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Abstract

The majority of control charts based on scan statistics for spatio-temporal surveillance
use full observation vectors. In high-dimensional applications, dimension-reduction
techniques are usually applied. Typically, the dimension reduction is conducted as a
post-processing step rather than in the data acquisition stage and thus, a full sample
covariance matrix is required. When the dimensionality of data is high, (i) the sample
covariance matrix tends to be ill-conditioned due to a limited number of samples; (ii)
the inversion of such a sample covariance matrix causes numerical issues; and (iii)
aggregating information from all variables may lead to high communication costs in
sensor networks. In this paper, we propose a set of reduced-dimension (RD) control
charts that perform dimension reduction during the data acquisition process by spatial
scanning. The proposed methods avoid computational difficulties and possibly high
communication costs. We derive a theoretical measure that characterizes the perfor-
mance difference between the RD approach and the full observation approach. The
numerical results show that the RD approach has little performance loss under several
commonly used spatial models while enjoying all the benefits of implementation. A
case study on water quality monitoring demonstrates the effectiveness of the proposed
methods in real applications.
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1 Introduction

Spatio-temporal surveillance has numerous applications, including disease outbreak
detection (Lee et al. 2014), river water quality monitoring (Bartram and Ballance
1996), and computer network intrusion detection (Park et al. 2014). The objective
of spatio-temporal surveillance is to quickly detect changes that occur in a moni-
tored area based on data streams collected from different locations. Typically, the data
streams are observations of a particular quality index that can be modeled as a discrete
(e.g., network intrusion counts and mortality) or continuous (e.g., disease incidence
rate and contaminant concentration) random variable. Multivariate control charts are
commonly used for spatio-temporal surveillance. A change in the monitored area is
detected when the monitoring statistic exceeds a control limit that is pre-specified
to control the false-alarm rate. We use the in-control average run length (ARLg) to
characterize the false-alarm-rate of a control chart. In order to measure the detection
performance, we use the out-of-control average run length (ARL;) which represents
the expected number of samples needed to raise an alarm. Thus, the goal is to achieve
a short detection delay (ARL|) with a targeted ARLy.

Commonly used multivariate control charts include the 72 chart (Hotelling 1947),
multivariate exponentially weighted moving average (MEWMA) chart (Lowry et al.
1992), and multivariate cumulative sum (MCUSUM) chart. The univariate CUSUM
chart (Page 1954) is widely adopted due to its efficiency in detecting small shifts and its
recursive implementation that facilitates online monitoring. In the multivariate setting,
MCUSUM methods can be classified as those based on the likelihood ratio (LR)
statistic and the Hotelling’s T2 statistic. Healy (1987) uses an LR statistic assuming
that the vector observations are i.i.d. multivariate normal. Crosier (1988) computes a
T2 statistic for each vector observation and then forms a CUSUM chart based on a
sequence of T2 statistics. A key difference between the LR-based and the 7%-based
MCUSUM statistics is that the former assumes known shift direction, while the latter
does not make such an assumption.

One challenge in spatio-temporal surveillance is the high dimensionality of the data.
For example, Spiegelhalter et al. (2012) consider a problem where 200,000 indicators
of excess mortality are monitored simultaneously in the UK health system. In addi-
tion, spatial correlation among different locations usually exists and holds valuable
information for change detection. In order to tackle these issues, Jiang et al. (2011)
propose a spatial-scanning based MCUSUM chart, which constructs an LR statistic for
each spatial cluster and scans through all possible clusters to detect a potential disease
outbreak. Lee et al. (2014) extend the method by using an analytical formula proposed
by Kim et al. (2007) for control limit approximation. Lee et al. (2015) further extend
previous work to more general distributions. Other examples of high-dimensional
spatio-temporal surveillance include astronomical imaging, where high-resolution
video streams are monitored for solar flare detection, as studied in Xie et al. (2013)
and Liu et al. (2015). In this problem, each observation is a 67,744-dimensional vector
consisting of image pixels and the goal is to detect the emergence of a sparse signal.
Sequential detection of a sparse change is an active area of research, see, for example,
the work by Xie and Siegmund (2013) and Liu et al. (2016). However, these works
usually assume independent data streams without considering spatial correlation.

@ Springer



Environmental and Ecological Statistics (2019) 26:217-238 219

All the methods reviewed above employ full observation vectors when constructing
monitoring statistics. Even for charts with the spatial scanning approach (Jiang et al.
2011; Lee et al. 2014 and Lee et al. 2015), a full-size covariance matrix is involved
in computing the detection statistic. For high-dimensional problems in the presence
of spatial correlation, several difficulties exist when applying these control charts that
require a full-size covariance matrix: (i) the sample covariance matrix tends to be
ill-conditioned due to the number of samples being relatively small compared to the
dimension of the covariance matrix; (ii) the ill-conditioned sample covariance matrix
causes numerical issues due to the matrix inversion involved in the computation of
the statistics; and (iii) the communication cost can be high for distributed sensor net-
works, because all sensors need to exchange information with each other (Guerriero
et al. 2009).

In order to tackle the difficulties caused by high-dimensionality, a viable solution
is to perform a dimensionality reduction technique. The existing dimension reduc-
tion techniques include the principal component analysis (PCA) (Mishin et al. 2014);
random linear projections such as Runger (1996), Bodnar and Schmid (2005) and
Skubatlska-Rafajlowicz (2013); and wavelet transform methods such as Lee et al.
(2012) and Wang et al. (2015a). These methods still require full observation vectors
because dimension-reduction is performed as a post-processing step rather than in the
data acquisition stage.

Another method to tackle the high-dimensionality problem is to perform reduced-
dimension spatial scanning. In this method, the entire monitored area is broken into
overlapping local clusters of certain radii and only a subset of sensors or locations is
used within the clusters, as in Fig. 1. Then, a control-chart is constructed for each local
cluster and a change is detected whenever any of the local clusters fires an alarm. In
doing this, each control chart only monitors a small number of data streams that fall
within the scanning cluster. In this paper, we consider the reduced-dimension spatial
scanning based on data streams within the local clusters only, rather than the full
observation vectors as done in earlier works such as Jiang et al. (2011). Hence, our
method never needs to acquire full-dimension observations, and dimension reduction is
performed during data acquisition. Our method is suitable for distributed processing
required by sensor networks. A recent related work by Xie et al. (2015) based on
linear projection may also be used for spatial scanning; however, spatial correlation
is not considered in their study. Moreover, due to the recursive nature of the CUSUM
statistics, our method is suitable for in situ processing, which implies that raw data do
not need to be stored, and this is again preferable in sensor networks.

Although the idea of the reduced-dimension spatio-temporal scanning is not new
and, in fact, is often used in practice, one important question has not yet been answered
in the literature: How much do we lose by using reduced-dimension observations in the
presence of spatial correlation? We provide a precise answer to the amount of loss by
characterizing the difference of reduced-dimension charts and full-dimension charts
in terms of their ARL; under a fixed ARLy. Our analysis shows that the RD approach
usually utilizes 0-20% more observations in ARL; than the full observation approach
for a reasonable range of spatial correlation among neighboring locations. Even when
we lose over 20%, the absolute differences in ARL; are as small as 1 — 5 observations
in most cases. In addition, we show that it is even possible that the RD approach may
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Fig.1 a A monitored area with p = 49 locations or sensors and illustration of the spatial scanning using a
circular shaped region; b Mapping of a full-dimension observation vector into reduced-dimensional vectors
corresponding to scanning regions

perform better than the full observation approach (i) when 72 based charts for unknown
shift directions are used or (ii) when certain groups are completely independent of
other groups, as in a water quality monitoring example presented in Sect. 6. This is a
blessing, since an anomaly usually affects a local region and spatial correlation tends
to decay with distance. Thus, restricting to local sensors when forming a monitoring
statistic should not significantly degrade the detection performance.

The remainder of the paper is organized as follows. In Sect. 2, we formulate the
problem and review existing MCUSUM charts that employ the concept of spatial
scanning. In Sect. 3, we present reduced-dimension MCUSUM charts. In Sect. 4, we
present theoretical analysis for the performance comparison of the reduced-dimension
and full-dimension charts. In Sect. 5, we present the numerical results. In Sect. 6, we
present an application in water quality monitoring, and in Sect. 7 we present the
concluding remarks .

2 Background
In this section, we define the notations and our problem. Then, a few spatial scanning

control charts are presented as representative charts, which adopt the full observation
approach.

2.1 Notation and Problem
In spatio-temporal surveillance, observations (e.g., a quality index) are sequentially

collected from different locations in the monitored area. Using sequential observations,
one desires to detect a possible change in the monitored area as soon as possible.
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Suppose there are p locations (sensors). For simplicity, we assume that the moni-
tored area is rectangular and the locations (sensors) sit at a lattice of p = M N points.
This rectangular assumption on the shape of the monitored area can be relaxed, as we
show in Sect. 6.

Letg = (m,n), where m = 1,2,...,M andn = 1,2,..., N denote the two-
dimensional spatial coordinate of a location. The location is indexed by ¢, where
c=(m—1N +n.Let P={1,2,..., p} be the set of monitoring locations. At
time ¢, the observation is a p-dimensional vector x; = [x;1, xs2, ..., xtp]/. Assume
that different observation vectors are temporally independent but spatially correlated
with covariance matrix X. We further assume that the covariance matrix % of x; is
known or can be estimated from data. The change only affects the mean, and the
covariance matrix remains the same. Under the hypothesis of no change, the obser-
vations x1, X2, ... are i.i.d. normally distributed with mean vector g and covariance
matrix X. Alternatively, there exists a change-point k in time, and a subset of neigh-
boring locations are affected by a change that occurs at the change-point. For the
locations affected by the change, the means of their observations are shifted, while
observations from the unaffected locations remain the same distribution. This corre-
sponds to a shift in the mean vector from u( to another vector u;. Without loss of
generality, assume that the observation vectors are standardized so that y = 0 and
[X];; =1,Vi=1,..., p, where [-]; ; denotes the (i, j)th element of a matrix.

Due to spatial correlation, an anomaly often affects a cluster of neighboring loca-
tions. We assume that the shift cluster is circular to facilitate the notation (such an
assumption can be relaxed as demonstrated in Sect. 6). A cluster is a set of locations
0" ={jlllgj —qcll <r, j € P}, where c is the center of the cluster, r is the radius
of the cluster and || - || denotes the £>-norm of a vector. In our setting (sensors are
placed over a grid), the radius r is usually selected from a discrete set of values. Let
R C {1, ﬁ 2, 2«/5, - - - } be the set of possible values of r. Define a p-dimensional
vector [p. ,]; = 8; forall j € O°", and O otherwise. Here, [-]; denotes the jth
element of a vector and §; denotes the shift magnitude of the jth location. Hence, if
an anomaly affects the cluster O“", then p; = p ..

Our objective is to detect anomalies that affect a cluster O“" (¢ € P and r € R)
by testing whether the mean of the observations has shifted from a nominal vector
to a different vector p;.

2.2 The LR-F-MCUSUM chart

Jiang et al. (2011) consider a spatial scanning control chart based on LR statistics.
The method is based on full observation vectors and requires a full covariance matrix.
Spatial scanning is achieved by zeroing out the portion of the mean vector that falls
out of the scanning region. We refer to their method as the LR-F-MCUSUM chart
hereafter. For a hypothetical shift cluster with center ¢ and radius r, the sequence of
monitoring statistics in the LR-F-MCUSUM chart is given by

t
SO — 0, er), o t=1,2,..., 1
) max( 1123;2 ; ) ey

I=T
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where £;"" is the log LR statistic when the post-change mean vector is .. ,.:

When constructing the monitoring statistic in (1), we need to search over the unknown
change-point by maximizing with respect to 7, i.e., the variable that represents a
putative change-point. Note that the statistic for each cluster S;*" in (1) can be computed
recursively

S¢T = max{0, ST, 4+ €7}, t=1,2,..., and S§" =0. ?3)

If the true shift center and radius (c, r) are known, we detect a change as soon as S,C o’
exceeds a pre-specified control limit.

In practice, usually neither the shift center ¢ nor the radius r is known a priori. In this
case, one has to scan over all possible values of ¢ and r, calculate the corresponding
MCUSUM statistic, and form a global detection statistic by taking the maximum:
S** = maxcep rer ;" fort =1,2,.... A change is detected whenever S}* exceeds
a pre-specified control-limit 2}* > 0, which is specified according to the requirement
for the ARLy.

2.3 The T2-F-MCUSUM chart

When there is no prior information on the magnitude and direction of the mean shift,
an MCUSUM chart based on T2-statistic is more appropriate. In order to make a rea-
sonable comparison with reduced dimension charts, we introduce a T2-F-MCUSUM
chart based on full-dimension observation vectors. It performs spatial scanning while
using the full covariance matrix, as analogous to Jiang et al. (2011). Given a cluster
0°", we modify the full observation vector x; by replacing all elements that are not
in the cluster with zeros [xf’r]j = [x;]; for j € O“", and 0 otherwise.
For each modified observation x{"", we compute a 72 statistic

c,r cr's—1_c.r
a;” =x; X x;" —pur —kor, 4

’
where k is a positive real-valued constant, u7 = E[x;" 7 'x{"] and 07 =

Var[x{"" £ ~1x{"], which are the in-control mean and standard deviation of the 7>
statistic, respectively. The calculations for w7 and o% are discussed in Sect. 4. The
monitoring statistic 7, is computed recursively over time

T/ =max{0, 7>, +a;"}, t=1,2,..., and Ty  =0. 5)

With an unknown shift center and radius, we again search over all possible clusters and
sizes to construct the global detection statistic 7;"* = maxccp,rcr T,c’r forr =1,2,...
and detection is performed by comparing 7;** with a control limit /2}*.
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3 RD-MCUSUM charts

In this section, we present the reduced-dimension (RD) approach. For each scan clus-
ter, a control chart is constructed for RD observation vectors and only utilizes local
covariance. We develop two versions of MCUSUM charts, based on the LR statistic
and the T2 statistic, respectively.

3.1 The LR-RD-MCUSUM chart

We begin by considering an LR-based chart, which is referred as the LR-RD-
MCUSUM chart hereafter. For each scan cluster O, we truncate the original data
vector x; into a lower dimensional vector ¥;", where [x,]; is positioned in ¥, if
Jj € 0%",andis eliminated otherwise, as illustrated in Fig. 1b. The monitoring statistic
for that particular cluster is computed over vectors of dimension |O“"|, where | - |
denotes the cardinality of a set. At each time, the LR statistic for O¢" is computed in
the following manner

0 = i, %) (x - %) L i=12...0 ©)

Here, jt., and X, are the sub-vector and sub-matrix of g, , and X, respectively.

Then, based on (6), the detection statistic S’f " is computed recursively for each cluster,
similar to (3). Finally, a global monitoring statistic is formed by taking the maximum
over all clusters and sizes

S¥ = max S, r=1,2,.... @)

ceP,reR

An alarm is signaled whenever 5,** exceeds a pre-specified control limit fzz*

3.2 The T2-RD-MCUSUM chart
We now construct the reduced-dimension T2-based chart, which is referred to as the

T2-RD-MCUSUM chart hereafter. Given a shift cluster, we compute a T? statistic at
each time step as follows,

A = FTEET — p—ky2p, i=1,2,...,1, (8)

where p = |O“"|. Note that when the process is in-control, the mean and variance of
the T2 statistic is given by

E[F £, 8 = p, and Var[#"" T80 =25

Based on a;"", the monitoring statistic for each cluster is computed recursively over

time, similar to (5). The global detection statistic is constructed by maximizing over
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Table 1 Summary of charts with the full and RD approaches

F-MCUSUM RD-MCUSUM
LR based SF* = maxc, S,‘"r > hz‘* 5,** = maxc,r St”’r > ~2§*
T2 based T = maxc,r th’r > hj* Tt** = maxc,r ff’r > ﬁj*
all clusters: T[** = MaXcep reR Tf’r fort = 1,2, .... An alarm is signaled when Tt**

exceeds a control limit /%%

Hereafter, the charts based on full observation vectors are referred to as the F-
MCUSUM charts, including the LR-F-MCUSUM and T2-F-MCUSUM charts, while
the reduced dimension charts are referred to as the RD-MCUSUM charts, including the
LR-RD-MCUSUM and T2-RD-MCUSUM charts. Table 1 summarizes our methods
and terminology.

4 Theoretical analysis for effects of spatial correlation

In this section, we analytically compare the F-MCUSUM and RD-MCUSUM charts in
terms of detection performance. We use ARL; given a target ARL as our performance
metric.

Both the F-MCUSUM and RD-MCUSUM charts use scan statistics to search for
the true shift cluster from the set of possible shift clusters {O“"|c € P, r € R} ateach
time step. In practice, the center and the radius of an anomaly are unknown and, thus,
the entire monitored area needs to be scanned. In this section, we perform a theoretical
analysis of the F-MCUSUM and RD-MCUSUM charts in a simplified setting, that is,
when the actual shift cluster is known. This simplified situation provides a few insights
into understanding the impact of dimensionality reduction on the performance of an
MCUSUM chart with spatial scanning.

Suppose a shift affects a cluster with center ¢ and radius r, i.e., 0" is the actual
shift cluster. Suppose the cluster O¢” contains p locations. Without loss of generality,
assume that the affected locations correspond to the first p entries in the observa-
tion vectors, for instance, through reindexing. Hence, the post-change mean vector is
po = [1ses 5, 0,0, 01 = [y, 0, ..., O, where fi,, = [u1, ..., usl #0.
We can relate the original full observation vector x; to the reduced-dimension obser-

vation vector X;"" in (6) and (8) and the modified full observation vector x;"" in

@asx, = [£7,0,...,0] +10,....,0,£"] = x" 4+10,...,0,2°""], where

/ A / ! oy
¥ = [x1,....,xp5] and 7" = [x;(j41). - - ., Xip] . Furthermore, partition the
p X p dimensional covariance matrix for the full observation vectors accordingly

i X2

Y = s where 211 S Rﬁxﬁ, 212 € R[;X([,_[;), 221 S R(p—ﬁ)xﬁ and
Yo1 X

Y22 € R(p—pyx(p—p)- Using the Schur complement (Zhang 2006) of X1, we write

the inverse of X as
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. [za‘ + 2y 2;‘}
- —1 -1’
Z;C 2;D

where

IS S NPY0 FPIRND 21D S Y Rb J0TD Jpig

2 =2 ZnEn - 221211 Ti)7h

ZE =—(Zn—-3n2'Z) 252 and
= (X — )321)31_11212)_1-

&)

4.1 Relations between statistics in full- and reduced-dimension charts

As a basis for the subsequent analysis, we derive relations for the LR and 72 statistics
used in the F- and the RD-MCUSUM charts. Using Egs. (2), (6) and (9), the original
LR statistic in (2) can be written as

1zc,r

e?r = ’10 rzfll - O'Sﬂ’c,rzfllﬁ’c,r + ’lc,rZA*x[
+”’c rZ Acr 05[1/‘,, Z’zﬂ‘tr (10)
=£§’r+uc,,>:A*xt +u”2 b os,L” e,

From (10), it is evident that the dimension reduction for the LR-based chart is equiv-
alent to eliminating the last three terms on the right-hand side of (10) from the full

LR statistic. It is worth mentioning that [NL/C’ - Eglff’r contains only noise information,
since no mean shift occurs in ;"

Similarly, we derive a relation for the T? statistics used in the F- and the RD-
MCUSUM charts. Using equation (9), we obtain the in-control mean and variance of
the full version 72 statistic as follows:

E[x,” 2% = p+u(E T} and
Var[x&" 3! T = 2r{Z R 2 ) A (Z )+ 25,

Hence, the statistics a;*" defined in (4) and ;" defined in (8) are related to each other
via
af" =@ A ZOEF - B+ T
— k2 {Z 0 T T T ) + 4 ) 4251
— T E R — ez )

—k(R(Z L E T A (E )+ 251 - 2p) .

@ Springer



226 Environmental and Ecological Statistics (2019) 26:217-238

Table 2 Drift and variance

LR-F-MCUSUM LR-RD-MCUSUM

parameters of the LR based
charts I e O

do _%"'c,rx ]I"c,r _%I’“c,rzu e r

’ _ ! 1~
dc.r %”‘(;,rz ]”'(',r %’Lc,rzll ”’L‘,r
Q@2 yE! T
0(S2,) e r Ke,r Me 2y Bc,r

Table 3 Drift and variance parameters of the T2 -statistic based charts

T2-F-MCUSUM T2-.RD-MCUSUM
do —K[2(Z AT E )+ 4 (Z T ) + 2] —kp)!/?
de,r e, (B} + E e, — K2u(Z 21 T 20 + e E1 e, — kD)
4z, %) + 2512
Q2 (ST R ) 4 B ) + 25 25
2, QF + 4., (B + EHE0 (S + 21Dk, 25+ 4, B e

4.2 Performance metric: ARL; measure

Our objective is to compare the detection performance of the F- and the RD-MCUSUM
charts in terms of ARL for a fixed ARL(. We define a performance metric called the
ARL measure. For a fixed ARL, a smaller ARL| measure implies shorter detection
delay.

Kim et al. (2007) derive a formula to approximate ARL of a single CUSUM chart
for both in-control and out-of-control processes. The formula is given by

Q2 2d(H + 1.16682) 2d(H + 1.16682) .
P [ ML) D)
ARL~ H+ 1.166Q\>
<+—> , ifd =0
Q
(1)

where d is the drift parameter, Q2 is the variance parameter, and H is the control limit.

In our settings, specifically, if observations are temporally independent, we have
d = E[£57], Q% = Var[£5"] for the LR-F-MCUSUM chart, and d = E[£0"], Q2 =
Var[£¢"] for the LR-RD-MCUSUM chart. In addition, we have d = E[a’""], Q% =
Var[a;""] for the T2-F-MCUSUM chart and d = E[a,""], Q% = Var[a; "] for the T?-
RD-MCUSUM chart. In the following, we denote the in-control drift and variance
parameters as dp and Q%, respectively. The out-of-control parameters are defined
similarly. If the shift center is ¢ and radius is r, we denote the out-of-control drift and
variance as d. , and Q% ,» respectively. Tables 2 and 3 summarize these parameters.

The in-control drift dy is always negative but the out-of-control drift d.. , can either
be negative (if the shift magnitude is too small) or positive. In this section, we assume
that the shift magnitude is sufficiently large so that d , is positive.
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Consider a special function called the Lambert W function. Let Wy (-) be the prin-
cipal branch of the Lambert W function (Corless et al. 1996). For a fixed target ARLy,
using (11), we derive an approximation for ARL; as follows:

Q2 Q2 /d., 1
ARL| ~ ——0 | ¢ + ‘2—/‘ — 1.166— (R0 — Q). (12)
2dod, r Q5/do de.r

where

_ 2d3
€pg = —W_i1(—e ™) —no, and no = ?ARLO + 1.
0
The derivation is presented in Section A1 of the online supplement.

Note that the ¢,,, function tends to be very flat. Moreover, with a fixed ARL, the
values of 1o for the F- and RD-MCUSUM charts are very close. The term Qé;;j;r
is always a constant, —1, for the LR-based charts (based on values in Table 2) arild is
expected to have similar values for 72-F-MCUSUM and T2-RD-MCUSUM charts
for a spatial model, where spatial covariance decays as the distance increases (see
Section Al of the online supplement for a detailed discussion). In addition, for the
LR-based charts, since £29 = €2, - due to the assumption in Sect. 2.1, the second term
in the right-hand side of (12) is equal to zero, and for the T2_based charts, it is small
compared to the first term. Thus, when we fix ARLg, to compare ARLs of the F- and
RD-MCUSUM charts, we may compare the values of ]Q% /(dodc.r) }, which we define
as the ARL; measure.

In the following, we denote the ARL; measure for LR-F-MCUSUM and LR-RD-
MCUSUM charts as myr and mR, respectively, and for T2-F-MCUSUM and T?2-
RD-MCUSUM charts as m2 and m 2, respectively. For LR-based charts, we obtain,

4 _ 4 - 4
1 T P T s
"’C,rZ ”’c,r ,Lc’rzll ILc,r + M’c,rZA* ’Lc,r ,"c,rzll ’Lc,r

= MiR.

(13)
Equation (13) indicates that my R is always smaller than or equal to myr, which, in
turn, implies that the ARL of the method using full observation vectors is always
smaller than that of the chart with reduced dimension vectors. Since a smaller ARL;
measure implies a smaller ARL1, we expect that the LR-F-MCUSUM chart generally
detects a shift faster than the LR-RD-MCUSUM chart.
For T2-based charts, we have

mMLR =

7 _ T —1
2 Mc,r(zlll + EA*I)M/CJ
mTZ = k — k 1 1 1 -
Ruf{E 20X X0} +4u{Z 2} +2p]1/?

and
el - -1
iy = |:k2 _ler Xt ””} :

@ Springer



228 Environmental and Ecological Statistics (2019) 26:217-238

Note that the theoretical performance measure and the above analysis are applicable
to a spatial covariance matrix, X, with a general structure. Several commonly used
spatial covariance structures are listed below. We use d to denote the distance between
two sensors, C(d|p) to denote the correlation function between two sensors, which is
a function of d and other parameters and 1.) to denote an indicator function.

1. Four-value model: C(d|p) = 11(g—0} + pLlig=1} + g]l{d:ﬁ} for p € [0, 1].
2. Polynomial model: C(d|p) = 11{4—0) + ,od]l{d>0} for p € [0, 1].

3. Matérnmodel: C(d|0) = 1Il{dzo}—}-m(ﬁvl/Zd/Q)UKU(«/51)1/2d/9)1{d>0}
for & > 0, where K, is the modified Bessel function of order v (Ripley 2005).
Based on the correlation function, the entries of the covariance matrix [X]; ; are
determined as C(d(g;, q;)|0), where g; and g are the coordinates of sensors i and j,

respectively.

4.2.1 Anillustrative example

Using a simple illustrative example, we calculate how much we lose or gain in terms
of ARL; when reduced dimension vectors are used. We use a tridiagonal spatial
covariance matrix as an example. The correlation between two sensors is p if they are
neighboring, and 0 otherwise. Such a covariance matrix is denoted by X1(p) € R« p,
with [E1(0))i,; = 1ifi = j. [Z1(0))i; = pif i — jl = 1 and [Z1(0)]i.j = 0
otherwise.

Weuse p =35,p =2and ., = [1, 1,0, 0, 0] in this example. The ratio my g /711 R
is calculated as a function of the spatial correlation p. Since a spatial correlation is
unlikely to be very large in practice, we consider p in the range of 0 < p < 0.3.
A ratio smaller than one implies that the charts with full observation vectors have a
smaller ARL; than the charts with reduced observation vectors, and vice versa.

For LR charts, the ratio of ARL; measure for the full- and reduced-dimension
methods can be simplified to

ik i, T, | 66 —2p 42

— = |14+ = = .

LR B, 2 e pt+4p3 —5p2 —2p 42

We plot this ratio as a function of p in Fig. 2a. For LR-based charts, the ratio is always
smaller than 1, as expected and it decreases as the spatial correlation p increases. This
indicates that for LR charts, methods based on full observation vectors are always
better. However, the performance loss of using reduced-dimensional vectors is small
(less than 7%, as shown in the plot). Thus, we expect that when the spatial correlation
decays reasonably fast, in the case of known center and radius, the reduced-dimension
charts do not lose much detection power compared to its full version.

For T2-based charts, there is no simple analytic expression for the ratio of ARL;
measures. Hence, we calculate the ratio numerically. Figure 2b depicts the plot of
my2/mp2 as a function of p. Interestingly, the ratio is slightly greater than 1, thereby
indicating that the RD method may perform slightly better than the full-dimension
counterparts for the particular covariance structure that we consider in this example.
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Fig.2 Simple example with p =5, p = 2, and ¢ = [1,1,0,0,0]": ampr /LR as a function of p; and
b my2 /”~1T2 as a function of p

However, in general, the ratio is smaller than 1 depending on the covariance structure,
which we present in Sect. 5.

We also conduct simulation experiments assuming that the shift cluster is known.
Due to the brevity of the paper, the results are presented in Figure S1 of the online
supplement. In summary, the simulation results match the ARL| measures very well. In
addition, the RD-MCUSUM charts use only 3—4% more ARL than the F-MCUSUM
charts for a reasonable range of spatial correlation, when only a single shift cluster is
considered. For T2 charts, there is almost no performance loss for the settings that we
considered.

5 Experiments

In this section, we conduct various numerical experiments under more realistic settings,
where the shift center and/or the shift radius are unknown.

5.1 Experimental setup

We first consider the case in which the shift center is unknown, and the radius is known
to be r = 1. In this case, we scan over p possible shift clusters with different centers
at each time step. Second, we consider the case in which both the shift center ¢ and
radius r are unknown. We scan over a set R of possible radii at every possible shift
center. In the experiments, we use R = {1, ﬁ}. In a bell-shaped signal case, which is
discussed toward the end of Sect. 5.2, we consider R = {0, 1, ﬁ 2, 2«/5, 3, 3«/5}.

We run the control charts on three commonly used spatial models (the four-
value model, polynomial model and Matérn model, as introduced in Sect. 4.2). In
applications like environmental monitoring, sensors tend to be placed within a rea-
sonable distance and the spatial correlation between two locations is usually not
high. Thus, we test p € {0, 0.02, 0.04,..., 0.3}. In the Matérn model, we test
6 € {0, 0.054, 0.108, ..., 0.81} and use order v = % Note that & = 0.8 for the
Matérn model corresponds to the spatial correlation among neighboring locations,
p ~0.3.
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Fig. 3 Simulated ARL; of LR-F-MCUSUM and LR-RD-MCUSUM charts on the four-value model with
rout = +/2 in the unknown center and unknown radius case

ARL,
ARL,
IS

The monitored area in the simulation experiments has a dimensionality of p = 7x7.
For the out-of-control state, homogeneous shifts (shifts of all affected locations in the
cluster have the same magnitude) with magnitudes § = 0.25, 0.5, 0.75 and 1 are
tested. The targeted ARL is fixed to 1000 in all the cases. Moreoever, all simulated
ARL values are obtained based on 10,000 simulation replications.

5.2 Results

For the sake of brevity, the results with an unknown center but known radius are
included in Section A3.1 of the online supplement and we present the results with the
unknown center and unknown radius in this subsection.

In the unknown center and unknown radius case, we denote the actual radius as 7oyt
and consider the possible radius R € {1, «/5}. Ateach time step, the control chart scans
over 2p possible shift clusters. Figures 3 and 4 compare ARL; of LR-F-MCUSUM
and LR-RD-MCUSUM charts on two different spatial correlation structures. Figures 5
and 6 present results for 72-F-MCUSUM and T2-RD-MCUSUM charts. The results
for the Matérn model with roy = /2 are illustrated in Figures S23 and S24 in the
online supplement. The remaining results, including plots of simulated ARL( and
ARL] when roy = 1, and the percentage difference of simulated ARL are presented
in Section A3.2 of the online supplement.

Based on the numerical results, we conclude that in general, the reduced-dimension
charts do not severely sacrifice the ARL; performance in the range of correlation
tested in the paper. Therefore, the RD-MCUSUM charts can be a powerful and easy-
to-implement alternative of the F-MCUSUM charts, particularly when the dimension
of the monitored area is high and the full covariance matrix is ill-conditioned.
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Fig.4 Simulated ARL of LR-F-MCUSUM and LR-RD-MCUSUM charts on the polynomial model with
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Finally, a “bell-shaped” signal is considered rather than a “box-shaped” one. Thus
far, we assume that the shift signal is box-shape, which implies that an anomaly only
affects a cluster of neighboring sensors but not all of them. Moreover, we only consider
a homogeneous shift, which means that the shift magnitude at all affected sensors are
equal. In reality, there exist other forms of shift signals, such as a bell-shaped signal.
Such a shift signal occurs at center ¢ € P, affecting all sensors, and the shift magnitude
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Fig.6 Simulated ARL| of T2-F-MCUSUM and T2-RD-MCUSUM charts on the polynomial model with
Fout = /2 in the unknown center and unknown radius case

decays with the distances from c. In this case, reduced-dimension charts are destined
to lose performance, since each reduced-dimension observation can only capture a
portion of the signal energy. The smaller the scan radius, the more dimensionality
reduction we achieve, however, a greater loss of performance incurs. In this example,
we consider a larger set of possible shift radii, R = {0, 1, ﬁ, 2, Zﬁ, 3, 3\/§}. Sec-
tion A3.3 of the online supplement includes the performances of the proposed charts
and demonstrates how our ARL| measure can be used in selecting a scan radius in the
reduced dimension charts.

5.3 Theill-conditioned covariance matrix

We demonstrate the benefit of RD-MCUSUM charts when the full covariance matrix
is ill-conditioned. We consider a monitored area with dimensionality p = 49. The
spatial covariance matrix of the first 48 sensors is constructed using a polynomial
model with p = 0.3. We assume that the 49y, sensor and the first sensor have a high
correlation, 0.99, and consequently, the full spatial covariance matrix of the monitored
area is ill-conditioned (with its determinant & 0). In this case, F-MCUSUM charts are
not applicable, as the inversion of an ill-conditioned matrix is unstable. Figure 7 shows
the LR-RD-MCUSUM charts based on simulated data when homogeneous shifts with
different magnitudes § are added at time # = 50. The control limits are adjusted so that
ARL(y = 1000. As we can observe from Fig. 7, LR-RD-MCUSUM charts successfully
detect the mean shifts in all cases.

6 Application: water quality monitoring

In this section, we apply the proposed methods to real-time water quality monitoring
for a river network. The objective is to detect contaminant spills that cause water
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Fig. 7 LR-RD-MCUSUM chart detects a mean shift when the full covariance matrix is ill-conditioned.
Mean shifts occur at t = 50

pollution in the river. In this application, the shape of the monitored region is not
rectangular and scan clusters are non-circular.

6.1 Data

We study a river network for the Altamaha River in Georgia, United States. The
shape of the river is shown in Fig. 8a. The nodes in the river network represent a
possible spill location and potential monitoring locations where concentration data
are collected.

The contaminant concentration data for such a river network is simulated by the
Storm Water Management Model (SWMM) developed by the United States Envi-
ronmental Protection Agency. SWMM requires geologic, geometric and fundamental
hydrodynamics data to construct a river network. Given rainfall information, the loca-
tion, intensity and duration of a contaminant spill, SWMM simulates the contaminant
transport process through the river over a period of time. In the simulation, rain events
and spill events bring randomness to the contaminant transport process. The same
dataset used in Telci and Aral (2011) is adopted in our case study to generate rain
events in ten sub-catchments shown in Fig. 8b.

A spatial correlation exists among the concentration data collected at dif-
ferent locations in the river network due to the nature of hydrodynamics. We
construct a spatial model for the river network based on Ver Hoef and Peter-
son (2010). See Section A4 of the online supplement for the detailed spatial
model.

@ Springer



234 Environmental and Ecological Statistics (2019) 26:217-238

Potentiaf' monitoring stations
and spifl locations

0 25 50 100 Kiometers
Lot

(a) (b)

Fig. 8 a Shape and monitoring locations and b ten sub-catchments of the Altamaha River (Telci and Aral
2011)

(b)

Fig. 9 Two sets of scan clusters for spatial scanning: a non-overlapped clusters (consistent with the 10
sub-catchements of the Altamaha river network); b overlapped clusters. Red stars represent possible spill
locations

6.2 Results of the water quality monitoring application

Here we present results of the application of LR-F-MCUSUM and LR-RD-MCUSUM
charts to online detection of contaminant spills in the Altamaha river network. Among
the 100 nodes on the river network, 10 of them are used as potential contaminant spill
locations, which are marked as red stars in Fig. 9, and the remaining 90 nodes are
used for collecting measurements every 15 min. In each replication, we run SWMM
to simulate the river network during a 10-day period. A single instantaneous spill with
a spill location randomly selected from one of the ten possible locations is generated.
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Table 4 Detection performance (ARL1) obtained using the non-overlapped (NOV) and overlapped (OV)
sets of scan clusters. Numbers in parentheses are standard error of ARLs

Intensity ARL False alarm Fail to detect
F RD F (%) RD (%) F (%) RD (%)

NOV

Low 40.68 (4.11) 46.91 (4.60) 7 7 8

Medium 30.11 (2.31) 33.45 (2.90) 7 7

High 23.79 (1.39) 25.65 (1.68) 9 7 0
ov

Low 36.45 (3.73) 39.16 (4.22) 8 9 4 8

Medium 33.09 (2.54) 30.44 (2.26) 4 3 1

High 27.30 (2.76) 27.68 (2.43) 4 3 1

The spill starting time is uniformly distributed between 15 and 20 h. The intensity
of the contaminant spills follows a uniform distribution, and we consider three dif-
ferent levels: U (10, 100) g/l (low), U (100, 250) g/l (medium), and U (250, 500) g/1
(high).

Since the Altamaha river network does not have a regular shape and the monitoring
stations are not located on the uniform grid, we do not use the circle shape clusters for
spatial scanning. Instead, we construct scan clusters based on locations of the sensors
and topology of the river network. Two sets of clusters are considered: (i) ten clusters
that are consistent with the ten sub-catchments of the Altamaha River and have no
overlap (Fig. 9a), and (ii) 18 clusters, some of which are partially overlapping (Fig. 9b).

For the LR-based MCUSUM charts, we set a minimum size of change that we aim
to detect to be 0.05 g/l and use it to construct the post-change mean vectors, i . and
i, . In order to conduct a fair comparison, the thresholds for both LR-F-MCUSUM
and LR-RD-MCUSUM charts are adjusted so that the in-control average run lengths
are 10 days (960 samples).

We generate 300 simulated contaminant spills (100 spills in each level of intensity).
Detection performances of the two methods using the two sets of scan clusters are sum-
marized in Table 4. From Table 4, we can observe that the ARL performances of the
two methods are consistent with our analysis in the previous sections: the chart using
full observations achieves a slightly smaller ARL. A further detailed comparison is
presented in Table S2 from Section A5 of the online supplement. The table shows that,
almost under all settings, the percentage of cases where the LR-RD-MCUSUM chart
performs no worse than (performs better than or similarly with) the LR-F-MCUSUM
chart is higher than 60%. We conclude that the RD-based charts show very competitive
performances in practice. Given that the RD-based charts enjoy distributed computing
with a little loss in ARL performances, they should be considered as a good alterna-
tive or even a better option for large-scale sensor networks, especially when the full
covariance matrix is ill-conditioned.
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7 Conclusion

We study the reduced-dimension control charts for spatio-temporal surveillance in
the presence of various spatial covariance structures. The reduced-dimension charts
perform spatial scanning by breaking the entire monitoring area into overlapping
clusters as well as computing the detection statistics locally while incorporating local
covariance. In the presence of high-dimensional data streams, the reduced-dimension
approach enjoys lower communication complexity and better numerical stability. More
specifically, provided that a set of possible shift radii is fixed (because the set depends
on a shift type rather than the size of a monitored area), the dimension-reduced
charts have a computation time that is proportional to p, while the computation
time of the full-observation charts increases proportional to p>. We also study the
loss and gain in quantified performance on account of ignoring full spatial covari-
ance through systematic theoretical and numerical studies. Considering the benefits
of dimensionality reduction, the RD charts can be a powerful and cheaper alternative to
the full-observation charts in high-dimensional problems, especially when the inver-
sion of the full-size matrix is a computational bottleneck or when a full-size covariance
matrix is ill-conditioned. Finally, it should be noted that our results hold under a small
spatial correlation (up to 0.3). Moreover, observation vectors are assumed to be tempo-
rally independent, which would be a reasonable assumption when observation vectors
are sufficiently spaced out in time.
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