C6 7 C8
Ours 0.9413 0.9446 0.9236 0.9251 0.9413 0.9446 0.9236 0.9251
Baseline 0.9138 0.9262 0.8691 0.9128 0.9138 0.9216 0.8691 0.9128

Table G.3. Simulated data with SNR = 20 dB, with noise from different environments.

S1 s2 $3 S4 S5 $6 57 S8
Ours 0.7048 0.7160 0.7126 0.7129 0.7094 0.7633 0.6796 0.7145
Baseline 0.7083 0.6681 0.6490 0.7119 0.6994 0.6815 0.6487 0.6541
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