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Nagaoka ferromagnetism observed in a 
quantum dot plaquette

J. P. Dehollain1,2,7,8, U. Mukhopadhyay1,2,8, V. P. Michal1,2, Y. Wang3, B. Wunsch3, C. Reichl4,  
W. Wegscheider4, M. S. Rudner5,6, E. Demler3 & L. M. K. Vandersypen1,2 ✉

Engineered, highly controllable quantum systems are promising simulators of 
emergent physics beyond the simulation capabilities of classical computers1. An 
important problem in many-body physics is itinerant magnetism, which originates 
purely from long-range interactions of free electrons and whose existence in real 
systems has been debated for decades2,3. Here we use a quantum simulator consisting 
of a four-electron-site square plaquette of quantum dots4 to demonstrate Nagaoka 
ferromagnetism5. This form of itinerant magnetism has been rigorously studied 
theoretically6–9 but has remained unattainable in experiments. We load the plaquette 
with three electrons and demonstrate the predicted emergence of spontaneous 
ferromagnetic correlations through pairwise measurements of spin. We find that the 
ferromagnetic ground state is remarkably robust to engineered disorder in the on-site 
potentials and we can induce a transition to the low-spin state by changing the 
plaquette topology to an open chain. This demonstration of Nagaoka ferromagnetism 
highlights that quantum simulators can be used to study physical phenomena that 
have not yet been observed in any experimental system. The work also constitutes an 
important step towards large-scale quantum dot simulators of correlated electron 
systems.

The potential impact of discovering and understanding exotic forms of 
magnetism and superconductivity is one of the main motivations for 
research in condensed-matter physics. These quantum mechanically 
governed effects result from the strong correlations that arise between 
interacting electrons. Modelling and simulating such systems can, 
in some instances, be achieved only through the use of engineered, 
controllable systems that operate in the quantum regime1. Efforts 
to build quantum simulators have already shown great promise at 
this early stage10, mainly led by the ultracold-atom community11–17. 
More broadly, quantum simulations of many-body fermionic systems 
have been carried out in a range of experimental systems, such as 
quantum dot lattices18, dopant atoms19, superconducting circuits20 
and trapped ions21.

Electrostatically defined semiconductor quantum dots22–24 have 
been proposed as excellent candidates for quantum simulations25–27. 
Their ability to reach thermal energies far below the hopping and 
on-site interaction energies enables access to previously unexplored 
material phases. Quantum dot systems have already achieved success 
in realizing simulations of Mott-insulator physics in linear arrays28. 
In addition, the feasibility to extend these systems into two-dimen-
sional (2D) lattices has recently been demonstrated4,29–32, including 
the ability to perform measurements of spin correlations4. As a result, 
quantum dot systems are now prime candidates for exploring how 
superconductivity and magnetism emerge in strongly correlated 
electron systems33–35.

The emergence of magnetism in purely itinerant electron systems 
is a long-standing problem in quantum many-body physics2,3, with 
only a few rigorous theoretical results, for instance, in systems with 
special flat bands or Nagaoka’s ferromagnetism (see ref. 36 and ref-
erences therein). The Nagaoka model of ferromagnetism5,37 relies 
on the simplicity of the Hubbard model38, which captures complex 
correlations between electrons in a lattice with only two Hamilto-
nian parameters. Using this single-band model, Nagaoka proved 
analytically that for some lattice configurations, and in the limit 
of infinitely strong interactions, the presence of a single hole on 
top of a Mott-insulating state with one electron per site renders the 
ground state ferromagnetic. The Nagaoka mechanism can be intui-
tively understood as an interference effect between the different 
paths that the hole can take across the lattice. These paths interfere 
constructively when all lattice sites have the same spin orientation, 
which lowers the kinetic energy of the hole.

Given that Nagaoka obtained his rigorous result using unrealistic 
limits, it has been an open question whether this mechanism can still 
be responsible for the observation of ferromagnetism in an experi-
mental, finite-size system, in the presence of long-range interactions 
and disorder, as well as additional available orbitals. In this light, we 
note that a ferromagnetic state is a fully polarized spin state, and as 
such is an eigenstate of the total spin operator Stot

2 . This statement is 
true whether the system is in the thermodynamic limit or whether it is 
finite size. The feasibility of performing a quantum simulation of 
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Nagaoka ferromagnetism has been explored theoretically for quantum 
dots6–8 as well as optical superlattices9, but there are no experimental 
reports to date.

Here we present clear experimental evidence of Nagaoka ferromag-
netism, using a quantum dot device designed to host a 2 × 2 array of 
electrons. Using the high degree of parameter tunability, we study 
how external magnetic fields and disorder in local potentials affect 
the magnetic nature of the ground state. Furthermore, by effectively 
tuning the geometry of the system from periodic to open boundary 
conditions, we experimentally demonstrate the suppression of fer-
romagnetism expected from the Lieb–Mattis theorem39.

Nagaoka in the quantum dot plaquette
The single-band Hubbard model provides a simple description of 
interacting electrons in a lattice, such as the plaquette of electrostati-
cally defined and controlled quantum dots (Fig. 1a). The Hamiltonian 
contains competing kinetic energy and electron–electron interaction 
terms:

∑ ∑ ∑H t c c Un n μ n= − + − (1)
i j σ

i j iσ jσ
i

i i i
i

i iH
,

,
†

↑ ↓
〈 〉

where ti,j describes electron tunnelling between sites i and j, Ui is the 
on-site Coulomb repulsion energy at site i and μi is a local energy offset 
at site i. In typical quantum dot systems, Ui is mainly set by the geom-
etry of the device and is on the order of 1 meV, while ti,j and μi can be 
controlled by gate voltages in the range of 0 to 0.5 meV and 0 to 20 meV, 
respectively27. The operators ciσ, ciσ

†  and niσ represent the second quan-
tization annihilation, creation and number operators for an electron 
on site i with spin projection σ = {↑, ↓}.

Nagaoka ferromagnetism is predicted to occur with an almost-half-
filled lattice, which for the case of the 2 × 2 plaquette corresponds to 
having three interacting electrons in the four-site system. By addition-
ally restricting the system to nearest-neighbour-only coupling, the 
Hamiltonian is analytically solvable6 for homogeneous interactions 
(Ui = U, ti,j = t, μi = 0) and in the limit U ≫ t, where the lowest eigenen-
ergies are:

E t E t
t
U

= − 2 and = − 3 −
5 (2)3/2 1/2

2

Here E3/2 is the energy of the high-spin, ferromagnetic quadruplets 
(with total spin s = 3/2) and E1/2 is the energy of the two sets of low-spin 
s = 1/2 degenerate doublets (see Supplementary Methods for details).

We note that the Hamiltonian in equation (1) neglects some of the 
essential features of the experimental device used in this work. For 
comparison with experimental results, we employ a more general model 
Hamiltonian, in which we account for interdot Coulomb repulsion  
(in Fig. 2a), spin–orbit and hyperfine interactions (in Extended Data 
Figs. 3, 4a), and the effects of external magnetic fields. The imple-
mentation of these terms is described in detail in the Supplementary 
Methods. In addition to this model, we have also performed an ab initio 
calculation (see Supplementary Methods, Extended Data Figs. 5, 6, and 
ref. 40) based on multiple orbitals solved from a potential landscape 
with 2 × 2 minima, which shows similar results to those obtained with 
equation (1).

The simple model described by equations (1) and (2) already provides 
some useful insight into the parameter regimes relevant to the experi-
ment. The ferromagnetic state is the ground state at large U/t, with a 
transition to a low-spin ground state occurring at U/t = 18.7. The quan-
tum dot array used in this work has an average U ≈ 2.9 meV, with tun-
able nearest-neighbour tunnel couplings in the range of 0 < t < 20  μeV 
(ref. 4). Unless otherwise stated, we set ti,i + 1 ≈ 16 μeV. This means that 
we are probing the regime where the ground state is expected to be 
ferromagnetic (Fig. 1b).

We prepare the system by using charge stability diagrams41 to find 
the appropriate voltage bias that will stabilize the system in a charge 
configuration with three resonant electrons delocalized in the four 
sites. We set the local energy reference at this regime as μi(N) = 0 eV for 
all dots, and refer to this condition as point N. Charge stability diagrams 
are also used to tune the gates to the measurement point M, where 
single-shot measurements in the singlet-triplet ( S − T ) basis are per-
formed on two of the three electrons. Figure 2a and Extended Data 
Fig. 1 show simulated and measured charge stability diagrams where 
points N and M can be identified, along with an inset schematic of the 
dot local energies at these points.
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Fig. 1 | Device schematic and Nagaoka model. a, False-coloured scanning 
electron microscope image of a device from the same batch as the one used in 
the experiments. The gate structure used to define the quantum dots is 
coloured in dark gold. A slab of silicon nitride (coloured in green) is laid over 
gates C3 and P3 to electrically isolate those gates from the D0 gate (coloured in 
bright gold), which runs over them and contacts the substrate at the centre of 
the structure. Overlaid in blue is a sketch of the expected 2D electron gas 
density, showing the four dots forming a plaquette in the centre of the device, 
along with nearby charge sensors and electron reservoirs. Inset: schematic of 
the plaquette showing the relevant tunnel couplings and on-site interaction 
energies. b, Energy spectrum as a function of tunnel coupling using the 
solution expressed in equation (2), with U = 2.9 meV. The shaded area shows the 
experimentally accessible range of t in this system.
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With the accessible system parameters, the theoretically expected 
(Fig. 1b) energy gap between the ferromagnetic (s = 3/2) and low-spin 
(s = 1/2) states at point N is E1/2 − E3/2 ≈ 4 μeV, comparable to the measured 
thermal energy of about 6 μeV (electron temperature of about 70 mK)4. 
To study the magnetic properties of the ground state, we have devel-
oped a technique (Fig. 2b, c) based on initializing a low-entropy state 
at point M and adiabatically pulsing to point N to access the ground 
state. We then diabatically pulse back to point M and probe the spin 
state of the system on timescales faster than the relaxation times. By 
shortening the ramp time τramp of the pulse from point M to N, we can 
also access excited states. To distinguish whether the system is in a fer-
romagnetic or low-spin state, we repeat the cycle of preparation and 
measurement, and extract the triplet probability PT, which informs 
us on the nature of the original three-spin state (see Supplementary 
Methods for details). In Methods, we provide a detailed description 
of these preparation and measurement protocols.

Experimental results
Figure 3 shows plots of PT as we perform measurements at different 
values of detuning proportion pε, defined as the quantity that sets the 
linear combination of voltages Pi on gates Pi (Fig. 1a) such that at pε = 1(0) 
the system is tuned to point N(M). In the inset of the figure, we highlight 
that PT remains at a low value for most of the range, with a sharp increase 
as pε approaches 1 (point N). This is consistent with the expectation 
that the electrons will remain localized until the region close to point 
N, where they begin to delocalize and the PT measurement starts to 
project the three interacting spins (see Methods for details). This is 
expected to happen after pε ≈ 0.96, where the energy spectrum (inset of 

Fig. 2b) shows an energy-level crossing and the s = 3/2 states become the 
ground state. The non-zero triplet fraction at low pε is attributed partly 
to thermal excitations during the initialization stage (Methods)—as a 
consequence of the finite electron temperature—and partly to a small 
probability of leakage to excited states during the pulse.

The main plot shows the measurement around point N, for a range 
of τramp. In the region 0.99 < pε < 1.03, a clear increase of PT is observed 
as τramp is increased, consistent with a gradual transition from diabati-
cally pulsing into the low-spin state, to adiabatically pulsing into the 
ferromagnetic state, where PT is maximum. For the faster pulses, we 
see PT peaks at pε values of 0.99 and 1.03, where the pulse reaches the 
energy-level crossings, as all the spin states quickly (that is, much faster 
than the experimental timescales) mix owing to the nuclear hyperfine 
fields and spin–orbit coupling42–44.

The τramp timescale for the diabatic to adiabatic transition shown in 
Extended Data Fig. 4a can be theoretically studied using time-evolution 
simulations with an extended Hubbard model (see Supplementary 
Methods for details). From fits to the data, we estimate a hyperfine 
coupling parameter δN = 73 ± 3 neV, in agreement with previous obser-
vations and calculations in similar GaAs quantum dot systems44–46. 
Extended Data Fig. 4b shows PT as a function of the waiting time τwait 
spent at point N (pε = 1), consistent with thermal equilibration of the 
system with a timescale τrelax ≈ 2 μs.

We note that we cannot directly assign the measured values of PT to 
s = 1/2 and s = 3/2 populations, because the observed PT is subject to 
measurement imperfections caused by mechanisms that are difficult 
to disentangle, such as the finite measurement bandwidth, the signal-
to-noise ratio and T  to S  relaxation, as well as unwanted leakage to 
other states during the pulsed passages.
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Fig. 2 | Experimental protocol. a, Simulated charge stability diagram plotting 
the change in electron occupation Ne in the approximate gate space used in the 
experiment. In the experiment, we pulse in a straight line in gate space from 
point M to point N and back. The top-right inset shows a schematic of the local 
energies at points N and M, highlighting in the latter how the measurement of 
two spins in the singlet-triplet basis is performed through spin-to-charge 
conversion. The bottom-left inset shows a measured charge stability diagram 
of the dotted region, with the same gate voltage ratios as the simulation, which 
we use in the experiment to calibrate the gate voltages at point N. b, Calculated 
energy spectrum as a function of pε, using the theoretical model (equation (1) 

and Supplementary Methods) without spin-coupling effects. Parameters were 
set to the experimental values presented in Methods. The inset shows a 
zoomed-in spectrum of the region where the three spins are delocalized on all 
four dots, where there are a total of eight states: the s = 3/2 quadruplets (red) 
and the two sets of s = 1/2 doublets (blue), of which one set connects with the  
T  branch and the other with the S  branch at point M. Line colours represent 

the spin state of the system in each region, denoted by the labels in the figure. 
The energies extracted from the numerical solutions are offset by the energy of 
s m, = 3/2, + 3/2 . c, Pulse sequence used in the experiment (see Methods for 

detailed description).
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Changing topology from 2D to 1D
Whereas the square plaquette can be thought of as a 1D ring, the Lieb–
Mattis theorem6,39 asserts that the ground state of a 1D array of electrons 
with open boundary conditions has the lowest possible spin. We can 
intuitively understand the difference between these two configurations 
when we consider how the hole tunnels to its next-nearest neighbour3. 
In a 2D plaquette, the hole has two possible paths to the next-nearest 
neighbour. If the system is initialized in any of the s = 1/2 configurations, 
the two paths will leave the system in two different spin configurations. 
However, for an s = 3/2 system, the two paths leave identical spin con-
figurations, and interfere constructively to lower the kinetic energy. In 
contrast, in an open-boundary 1D array, the kinetic energy of the hole is 
independent of the spin configurations of the neighbouring electrons 
as there is only one path for the hole through the array.

One powerful feature of the quantum dot system is that the tunnel 
barriers can be tuned independently, allowing us to test different array 
topologies. In Fig. 4a, we compare diabatic and adiabatic sweeps as we 
raise the tunnel barrier that controls t23, effectively transforming the 
plaquette into a system that behaves more like an open-boundary 1D 
system. In the latter regime, we see that PT becomes insensitive to sweep 
rate. In addition, we no longer observe the peaks of PT for the fast sweep 
rate, which we had associated with mixing at the avoided level crossings. 
From these observations, we infer that for the open chain, the instan-
taneous ground state does not exhibit an avoided crossing between 
an s = 1/2 state and an s = 3/2 state as the system is taken to point N. In 
this regime, the pε sweeps will always evolve to the s = 1/2 ground state, 
independent of the sweep rate. This interpretation is also consistent 
with the numerical simulations of the energy spectrum shown in Fig. 4b.

Effects of external magnetic fields
Given that Nagaoka ferromagnetism originates from interference 
effects due to the trajectories of the hole around the ring, it then follows 
that a magnetic flux through the plaquette will add an Aharonov–Bohm 
phase47 that disturbs the interference effects. We capture this effect in 
the theoretical model by adding a magnetic-field-dependent gauge 
to the tunnelling term in equation (1). In addition, the application of 
an external field subjects the system to the Zeeman effect, causing a 
spin-dependent energy offset. See Supplementary Methods for details 

on how the gauge and Zeeman terms are implemented in the extended 
Hubbard model.

Figure 5a shows the effect of a magnetic field B through the plaquette 
on the spectrum, ignoring the Zeeman effect. The lowest s = 1/2 and 
s = 3/2 levels at point N are shown as a function of the applied field, where 
periodic crossings can be observed. In the range 30 < B < 160 mT, the 
system ground state transitions to the low-spin state, with the perhaps 
counterintuitive implication that we can destroy the ferromagnetic state 
by applying a magnetic field. In addition, this effect highlights that the fer-
romagnetic state in this system is dominated by the Nagaoka effect rather 
than long-range interactions. In line with this observation, the ab initio 
calculations suggest that long-range interactions only account for about 
20% of the ferromagnetic polarization40. When we include the Zeeman 
effect (Fig. 5b), the picture becomes more complicated, because both 
Zeeman and orbital effects cause perturbations of similar energy scales.

From this initial numerical analysis, it is clear that the experimental 
characterization of the effect of the external field will be challeng-
ing, owing to the increased complexity of the spectral structure of 
the spin states as a function of field. The small energy splittings that 
appear both at point N, as well as at lower pε values (inset of Fig. 5c) are 
expected to cause mixing of the spin states during the adiabatic pulses. 
To minimize this mixing, we adjusted the pulsing protocol such that 
we pulse adiabatically (1 μs ramp) to pε = 0.2, then pulse diabatically  
(5 ns ramp) the rest of the way. The results in Fig. 5c show that from 4 to 
8 mT, PT increases at point N, and we stop observing the characteristic 
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dip. Note that the range of field that we were able to probe is still below 
the estimated ground state transition point (about 30 mT). Therefore, 
we infer that the observed increase in PT results from hybridization of 
the s = 1/2 and s = 3/2 states as their energy gap reduces. We cannot claim 
that the observed hybridization of states is occurring solely at point 
N, as it is evident from the increase in PT at pε < 0.97 (that is, before the 
energy-level crossings) that some of the mixing is occurring during the 
pulse. However, we do see that PT in all plots converges at the energy-
level crossings (pε ≈ 0.97 and pε ≈ 1.03), suggesting that the Aharonov–
Bohm orbital effects are partly responsible for the additional mixing 
near point N. Attempts to perform the measurement at higher fields 
closer to the expected spin-state transition resulted in similar plots.

Sensitivity to local energy offsets
We also use the tunability available in quantum dot systems to study 
the effects of disorder of the local potential. For the plot in Fig. 6a, we 
modified the experimental protocol used to probe the states at point N, 
pulsing instead to a point N′, where the local energy of dot 1 is offset by 
±50 μeV. We achieve this by employing the virtual gates technique4,28, 
which gives access to control knobs that map a linear combination of 
Pi gates onto local dot energy offsets. The measurements show that the 
region in the detuning trajectory where the ferromagnetic state is the 
ground state changes in width and position when different offsets are 
applied. The panel inset shows the expected energy spectra when we 
simulate the experimental conditions using the model in equation (1). 
The spectra show excellent qualitative agreement with the measured 
variations in width and position of the gapped region. In Extended Data 
Fig. 7, we repeated the measurement on each of the four dots, showing 
similar qualitative agreement with theory.

Figure 6b compares experimental measurements and theoretical 
predictions of the width of the detuning proportion region (as defined in 
the caption of Extended Data Fig. 8) with a ferromagnetic ground-state 
energy gap, for offsets of dot 1 in the range +100 to −800 μeV. This plot 
further confirms the interpretation of the experimental observations, 
showing excellent agreement between measurements and theoretical 
predictions. Remarkably, the system still shows signs of the ferromag-
netic ground state with offsets up to −400 μeV (Extended Data Fig. 8), 
more than an order of magnitude larger than the tunnel coupling. We 
also note that the theoretical simulations in Extended Data Fig. 8 suggest 
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Fig. 6 | Local energy offsets. a, Experimental measurements with a similar 
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that from −500 μeV, the ground state is no longer s = 3/2, even though 
the measurement still shows a gap in PT between diabatic and adiaba-
tic sweeps. The presence of this gap is explained by the large splitting 
between the two s = 1/2 branches that occurs at such large local offsets.

Discussion
In this work, we have presented measurements showing experimental 
evidence of Nagaoka’s 50-year-old theory in a small-scale system. The 
large degree of tunability, high ratio of interaction strength to tem-
perature and fast measurement techniques available to quantum dot 
systems allowed the observation of both the ferromagnetic ground 
state and the low-spin excited state of an almost-half-filled lattice of 
electrons. By performing a quantum simulation involving both charge 
and spin, we have built on previous demonstrations28 showing that 
quantum dot systems can be useful simulators of the extended Hubbard 
model, despite their initial inhomogeneities in the potential shape and 
local energies. Furthermore, we have shown a flavour of the capabilities 
for studying the sensitivity to disorder, and these experiments have 
already revealed some remarkable effects, when we found that the 
Nagaoka condition can still be observed after offsetting a local energy 
by amounts much larger than the tunnel coupling. This can readily be 
studied in further detail, along with other possibilities for exploring 
the effects of disorder, which could bring insights into, for example, 
the stability of the ferromagnetic state. More quantitative insight of the 
energy gap between the spin states can be achieved through spectros-
copy measurements, using techniques such as applying oscillating elec-
tric fields through a gate48 or observing ‘exchange-like’ oscillations49.

While the problem of three electrons in a four-site plaquette can be 
solved analytically using the single-band Hubbard picture, a complete 
description of this experimental system that includes all its available 
orbitals is not easily tractable, analytically or numerically. Indeed, the 
computational cost of the ab initio calculation of the five lowest states, 
with long-range and on-site interaction terms being considered, is on 
the order of 10,000 CPU hours. Small-scale simulations on tractable 
models can be used to systematically benchmark the performance of 
devices as the scale-up technology develops towards devices that can 
perform classically intractable simulations. Larger quantum dot systems 
(or other experimentally controllable systems), such as ladders or two-
dimensional arrays can shed more light on the existence of purely itiner-
ant ferromagnetism in real systems. The exchange interaction grows 
proportionally to the system size, creating a competition against the 
hopping energy that is characteristic of Nagaoka ferromagnetism, and 
leaving the fate of the Nagaoka mechanism in larger systems unknown.
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Methods

Device fabrication
The experiment was performed using an array of four gate-defined 
quantum dots in a 2 × 2 geometry4. The device substrate consists of 
an AlGaAs/GaAs heterostructure, designed to have a 2D electron gas 
90 nm below the surface. The quantum dots are defined and controlled 
using metallic gates patterned on the surface of the substrate, as shown 
in the scanning electron microscope image of a device from the same 
batch as the one used in this work in Fig. 1a. We employed a double-layer 
gate structure to form this dot array. The first layer of gates—which 
includes all gates except D0—was created using electron-beam lithog-
raphy, evaporation and lift-off of Ti/Au with 5/20 nm thickness. We 
then fabricate a 1.5 × 0.2 μm dielectric slab on top of the gates C3 and 
P3, using electron-beam lithography, sputtering and lift-off of SiNx 
with a thickness of 50 nm. Finally, the D0 gate is created using the same 
process as the other gates, with 10/100-nm-thick Ti/Au. This gate runs 
over the gate C3 before contacting the substrate at the centre of the dot 
array. The gates created in the first layer are 30-nm wide, whereas the 
width of the D0 gate is 100 nm.

Device operation and calibration of experimental parameters
The full set of gates Bi, Pi, Ci and D0 shown in Fig. 1a are designed to define 
and control the quantum dot plaquette. In addition, gates Xi, Yi and Si 
define two larger quantum dots, which are used as charge sensors. Dif-
ferent parameters of the dot array can be controlled using voltages on 
different gates. The Pi gates are designed to control the electron filling 
of dot i by adjusting the dot chemical potential μi. Gates D0 and Ci are 
designed to control the tunnel coupling ti,j, while gates Bi and Ci + 1 are 
designed to control the coupling between dot i and its reservoir. In 
reality, the proximity between the gates causes non-negligible cross-
capacitances, complicating independent control of the parameters 
that the gates were designed to control. For some of the tuning stages, 
we make use of linear combinations of gate voltages—known as virtual 
gates4,28—to provide a direct experimental knob to Hamiltonian param-
eters such as μi and ti,j.

We use charge stability diagrams23 to identify the charge state of the 
system as a function of different Pi voltages. We can convert changes in 
gate voltages ΔPi into changes in dot local offset energies Δμi by meas-
uring the lever arms αi = Δμi/ΔPi, using the method described in detail 
in ref. 28. For this device, the measured values are α[1,2,3,4] = [30(2), 45(4), 
55(6), 38(3)] μeV mV−1. The uncertainty in the estimation of αi is domi-
nated by the precision with which we can identify a charge transition 
in the charge stability diagram, which is about 1 mV. Different features 
of the charge stability diagrams are also used to estimate the effective 
Hamiltonian parameters in the experimental system4,28. The effec-
tive on-site interaction Ui is measured by extracting the local energy 
offset in dot i required to change the occupation from one electron 
to two electrons. For this device, these values were measured to be 
U[1,2,3,4] = [2.9(2), 2.6(2), 2.9(3), 3.0(2)] meV. The uncertainty in the estima-
tion of Ui is calculated from the vector sum of the relative uncertainties 
of the roughly 1 mV measurement precision, and the uncertainty in αi 
used in the conversion from voltage to energy. The effective tunnel 
coupling term ti,j is measured by analysing the width of the step in the 
charge sensing signal as the detuning between dots i and j is swept to 
transfer a single electron between them. For most of the results in this 
work, the ti,j terms where tuned to 16(4) μeV. The uncertainty in ti,j has 
roughly equal contributions from the estimation of the coupling from 
the fit to the width of the step and the ability to simultaneously tune 
all four couplings. For the results in Fig. 4, t2,3 was tuned to different 
values, which are provided in the figure caption. The charge stability 
diagram simulations (Fig. 2a), require values for the interdot Coulomb 
repulsion Vi,j, which are also extracted from measured charge stability 
diagrams as V1,2 = 0.47(6) meV, V2,3 = 0.35(7) meV, V3,4 = 0.43(7) meV, 
V1,4 = 0.30(4) meV, V1,3 = 0.28(6) meV, V2,4 = 0.18(5) meV.

We make use of charge stability diagrams to observe charge tunnel-
ling events either between an electron reservoir and a dot, or between 
two dots in the plaquette. These diagrams (such as the ones in Fig. 2a, 
Extended Data Figs. 1, 2) allow us to map out the charge occupation of 
the system as a function of voltage in the gates.

To observe signatures of Nagaoka ferromagnetism, we need to tune 
the system to a regime where it is loaded with three electrons, and the 
charge configuration energies of the electrons are resonant. We set 
the local energy reference at this regime as μi(N) = 0 eV for all dots, and 
refer to this condition as point N (Fig. 2a).

To tune ti,i + 1 close to point N, we first localize two of the electrons 
in dots i + 2, i + 3 (that is, by slightly lowering μi + 2, μi + 3), and keep dots 
i, i + 1 resonant using the remaining electron to measure their tunnel 
coupling. Here we use cyclic dot indices with i = {1, 2, 3, 4}.

Since the sensing dots are only sensitive to charge tunnelling events, 
a spin-to-charge conversion protocol24 is needed to perform measure-
ments of the spin state of the system. We do this at point M, where 
μi

M ≈ [−2.5, 0.0, 1.0, −0.5] meV (inset of Fig. 2a). There, the ground charge 
state is [2, 0, 0, 1] (where [n1, n2, n3, n4] corresponds to the number of 
electrons with dot number in the subscript), while the first excited 
charge state is [1, 1, 0, 1]. These states have an uncoupled spin in dot 4, 
with the remaining two spins in a singlet S  (triplet T ) configuration 
for the ground (first excited) state. We chose to use dots 1 and 2 for 
readout, because we obtained the highest readout contrast from this 
pair of dots in this device.

The exact gate voltages required to tune the device to points M and 
N need to be calibrated visually using charge stability diagrams. In 
Extended Data Fig. 1b, we show a sample charge stability diagram sim-
ilar to the ones used to identify the gate voltages that will tune the device 
to point M. After the initial visual calibration, we fine-tune the gate volt-
ages to maximize the T  to S  relaxation time, which was in the range 
of 30 to 50 μs in this device. We characterize the thermal excitation rate 
at point M by analysing the observed random telegraph signal, in which 
the spins spend about 10 to 20% of the time in the triplet state, consist-
ent with the values measured at small pε seen in the inset of Fig. 3.

Point N was also calibrated visually, using charge stability diagrams 
such as those in Extended Data Fig. 2. We note that the scale of the ti,j 
terms limit the precision with which we can identify point N, as larger 
t broadens the interdot transitions, making them harder to identify in 
the charge stability diagrams.

Once we have fine-tuned the gate voltages at points M and N,  
we define a linear combination of Pi voltages that joins the two points 
by a straight line in gate voltage space. To do this, we define a virtual 
gate VPε such that a change in the voltage of this gate simultaneously 
changes all Pi voltages by different amplitudes, effectively moving the 
system along the ‘detuning proportion’ pε axis in Fig. 2b (see also the 
line along the charge stability diagram in Fig. 2a), defined such that 
μ p p μ( ) = (1 − )i ε ε i

M.
To make sure that no unwanted charge transitions are crossed along 

the pε axis, we use charge stability diagrams such as those shown in 
Fig. 2a (simulated) and Extended Data Fig. 1 (measured), which use a 
gate combination that allows to see both points N and M in the same 
diagram.

Measurement protocol
Figure 2b presents the results of a theoretical simulation showing the 
lowest three multiplets of the energy spectrum of the three-electron 
system, along the line that connects point M to point N. Close to point 
M, we see a typical double quantum dot spectrum corresponding to 
the [2, 0, 0, 1] ↔ [1, 1, 0, 1] charge transition with the S  and T  branches, 
while in the region around point N, the spins delocalize and we see 
branches corresponding to the quadruplets and doublets of the three-
electron system.

With this device, we can probe the spin state of the three-electron 
system using the following protocol: (1) repeatedly (10,000 times) 



pulse rapidly from point N to point M; (2) for each repetition, perform 
single-shot S / T  measurements using dots 1 and 2 and taking two out 
of the three electrons; and (3) extract the triplet probability PT. Under 
ideal conditions, this constitutes a two-spin projective measurement 
of the three-electron system, resulting in P = 1T

(3/2)  when the three-
electron system is in a ferromagnetic state (any of the s = 3/2 quadru-
plets). In the low-spin sector (s = 1/2), there are two sets of doublet 
states available, one of which projects two spins to S , while the other 
projects to T  (see Supplementary Methods for details). In this system, 
the doublets are effectively degenerate (Fig. 2b), and their hybridiza-
tion will result in = 0.5T

(1/2)P .
Owing to the low ratio of energy-level splitting to temperature at 

point N, we cannot probe the ground state of the system by way of 
relaxation. Instead, we have developed a technique similar to those 
previously used in quantum dot24 and cold atom11,12,14 systems, where 
a low-entropy state is evolved coherently to the state of interest. To 
do this, we apply a gate pulse sequence that follows the detuning 
range shown in the energy spectrum plotted in Fig. 2b. Using the pulse 
sequence drawn in Fig. 2c, a two-spin singlet state with a third, free 
spin sitting on dot 4 is initialized by waiting at point M for 500 μs. Next 
we apply a pulse on VPε towards point N of amplitude pε. We then wait 
a time τwait at μi(pε), before finally pulsing back to point M to perform 
the measurement. Importantly, the level crossings seen in Fig. 2b are 
in fact avoided level crossings with spin–orbit and nuclear hyper-
fine mediated coupling between the spin states (see Supplementary 
Methods for details). This avoided level crossing allows to probe the 
different states in the region around pε = 1, by varying the ramp rate 
in the pulse sequence: a slow (fast) ramp rate results in an adiabatic 
(diabatic) passage through the avoided level crossings, so the ground 
(excited) state is reached. In practice, to minimize leakage to excited 
states along the way, 80% of the pulse is performed adiabatically, 
with the variable ramp time τramp only applied to the remaining 20%. 
As long as τwait is shorter than the thermal relaxation timescale, the 
measurement of PT will be able to distinguish between high- and low-
spin states at point N. To observe relaxation of the s = 1/2 and s = 3/2 
states (Extended Data Fig. 4c), we keep pε = 1 fixed and vary the wait 
time τwait spent at point N.

Data availability
The datasets obtained from the measurements described in this work 
are available in the repository Zenodo with the identifier https://doi.
org/10.5281/zenodo.3258940.

Code availability
The code used to plot the datasets and implement the models used 
to reproduce all the figures in the main manuscript is available in 
the repository Zenodo with the identifier https://doi.org/10.5281/
zenodo.3258940. 
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Extended Data Fig. 1 | Charge stability diagram of the relevant voltage 
regions. a, Measured charge stability diagram showing both point N and point 
M, as highlighted in Fig. 2a. b, Measured charge stability diagram focusing on 

the 2001:1101 charge transition, where spin measurements are performed 
(point M).



Extended Data Fig. 2 | Tuning the gate voltages to the Nagaoka condition 
using charge stability diagrams. a, Sample charge stability diagram where we 
have highlighted the visible interdot transitions, where the electrochemical 
potentials of two dots become resonant (that is, an electron is allowed to tunnel 
between the two dots). b, Charge stability diagram similar to a, where we have 
modified gates P1 and P3 such that the interdot transitions appear at different 
locations in the diagram. Dashed black lines delimit the regions with a fixed 

total electron occupation in the system. c, In this diagram, gates P1 and P3 have 
been tuned to observe the Nagaoka condition, where the three visible interdot 
transitions are aligned in the three-electron configuration. The intersite 
interaction in the system provides an effective isolation from the reservoirs for 
a narrow range of gate voltages, such that the system can remain stable with 
three electrons in the resonant configuration.
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Extended Data Fig. 3 | Effects of spin-coupling mechanisms. Calculated 
spectra of the system in the region of pε close to the level crossing of the s = 1/2 
and s = 3/2 energies, comparing the effects of different mechanisms for spin 
coupling. a, Spectrum without any spin coupling effects. b, Spectrum 
including only spin–orbit coupling (SOC) effects. c, Sample spectrum with 

both spin–orbit and hyperfine induced Overhauser field gradients, using a 
single combination of hNa fields (as defined in the Supplementary Methods) 
selected from a normal distribution with standard deviation δN = 73 neV. 
The Supplementary Methods describe the implementations of these spin-
coupling terms in the theoretical model.



Extended Data Fig. 4 | Characterization of the Nagaoka condition.  
a, Average PT in the detuning region 1.00 < pε < 1.01 for 40 values of τramp within 
the same range shown in Fig. 3. Solid lines are fits using the time evolution 
simulations described in the Supplementary Methods, for different values of 
distance ℓ between neighbouring dots. Inset shows the unscaled results of the 

time-evolution simulations, where the probability of s = 3/2 is the sum of the 
lowest four eigenstate probabilities from the final evolved state. b, Thermal 
relaxation measurements. PT is measured for increasing wait times at point N, 
for diabatic (blue) and adiabatic (red) passages. Solid lines are exponential fits 
as guide to the eye.
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Extended Data Fig. 5 | Ab initio simulations from 2D to 1D. a, Schematic of the 
methodology used in the ab initio simulations to reproduce the effect of the 
four-dot system transition from a 2D plaquette to a 1D chain. We gradually vary 
the angle θ, which effectively varies the distance between two of the dots. b, c, 

The ground-state energy and spin configuration (b) and the ferromagnetic to 
low-spin energy gap ΔE as a function of θ (c). The ground state soon becomes a 
low-spin state for the rotating angle at 0.3°.



Extended Data Fig. 6 | Ab initio simulations for local energy offsets.  
a, Schematic of the methodology used in the ab initio simulations to reproduce 
the effect of a local energy offset. The amplitude of the potential V of one of the 
quantum wells is changed by an amount dV. The variation of the single-well 
potential by positive or negative dV gives unbalanced site energies. Besides, 
with the change of eigenstate basis, the hybridization and interaction 
parameters are also affected in the ab initio calculation. b, c, The ground-state 
energy and spin configuration (b) and the ferromagnetic to low-spin energy 

gap ΔE as a function of dV (c). When the potential detuning is dV = 0.11 meV or 
dV = −0.07 meV, the system undergoes a transition to a low-spin ground state. 
The transitions at these two directions have a different nature, as drawn in the 
insets. For dV > 0, the particular quantum dot is deeper and tends to trap more 
electrons. However, a negative dV raises the energy cost on the particular 
quantum well and leads to a lower probability of occupation in a three-electron 
system. Without the ‘mobile’ hole in the ‘half-filled’ system, the ground state 
becomes a low-spin state instead of a Nagaoka ferromagnetic state.



Article

Extended Data Fig. 7 | Local energy offsets on all dots. Same measurement  
as in Fig. 6, applying the ±50 μeV offset on each of the four dots. Panels 
correspond to offsets in dots 1 to 4, clockwise from the top left. Note that the 
asymmetry in the plots is related to the fact that the local energies at point M 

are in an asymmetric detuning configuration and we pulse linearly from this 
configuration to point N. As expected, the simulated energies of the different 
spin states at point N (pε = 1), are the same in all four plots.



Extended Data Fig. 8 | Large local offsets. Each pair of panels show experimental  
measurements (left) and simulated spectra (right), where point N has been 
redefined such that the chemical potential of dot 1 is offset by the amount 
shown on the top right of each panel. Green crosses highlight the detuning 

points used to obtain the values in Fig. 6b. For experimental plots, these points 
where obtained using a peak-finding algorithm (local maxima by simple 
comparison with neighbouring values); for simulated plots, the points 
correspond to the energy-level crossings.
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