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PHYSICS

Coupling ultracold matter to dynamical gauge fields
in optical lattices: From flux attachment to

7, lattice gauge theories

Luca Barbiero’, Christian Schweizer>>#, Monika Aidelsburger>**, Eugene Demler’,

Nathan Goldman’', Fabian Grusdt*>%*

From the standard model of particle physics to strongly correlated electrons, various physical settings are for-
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mulated in terms of matter coupled to gauge fields. Quantum simulations based on ultracold atoms in optical
lattices provide a promising avenue to study these complex systems and unravel the underlying many-body
physics. Here, we demonstrate how quantized dynamical gauge fields can be created in mixtures of ultracold
atoms in optical lattices, using a combination of coherent lattice modulation with strong interactions. Specifically,
we propose implementation of 7, lattice gauge theories coupled to matter, reminiscent of theories previously
introduced in high-temperature superconductivity. We discuss a range of settings from zero-dimensional toy
models to ladders featuring transitions in the gauge sector to extended two-dimensional systems. Mastering
lattice gauge theories in optical lattices constitutes a new route toward the realization of strongly correlated
systems, with properties dictated by an interplay of dynamical matter and gauge fields.

INTRODUCTION

Gauge fields play a central role in a wide range of physical settings: The
interactions in the standard model are mediated by gauge bosons, and
everyday phenomena related to electromagnetism are governed by
Maxwell’s equations featuring a gauge symmetry. The presence of
strong magnetic fields can lead to strong alterations of the behavior
of interacting many-body systems; for example, in the fractional quan-
tum Hall (FQH) effect, the statistics of elementary excitations can be
transmuted from fermionic to bosonic or to neither of both (anyonic)
(1). Last, gauge theories even play a role in strongly correlated quan-
tum systems, where local constraints lead to emergent gauge symme-
tries at low energies; for example, frustrated quantum spin liquids can
be classified by their corresponding gauge theories.

The realization of artificial gauge fields in ultracold gases is an
important milestone, enabling studies of the interplay between gauge
fields and strong interactions in quantum many-body systems. This
feat has further promoted these quantum-engineered systems as ver-
satile quantum simulators (2, 3). While a synthetic magnetic field can
be simply introduced by rotating atomic clouds (4, 5), more sophisticated
schemes were developed to generate a wide family of gauge field
structures, including spin-orbit couplings (6) or patterns featuring
staggered magnetic fluxes with alternating signs on a length scale given
by the lattice constant (7-9). The design of magnetic fluxes for ultra-
cold atoms in optical lattices, through laser-induced tunneling or
shaking methods, has been recently exploited in view of realizing
topological states of matter (10, 11) and frustrated magnetism (8).
In the settings described above, artificial gauge fields are treated as
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classical and nondynamical; however, in the sense that they remain
insensitive to the spatial configuration and motion of the atomic
cloud, these engineered systems do not aim to reproduce a complete
gauge theory, where particles and gauge fields influence each other.

To be able to use ultracold atoms and simulate a wider range of
physical problems, including those from high-energy physics, two
major steps need to be taken. First, the synthetic gauge fields need to be
made intrinsically dynamical, allowing back-actions of the particles on
the gauge field. For example, the strength of the synthetic magnetic
field may depend explicitly on the local particle density. In a second
step, the dynamics of the synthetic gauge fields needs to be constrained
to fulfill certain local symmetries. Therefore, the synthetic gauge field
interacts with the matter particles, but each lattice site is also asso-
ciated with a separately conserved charge. Theories of this type are
called lattice gauge theories (LGTs), and the detailed conservation laws
they satisfy depend on the respective gauge group (12). The simplest
instant of an LGT has a Z,, or Ising, gauge group, but in the presence
of fermionic matter, even this model poses a substantial theoretical
challenge (13).

Various theoretical works have already suggested several methods
by which synthetic gauge fields can be made intrinsically dynamical. A
first approach builds on the rich interplay between laser-induced
tunneling and strong on-site interactions, which can be both present
and finely controlled in an optical lattice (3): Under specific condi-
tions, the tunneling matrix elements, which not only describe the
hopping on the lattice but also capture the presence of a gauge field,
can become density dependent (14-18); see (19) for an experimental
implementation of these density-dependent gauge fields. While these
settings include rich physics, they lack local conservation laws and thus
still differ significantly from problems relevant to, e.g., high-energy
physics.

A second approach aims at directly implementing genuine LGT's
with local conservation laws, such as the Kogut-Susskind or quantum
link models. This can be achieved, in principle, by engineering specific
model Hamiltonians through elaborate laser-coupling schemes involv-
ing different atomic species and well-designed constraints; see (20-22)
for reviews and (23) for an ion trap realization of the Kogut-Susskind
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Hamiltonian. A digital implementation of Z, LGTs, including couplings
to fermionic matter, was proposed in (24). These quantum simulations
of LGTs aim to deepen our understanding of fundamental concepts
of gauge theories (20-23, 25), such as confinement and its interplay
with dynamical charges, which are central in high-energy (26) and
condensed-matter physics (13, 27, 28) and go beyond a mere density
dependence of synthetic gauge fields. While important first steps have
been taken, the direct quantum simulation of LGTs is still in its infancy.
The implementations proposed so far still contain significant technical
challenges that need to be overcome, making alternative implementa-
tion schemes desirable.

In this work, we demonstrate how Z, LGTs can be realized in ul-
tracold gases through the use of specifically designed density-
dependent gauge fields. Our approach combines the experimental
advantages afforded by settings with density-dependent synthetic
gauge fields and the additional physical structure added by the pres-
ence of local conservation laws. We demonstrate how existing ultra-
cold atom technology can be used to implement toy models relevant
to both high-energy and condensed-matter physics, and describe how
the procedure can be scaled up to transition from simplistic two-site
models to two-dimensional (2D) systems with direct relevance to
studies of, e.g., high-temperature superconductivity (13).

As a central ingredient, we devise a scheme to engineer flux attach-
ment for cold atoms moving in an optical lattice. Originally intro-
duced by Wilczek (29, 30), and then widely exploited in the context
of the FQH effect (1), flux attachment is a mathematical construction
according to which a certain amount of magnetic flux quanta is
attached to a particle (e.g., an electron). The resulting composite “flux
tube particle” can change its quantum statistics from bosonic to fer-
mionic, or vice versa (30), and naturally appears in field theoretical
formulations of FQH states (I). Specifically, we show that an optical
lattice loaded with two atomic species (a and f) can be configured in
a way that a localized f-particle becomes a source of magnetic flux
@ for the a-particle: The magnetic flux can thus effectively be
attached to the f-particles, which are also allowed to move around
the lattice (see Fig. 1A). (Cases with only one species, more closely
related to the FQH effect, can also be considered.) The flux attachment
scheme is our starting point for implementing Z, LGTSs using ultra-
cold atoms.

For specific choices of parameters and carefully designed lattice
geometries, we first show that this appealing setting can be readily
used to implement interacting quantum systems with Z, link variables
and global Z, gauge symmetries. Then, we demonstrate that our method
can also be extended to systems with local symmetries, realizing gen-
uine Z, LGTs (26) in various lattice geometries. These latter types of
models, where the matter field couples to a Z, lattice gauge field, are
especially relevant in the context of high-T. superconductivity (13, 31)
and, more generally, strongly correlated electrons (32-34). A central
question in this context concerns the possibility of a confinement-
deconfinement transition in the LGT (12), which would indicate
electron fractionalization (13, 35, 36). The proposed model will allow
us to explore the interplay of a global U(1) symmetry with local Z,
symmetries, which has attracted particular attention in the context of
high-T. cuprate compounds (34, 37, 38).

We discuss in detail the physics of a toy model characterized by a
global U(1) x Z, symmetry, which consists of a two-leg ladder geom-
etry and can be directly accessed with state-of-the-art cold atom
experiments. We demonstrate that the toy model features an intricate
interplay of matter and gauge fields, as a result of which the system
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undergoes a phase transition in the Z, sector depending on the ratio
of the species-dependent tunnel couplings ¢/ t/ (see Fig. 1B). While this
transition can be characterized by the spontaneously broken global Z,
symmetry, we argue that an interpretation in terms of the constituents
of a Z, LGT (see Fig. 1C) is nevertheless useful to understand its mi-
croscopic origin. We also predict a phase transition of the matter field
from an insulating Mott state to a gapless superfluid (SF) regime, as-
sociated with the spontaneously broken global U(1) symmetry. For
appropriate model parameters, an interplay of both types of transi-
tions can be observed.

The paper is organized as follows. We start by introducing the flux
attachment scheme, which is at the heart of the proposed experimental
implementation of dynamical gauge fields. Particular attention is
devoted to the case of a double-well system, which forms the common
building block for realizing Z, LGTs coupled to matter. Next, we study
the phase diagram of a toy model with a two-leg ladder geometry, con-
sisting of a matter field coupled to a Z, gauge field on the rungs. Realistic
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Fig. 1. Flux-attachment and dynamical gauge fields with ultracold atoms. (A) We
propose a setup where one atomic species f becomes a source of magnetic flux
@ (red) for a second species a. Both types of atoms undergo coherent quantum
dynamics, described by NN tunneling matrix elements t“ and t’, respectively. (B) When
realized in a ladder geometry, the flux attachment setup has a Z, lattice gauge
structure. By tuning the ratio of the tunneling elements t*/t, we find that the sys-
tem undergoes a phase transition. The two regimes can be understood in terms of
the elementary ingredients of a Z, LGT, summarized in (C). The matter field a has a
7, charge given by the parity of its occupation numbers A°. It couples to the 7,
gauge field ‘E<Zi,i>' defined as the number imbalance of the f-particles between differ-
ent ends of a link. When |t9]«|t’|, the ground state is dominated by tunneling of
the f-particles, realizing that eigenstates of the Z, electric field 17; ; delocalized over
the link. In the opposite limit, |t?|>|t|, the tunneling dynamics of the a-particles
prevails and the system realizes eigenstates of the Z, magnetic field Bp, defined as a
product of the gauge field %} over all links £ € dp along the edge of a plaquette p.
The Z, magnetic field introduces Aharonov-Bohm phases for the matter field,
which are 0 () when the f particles occupy the same (different) leg of the ladder,
ie, if B, =1 (B, = —1). The quantized excitations of the dynamical gauge field cor-
respond to Z, vortices of the Ising gauge field, so-called visons.
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implementations of the considered models are proposed afterward,
along with a scheme for realizing genuine Z, LGTs with local instead
of global symmetries in two dimensions. This paves the way for future
investigations of strongly correlated systems, as discussed in the sum-
mary and outlook section.

The minimal model of a Z, LGT coupled to matter proposed here
has been realized experimentally in a double-well system (39). Besides,
density-dependent Peierls phases have been realized with two-
component fermions in (40), based on a two-frequency driving
scheme, which is proposed below as an ingredient to implement Z,
LGTs in extended lattices.

RESULTS

Flux attachment

The recent experimental implementations of classical gauge fields
for ultracold atoms (41-45) combine two key ingredients (46): First,
the bare tunnel couplings t are suppressed by large energy offsets
| A| > t, realized by a magnetic field gradient or a superlattice
potential. Second, tunneling is restored with complex phases ¢ by
proper time modulation of the optical lattice (47, 48) at the resonance
frequency ® = A (with # = 1 throughout). The phase of the lattice
shaking directly determines the value ¢ of the complex hopping
element.

Flux attachment operates in a strongly correlated regime, where
the energy offsets A = » from an external potential are supplemented
by interspecies Hubbard interactions of the same magnitude, U = @
(49). This provides coherent control over the synthetic gauge fields
induced by the lattice modulation at frequency ® [see also (14-18)].

We consider a situation where atoms of a first species, with annihi-
lation operatorsa, represent a matter field. The atoms of the second type,
associated with annihilation operators f will become the sources of syn-
thetic magnetic flux for the matter field (see Fig. 1A). Namely, the
magnetic flux felt by the a-particle, as captured by its assisted hopping
over the lattice, is only effective in the presence of an f-particle. To avoid
that—vice versa—the f-particles become subject to magnetic flux cre-
ated by the a-particles, static potential gradients affecting only the
f-particles are used. In the following, we assume that both atomic
species are hard-core bosons, although generalizations are possible,
for instance, when one or both of them are replaced by fermions.
Model
The largest energy scale in our problem is set by strong interspecies
Hubbard interactions

7'Zint - UZ A;Tcl'; (1)

J

where fa]“f denote the density operators of a- and f-particles on lattice
site j. To break the symmetry between a- and f-particles, we introduce
state-dependent static potentials V,,(j), where a = a, f. We assume that
the corresponding energy offsets between nearest-neighbor (NN)
lattice sites i and j are integer multiples m; , € Z of the large energy
scale U, up to small corrections |3V | <U, which are acceptable,
namely

Z',j) = Vo(i) — Vu(j) = mg,pU (2)

A minimal example is illustrated in Fig. 2A.
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Coherent dynamics of both fields are introduced by NN tunneling
matrix elements in the p = x, y directions, t7, respectively. Thus, the
free part of the Hamiltonian is

Ho=— 2 X

H=x,p (i

+Z[

[t“a*&, i f+ h.c.}
i + Vs ()i | (3)

where (i, j),, denotes a pair of NN sites along direction p. Tunnel cou-
plings are initially suppressed by the external potentials A* = m*Uand
the strong Hubbard interactions

U> |t (4)

To restore tunnel couplings with complex phases, we include a
time-dependent lattice modulation

ﬂw(t) = ; V(D(j7 t)(&;&] + f;f]) (5)

It acts equally on both species and is periodic in time, V,,(j, t + 2m/®) =
Ve(j, 1), with frequency o = U resonant with the interspecies interac-
tions. In summary, our Hamiltonian is

H(t) = Ho + Hint + Ho(t) (6)
Effective hopping Hamiltonian

From now on, we consider resonant driving, U = &> | t“ |, where
the lattice modulation H,(t) in Eq. 5 restores, or renormahzes, all
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C Z5 minimal coupling
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Fig. 2. Z, LGT in a two-well system. (A) We consider a double-well setup with
one atom of each type, a and f. Coherent tunneling between the two orbitals at j;
and j, = j; + e, is suppressed for both species by strong Hubbard interactions U =
o, and for f-particles by the energy offset A = o indicated by the blue triangle. (B)
Tunnel couplings can be restored by resonant lattice modulations with frequency w.
The sign of the restored tunneling matrix element is different when the a-particle
gains (top) or loses (bottom) energy. (C) This difference in sign gives rise to a Z, gauge
structure and allows the implementation of Z, minimal coupling of the matter fielda
to the link variable defined by the f-particles. The action of this term in the effective
Hamiltonian acting on a basis state (left) is illustrated. The strength of the Z, electric
field is indicated by the thickness of the blue line connecting the two sites of the
double-well system. The minimal coupling term is the common building block for
realizing larger systems with a Z, gauge structure. (D) These systems are character-
ized by a symmetry G associated with each lattice site j. Here, G,- commutes with the
Hamiltonian and consists of the product of the Z, charge, Oi = (—1)@"', and all
electric field lines—for which 1* = —1—emanating from a volume around site j.
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tunnel couplings of a- and f-particles. As derived in Materials and
Methods, we obtain an effective hopping Hamiltonian to lowest
order in 1/®

e = — ata. 1975
Her = u:z.;c,m%,. [tﬁai% My, € b
/\T/\ ~ .AH‘ i
+ l{fifj A?Lﬁ“ i 4 h.c.} (7)

The Hermitian operators 7\4<t P and ¢ (p<, P (A" ét Jﬁ and (9<t j Tespec-
tively) in Eq. 7 describe the renormalization of the tunne ing ampli-
tudes and phases for a (respectively f) particles; they are mutually
commuting and depend only on the number imbalance fl{ - fz{ (re-
spectively if — 7f) associated with the respective complementary spe-
cies. Our result in Eq. 7 is reminiscent of the models discussed in (17).

Explicit expressions for’,§, A, and 6 can be obtained by considering
their matrix elements on the relevant many-body states | y,) and | y,)
in the Fock basis that are involved in the various hopping processes.
For an a-particle transitioning from state | ;) to | y,), corresponding
to a relative potential and/or interaction energy offset A, = n,,® with
integer n,, € Z, the matrix elements are given by

<‘|fr | a:r (’]) | \Vs> | Jn,s (x) | (8)

Here [, denotes the Bessel function of the first kind, x = A; j/o is
the dimensionless driving strength, and

Vol(i,t) —

Vo(j:t) = Aijcos(ot + 0, ;) 9)

Without loss of generality, we assume w, A;; > 0 throughout the
paper.

The complex phases of the restored tunnelings are also determined
by the many-body energy offsets A,; = n,. If n,; > 0, the particle
gains energy in the hopping process and

Sto ol

<Wr | a; a]“P(z])u |WS> = (10)

| Ny | ¢i,j

In contrast, if n,; < 0, the particle loses energy and

<\|!r ‘ &T&](b(;])“ | WS> =

|nrs| (n_q)i.j) (11)
In this case, there is an additional n,m phase shift due to the
reflection properties of the Bessel function, J,(-x) = (=1)"J,,(x) (see
Fig. 2B). This n,, 7 phase shift is at the core of the LGT implementa-
tions discussed below. Similar results are obtained for A(; and 9<, P
by exchanging the roles of a and f (see the “T'wo-particle two site pro-
blem” section in Materials and Methods). Note, however, that the
symmetry between a and f can be broken by a careful design of the
potentials V,, and V, and this will be exploited in the next paragraph.
As illustrated in Fig. 1A, our scheme allows us to implement
effective Hamiltonians (Eq. 7) describing a mixture of two species,
where one acts as a source of magnetic flux for the other [see also (17)].
A detailed discussion of the resulting Harper-Hofstadter model with
dynamical gauge flux is provided in section S1. By analogy with the
physics of the FQH effect (50, 51), we expect that this flux attachment
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gives rise to interesting correlations and possibly to quasiparticle ex-
citations with nontrivial statistics.

7, LGT in a double well

Now, we apply the result in Eq. 7 and discuss a minimal setting, where
one a-particle and one f-particle each tunnel between the two sites
jiandj, =j; + e, of a double-well potential (see Fig. 2A); e, denotes
the unit vector along y. This system forms the central building block
for the implementation of Z, LGTs in larger systems, proposed be-
low. We assume that V,(j;) = 0 for i = 1,2 but introduce a potential
offset Vi(j,) = N+ Vi(j1) for the f species, breaking the symmetry
between a- and f-particles.

Effective Hamiltonian. For A' = U = o and lattice modulations
with a trivial phase ¢;,;, = 0, the effective Floquet Hamiltonian in
Eq. 7 becomes

Fuell — —V & >(a aj +h.c. ) - tﬁA%é‘jle) (12)
with notations defined as follows. We describe the f-particle by a
pseudo-spin-}

e _af  of
iy = My, = My

il + il =1 (13)
which becomes a link variable in a Z, LGT (see Fig. 1C). The Pauli
matrix T; ;= (f ) f + h.c.) describes tunneling of the f-particle.

As shown in F1g 2B, the interaction energy of the matter field
changes by +U in every tunneling event. As a result, the amplitude
renormalization in Eq. 12 is M = | Ji( Jz’h/“),)J (see Eq. 8), and the
phase of the restored tunnel couplings is ¥ = 1; ; , by Egs. 10
and 11. Because the f-particle is subject to an addltlonal potential
offset A = U between the two sites, its energy can only change by 0 or
2Uin a tunneling event. Hence, the phase of the restored tunneling
in Eq. 12 is trivial, & = 0 as in Egs. 10 and 11, but the amplitude
renormalization

A jO( ]211/(,0)11 +(72( JzJ1/w)ﬁ;2 (14)

depends on the configuration of the a-particle in general.
The effective Hamiltonian (Eq. 12) realizes a minimal version of a Z,

LGT: Thelink variablet; ; , =~ ¢inl provides a representation of the dy-

namical Z, gauge field A, which is quantized to 0 and 1. The cor-
responding 7, electric field is given by the Pauli matrix T; ,,, defining
electric field lines on the link. The Z, charges Q > defined on the two sites
jiwith i = 1, 2, are carried by the a-particle, Q] = exp(mn ) These in-
gredients are summarized in Fig. 1C and justify our earher notion that
the a- and f-particles describe matter and gauge fields, respectively. The
Hamiltonian in Eq. 12 realizes a minimal coupling (12) of the a-particles
to the gauge field (see Fig. 2C).

Symmetries. Each of the two lattice sites j; is associated with a Z,
symmetry. The operators generating the Z, gauge group in the
double-well system

(15)

2well]

8 =Q; T, i=12
both commute with the effective Hamiltonian in Eq. 12, [g;,
0fori=1,2. This statement is not entirely trivial for the first term in

Eq. 12: While 7j; ; , and a a . aj, do not commute with T; ; , and Q]
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individually, their product commutes withg . The second term in Eq. 12
trivially commutes with g, because [A, Q]] = 0 (see Eq. 14).

Phy51cally, Eq. 15 establishes a relation between the Z, electric field
lines, t7° —1, and the Z, charges from which they emanate (see
Fig. 2D5 Note that the eigenvalues of ¢, and g, are not independent,
because g,¢, = —1 for the considered case with a single a-particle
tunneling in the double-well system.

The model in Eq. 12 is invariant under the gauge symmetries g;
for all values of the modulation strength A; ,; . In general, both terms
in the effective Hamiltonian couple the Z, charge to the gauge field.
An exception is obtained for lattice modulation strengths A; ,; /o =
Xo, for which

To(%02) =

jz(xoz) (16)

In this case, neither of the amplitude renormalizations

]\ —>A()2 = j()(X()z) ~0.32 (17)

(18)

is operator valued, and the second term in the Hamiltonian only in-
volves the Z, gauge field. The weakest driving for which Eq. 16 is
satisfied has xq, =~ 1.84.

Intuition. We take this opportunity to explain in a mechanistic
way the meaning of the Z, gauge field in the double-well system and
its relation to more general LGTs. As a starting point, consider the
situation when t}’: = 0 and the f-particle is localized. Depending on
the position of the f atom (left or right), the restored tunneling am-
plitude of the a-atom between the two sites has a sign +1. Formally,
this corresponds to the appearance of the factor 7(; i = — 7 in
the first term on the left hand side of Eq. 12. At tfns point, we have
realized a synthetic gauge field A;, ;) for the a-atoms, which de-
pends on the density of the f~atoms. That is, the general tunneling
matrix element of the a-particles, f;ei"‘ﬂﬁzil), has a phase mcAj,j,) de-
pending on the f-density.

The two possible states of the link variable, corresponding to the
two positions j; and j, of the f atom, define a 2D Hilbert space on
the link (j,, ;). This Hilbert space is equivalent to the Hilbert space of
a Z, lattice gauge field, with two orthogonal states on each link of the
lattice. Using this language, we can identify the operator t; ; , witha
Z, gauge field. It does not commute with the correspondmg Z,
electric field operator, T; (s, , which corresponds physically to the
coherence of the f~atom between the two sites j, and jj;. This non-
commutativity is related to the noncommutativity of the conjugate
electric and magnetic fields & and B in quantum electrodynamics.
Because of the small Z, gauge group, the Z, electric field only takes
two possible quantized values: r" = 1. The eigenstates corre-
spond to even and odd superposmons of the f~atom on the two lattice
sites: (f1 ££1)10)/2.

If we allow to add arb1trary perturbations to the tunneling
Hamiltonian, e.g., terms &, ) T, ©OF BZT , we can introduce non-
trivial dynamics of the synthetic gauge ti fz efd While this renders the
density-dependent synthetic gauge field dynamical, it does not cor-
respond to a Z, LGT in the strict sense, since local conservation
laws are generically absent. These situations, without local conser-
vation laws, lead to interesting physics nonetheless and have been
studied for example in the context of the so-called Z, Bose-Hubbard
model (52, 53).

N = 7\,02 = j] (.XQz) ~ 0.58
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A genuine Z, LGT is obtained if only terms are included in the
Hamiltonian, which commute with the Z, gauge operatorsg;in Eq. 15.
In particular, this includes the term t Ar< , on the right hand side
of Eq. 12 or 51mpler terms such as ty lfhese are the Z, analogs
of terms ~E* in the Hamiltonian of quantum electrodynamics, with-
out the square due to the simpler nature of the Z, gauge group. In the
double-well system, the Z, gauge symmetry leads to two decoupled
sectors of the Hamiltonian with gy = —gp =1 and g = —g» = 1. As
will be shown later, however, in extended systems, each lattice site is
associated with its own conserved charge. This has important
consequences for the possible many-body phases (12).

Matter gauge field coupling in two-leg ladders
In the following, we study the physics of coupled matter and gauge
fields in a two-leg ladder, accessible with numerical density matrix
renormalization group (DMRG) simulations (54). Our starting point
is a model with minimal couplings to the Z, gauge field on the rungs
of the ladder, which is characterized by a global U(1) x Z, symmetry
(see Fig. 3A). Here, we study its phase diagram. As explained later,
the model can be implemented relatively easily in existing ultracold
atom setups by coupling multiple double-well systems, which is our
main motivation for studying its phase diagram.
The model
We combine multiple double-well systems (Eq. 12) to a two-leg ladder
by introducing tunnelings ¢ of the matter field along x. Furthermore,
we impose that the f-particles can only move along the rungs, t, = 0,
and each rung is occupied by one f-particle. Thus, we can continue
describing the f degrees of freedom by link variables 7(; 5 , as defined
in Eq. 13. The number of a-particles N, will be freely tunable.
Effective Hamiltonian. For a properly designed configuration of
lattice gradients and modulations, presented in detail later, we obtain
an effective Hamiltonian

7:{21eg:7 z <t 7»<1]>aa,+hc>
(i)
+ A
{ty“x (aatf,> +hc)

-
(i
JAY  ax
+ tyA<ij>),T<iJ>},}

(19)

Expressions for the amplitude renormalizations A” € R and LA
are provided in section S2B.

For the specific set of driving strengths x = x, that we encountered
already in the double-well problem (see Eq. 16), we ﬁnd that A” only has
a weak dependence on the Z, charges, Q; = (— 1)"/" Similarly, the am-
plitude renormalization A depends weakly on the 7, magnetic field B,
only; here

By=I1 %y, (20)

(ij),<op

is defined as a product over all links (i, j), on the rungs belonging to the
edge dp of plaquette p. Hence, for these specific modulation strengths

[A<t]> ’ Ql] [ i)y’ ‘C<k l>} 0 (21)

3 x ~ _TAx ~(F))
Wijer Ql = M58 1 =0
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Symmetries. Now, we discuss the symmetries of the effective
Hamiltonian (Eq. 19) at the specific value of the driving strengths x,.
In the case of decoupled rungs, i.e., fort! = 0, every double well com-
mutes with ¢, i = 1, 2 from Eq. 15. These symmetries are no longer
conserved for t{ # 0; in this general case, a global Z, gauge symmetry
remains

(23)

with g, (je,) = (—1)e+ver Tje, +e, je), and for V\ihlch V? = 1. Using
Egs. 21 and 22, one readily confirms that [Fateg, Vi] = 0fori=1,2.

In summary, the effective model is characterized by the global U
(1) symmetry associated with the conservation of the number of a-
particles and the global Z, symmetry V. Note that the second Z,
symmetry, V, follows as a consequence of combining V, with the global
U(1) symmetry: By performing the global U(1) gauge transformation
4j — —aj for all sites j, V, is obtained from V. Thus, the overall
symmetry is U(1) x Z,.

Physical constituents. In the following, we will describe the physics
of the ladder models using the ingredients of Z, LGT's (see Fig. 1C).
The quantized excitations of the Z, lattice gauge field are vortices of
the Z, (or Ising) lattice gauge field, so-called visons (13). They are
defined on the plaquettes of the ladder: If the plaquette term in Eq. 20
is B, = 1, there is no vison on p; the presence of an additional Z, flux, B, =
-1, corresponds to a vison excitation on plaquette p. Since the matter
field a couples to the Z, gauge field, the resulting interactions with the
visons determine the phase diagram of the many-body Hamiltonian.
Quantum phase transitions of matter and gauge fields
We start from the microscopic model in Eq. 19 and simplify it by
making a mean field approximation for the renormalized tunneling
amplitudes, which depend only weakly on Q] and B 5. Replacing them

A B B [} @|Superfluid  Rung Mott
) I 2900 )
= G
15) = = 5 °
Magnetic field Oo
ﬁfg dominates § §
> S
= o
0.5+ Electric field =
dominates = 9
0 5 = 5
0 0.5 1 1.5 2

Boson density N, /L,

by C-numbers, 4 = t4(1"), ?5 = tﬁ(f\y% and # = tJ)’ leads to the
conceptually simpler Hamiltonian

-2

Ci)x

- (l% [ ( Tfu)

illustrated in Fig. 3A. Later, by introducing a more sophisticated driv-
ing scheme, we will show that this model can also be directly imple-
mented using ultracold atoms. The simpler Hamiltonian (Eq. 24) has
identical symmetry properties as Eq. 19. Now, we analyze Eq. 24 by
means of the DMRG technique. In the phase diagram, we find at least
three distinct phases, resulting from transitions in the gauge and mat-
ter field sectors (see Fig. 3B). Here, we describe their main features; for
more details, the reader is referred to section S4.

Transition in the matter sector. First, we concentrate on the con-
ceptually simpler phase transition taking place in the charge sector.
When the tunneling along the legs is weak, £ < [(tf )+ (t ) 212
tf and the number N, of a-particles is tuned, we observe a pronounced
rung-Mott phase (55) at the commensurate filling N, = L,, where L,
denotes the total number of rungs in the system. Similar to the anal-
ysis in (56-58), this phase can be characterized by the parity operator

0,(1) = <exp {iﬂj; (”J T ecre, IZ_>}>

In the limit /= L, and L, — o, the observable O,(/) remains finite
only in the Mott insulating regime. Our results in Fig. 4A confirm
that O, takes large values with a weak size dependence for N, = L,.
On the other hand, when N,,/L, # 1 is slightly increased or decreased,
the parity O, immediately becomes significantly smaller and a more

,}A_{simp _

2leg

(a a,—i—hc)

+he) + 1, | (24)

(25)

. Scenario | n Scenario 1
) 5, SF :‘
c
o . . .
(%] I [
-2 2 b=
@ ©
'8 £ £
o s o
o ] SF ]
§ < SF /el i<
o} mag. v ;
o Pure gauge Pure gauge
=
9]
2 D Matter field 2D Zy LGT
3 coupling constant
c Charge .
S 8 condensate Lo Vison condensate
- b=
©
2 E
> g '
Gapped visons 3 Topologically Electric field Energy per Z>
ordered dominates electric field line
Pure gauge

Fig. 3. Coupling matter to a Z, gauge field in a two-leg ladder. (A) We consider the Hamiltonian (Eq. 24) describing a-particles that are minimally coupled to the Z,

gauge field 17;;

, ON the rungs of a two-leg ladder. (B) The phase diagram, obtained by DMRG simulations at f‘;/ff = 0.54, contains an SF-to-Mott transition in the charge

sector at a commensurate density of the matter field, N, = L,. In addition, we find a transition in the gauge sector, from an ordered region with a broken global Z,
symmetry where the Z, magnetic field dominates and the vison excitations of the gauge field are gapped (red) to a disordered regime where the Z, electric field is
dominant and visons are strongly fluctuating in a condensed state (blue). Along the hatched lines at commensurate fillings N,/L, = 1/2,1, 3/2, insulating CDW states
could exist, but conclusive numerical results are difficult to obtain. (C) The conjectured schematic phase diagram of Eq. 24 is shown in thep — f; plane, where p denotes
the chemical potential for a particles and 2?; corresponds to the energy cost per Z, electric field line along a rung. Two scenarios are realized in different parameter
regimes: In scenario |, the interplay of gauge and matter fields prevents a fully disordered Mott phase, whereas the latter exists in scenario Il. The behavior in scenario |
resembles the phase diagram of the more general 2D Z, LGT (13, 26-28) sketched in (D). In our DMRG simulations here, as well as in the following figures, we keep up
to 1400 DMRG states with five finite-size sweeps; the relative error on the energies is kept smaller than 1077,
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pronounced L, dependence is observed, consistent with a vanishing
value in thermodynamic limit as expected for an SF phase.

For larger values of 4 and N, = L,, no clear signatures of a rung-
Mott phase are found (see section S4B): The parity operator O, takes
significantly smaller values, the calculated Mott gap becomes a small
fraction of £%, consistent with a finite-size gap, and we checked that the
decay of two-point correlations follows a power-law at long distances
until edge effects begin to play a role. These signatures are consistent
with an SF phase.

Because of the global U(1) symmetry of the model, an SE-to-Mott
transition at N, = L, in the quasi-1D ladder geometry would be of
Berezinskii-Kosterlitz-Thouless (BKT) type (59). Hence, the gap is
strongly suppressed and the correlation length is exponentially large
close to the transition point, making it impossible to determine con-
clusively from our numerical results whether the ground state is a
gapped Mott state in this regime. For hard-core bosons on a two-leg
ladder, this scenario is realized: It has been shown by bosonization that
an infinitesimal interleg coupling is sufficient to open up an exponen-
tially small Mott gap (55, 60).

Similar considerations apply at the commensurate fillings N,/L, =
1/2, 3/2, where previous work on single-component bosons in a two-
leg ladder (60) pointed out the possible emergence of an insulating
charge density wave (CDW) for large enough f;‘ /1% (hatched areas
in Fig. 3B). Our numerical results indicate that these CDWs may exist
in this regime also in our model (Eq. 24). But since the numerical anal-
ysis is plagued by a potentially even larger correlation length and a
corresponding strongly suppressed Mott gap, it is difficult to pinpoint
the exact location of this BKT transition.

The SF phase observed at incommensurate filling fractions is char-
acterized by a power-law decay of the Green’s function(a, e, d0)=d" 1/4K
in the charge sector. The exponent is related to the Luttinger parameter K,
which approaches K — 1/2 at a transition to the rung-Mott phase for
commensurate filling. We confirm this behavior and obtain qualitatively
identical results as in the case of a static gauge field (see section S4A for
details) (55).

A Charge sector

B Gauge sector

Transition in the gauge sector. In the gauge sector, described by
f-particles, we observe a phase transition when the ratios of the
tunnel couplings are tuned. In Fig. 4B, we tune f;‘ /1% while keeping
fﬁ /1 fixed. We find a transition from a symmetric regime where
(%Zl.d.y> =0 to a region with a nonvanishing order parameter
(%fi.ﬁy) # 0. Similar behavior is obtained when tuning t§ / t) while
keeping t; /1] fixed (see section S4E).

The observed transition is associated with a spontaneous breaking
of the global Z, symmetry (Eq. 23) of the model. The f-particles go
from a regime where they are equally distributed between the legs,
(T J>y> = 0, to a twofold degenerate state with population imbalance,
(tij,) 7O This behavior occurs in the insulating and SF regimes of the
charge sector, and it is only weakly affected by the filling value N,/L,
(see Fig. 3B).

The two phases are easily understood in the limiting cases. When
f}‘f = 0, the ground state is an eigenstate of the Z; electric field Tj; ;, on
the rungs, with eigenvalues 1. The Z, magnetic field is strongly fluc-
tuating, and no Z, electric flux loops exist. Thus, also the vison num-
ber is strongly fluctuating, and the state can be understood as a vison
condensate. In the opposite limit, when % — oo, the kinetic energy of
the matter field dominates. In this case, the Z, magnetic field is
effectively static, and its configuration is chosen to minimize the ki-
netic energy of the a-particles. This is achieved when the effective
Aharonov-Bohm phases on the plaquettes vanish, i.e., for Bp =1
(see Fig. 1C). In this case, vison excitations with B, = —1 (see Fig.
4C) correspond to localized defects in the system, which cost a finite
energy corresponding to the vison gap.

LGTs are characterized by Wilson loops (12). Their closest ana-
logs in our two-leg ladder model are string operators of visons

d
W(d) = ( TIBy ) = Gip, Tovdersioden,) (26)
=1

see Fig. 4D. In the disordered phase (electric field dominates), we
found numerically that W(d) — 0 when d — oo. Sufficiently far from

C Visons

no vison

Superfluid Rung/Mott Superfluid 0 8Vison condensate Gapped visons ” 1)|©|<ij> o visor
T ; I : ‘ T ‘ ‘ NN 75 Ry =1
~N v (1.3) (k1)
& 0.5 w0 Ly = 16| l .
E i _ 07 | Electric field Ly b L _
3 £ oD L, =20 domi Na| o vison
= 0.6 dominates AT 1w ey .
< 04} L,=2 oo G (@) T Theny = 1
© 05 ? o [
Bl . 3
S 03 = ¢ =12 _
o S 047 iomT N e D Wilson loops
£ 02 = o3} & 1 P
S k=] ~Z H AZ
o 02 6 IS P S W
£ 01874 : Magnetic field ]J i
‘“ 017 d° dominates
o od d
. . . Qo S eASF T ) N N
D6 0.8 1 1.2 14 08 09 1 11 12 13 W(d) = H By,
Boson density N, /L, ty/ts =

Fig. 4. Characterizing phase transitions of matter coupled to a 7, gauge field in a two-leg ladder. We consider the Hamiltonian from Eq. 24. (A) In the charge
sector, we observe transitions from an SF state, characterized by a vanishing parity correlator Op(Ly/2 — *0) — 0 in the thermodynamic limit, to an insulating rung-Mott
state at the commensurate filling N, = L,, characterized by O,(L,/2 — ) > 0 and exponentially decaying correlations. Here, we present exemplary results for f;’/ff =
and f;/ff(’ = 0.54. (B) In the gauge sector, we find a transition from a disordered phase, where the Z, electric field dominates, to a phase where the Z, magnetic field
dominates. In the second case, the order parameter <%f,-_j>y> + 0 corresponds to a spontaneously broken global Z, symmetry (23). In the two phases, the corresponding
vison excitations of the Z, gauge field (C) have different characteristics. The numerical results in (A) [respectively (B)] are obtained by considering periodic boundary
conditions (respectively L, = 96 rungs with open boundaries). (D) Analogs of Wilson loops W (d) in the two-leg ladder are string operators of visons.
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the transition, where finite-size effects are small, our data (see fig. S5)
show the expected exponential decay. In the ordered phase (magnetic
tield dominates), W(d) — W.. quickly converges to the nonzero value
We = (%fi j>)2 > 0 when d — . See section S3 (D and E) for more
details.

The qualitatively different behavior of the Wilson loop in the two
phases is reminiscent of the phenomenology known from the ubiqui-
tous confinement-deconfinement transitions found in (2 + 1) dimen-
sional LGTs (12, 13, 26): There, visons are gapped in the deconfined
phase and the Wilson loop decays only weakly exponentially with a
perimeter law; in the confining phase, visons condense and the Wilson
loop decays much faster with an exponential area law.

Our numerical results in Fig. 4B indicate that the phase transition
in the gauge sector is continuous. Beyond this fact, its nature is dif-
ficult to determine. The interactions between the 7, link variables are
mediated by the matter field, which has correlations extending over
many sites following either a power-law (in the SF regime) or featuring
exponential decay with a correlation length & > 1 (in the considered
Mott-insulating regions). On the one hand, this leads to relatively large
finite-size effects in our numerical simulations, which explains the
continuous onset of the transition in Fig. 4B. On the other hand, when
nonlocal Ising interactions mediated by the gapless matter field com-
pete with the transverse Z, electric field term Ociﬁ%’“l in the
Hamiltonian, a rich set of critical exponents can be expected (61).
For more details, see section S4E.

Interplay of matter and gauge fields. Last, we discuss the interplay
of the observed phase transitions in the gauge and matter sectors. To
this end, we find it convenient to consider the phase diagram in the
u — b, plane, where 1 denotes a chemical potential for the a-particles
and f)fj controls fluctuations of the Z, electric field. We collect our
result in the schematic plots in Fig. 3C: Deep in the SF phase, realized
for small p and N,/L, < 1,?; drives the transition in the gauge sector.
Because of a particle-hole symmetry of the hard-core bosons in the
model, similar results apply for large p and N,/L, > 1. On the other
hand, when £ is small, permitting a sizable Mott gap at commensurate
fillings, u drives the SF-to-Mott transition.

More interesting physics can happen at the tip of the Mott lobe
for commensurate fillings N, = L,. This corresponds to the hatched
regime in Fig. 3B, where we cannot say conclusively if the system is
in a gapped Mott phase. To obtain better understanding of the
commensurate regime, we first argue that an SF cannot coexist with
the ordered phase of the gauge field at commensurate fillings: In this
regime, the Z, gauge field acquires a finite expectation value, (tj; j>y) #0.
This leads to a term in the Hamiltonian ~ — tya(rfi i >&;r&j, which is
expected to open a finite Mott gap, following the arguments in (55, 60).
Therefore, only the two scenarios shown in Fig. 3C are possible: In the
first case, the Mott insulator coexists only with the ordered phase of
the gauge field; in the second scenario, the Mott state coexists with the
disordered phase of the gauge field.

To shed more light on this problem, we consider the case when
the Mott gap A is much larger than the tunneling #*. When ? = 0,
every rung represents an effective localized spin-1/2 degree of free-
dom. As shown in section S4C, finite tunnelings *<CA introduce
antiferromagnetic couplings between these localized moments, and
in this limit, our system can be mapped to an XXZ chain. It has an
Ising anisotropy, and the ground state has a spontaneously broken
Z, symmetry everywhere, except when #, /#9—oo, where an isotropic
Heisenberg model is obtained and the ground state has power-law
correlations. The transition from the gapped Mott state, correspond-
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ing to the ordered phase of the Z, gauge field, to a symmetric state of
two decoupled SFs with a disordered gauge field is of BKT type (62).

Our last argument demonstrates that scenario I in Fig. 3C is rea-
lized deep in the Mott phase. In this limit of small #* and strong
couplings Z)f, of the gauge field, our analysis proves that an intricate
interplay of the phase transitions in the gauge and matter sectors
exists. This behavior, characteristic for scenario I in Fig. 3C, is remi-
niscent of the phase diagram of the 2D Z, LGT (see Fig. 3D) (26, 28).
In that case, the phase at weak couplings has topological order as in
Kitaev’s toric code (28), and the disordered phases are continuously
connected to each other at strong couplings.

On the other hand, a detailed analysis of the Luttinger-K parameter
for larger values of #2 shows that the ground state at commensurate
filling N,, = L, is characterized by K = 1/2, in both the Z, symmetric
and Z, broken regimes (see section S4, A and B). This behavior is in-
dicative of scenario Il in Fig. 3C, since the BKT transition is character-
ized by a value K = 1 of the Luttinger parameter (62).

Implementation: Coupled double-well systems
Now, we describe how the models discussed above, and extensions
thereof, can be implemented in state-of-art ultracold atom setups.
The double-well system introduced around Eq. 12 constitutes the
building block for implementing larger systems with a Z, gauge
symmetry, or even genuine Z, LGTs, because it realizes a minimal
coupling of the matter field to the gauge field (see Fig. 2C) (12). We
start by discussing the two-leg ladder Hamiltonian Hieg (Eq. 19);
then, we present a scheme, based on flux attachment, for imple-
menting a genuine Z, LGT coupled to matter in a 2D square lattice.
Two-leg ladder geometry
The ladder system shown in Fig. 3A can be obtained by combining
multiple double wells (Eq. 12) and introducing tunnelings t¢ of the
matter field along x, while t,fc = 0. The lattice potential is modulated
along y with amplitude A; ; = V&, as in the case of a single double
well. As described in Fig. 5, we introduce an additional static potential
gradient with strength A} = U = o per lattice site along x and mod-
ulate it with frequency o and amplitude V.

As shown in section S2, this setup leads to the effective Hamiltonian
(Eq. 19). For the specific set of driving strengths VX /o = V3 /o = xp2
(see Eq. 16), the amplitude renormalizations are X = Aq, and

. 1 . .
xzcmx =3 (1 - Tfiiey,i)rfjie),ﬁ) Jo(x02)

1 T AZ
) (1 + T<Z"iey~i>1(iieyj>) J1(x02) (27)

Simplified model. Now, we discuss a further simplification of the
model in Eq. 19, leaving its symmetry group unchanged. We note that,
even for the specific choice of the driving strengths V* /o = V5, /o =
X0z, the renormalized tunnel couplings of the a-particles along x still
depend explicitly on the Z, gauge fields on the adjacent rungs (see
Eq. 27). This complication can be avoided, by simultaneously modu-
lating the gradient along x at two frequencies, ® and 2w, with ampli-
tudes V7 and V3 ; i.e., we consider the following driving term in Eq. 5

Volj,t) = [ Vi 4+, ViJcos(@t) + i Vicos(20t)  (28)

Following (48), we obtain expressions for the restored tunnel cou-
plings along x for an energy offset nw introduced by the Hubbard
interactions U = o between a- and f-particles; A, = £5° T _2¢(x)
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Je(x?/2),wherex!) = V¥ /o and x?) = V3, /o (see section S2). By
imposing the conditions A = A, = X,, we obtain a simplified effective
Hamiltonian where X< », —N€ER is no longer operator valued, and
thus completely independent of the Z, gauge field 1°. The weakest
driving strengths for which this condition is met are given by

X0 = x) =171, 2@ = %) ~1.05 (29)

where A¥ = 491, = 0.37. A similar approach can be used to make A
independent of the Z, charges, which allows the implementation of
Hoer from Eq. 24.

Reai: izing a 7, LGT in a 2D square lattice

Now, we present a coupling scheme of double-wells, which results in
an effective 2D LGT Hamiltonian with genuine local symmetries, in
addition to the global U(1) symmetry associated with a-number con-
servation. We will derive a model with Z, gauge-invariant minimal
coupling terms ~17; >a] ; along all links of the square lattice.

Setup. We c0n51der the setup shown in Fig. 6A in a layered 2D
optical lattice, which is a particular type of brick-wall lattice. The a-
particles tunnel vertically between the layers in the z direction, with
coupling matrix element ¢, and along the links indicated in the
figure with tunnel couphngs t; and t]. Every tube consisting of four
lattice sites with coordinates x, y, and ne, for n =1, 2, 3, 4 defines a
supersite j = xe, + ye, in the effective 2D lattice shown in Fig. 6B. The
four links connecting every supersite to its nearest neighbors i : (i, j)
are realized by double-well systems, with exactly one f-particle each,
in different layers of the optical lattice. The f-particles are only
allowed to tunnel between the sites of their respective double-wells
in the x-y plane, with amplitudes #x and t, while tunneling along the
z direction is suppressed, L =o0.

For the realization of the individual double-well systems, we con-
sider a modulated potential gradient along x and y, seen equally by

t?j ZL(; . a-particle
------------- J----\-- vy vy A:g]: © Empty/occ.
@ @ @ f -particle
[y [ TP @iy [ Treeee e Occupied
T . e O Empty
Yo

Fig. 5. Implementing matter-gauge field coupling in a two-leg ladder. Multiple
double-well systems as described in Fig. 2 are combined to form a two-leg ladder
by including hopping elements t{ of the a-particles along the x direction. Coherent
tunneling is first suppressed by strong interspecies Hubbard interactions U and
static potential gradients: A7 = U for a-particles along x, and Af, = U for f-particles
along y. These gradients are indicated by triangles whose colors refer to the respec-
tive atomic species. The tunnel couplings are restored by a resonant Iattice shaking
W|th frequency o = U, realized by a modulated potential gradient V,, (j, t) = (jx V% +

JjyV¥)cos (wt) seen by both species. The modulated gradients are |nd|cated by light-
colored triangles. We assume that each rung is occupied by exactly one f-particle,
which can thus be described by a link variable, while the number N,, of a-particles is
freely tunable. As shown in section S2, the special choice for the driving strengths
VX/o =V /o = xo, leads to an effective Hamiltonian with matter coupled to Z,
lattice gauge fields on the rungs. The gradientA] = U guarantees that the a-particles
pick up only trivial phases * = 0 while tunneling along the legs of the ladder.
Hence, the Aharonov-Bohm phases (red) associated with the matter field become
0, or & corresponding to a vison excitation. They are determined by the plaquette
terms B,, defined in Eq. 20, reflecting the configuration of f-particles.
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the matter and gauge fields. The modulation amplitudes V}/w =
\%4 /® = xo, are chosen to simplify the amplitude renormalization
of f-particle tunneling. As previously, we consider static potential
gradients along x and y directions of A. = A/, = U per site, seen only
by the f-particles, and work in a regime where U = © > |, |, with
u=xyzandv=a,f

To realize a-particle tunneling along z, which is independent of
the Z, gauge fields 1° on the links in the x-y plane, we add a static
potential gradient of A per site along the z direction. It is modu-
lated by two frequency components w and 20, with amplitudes V7
and V3 . These driving strengths are chosen as in Eq. 29, i.e,
Vijo= xy1 and Vi,/o= xo%z’ such that the restored tunnel cou-
plings with amplitude #{A;, become independent of the f-particle
configuration.

Effective Hamiltonian. Combining our results from the previous
section, we obtain the effective hopping Hamiltonian H,prgr for
the setup described in Fig. 6

Z A<U> (i.j)

/\T ~
- X}’Mz Z (T<i~j>aivm<i.j>aj’m<i-j> + h.c.)

H 2DLGT —

—t; 7v0122 z < ]nHa]n —|—h.c.>

(30)

using the same notation as introduced earlier. Here, we treat the
z-coordinate ne,, with n = 1, ...,4, as an internal degree of freedom,
while j is a site index in the 2D square lattice; m;; € {1, 2, 3, 4} de-
notes the z-coordinate corresponding to double well (i, j). For sim-
plicity, we assumed that #f =/ =1t{ and & = t§ = tfxy. The
amplitude renormalization for f-particles in the x-y plane depends
on the Z, charges Qj‘n

R 1 N N 1
Agjy = 5 [T o(x02) + T1(x02)] + Qi Qiome 3

[T 1(x02) — T o(x02)] (31)
Using the multifrequency driving scheme explained around Eq. 28, a
situation where f\<,- j) becomes independent of the Z, charges can be
realized.

A simplified effective Hamiltonian, where the internal degrees
of freedom are eliminated, can be obtained when U = w > #{
and Agp2f7 > 17, ; the first inequality is required by the proposed
1rnp1ernentat10n scheme. In this limit, the tunneling of a-particles
along z can be treated independently of the in-plane tunnelings ;.
The ground state with a s1ngle a- part1cle tunneling along z at supersue
jlsu |0>wherea] 1¢n » With 0, = ¢4 = (5+\/_) 24
0, =0¢; = (14 1/f)1/2/2 It is separated by an energy gap Ae =
Aoiat; > ty, from the first excited state, which justifies our restriction
to this lowest internal state.

The ground state energy €,, with two hard-core a-particles tun-
neling along z in the same supersite is larger than twice the energy
€, of a single a-particle, by an amount U, i.e., €5, = 2€, + Ueg By
solving the one- and two-particle problems exactly, we find Ueg =
hor2t2. In the effective model restricted to the lowest internal state, this
offset corresponds to a repulsive Hubbard interaction on the supersites
j. Because Uer > t7 , double occupancy of supersites is strongly sup-
pressed, and we can treat the new operators &jT as hard-core bosons.
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By projecting the Hamiltonian (Eq. 30) to the lowest internal
state on every supersite, we arrive at the following simplified model

Slmp /\T ~
HZDLGT = &g Z a;a; — Z A(u) (i)

a 2 2z Ata
— tyho2 [0y <i§.€E (T<ij>‘1i a; + h.c.)

_ tgyx02|¢2\2<i§€ (%f,»afa, +h.c.) (32)

Here, we distinguish between two sets of links, (i,j) € E or B,
which are realized in layers at the edge n = 1,4 (E) and in the bulk
n = 2,3 (B) in the 3D implementation (see Fig. 6A). Because the in-
ternal state has different weights |6, |> =~ 0.14 and | ¢, |* ~ 0.36,
they are associated with different tunneling amplitudes. This compli-
cation can be avoided by realizing bare tunnelings of a-particles with
different strengths on E- and B-type bonds.

Symmetries. In contrast to the two-leg ladder (Eq. 19), the models in
Egs. 30 and 32 are both characterized by local Z, gauge symmetrles The
7, charge on a supers1te is defined as Q] = explin i_, n¢,], which
becomesQ] = exp [ma aj] when projected to the lowest internal state.
The Z, gauge group is generated by

Fig. 6. Realizing Z, LGT coupled to matter in 2D. (A) Multiple double-well
systems as described in Fig. 2 are combined in the shown brick-wall lattice. Each
of its four layers along the z direction is used to realize one of the four links con-
necting every lattice site of the 2D square lattice (B) to its four nearest neighbors.
The double-well systems are indicated by solid lines (colors), and they are only
coupled by tunnelings of a-particles along the z direction, with amplitudes t{. The
required lattice gradients (their modulations) are indicated by (light) colored tri-
angles. (B) The restored hopping Hamiltonian HZDLGT in the 2D lattice has local
symmetries G associated with all lattice sites j, i.e., [Hzmgp ,] =0.

Barbiero et al., Sci. Adv. 2019;5:eaav7444 11 October 2019

where the product on the right includes all links (j, i) connected to
site j.

It holds [H,piar, G ;] = 0and [H;‘E,HLPGT, ]] = Ofor all j, using the
respective Z, charge operators. These results follow trivially for the
ﬁrst line of Egs. 30 and 32, which contain only the operators 7j; ;, and

¢, (11) (see also Eq. 31). For the last two lines in the effective Hamll—
tomans, it is confirmed by a straightforward calculation.

In addition to the local Z, gauge invariance, the models (Egs. 30
and 32) have a global U(1) symmetry associated with the conserva-
tion of the a-particle number. Very similar Hamiltonians have been
studied in the context of strongly correlated electrons, where fraction-
alized phases with topological order have been identified (35). When the
a-particles condense, effective models without the global U(1) sym-
metry can also be realized. These are in the same symmetry class
as Kitaev’s toric code (28).

DISCUSSION

We have presented a general scheme for realizing flux attachment in
2D optical lattices, where one species of atoms becomes a source of
magnetic flux for a second species. For a specific set of parameters,
we demonstrated that the effective Floquet Hamiltonian describing
our system has a Z, gauge structure. This allows us to implement ex-
perimentally a dynamical Z, gauge field coupled to matter using ultra-
cold atoms, as we have shown specifically for a double-well setup,
two-leg ladders, and in a 2D geometry. Because our scheme naturally
goes beyond one spatial dimension, the Z, magnetic field—and the
corresponding vison excitations—plays an important role in our the-
oretical analysis of the ground-state phase diagram. Moreover, the link
variables in our system are realized by particle number imbalances on
neighboring sites, making experimental implementations of our setup
feasible using existing platforms [as described, e.g., in (42, 43, 45)].

Our theoretical analysis of hard-core bosons coupled to Z, link
variables on the rungs of a two-leg ladder revealed an SF-to-Mott tran-
sition in the charge sector as well as a transition in the gauge sector.
The latter is characterized by a spontaneously broken global Z, sym-
metry, but we argued that it can be considered as a precursor of the
confinement-deconfinement transitions, which are ubiquitous in
LGTs, high-energy physics, and strongly correlated quantum many-
body system. Leveraging the powerful toolbox of quantum gas micros-
copy, our approach paves the way for new studies of LGTs with full
resolution of the quantum mechanical wave function. This is particu-
larly useful for analyzing string (57, 63) and topological (64) order
parameters, which are at the heart of LGTs but difficult to access in
more conventional settings.

As we have demonstrated, extensions of our LGT setting to 2D sys-
tems with local rather than global symmetries are possible. Here, we
propose a realistic scheme to implement a genuine Z, LGT with
minimal coupling of the matter to the gauge field on all links of a
square lattice. On the one hand, this realizes one of the main ingredi-
ents of Kitaev’s toric code (28, 65, 66)—a specific version of an LGT
coupled to matter, which displays local Z, gauge symmetry and hosts
excitations with non-Abelian anyonic statistics. On the other hand,
the systems that can be implemented with our technique are reminis-
cent of models studied in the context of nematic magnets (27, 33, 67)
and strongly correlated electron systems (13, 35, 36). Other extensions
of our work include studies of more general systems with flux attach-
ment, which are expected to reveal physics related to the formation of
composite fermions in the FQH effect.
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Another application of our work is the realization of the recently
suggested Z, Bose-Hubbard Hamiltonian (68) using ultracold atoms
in optical lattices. This model contains Z, link variables on a 1D chain,
similar to our case, but includes terms in the Hamiltonian, which ex-
plicitly break the local Z, gauge symmetry. In contrast to the models
studied in this paper, not only the tunneling phases but also the
tunneling amplitudes in the Z, Bose-Hubbard Hamiltonian depend
on the Z, link variables. The Z, Bose-Hubbard model features bosonic
Peierls transitions (68), which can lead to an interesting interplay
of symmetry breaking and symmetry-protected topological order
(52, 53).

In terms of experimental implementations, we restricted our
discussion in this article to ultracold atom setups. However, other
quantum simulation platforms, such as arrays of superconducting
qubits (69), provide promising alternatives. Generalizations of our
scheme to these systems are straightforward, and a detailed analysis
of the feasibility of our proposal in such settings will be devoted to
future work.

MATERIALS AND METHODS

Implementing dynamical gauge fields

Here, we describe in detail how synthetic gauge fields with their own
quantum dynamics can be realized and implemented using ultracold
atoms. We begin by quickly reviewing results for the case of a single
particle in a double-well potential, which we use later on to derive the
effective Hamiltonian in a many-body system.

Single-particle two-site problem

We consider the following Hamiltonian describing a single particle
hopping between sites |1) and |2)

Hy = —t(12X1] + [1X2]) +

(A2 + 47, (1) 12)2] (34)

Here, t > 0 denotes the bare tunnel coupling, which is strongly
suppressed by the energy offset |A,; | > t. Tunneling is then re-
stored by a modulation

A9 (t) = Ay cos (ot + ¢2«,1) (35)
For resonant shaking, ® = A, j, it has been shown in (47) that

the dynamics of Eq. 34 can be described by the following effective
Hamiltonian

Hoeir = —E(12X(1] €1 4 [1)(2] &%) (36)
The amplitude of the restored tunneling is given by
- A
P =17, (ﬁ) (37)
®

and the complex phase ¢, is determined directly from the mod-
ulating potential A, (¢).

More generally, when the offset A,; = no is a positive integer
multiple n = 0,1,2,3,4, ... of the driving frequency ®, tunneling can
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also be restored. As shown by a general formalism in (48), the ef-
fective Hamiltonian in this case becomes

Hoer = —Fa(|2X1] ™1 4 | 1)(2] e ™) (38)

For n = 0, the result is independent of the phase ¢, ; of the mod-
ulation. The tunneling matrix element is renormalized by

Zn = tjn (@)
(0]

The first three Bessel functions, n = 0, 1, 2, are plotted in fig. S1
as a function of x = A, /.

Last, we consider the case when A, ; = —nw, for a positive integer
n=1,2,3,.... In this case, we can rewrite the modulation (Eq. 35) as

(39)

A7, (t) = Ay cos (—of — ¢2ﬁ1) (40)

i.e,, effectively ® — —w and ¢, ; — —d, ;. By applying the results from
Egs. 38 and 39 for the system with —®, we obtain
Hoer = —%n( |21 [ "™ 00) 4 12| e*""“‘*“’z-')) (41)

The complex phase of the restored hopping in the effective
Hamiltonian changes sign, because —0,; appears in Eq. 40. In addi-
tion, it contains a m phase shift, which takes into account the sign
change of the renormalized tunneling matrix element <7, (%;) =
™ T, (%) if n is odd.
Multiple driving frequencies
Even more control over the restored tunnel couplings can be gained
by using lattice modulations with multiple frequency components.
Here, we summarize results for the single-particle two-site problem

from above, for the case of driving with frequency components w and
20. To do so, we modify our Hamiltonian in Eq. 35 as

Hy = —t(12X1] + [10Q2]) +Agr [2)2] +AS,(£) 1X1]  (42)

where the 2n/o-periodic driving term takes the following form

A9\ (1) = Ag_lfcos ((ot + ¢511)> + Ang cos (Zcot + ¢§21)) (43)

To calculate the effective Hamiltonian, we rewrite the time-dependent
Hamiltonian (Eq. 42) in a moving frame by performing a time-dependent
unitary transformation realized by the operator (48)

) ) AY) )
R(t) = exp (idg,tP)exp {;(%) sin (ot + ¢§}3)p1}

Ay )1 4
X exp 4 i — - |sin (ot + ¢51)Py

where we introduced the projectors Py = |1X1] and P, = |2)(2].
In this moving frame, the time-dependent Hamiltonian in Eq. 42

(44)
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takes the form

Hy = —t]1)2]e ™! (45)
40 42 ,
il 2L )sin (ot+0)) i 2L )sin (wt+0)
xe e + h.c.
Using the Jacobi-Anger identity
eiasin (o0t+9) _ Z j zk (0t+0) (46)

k=—oo

and time-averaging the time-dependent Hamiltonian in Eq. 45 over
a period T = 21t/® of the drive, we obtain an effective Hamiltonian of
the form

zn 2€)¢2,+1€¢2] +he

Hoefr = — | 1><2| z ty, (47)

While this effective Hamiltonian is similar to Eq. 38, the ampli-
tude renormalization now involves a product of two Bessel functions

: Al (2
tne =tT n-2 Je e

Two-particle two-site problem
Now, we apply the results from the first paragraph (Eqgs. 34 to 41)] to
the problem of a pair of a- and f-particles in a double-well potential
(see Fig. 2). In contrast to the main text, we consider general param-
eters in our derivation of the effective Hamiltonian. Our starting
point is the model in Eqs. 1 to 6 for two sites j; and j, = j; + e,. We
assume V,(j; ») = 0 but introduce a static energy offset N= Ubetween
the two lattice sites for the f-particles, V{j,) = N+ V((j1). Because our
analysis is restricted to the subspace with one a-particle and one
f-particle, the hard-core constraint assumed in the main text is not
required in this case and the statistics of the two species are irrelevant.
The two-site problem has four basis states, f Tal 10) with m, n =
1,2. Their corresponding on-site energies are 0 A= UUN+U=
2U (see fig. S2A), which suppress most coherent tunneling processes
because A = U>> | t“ [y t}) | . When the resonant lattice modulation
Ho(t) with frequency ®= U is included, all tunnel couplings are re-
stored. Now, we will show that the effective Floquet Hamiltonian is
given by

(48)

2well __ oAt~ f A i0at
FHEpel — —tyhea; aj, — £, A" o +hc (49)
where %;2 i = )SZf j, and
& =0+ (=%, (5 001 (50)

h=T1(4,5,/0) (51)
0 =20, ;7 (52)
A '-70( ]2]1/('0) +‘72( ]2]1/0‘));1;2 (53)
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To derive Egs. 49 to 53, we first consider the effect of the coherent
driving H,(t), characterized by Eq. 9, on the matter field &. Because
the Hamiltonian

~ a _ At oA A ~
H =t (ajzaj1 + h.c.) + (n;‘2 - n]”l)

Git) (54

1 - .
x5 (U‘CUN-‘) + Vo(jy, t) — Vo
governing the dynamics of a a, commutes with the link variable,
characterizing the gauge field, [H g }] = 0, we can treat T; iy s
a C-number with two possible values, 1.

When expressed in terms of the two states | 1), = uT | 0) and
| 2), = a; Al | 0), the Hamiltonian " is of the same form as H, in
Eq. 34. It'has an energy difference of Ay} = U%; ; , between the
two states, which is caused microscopically by the 1nterspec1es Hubbard
interaction U (see fig. S2A).

According to Eqs. 38 and 41, the restored tunnel coupling between
| 1)s and | 2), has a complex phase given by ¢ = ¢;, ]- if Ay >0, 1ie, for
T4 = Landitisg=m—¢; ; ifAy; <0,ie, fortj ;= —1 Becausein
both cases the magnitude of the energy mlsmatch between the two
sites is |A,,; | = w, the tunneling is renormalized by A = J,(4;, ; /o).
These results confirm Egs. 50 and 51.

Next, we consider the dynamics of the f-particles or, equivalently,
the link variable 7; ; \z. It is governed by the following Hamiltonian

~f ~ Az
H = <T<jza'l> + h") F Yo
1
x> (Af + USH® + Vy(ja, 1) — Vo(ir, t)) (55)

jBecause H commutes with the matter field, [’Hfﬁj"l] =

M, ] = 0, we can treat the particle number imbalance
~a __ ~a _ ~a
on" = Ja n]l (56)
as a C-number now, which can take two values *1.
When expressed in terms of the two states | 1)y = f T 10Yand | 2)r =

]; | 0), the Hamiltonian 7’ is of the same form as ’Hz in Eq. 34. Ithas
an energy difference ofA; ; = = A + U8i*between the two states, which
is caused microscopically by the interspecies Hubbard interaction U
and the potential gradient A/, which the f-particles are subject to
(see fig. S2A).

In the case of f- partlcles, the energy offset A, ; can only take pos-
itive values 0 and 2w if A = U = o. From Eq. 38, it follows that the
restored tunnel coupling between | 1)rand |2)shas a complex phase
givenby 8 =0if Ay, =0, i.e., for 8n” = — 1,and by 0 = 2¢; ; if Ay, =
2w, i.e, for 8n” = 1. Expressed in terms of 7, a, in a subspace where
n; a+ #;a = 1, this result confirms Eq. 52.

The magnitudes of the restored tunneling couplings of f-particles
in the two-particle Hilbert space depend on the energy offset A, ;
In the case when A, ; = 0, i.e., for n” = -1, it becomes At, =
tﬁjo( Aj j /®). When A, ; =20, i.e., for 8n® = 1, it is given another
Bessel function, Atf tf1 J2(A ) d) /o). This result, summarized in
fig. S2B, confirms Eq 53
Realizations with ultracold atoms
Next, we discuss realizations of the two-particle two-site problem
with ultracold atoms. The proposed implementation needs two dis-
tinguishable particles with strong interspecies on-site interaction
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energy U > t,. The particles occupy a double well with both species-
dependent and species-independent on-site potentials. For the species-
dependent contribution, a static potential is sufficient, which introduces
a tilt A’ = U between neighboring sites for the f-particles but leads to
zero tilt for the a-particles. On the other hand, the species-independent
contribution must be time-dependent V,(f) to restore resonant tun-
neling for both particles.

For ultracold atoms, a cubic array of lattice sites with period d
can be created by three mutually orthogonal standing waves with wave-
lengths A = 2d,. When extending this simple cubic lattice along one
axes by an additional lattice with twice the period d| = 2d,, a super-
lattice of the form Vjsin®(ry/ds + n/2) + Visin®(ny/d) + g /2)
arises. In the limit V| > V;, the superlattice potential resembles a
chain of double wells, where tunneling between each double well is
suppressed and all dynamics is restricted to two sites. Tuning the re-
lative phase ¢g; allows dynamic control of the on-site potentials. In
principle, the time-dependent modulation V,(f) can be implemen-
ted by a fast modulation of ¢s;; however, the modulation frequency
may be limited to small values depending on the implementation of
the lattices. For a superlattice with a common retroreflector, for in-
stance, the phase ¢g; can only be varied by changing the frequency of
the laser. Alternatively, a second lattice Vinoq sin®(my/di + Opoa/2)
with period d; and phase ¢,,0,q4 = +m/2 can be introduced such that
it only affects the on-site potential of a single site of the double well.
Therefore, amplitude modulation V,,4(f) of this additional lattice
induces a relative modulation of the on-site energies. This leads to
a nonzero species-independent, time averaged energy offset, which
can be compensated by the static phase degree of freedom ¢g of the
superlattice.

The two distinguishable particles can be encoded in different hy-
perfine sublevels with different magnetic moments, enabling the di-
rect implementation of the static species-dependent potentials by a
magnetic field gradient. This is especially appealing for bosonic
atoms having a hyperfine sublevel with zero magnetic moment,
which directly results in a vanishing, magnetic field-independent tilt
for the a-particles in first order. Nevertheless, this is not essential as
tilts for the a-particles can be compensated by the present species-
independent potentials.

SUPPLEMENTARY MATERIALS
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content/full/5/10/eaav7444/DC1

Section S1. Flux attachment in 2D

Section S2. Implementing matter coupled to a Z, gauge field in the two-leg ladder geometry
Section S3. Gauge structure of two-leg ladders

Section S4. Phase transitions of gauge and matter fields

Fig. S1. Renormalized tunneling amplitudes determined by Bessel functions.

Fig. S2. Two-site two-particle problem.

Fig. S3. Flux attachment in a 2D Hofstadter model.

Fig. S4. Derivation of the effective Hamiltonian.

Fig. S5. Wilson loop scaling.

Fig. S6. The Green'’s function in the charge sector.

Fig. S7. The Luttinger-K parameter.

Fig. S8. Rung-Mott state at commensurate filling.

Fig. S9. Phase diagram of the Z, LGT on a two-leg ladder for commensurate filling.

Fig. S10. Transition in the gauge sector.

References (70-74)

w

[l

REFERENCES AND NOTES

1. Z. F. Ezawa, Quantum Hall Effects: Field Theoretical Approach and Related Topics Second
Edition (World Scientific Publishing Company, 2008).

Barbiero et al., Sci. Adv. 2019;5:eaav7444 11 October 2019

2.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

J. Dalibard, F. Gerbier, G. Juzeliinas, P. Ohberg, Colloquium: Artificial gauge potentials for
neutral atoms. Rev. Mod. Phys. 83, 1523-1543 (2011).

. N. Goldman, G. Juzelianas, P. Ohberg, I. B. Spielman, Light-induced gauge fields for

ultracold atoms. Rep. Prog. Phys. 77, 126401 (2014).

. N. R. Cooper, Rapidly rotating atomic gases. Adv. Phys. 57, 539-616 (2008).
. N. Gemelke, E. Sarajlic, S. Chu, Rotating few-body atomic systems in the fractional

quantum Hall regime. arXiv:1007.2677 [cond-mat.quant-gas] (15 July 2010).

. V. Galitski, I. B. Spielman, Spin-orbit coupling in quantum gases. Nature 494, 49-54

(2013).

. M. Aidelsburger, M. Atala, S. Nascimbene, S. Trotzky, Y.-A. Chen, I. Bloch, Experimental

realization of strong effective magnetic fields in an optical lattice. Phys. Rev. Lett. 107,
255301 (2011).

. J. Struck, M. Weinberg, C. Olschléger, P. Windpassinger, J. Simonet, K. Sengstock,

R. Hoppner, P. Hauke, A. Eckardt, M. Lewenstein, L. Mathey, Engineering ising-XY
spin-models in a triangular lattice using tunable artificial gauge fields. Nat. Phys. 9,
738-743 (2013).

. G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, T. Esslinger,

Experimental realization of the topological Haldane model with ultracold fermions.
Nature 515, 237-240 (2014).

. N. Goldman, J. C. Budich, P. Zoller, Topological quantum matter with ultracold gases in

optical lattices. Nat. Phys. 12, 639-645 (2016).

. N. R. Cooper, J. Dalibard, . B. Spielman, Topological bands for ultracold atoms. Rev. Mod.

Phys. 91, 015005 (2019).

. J. B. Kogut, An introduction to lattice gauge theory and spin systems. Rev. Mod. Phys. 51,

659-713 (1979).

. T. Senthil, M. P. A. Fisher, Z, gauge theory of electron fractionalization in strongly

correlated systems. Phys. Rev. B 62, 7850-7881 (2000).

. T. Keilmann, S. Lanzmich, I. McCulloch, M. Roncaglia, Statistically induced phase

transitions and anyons in 1d optical lattices. Nat. Commun. 2, 361 (2011).

. S. Greschner, G. Sun, D. Poletti, L. Santos, Density-dependent synthetic gauge fields using

periodically modulated interactions. Phys. Rev. Lett. 113, 215303 (2014).

. S. Greschner, L. Santos, Anyon Hubbard model in one-dimensional optical lattices.

Phys. Rev. Lett. 115, 053002 (2015).

. A. Bermudez, D. Porras, Interaction-dependent photon-assisted tunneling in optical

lattices: A quantum simulator of strongly-correlated electrons and dynamical gauge
fields. New J. Phys. 17, 103021 (2015).

. C. Stréter, S. C. L. Srivastava, A. Eckardt, Floquet realization and signatures of

one-dimensional anyons in an optical lattice. Phys. Rev. Lett. 117, 205303 (2016).

. L. W. Clark, B. M. Anderson, L. Feng, A. Gaj, K. Levin, C. Chin, Observation of

density-dependent gauge fields in a Bose-Einstein condensate based on micromotion
control in a shaken two-dimensional lattice. Phys. Rev. Lett. 121, 030402 (2018).

U.-J. Wiese, Ultracold quantum gases and lattice systems: Quantum simulation of lattice
gauge theories. Ann. Phys. 525, 777-796 (2013).

E. Zohar, J. I. Cirac, B. Reznik, Quantum simulations of lattice gauge theories using
ultracold atoms in optical lattices. Rep. Prog. Phys. 79, 014401 (2016).

M. Dalmonte, S. Montangero, Lattice gauge theory simulations in the quantum
information era. Contemp. Phys. 57, 388-412 (2016).

E. A. Martinez, C. A. Muschik, P. Schindler, D. Nigg, A. Erhard, M. Heyl, P. Hauke,

M. Dalmonte, T. Monz, P. Zoller, R. Blatt, Real-time dynamics of lattice gauge theories with
a few-qubit quantum computer. Nature 534, 516-519 (2016).

E. Zohar, A. Farace, B. Reznik, J. I. Cirac, Digital quantum simulation of Z, lattice gauge
theories with dynamical fermionic matter. Phys. Rev. Lett. 118, 070501 (2017).

T. V. Zache, F. Hebenstreit, F. Jendrzejewski, M. K. Oberthaler, J. Berges, P. Hauke,
Quantum simulation of lattice gauge theories using Wilson fermions. Quantum Sci.
Technol. 3, 034010 (2018).

E. Fradkin, S. H. Shenker, Phase diagrams of lattice gauge theories with Higgs fields.
Phys. Rev. D 19, 3682-3697 (1979).

P. E. Lammert, D. S. Rokhsar, J. Toner, Topology and nematic ordering. I. A gauge theory.
Phys. Rev. E 52, 1778-1800 (1995).

A.Y. Kitaev, Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2-30 (2003).
F. Wilczek, Magnetic flux, angular momentum, and statistics. Phys. Rev. Lett. 48,
1144-1146 (1982).

F. Wilczek, Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957-959
(1982).

P. A. Lee, From high temperature superconductivity to quantum spin liquid: Progress in
strong correlation physics. Rep. Prog. Phys. 71, 012501 (2008).

S. Sachdev, N. Read, Large N expansion for frustrated and doped quantum
antiferromagnets. Int. J. Mod. Phys. B 5, 219 (1991).

D. Podolsky, E. Demler, Properties and detection of spin nematic order in strongly
correlated electron systems. New J. Phys. 7, 59 (2005).

S. Gazit, M. Randeria, A. Vishwanath, Emergent Dirac fermions and broken symmetries in
confined and deconfined phases of Z, gauge theories. Nat. Phys. 13, 484-490 (2017).

13 of 14

020z ‘L Adenuep uo /Bio°Bewasuslos saoueape//:diy wouy papeojumoq


http://advances.sciencemag.org/cgi/content/full/5/10/eaav7444/DC1
http://advances.sciencemag.org/cgi/content/full/5/10/eaav7444/DC1
https://arxiv.org/abs/1007.2677
http://advances.sciencemag.org/

SCIENCE ADVANCES | RESEARCH ARTICLE

35. R. D. Sedgewick, D. J. Scalapino, R. L. Sugar, Fractionalized phase in an XY-Z, gauge
model. Phys. Rev. B 65, 054508 (2002).

36. E. Demler, C. Nayak, H.-Y. Kee, Y. B. Kim, T. Senthil, Fractionalization patterns in strongly
correlated electron systems: Spin-charge separation and beyond. Phys. Rev. B 65, 155103
(2002).

37. R.K. Kaul, Y. B. Kim, S. Sachdev, T. Senthil, Algebraic charge liquids. Nat. Phys. 4, 28 (2007).

38. S. Sachdev, D. Chowdhury, The novel metallic states of the cuprates: Topological Fermi
liquids and strange metals. Prog. Theor. Exp. Phys. 2016, 12C102 (2016).

39. C. Schweizer, F. Grusdt, M. Berngruber, L. Barbiero, E. Demler, N. Goldman, I. Bloch,

M. Aidelsburger, Floquet approach to Z2 lattice gauge theories with ultracold
atoms in optical lattices. Nat. Phys. 10.1038/s41567-019-0649-7 (2019).

40. F. Gorg, K. Sandholzer, J. Minguzzi, R. Desbuquois, M. Messer, T. Esslinger, Realization
of density-dependent Peierls phases to engineer quantized gauge fields coupled to
ultracold matter. Nat. Phys. 10.1038/s41567-019-0615-4 (2019).

41. M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, I. Bloch, Realization of the
Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111,
185301 (2013).

42. H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton, W. Ketterle, Realizing the Harper
Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett. 111, 185302 (2013).

43. M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T. Barreiro, S. Nascimbene,

N. R. Cooper, I. Bloch, N. Goldman, Measuring the Chern number of Hofstadter bands
with ultracold bosonic atoms. Nat. Phys. 11, 162-166 (2015).

44. C. J. Kennedy, W. C. Burton, W. C. Chung, W. Ketterle, Observation of Bose-Einstein
condensation in a strong synthetic magnetic field. Nat. Phys. 11, 859-864 (2015).

45. M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, T. Menke, D. Borgnia, P. M. Preiss, F. Grusdt,
A. M. Kaufman, M. Greiner, Microscopy of the interacting Harper-Hofstadter model in the
two-body limit. Nature 546, 519-523 (2017).

46. D. Jaksch, P. Zoller, Creation of effective magnetic fields in optical lattices: The Hofstadter
butterfly for cold neutral atoms. New J. Phys. 5, 56 (2003).

47. A. R. Kolovsky, Creating artificial magnetic fields for cold atoms by photon-assisted
tunneling. Europhys. Lett. 93, 20003 (2011).

48. N. Goldman, J. Dalibard, M. Aidelsburger, N. R. Cooper, Periodically driven quantum
matter: The case of resonant modulations. Phys. Rev. A 91, 033632 (2015).

49. Y.-A. Chen, S. Nascimbéne, M. Aidelsburger, M. Atala, S. Trotzky, I. Bloch, Controlling
correlated tunneling and superexchange interactions with ac-driven optical lattices.
Phys. Rev. Lett. 107, 210405 (2011).

50. R. E. Prange, S. M. Girvin, The Quantum Hall Effect (Springer-Verlag, 1990).

51. J. K. Jain, Theory of the fractional quantum hall-effect. Phys. Rev. B 41, 7653-7665 (1990).

52. D.Gonzélez-Cuadra, A. Dauphin, P. R. Grzybowski, P. Wéjcik, M. Lewenstein, A. Bermudez,
Symmetry-breaking topological insulators in the Z, Bose-Hubbard model. Phys. Rev. B 99,
045139 (2019).

53. D. Gonzélez-Cuadra, A. Bermudez, P. R. Grzybowski, M. Lewenstein, A. Dauphin,
Intertwined topological phases induced by emergent symmetry protection.

Nat. Commun. 10, 2694 (2019).

54. S. R. White, Density matrix formulation for quantum renormalization groups.
Phys. Rev. Lett. 69, 2863-2866 (1992).

55. F. Crépin, N. Laflorancie, G. Roux, P. Simon, Phase diagram of hard-core bosons on
clean and disordered two-leg ladders: Mott insulator-Luttinger liquid-Bose glass.
Phys. Rev. B 84, 054517 (2011).

56. E. Berg, E. G. Dalla Torre, T. Giamarchi, E. Altman, Rise and fall of hidden string order of
lattice bosons. Phys. Rev. B 77, 245119 (2008).

57. M. Endres, M. Cheneau, T. Fukuhara, C. Weitenberg, P. SchauB3, C. Gross, L. Mazza,

M. C. Banuls, L. Pollet, I. Bloch, S. Kuhr, Observation of correlated particle-hole pairs and
string order in low-dimensional Mott insulators. Science 334, 200-203 (2011).

58. S. Fazzini, F. Becca, A. Montorsi, Nonlocal parity order in the two-dimensional Mott
insulator. Phys. Rev. Lett. 118, 157602 (2017).

59. M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, M. Rigol, One dimensional bosons: From
condensed matter systems to ultracold gases. Rev. Mod. Phys. 83, 1405-1466 (2011).

60. M. Piraud, F. Heidrich-Meisner, I. P. McCulloch, S. Greschner, T. Vekua, U. Schollwock,
Vortex and Meissner phases of strongly interacting bosons on a two-leg ladder.

Phys. Rev. B 91, 140406 (2015).

61. M. Knap, A. Kantian, T. Giamarchi, I. Bloch, M. D. Lukin, E. Demler, Probing real-space and
time-resolved correlation functions with many-body ramsey interferometry.
Phys. Rev. Lett. 111, 147205 (2013).

Barbiero et al., Sci. Adv. 2019;5:eaav7444 11 October 2019

62. T. Giamarchi, Quantum Physics in One Dimension (Oxford Univ. Press, 2003).

63. T. A. Hilker, G. Salomon, F. Grusdt, A. Omran, M. Boll, E. Demler, I. Bloch, C. Gross,
Revealing hidden antiferromagnetic correlations in doped Hubbard chains via string
correlators. Science 357, 484-487 (2017).

64. F.Grusdt, N.Y.Yao, D. Abanin, M. Fleischhauer, E. Demler, Interferometric measurements of
many-body topological invariants using mobile impurities. Nat. Commun. 7, 11994 (2016).

65. B. Paredes, I. Bloch, Minimum instances of topological matter in an optical plaquette.
Phys. Rev. A 77, 023603 (2008).

66. H.-N. Dai, B. Yang, A. Reingruber, H. Sun, X.-F. Xu, Y.-A. Chen, Z.-S. Yuan, J.-W. Pan,
Four-body ring-exchange interactions and anyonic statistics within a minimal toric-code
Hamiltonian. Nat. Phys. 13, 1195-1200 (2017).

67. P.E.Lammert, D. S. Rokhsar, J. Toner, Topology and nematic ordering. Phys. Rev. Lett. 70,
1650-1653 (1993).

68. D. Gonzalez-Cuadra, P. R. Grzybowski, A. Dauphin, M. Lewenstein, Strongly correlated
bosons on a dynamical lattice. Phys. Rev. Lett. 121, 090402 (2018).

69. A. A. Houck, H. E. Tiereci, J. Koch, On-chip quantum simulation with superconducting
circuits. Nat. Phys. 8, 292-299 (2012).

70. M. Di Dio, S. De Palo, E. Orignac, R. Citro, M.-L. Chiofalo, Persisting Meissner state and
incommensurate phases of hard-core boson ladders in a flux. Phys. Rev. B 92, 060506
(2015).

71. C. Romen, A. M. Lauchli, Chiral Mott insulators in frustrated Bose-Hubbard models on
ladders and two-dimensional lattices: A combined perturbative and density matrix
renormalization group study. Phys. Rev. B 98, 054519 (2018).

72. Sutherland, Beautiful Models, 70 Years of Exactly Solved Quantum Many-Body Problems
(World Scientific, 2004).

73. M. Ogata, H. Shiba, Bethe-ansatz wave function, momentum distribution, and spin
correlation in the one-dimensional strongly correlated Hubbard model. Phys. Rev. B 41,
2326-2338 (1990).

74. H. V. Kruis, I. P. McCulloch, Z. Nussinov, J. Zaanen, Geometry and the hidden order
of Luttinger liquids: The universality of squeezed space. Phys. Rev. B 70, 075109
(2004).

Acknowledgments: We thank I. Bloch and M. Lohse for fruitful discussions. We also
acknowledge discussions with P. Hauke, P. Zoller, V. Kasper, A. Bermudez, L. Santos,

I. Carusotto, and M. Hafezi. Funding: The work in Brussels was supported by the

FRS-FNRS (Belgium) and the ERC Starting Grant TopoCold. The research in Munich was
supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
via Research Unit FOR 2414 under project number 277974659 and under Germany's
Excellence Strategy - EXC2111 - 390814868, the European Commission (UQUAM grant no.
5319278), and the Nanosystems Initiative Munich (NIM) grant no. EXC4. The work at Harvard
was supported by the Gordon and Betty Moore Foundation through the EPiQS program,
Harvard-MIT CUA, NSF grant no. DMR-1308435, AFOSR MURI Quantum Phases of Matter
(grant FA9550-14-1-0035), and AFOSR MURI: Photonic Quantum Matter (award
FA95501610323). F.G. also acknowledges support from the Technical University of Munich—
Institute for Advanced Study, funded by the German Excellence Initiative and the European
Union FP7 under grant agreement 291763, from the DFG grant no. KN 1254/1-1, and DFG
TRR80 (Project F8). Author contributions: F.G. and N.G. devised the initial concepts. F.G.
performed the main analytical calculations, with inputs from N.G. and E.D. All DMRG
simulations were performed by L.B. The proposed experimental implementation was devised
by CS., M.A, N.G., and F.G. All authors contributed substantially to the analysis of the
theoretical results. The manuscript was prepared by F.G,, N.G,, LB., and C.S., with inputs from
all other authors. Competing interests: The authors declare that they have no competing
interests. Data materials and availability: All data needed to evaluate the conclusions

in the paper are present in the paper and/or the Supplementary Materials. Additional data
related to this paper may be requested from the authors.

Submitted 16 October 2018
Accepted 18 September 2019
Published 11 October 2019
10.1126/sciadv.aav7444

Citation: L. Barbiero, C. Schweizer, M. Aidelsburger, E. Demler, N. Goldman, F. Grusdt, Coupling

ultracold matter to dynamical gauge fields in optical lattices: From flux attachment to Z,
lattice gauge theories. Sci. Adv. 5, eaav7444 (2019).

14 of 14

0202 ‘1 Adenuer uo /610 Bewsousios saoueape//:dily wolj papeojumoq


https://www.nature.com/articles/s41567-019-0649-7
https://www.nature.com/articles/s41567-019-0615-4
http://advances.sciencemag.org/

Science Advances

Coupling ultracold matter to dynamical gauge fields in optical lattices: From flux attachment
to ? 5 lattice gauge theories

Luca Barbiero, Christian Schweizer, Monika Aidelsburger, Eugene Demler, Nathan Goldman and Fabian Grusdt

Sci Adv 5 (10), eaav7444.
DOI: 10.1126/sciadv.aav7444

ARTICLE TOOLS http://advances.sciencemag.org/content/5/10/eaav7444
nsn‘/’G'Ekﬂ"fs"TARY http://advances.sciencemag.org/content/suppl/2019/10/07/5.10.eaav7444.DC1
REFERENCES This article cites 67 articles, 2 of which you can access for free

http://advances.sciencemag.org/content/5/10/eaav7444#BIBL

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service

Science Advances (ISSN 2375-2548) is published by the American Association for the Advancement of Science, 1200 New
York Avenue NW, Washington, DC 20005. The title Science Advances is a registered trademark of AAAS.

Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of
Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial
License 4.0 (CC BY-NC).

0202 ‘1 Adenuer uo /610 Bewsousios saoueape//:dily wolj papeojumoq


http://advances.sciencemag.org/content/5/10/eaav7444
http://advances.sciencemag.org/content/suppl/2019/10/07/5.10.eaav7444.DC1
http://advances.sciencemag.org/content/5/10/eaav7444#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://advances.sciencemag.org/

