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Engineered, highly controllable quantum systems are promising simulators of
emergent physics beyond the simulation capabilities of classical computers'. An
important problem in many-body physics is itinerant magnetism, which originates
purely fromlong-range interactions of free electrons and whose existence in real
systems has been debated for decades?®. Here we use a quantum simulator consisting
of afour-electron-site square plaquette of quantum dots* to demonstrate Nagaoka
ferromagnetism?. This form of itinerant magnetism has been rigorously studied
theoretically®® but has remained unattainable in experiments. We load the plaquette
with three electrons and demonstrate the predicted emergence of spontaneous
ferromagnetic correlations through pairwise measurements of spin. We find that the
ferromagnetic ground state is remarkably robust to engineered disorder in the on-site
potentials and we caninduce a transition to the low-spin state by changing the
plaquette topology to an open chain. This demonstration of Nagaoka ferromagnetism
highlights that quantum simulators can be used to study physical phenomena that
have not yet been observed in any experimental system. The work also constitutes an

important step towards large-scale quantum dot simulators of correlated electron

systems.

The potentialimpact of discovering and understanding exotic forms of
magnetism and superconductivity is one of the main motivations for
researchin condensed-matter physics. These quantum mechanically
governed effects result from the strong correlations that arise between
interacting electrons. Modelling and simulating such systems can,
in some instances, be achieved only through the use of engineered,
controllable systems that operate in the quantum regime’. Efforts
to build quantum simulators have already shown great promise at
this early stage'®, mainly led by the ultracold-atom community™ 7.
More broadly, quantum simulations of many-body fermionic systems
have been carried out in a range of experimental systems, such as
quantum dot lattices™, dopant atoms", superconducting circuits?
and trapped ions®.

Electrostatically defined semiconductor quantum dots**?* have
been proposed as excellent candidates for quantum simulations® 2.
Their ability to reach thermal energies far below the hopping and
on-siteinteraction energies enables access to previously unexplored
material phases. Quantum dot systems have already achieved success
in realizing simulations of Mott-insulator physics in linear arrays?.
In addition, the feasibility to extend these systems into two-dimen-
sional (2D) lattices has recently been demonstrated*?**, including
the ability to perform measurements of spin correlations*. As aresult,
quantum dot systems are now prime candidates for exploring how
superconductivity and magnetism emerge in strongly correlated
electron systems®,

The emergence of magnetismin purelyitinerant electron systems
is a long-standing problem in quantum many-body physics*?, with
only afewrigorous theoretical results, for instance, in systems with
special flat bands or Nagaoka’s ferromagnetism (see ref. *® and ref-
erences therein). The Nagaoka model of ferromagnetism>* relies
on the simplicity of the Hubbard model®®, which captures complex
correlations between electrons in a lattice with only two Hamilto-
nian parameters. Using this single-band model, Nagaoka proved
analytically that for some lattice configurations, and in the limit
of infinitely strong interactions, the presence of a single hole on
top of aMott-insulating state with one electron per site renders the
ground state ferromagnetic. The Nagaoka mechanism can be intui-
tively understood as an interference effect between the different
pathsthat the hole can take across the lattice. These pathsinterfere
constructively when all lattice sites have the same spin orientation,
which lowers the kinetic energy of the hole.

Given that Nagaoka obtained his rigorous result using unrealistic
limits, it has been an open question whether this mechanism can still
be responsible for the observation of ferromagnetism in an experi-
mental, finite-size system, in the presence of long-range interactions
and disorder, as well as additional available orbitals. In this light, we
note that a ferromagnetic state is a fully polarized spin state, and as
such s an eigenstate of the total spin operator S2,,. This statement is
true whether the systemis inthe thermodynamic limit or whetheritis
finite size. The feasibility of performing a quantum simulation of
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Fig.1|Deviceschematic and Nagaokamodel. a, False-coloured scanning
electron microscopeimage of a device fromthe samebatch astheoneusedin
the experiments. The gate structure used to define the quantum dotsis
colouredindark gold. Aslab of'silicon nitride (coloured ingreen) is laid over
gates C;and P;toelectrically isolate those gates from the D, gate (colouredin
bright gold), which runs over themand contacts the substrate at the centre of
thestructure. Overlaidinblueis a sketch of the expected 2D electron gas
density, showing the four dots forming a plaquette in the centre of the device,
along with nearby charge sensors and electronreservoirs. Inset: schematic of
the plaquette showing the relevant tunnel couplings and on-siteinteraction
energies. b, Energy spectrumas afunction of tunnel coupling using the
solution expressedin equation (2), with U=2.9 meV. The shaded areashows the
experimentally accessible range of tin this system.

Nagaoka ferromagnetism has been explored theoretically for quantum
dots®®aswell as optical superlattices’, but there are no experimental
reports to date.

Here we present clear experimental evidence of Nagaoka ferromag-
netism, using a quantum dot device designed to host a2 x 2 array of
electrons. Using the high degree of parameter tunability, we study
how external magnetic fields and disorder in local potentials affect
the magnetic nature of the ground state. Furthermore, by effectively
tuning the geometry of the system from periodic to open boundary
conditions, we experimentally demonstrate the suppression of fer-
romagnetism expected from the Lieb-Mattis theorem™.

Nagaokain the quantum dot plaquette

The single-band Hubbard model provides a simple description of
interactingelectronsinalattice, such as the plaquette of electrostati-
cally defined and controlled quantum dots (Fig. 1a). The Hamiltonian
contains competing kinetic energy and electron-electroninteraction
terms:

Hy== Y tjclCis+ X Uintiy, = ¥ pimy )
(i 7 i

where t;;describes electron tunnelling between sites i and j, U is the
on-site Coulomb repulsion energy at siteiand y;is alocal energy offset
atsite i. In typical quantum dot systems, U;is mainly set by the geom-
etry of the device and is on the order of 1 meV, while ¢;;and y; can be
controlled by gate voltagesin the range of 0 to 0.5meV and 0 to 20 meV,
respectively”. The operatorsc;, ¢} and n, represent the second quan-
tization annihilation, creation and number operators for an electron
onsite i with spin projectiono= {1, V}.

Nagaoka ferromagnetism is predicted to occur with an almost-half-
filled lattice, which for the case of the 2 x 2 plaquette corresponds to
having three interacting electronsin the four-site system. By addition-
ally restricting the system to nearest-neighbour-only coupling, the
Hamiltonian is analytically solvable® for homogeneous interactions
(U;=U, t;;=t,p;=0) and in the limit U> t, where the lowest eigenen-
ergiesare:

5¢2
E,=-2t and 151,2=—J§t—7 (2)

Here E;, is the energy of the high-spin, ferromagnetic quadruplets
(with total spins=3/2) and £, , is the energy of the two sets of low-spin
s=1/2degenerate doublets (see Supplementary Methods for details).

We note that the Hamiltonian in equation (1) neglects some of the
essential features of the experimental device used in this work. For
comparisonwith experimental results, we employ amore general model
Hamiltonian, in which we account for interdot Coulomb repulsion
(in Fig. 2a), spin-orbit and hyperfine interactions (in Extended Data
Figs. 3, 4a), and the effects of external magnetic fields. The imple-
mentation of these termsis described in detail in the Supplementary
Methods. Inaddition to thismodel, we have also performed anabinitio
calculation (see Supplementary Methods, Extended Data Figs. 5, 6, and
ref. *°) based on multiple orbitals solved from a potential landscape
with2 x2minima, which shows similar results to those obtained with
equation (1).

The simple model described by equations (1) and (2) already provides
some usefulinsightinto the parameter regimesrelevant to the experi-
ment. The ferromagnetic state is the ground state at large U/t, with a
transition toalow-spin ground state occurring at U/t=18.7. The quan-
tum dot array used in this work has an average U= 2.9 meV, with tun-
able nearest-neighbour tunnel couplingsintherange of 0 <t<20 peV
(ref. *). Unless otherwise stated, we set ¢;;,, = 16 peV. This means that
we are probing the regime where the ground state is expected to be
ferromagnetic (Fig. 1b).

We prepare the system by using charge stability diagrams* to find
the appropriate voltage bias that will stabilize the system in a charge
configuration with three resonant electrons delocalized in the four
sites. We set the local energy reference at this regime as ¢1(N) =0 eV for
all dots, and refer to this condition as point N. Charge stability diagrams
are also used to tune the gates to the measurement point M, where
single-shot measurements in the singlet-triplet (|S) - |T)) basis are per-
formed on two of the three electrons. Figure 2a and Extended Data
Fig.1show simulated and measured charge stability diagrams where
points N and M can be identified, along with aninset schematic of the
dotlocal energies at these points.
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Fig.2|Experimental protocol. a, Simulated charge stability diagram plotting
thechangeinelectronoccupation N.inthe approximate gate space usedinthe
experiment.Inthe experiment, we pulsein astraightline in gate space from
pointMto point N and back. The top-right inset shows aschematic of the local
energiesat pointsNand M, highlightingin the latter how the measurement of
twospinsinthe singlet-triplet basis is performed through spin-to-charge
conversion. The bottom-leftinset shows a measured charge stability diagram
ofthedotted region, with the same gate voltage ratios as the simulation, which
we useintheexperiment to calibrate the gate voltages at point N. b, Calculated
energy spectrumasafunction of p,, using the theoretical model (equation (1)

With the accessible system parameters, the theoretically expected
(Fig.1b) energy gap between the ferromagnetic (s =3/2) and low-spin
(s=1/2) statesat point Nis £;;, - E5, = 4 peV, comparable to the measured
thermal energy of about 6 peV (electron temperature of about 70 mK)*.
To study the magnetic properties of the ground state, we have devel-
oped a technique (Fig. 2b, c) based on initializing a low-entropy state
at point M and adiabatically pulsing to point N to access the ground
state. We then diabatically pulse back to point M and probe the spin
state of the system on timescales faster than the relaxation times. By
shortening the ramp time 7,,,,, of the pulse from point Mto N, we can
alsoaccess excited states. To distinguish whether the systemisin afer-
romagnetic or low-spin state, we repeat the cycle of preparation and
measurement, and extract the triplet probability P, which informs
us on the nature of the original three-spin state (see Supplementary
Methods for details). In Methods, we provide a detailed description
of these preparation and measurement protocols.

Experimental results

Figure 3 shows plots of P; as we perform measurements at different
values of detuning proportion p,, defined as the quantity that sets the
linear combination of voltages P;on gates P; (Fig. 1a) such thatat p,=1(0)
thesystem s tuned to point N(M). Inthe inset of the figure, we highlight
that P;remains atalow value for most of the range, with asharpincrease
as p, approaches1 (point N). This is consistent with the expectation
that the electrons will remain localized until the region close to point
N, where they begin to delocalize and the Py measurement starts to
project the three interacting spins (see Methods for details). This is
expected to happen after p, = 0.96, where the energy spectrum (inset of
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and Supplementary Methods) without spin-coupling effects. Parameters were
settothe experimental values presented in Methods. Theinset shows a
zoomed-inspectrumoftheregion where the three spins are delocalized on all
four dots, where there are a total of eight states: the s=3/2 quadruplets (red)
andthe twosetsof s=1/2 doublets (blue), of which one set connects with the
|T)branch and the other with the|S)branch at point M. Line colours represent
thespinstate of the systemineachregion, denoted by thelabelsin the figure.
Theenergies extracted fromthe numerical solutions are offset by the energy of
|s, m)=13/2,+3/2).c, Pulse sequence used in the experiment (see Methods for
detailed description).

Fig.2b) shows an energy-level crossing and the s=3/2 states become the
ground state. Thenon-zero triplet fractionat low p, is attributed partly
to thermal excitations during the initialization stage (Methods)—as a
consequence of the finite electron temperature—and partly to asmall
probability of leakage to excited states during the pulse.

The main plot shows the measurement around point N, for arange
Of T,mp- INthe region 0.99 < p, <1.03, a clear increase of P is observed
as 7, isincreased, consistent with agradual transition from diabati-
cally pulsing into the low-spin state, to adiabatically pulsing into the
ferromagnetic state, where P is maximum. For the faster pulses, we
see P; peaks at p, values of 0.99 and 1.03, where the pulse reaches the
energy-level crossings, as all the spin states quickly (thatis, much faster
than the experimental timescales) mix owing to the nuclear hyperfine
fields and spin-orbit coupling***,

The 1,,,,, timescale for the diabatic to adiabatic transition shownin
Extended DataFig.4acanbetheoretically studied using time-evolution
simulations with an extended Hubbard model (see Supplementary
Methods for details). From fits to the data, we estimate a hyperfine
coupling parameter 6y =73+ 3 neV, in agreement with previous obser-
vations and calculations in similar GaAs quantum dot systems** ¢,
Extended Data Fig. 4b shows P; as a function of the waiting time 7,,;,
spent at point N (p,=1), consistent with thermal equilibration of the
system with a timescale T ., = 2 1.

We note that we cannot directly assign the measured values of P; to
s=1/2and s =3/2 populations, because the observed P; is subject to
measurementimperfections caused by mechanisms that are difficult
todisentangle, such as the finite measurement bandwidth, the signal-
to-noise ratio and|T) to|S) relaxation, as well as unwanted leakage to
other states during the pulsed passages.
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Changing topology from 2D to 1D

Whereas the square plaquette can be thought of asa1Dring, the Lieb—
Mattis theorem®* asserts that the ground state of alD array of electrons
with open boundary conditions has the lowest possible spin. We can
intuitively understand the difference between these two configurations
when we consider how the hole tunnels to its next-nearest neighbour>.
Ina 2D plaquette, the hole has two possible paths to the next-nearest
neighbour.Ifthe systemisinitialized in any of the s=1/2 configurations,
the two paths will leave the systemin two different spin configurations.
However, for ans=3/2 system, the two paths leave identical spin con-
figurations, and interfere constructively to lower the kinetic energy. In
contrast, inan open-boundary 1D array, the kinetic energy of the hole is
independent of the spin configurations of the neighbouring electrons
asthereis only one path for the hole through the array.

One powerful feature of the quantum dot system is that the tunnel
barriers canbe tuned independently, allowing us to test different array
topologies. InFig.4a, we compare diabatic and adiabatic sweeps aswe
raise the tunnel barrier that controls ¢,;, effectively transforming the
plaquette into a system that behaves more like an open-boundary 1D
system. Inthelatter regime, we see that P; becomesinsensitive to sweep
rate.Inaddition, we nolonger observe the peaks of P; for the fast sweep
rate, which we had associated with mixing at the avoided level crossings.
From these observations, we infer that for the open chain, the instan-
taneous ground state does not exhibit an avoided crossing between
ans=1/2state and an s = 3/2 state as the system is taken to point N. In
thisregime, the p, sweeps will always evolve to the s=1/2 ground state,
independent of the sweep rate. This interpretation is also consistent
withthe numerical simulations of the energy spectrum shownin Fig.4b.

Effects of external magnetic fields

Given that Nagaoka ferromagnetism originates from interference
effects duetothe trajectories of the hole around thering, it then follows
thatamagnetic flux through the plaquette willadd an Aharonov-Bohm
phase* that disturbs the interference effects. We capture this effectin
the theoretical model by adding a magnetic-field-dependent gauge
to the tunnelling term in equation (1). In addition, the application of
an external field subjects the system to the Zeeman effect, causing a
spin-dependent energy offset. See Supplementary Methods for details
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19(5)] (orange); [16(1), 7.9(5), 20(2),19(2)] (green); [18(4), 0.0, 21(1), 21(3)]
(purple). The offsetsin Py between the curves are not attributed to the
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the thermal excitation rate during the initialization stage of the protocol.

b, Calculated energy spectrum as afunction of p,, using the tunnel coupling
values corresponding to the green (left) and purple (right) plots from a.

on how the gauge and Zeeman terms are implemented in the extended
Hubbard model.

Figure 5ashows the effect of amagnetic field Bthrough the plaquette
on the spectrum, ignoring the Zeeman effect. The lowest s =1/2 and
s=3/2levelsat point Nare shownas afunction of the applied field, where
periodic crossings can be observed. In the range 30 <B <160 mT, the
system ground state transitions to the low-spin state, with the perhaps
counterintuitiveimplication that we can destroy the ferromagnetic state
by applyingamagnetic field. Inaddition, this effect highlights that the fer-
romagnetic state in this systemis dominated by the Nagaoka effect rather
thanlong-range interactions. In line with this observation, the ab initio
calculations suggest that long-range interactions only account for about
20% of the ferromagnetic polarization*°. When we include the Zeeman
effect (Fig. 5b), the picture becomes more complicated, because both
Zeeman and orbital effects cause perturbations of similar energy scales.

From thisinitial numerical analysis, it is clear that the experimental
characterization of the effect of the external field will be challeng-
ing, owing to the increased complexity of the spectral structure of
the spin states as a function of field. The small energy splittings that
appearbothat point N, as well as at lower p, values (inset of Fig. 5c) are
expected to cause mixing of the spin states during the adiabatic pulses.
To minimize this mixing, we adjusted the pulsing protocol such that
we pulse adiabatically (1 pus ramp) to p, = 0.2, then pulse diabatically
(5nsramp) therest of the way. The results in Fig. 5c show that from 4 to
8mT, Princreases at point N, and we stop observing the characteristic
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dip. Note that the range of field that we were able to probe s still below
the estimated ground state transition point (about 30 mT). Therefore,
weinfer that the observed increase in P;results from hybridization of
thes=1/2and s=3/2states as their energy gap reduces. We cannot claim
that the observed hybridization of states is occurring solely at point
N, asitisevident from theincreasein Prat p,<0.97 (thatis, before the
energy-level crossings) that some of the mixing is occurring during the
pulse. However, we do see that P;in all plots converges at the energy-
level crossings (p,=0.97 and p,=1.03), suggesting that the Aharonov—
Bohm orbital effects are partly responsible for the additional mixing
near point N. Attempts to perform the measurement at higher fields
closer to the expected spin-state transition resulted in similar plots.

Sensitivity to local energy offsets

We also use the tunability available in quantum dot systems to study
the effects of disorder of the local potential. For the plot in Fig. 6a, we
modified the experimental protocol used to probe the states at point N,
pulsinginstead toapoint N, where thelocal energy of dot 1is offset by
+50 peV. We achieve this by employing the virtual gates technique*?,
which gives access to control knobs that map a linear combination of
P;gatesontolocal dot energy offsets. The measurements show that the
regioninthe detuningtrajectory where the ferromagnetic stateis the
ground state changes inwidth and position when different offsets are
applied. The panel inset shows the expected energy spectra when we
simulate the experimental conditions using the modelin equation (1).
The spectra show excellent qualitative agreement with the measured
variationsinwidth and position of the gapped region. In Extended Data
Fig.7, werepeated the measurement on each of the four dots, showing
similar qualitative agreement with theory.

Figure 6b compares experimental measurements and theoretical
predictions of the width of the detuning proportion region (as defined in
the caption of Extended Data Fig. 8) with aferromagnetic ground-state
energy gap, for offsets of dot1in the range +100 to —800 peV. This plot
further confirms the interpretation of the experimental observations,
showing excellent agreement between measurements and theoretical
predictions. Remarkably, the system still shows signs of the ferromag-
netic ground state with offsets up to —400 peV (Extended Data Fig. 8),
more than an order of magnitude larger than the tunnel coupling. We
alsonote that the theoretical simulationsin Extended Data Fig. 8 suggest
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detuning proportion where thes=3/2tos=1/2gapis visible. The pointsused to
determine the widthsinboth experimental measurements and theoretical
simulations are shownin Extended DataFig. 8. Error bars are calculated from
thefits to the peaks used to determine the widths from the experimental data.



that from =500 peV, the ground state is no longer s =3/2, even though
the measurement still shows a gap in P; between diabatic and adiaba-
tic sweeps. The presence of this gap is explained by the large splitting
betweenthetwos=1/2branches that occursatsuchlargelocal offsets.

Discussion

Inthis work, we have presented measurements showing experimental
evidence of Nagaoka’s 50-year-old theory inasmall-scale system. The
large degree of tunability, high ratio of interaction strength to tem-
perature and fast measurement techniques available to quantum dot
systems allowed the observation of both the ferromagnetic ground
state and the low-spin excited state of an almost-half-filled lattice of
electrons. By performing a quantum simulation involving both charge
and spin, we have built on previous demonstrations? showing that
quantum dot systems can be useful simulators of the extended Hubbard
model, despite their initialinhomogeneities in the potential shape and
local energies. Furthermore, we have shown a flavour of the capabilities
for studying the sensitivity to disorder, and these experiments have
already revealed some remarkable effects, when we found that the
Nagaoka condition canstill be observed after offsetting alocal energy
by amounts much larger than the tunnel coupling. This canreadily be
studied in further detail, along with other possibilities for exploring
the effects of disorder, which could bring insights into, for example,
the stability of the ferromagnetic state. More quantitative insight of the
energy gap between the spin states can be achieved through spectros-
copy measurements, using techniques such as applying oscillating elec-
tric fields through a gate*® or observing ‘exchange-like’ oscillations®.

While the problem of three electrons in a four-site plaquette can be
solved analytically using the single-band Hubbard picture, acomplete
description of this experimental system that includes all its available
orbitals is not easily tractable, analytically or numerically. Indeed, the
computational cost of the abinitio calculation of the five lowest states,
with long-range and on-site interaction terms being considered, is on
the order 0f 10,000 CPU hours. Small-scale simulations on tractable
models can be used to systematically benchmark the performance of
devices as the scale-up technology develops towards devices that can
perform classically intractable simulations. Larger quantum dot systems
(or other experimentally controllable systems), such asladders or two-
dimensional arrays can shed more light on the existence of purely itiner-
ant ferromagnetism in real systems. The exchange interaction grows
proportionally to the system size, creating a competition against the
hoppingenergy thatis characteristic of Nagaoka ferromagnetism, and
leaving the fate of the Nagaoka mechanismin larger systems unknown.
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Methods

Device fabrication

The experiment was performed using an array of four gate-defined
quantum dots ina 2 x 2 geometry*. The device substrate consists of
an AlGaAs/GaAs heterostructure, designed to have a 2D electron gas
90 nm below the surface. The quantum dots are defined and controlled
using metallic gates patterned on the surface of the substrate, as shown
inthe scanning electron microscope image of a device from the same
batch asthe one usedinthisworkinFig.1a. We employed a double-layer
gate structure to form this dot array. The first layer of gates—which
includes all gates except D,—was created using electron-beam lithog-
raphy, evaporation and lift-off of Ti/Au with 5/20 nm thickness. We
then fabricate a1.5 x 0.2 pm dielectric slab on top of the gates C; and
P;, using electron-beam lithography, sputtering and lift-off of SiN,
withathickness of 50 nm. Finally, the D, gateis created using the same
process as the other gates, with 10/100-nm-thick Ti/Au. This gate runs
over the gate C,before contacting the substrate at the centre of the dot
array. The gates created in the first layer are 30-nm wide, whereas the
width of the D, gate is100 nm.

Device operation and calibration of experimental parameters
Thefullset of gates B, P, C;and D, shownin Fig.1aare designed to define
and control the quantum dot plaquette. In addition, gates X, Y;and S;
define two larger quantum dots, which are used as charge sensors. Dif-
ferent parameters of the dot array can be controlled using voltages on
different gates. The P,gates are designed to control the electronfilling
of dot i by adjusting the dot chemical potential u,. Gates D, and C; are
designed to control the tunnel coupling ¢;;, while gates B;and C,, , are
designed to control the coupling between dot i and its reservoir. In
reality, the proximity between the gates causes non-negligible cross-
capacitances, complicating independent control of the parameters
that the gates were designed to control. For some of the tuning stages,
we make use of linear combinations of gate voltages—known as virtual
gates**—to provide a direct experimental knob to Hamiltonian param-
eterssuchasy;and¢;;.

We use charge stability diagrams® to identify the charge state of the
systemasafunction of different P,voltages. We can convert changesin
gate voltages AP;into changesin dotlocal offset energies Au; by meas-
uring the lever arms a;= Au;,/AP;, using the method described in detail
inref.?. For this device, the measured values are a; , 4, =[30(2), 45(4),
55(6),38(3)] peV mV™. The uncertainty in the estimation of a;is domi-
nated by the precision with which we canidentify a charge transition
inthe charge stability diagram, whichis about1mV. Different features
ofthe charge stability diagrams are also used to estimate the effective
Hamiltonian parameters in the experimental system*?®. The effec-
tive on-site interaction U, is measured by extracting the local energy
offset in dot i required to change the occupation from one electron
to two electrons. For this device, these values were measured to be
U 234=[2.9(2),2.6(2),2.9(3),3.0(2)] meV. The uncertainty in the estima-
tionof U;is calculated from the vector sum of the relative uncertainties
of the roughly 1 mV measurement precision, and the uncertainty in a;
used in the conversion from voltage to energy. The effective tunnel
coupling term¢;is measured by analysing the width of the stepin the
charge sensing signal as the detuning between dots i and j is swept to
transfer asingle electron between them. For most of the resultsin this
work, the t;;terms where tuned to 16(4) peV. The uncertainty in¢;;has
roughly equal contributions from the estimation of the coupling from
the fit to the width of the step and the ability to simultaneously tune
all four couplings. For the results in Fig. 4, ¢, ; was tuned to different
values, which are provided in the figure caption. The charge stability
diagram simulations (Fig. 2a), require values for the interdot Coulomb
repulsion V;;, whichare also extracted from measured charge stability
diagrams as V;,=0.47(6) meV, V, ;= 0.35(7) meV, V;, = 0.43(7) meV,
V,.=0.30(4) meV, V, ,=0.28(6) meV, V, , = 0.18(5) meV.

We make use of charge stability diagrams to observe charge tunnel-
ling events either between anelectronreservoirand adot, or between
two dotsinthe plaquette. These diagrams (such as the ones in Fig. 2a,
Extended DataFigs.1,2) allow us to map out the charge occupation of
the system as a function of voltage in the gates.

To observe signatures of Nagaoka ferromagnetism, we need to tune
thesystemtoaregime whereitisloaded with three electrons, and the
charge configuration energies of the electrons are resonant. We set
thelocal energy reference at thisregime as ;1,(N) =0 eV for all dots, and
refer to this condition as point N (Fig. 2a).

To tune¢;;,, close to point N, we first localize two of the electrons
indotsi+2,i+3 (thatis, by slightly lowering y;.», i;.5), and keep dots
i, i+1resonant using the remaining electron to measure their tunnel
coupling. Here we use cyclic dot indices withi={1, 2, 3, 4}.

Since the sensing dots are only sensitive to charge tunnelling events,
aspin-to-charge conversion protocol*is needed to perform measure-
ments of the spin state of the system. We do this at point M, where
yz."'z [-2.5,0.0,1.0,-0.5] meV (inset of Fig. 2a). There, the ground charge
stateis[2, 0, 0, 1] (where [n,, n,, n;, n,] corresponds to the number of
electrons with dot number in the subscript), while the first excited
chargestateis[1,1,0,1]. These states have an uncoupled spinindot 4,
with the remaining two spins in a singlet|S) (triplet|T)) configuration
for the ground (first excited) state. We chose to use dots 1 and 2 for
readout, because we obtained the highest readout contrast from this
pair of dots in this device.

The exact gate voltages required to tune the device to points M and
N need to be calibrated visually using charge stability diagrams. In
Extended DataFig. 1b, we show a sample charge stability diagram sim-
ilar tothe ones used toidentify the gate voltages that will tune the device
topoint M. After the initial visual calibration, we fine-tune the gate volt-
ages to maximize the|T) to|S) relaxation time, which was in the range
of30to 50 pusinthis device. We characterize the thermal excitation rate
at point M by analysing the observed randomtelegraph signal, in which
the spins spend about 10 to 20% of the time in the triplet state, consist-
ent with the values measured at small p, seen in the inset of Fig. 3.

Point N was also calibrated visually, using charge stability diagrams
such as those in Extended Data Fig. 2. We note that the scale of the ¢;;
terms limit the precision with which we canidentify point N, as larger
tbroadenstheinterdot transitions, making them harder toidentifyin
the charge stability diagrams.

Once we have fine-tuned the gate voltages at points M and N,
we define alinear combination of P, voltages that joins the two points
by a straight line in gate voltage space. To do this, we define a virtual
gate VP, such that a change in the voltage of this gate simultaneously
changesall P,voltages by different amplitudes, effectively moving the
system along the ‘detuning proportion’ p, axis in Fig. 2b (see also the
line along the charge stability diagram in Fig. 2a), defined such that
1(p)=1-pu'

Tomake sure that no unwanted charge transitions are crossed along
the p, axis, we use charge stability diagrams such as those shown in
Fig. 2a (simulated) and Extended Data Fig. 1 (measured), which use a
gate combination that allows to see both points Nand M in the same
diagram.

Measurement protocol
Figure 2b presents the results of atheoretical simulation showing the
lowest three multiplets of the energy spectrum of the three-electron
system, along the line that connects point M to point N. Close to point
M, we see a typical double quantum dot spectrum corresponding to
the[2,0,0,1]1 < [1,1,0,1] charge transition with the|S)and|T)branches,
while in the region around point N, the spins delocalize and we see
branches correspondingto the quadruplets and doublets of the three-
electron system.

With this device, we can probe the spin state of the three-electron
system using the following protocol: (1) repeatedly (10,000 times)



pulserapidly from point N to point M; (2) for each repetition, perform
single-shot|S)/|T)measurements using dots 1and 2 and taking two out
ofthethree electrons; and (3) extract the triplet probability Pr. Under
ideal conditions, this constitutes a two-spin projective measurement
of the three-electron system, resulting in P;*/? =1 when the three-
electron system is in a ferromagnetic state (any of the s =3/2 quadru-
plets). In the low-spin sector (s =1/2), there are two sets of doublet
states available, one of which projects two spins to|[S), while the other
projectsto|T)(see Supplementary Methods for details). Inthis system,
the doublets are effectively degenerate (Fig. 2b), and their hybridiza-
tionwill resultin P{?=0.5.

Owing to the low ratio of energy-level splitting to temperature at
point N, we cannot probe the ground state of the system by way of
relaxation. Instead, we have developed a technique similar to those
previously used in quantum dot* and cold atom™*?**systems, where
alow-entropy state is evolved coherently to the state of interest. To
do this, we apply a gate pulse sequence that follows the detuning
range showninthe energy spectrum plotted in Fig. 2b. Using the pulse
sequence drawn in Fig. 2c, a two-spin singlet state with a third, free
spinsittingon dot 4 isinitialized by waiting at point M for 500 ps. Next
we apply apulse on VP towards point N of amplitude p,. We then wait
atimer,,.atu,(p,), beforefinally pulsing back to point M to perform
the measurement. Importantly, the level crossings seenin Fig.2b are
in fact avoided level crossings with spin-orbit and nuclear hyper-
fine mediated coupling between the spin states (see Supplementary
Methods for details). This avoided level crossing allows to probe the
different states in the region around p, =1, by varying the ramp rate
in the pulse sequence: a slow (fast) ramp rate results in an adiabatic
(diabatic) passage through the avoided level crossings, so the ground
(excited) stateis reached. In practice, to minimize leakage to excited
states along the way, 80% of the pulse is performed adiabatically,
with the variable ramp time 7,,,,, only applied to the remaining 20%.
As long as 7, is shorter than the thermal relaxation timescale, the
measurement of P will be able to distinguish between high-and low-
spin states at point N. To observe relaxation of the s=1/2and s=3/2
states (Extended Data Fig. 4c), we keep p,.=1fixed and vary the wait
time 7,,,; Spent at point N.

Data availability

The datasets obtained from the measurements described in this work
are available in the repository Zenodo with the identifier https://doi.
org/10.5281/zenod0.3258940.

Code availability

The code used to plot the datasets and implement the models used
to reproduce all the figures in the main manuscript is available in
the repository Zenodo with the identifier https://doi.org/10.5281/
zenodo.3258940.

Acknowledgements We acknowledge input and discussions with M. Chan, S. Philips,

Y. Nazarov, F. Liu, L. Janssen, T. Hensgens, T. Fujita and all of the Vandersypen team, as well as
experimental support by L. Blom, C. van Diepen, P. Eendebak, F. van Riggelen, R. Schouten,
R. Vermeulen, R. van Ooijik, H. van der Does, M. Ammerlaan, J. Haanstra, S. Visser and R.
Roeleveld. L.M.KV. thanks the NSF-funded MIT-Harvard Center for Ultracold Atoms for its
hospitality. This work was supported by grants from the Netherlands Organisation for Scientific
Research (FOM projectruimte and NWO Vici) (J.P.D., U.M., L.M.K\V.), the European Research
Council (ERC-Synergy) (V.P.M., L.M.K\V.), the Postdoctoral Fellowship in Quantum Science of
the Harvard-MPQ Center for Quantum Optics and AFOSR-MURI Quantum Phases of Matter
(grant number FA9550-14-1-0035) (Y.W.), the Swiss National Science Foundation (C.R., WW.)
and The Villum Foundation (M.S.R.).

Author contributions BW., M.S.R., E.D. and L.M.KV. had equal contribution in
conceptualization. Experimental investigation and methodology was performed with equal
contribution from J.P.D. and U.M. Theoretical investigation was led by J.P.D., V.P.M. and BW.
(extended Hubbard models), and YW. (ab initio model). J.P.D. led the data curation and
software, with support from U.M. and V.P.M. J.P.D. and U.M. had equal contribution in the formal
analysis, with support from V.P.M. L.M.K\V. led the funding acquisition and supervision. U.M. led
the resources (device fabrication) with support from J.P.D. C.R. and WW. led the resources
(heterostructure growth). J.P.D. led the writing—original draft, with review and editing support
from U.M., V..M., YW., M.S.R., E.D. and L.M.K\V. Please refer to the Casrai Credit Taxonomy for
definitions of each of these roles.

Competing interests The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41586-020-
2051-0.

Correspondence and requests for materials should be addressed to L.M.K\V.

Peer review information Nature thanks Joe Salfi, Igor Zutic and the other, anonymous,
reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at http://www.nature.com/reprints.


https://doi.org/10.5281/zenodo.3258940
https://doi.org/10.5281/zenodo.3258940
https://doi.org/10.5281/zenodo.3258940
https://doi.org/10.5281/zenodo.3258940
https://doi.org/10.1038/s41586-020-2051-0
https://doi.org/10.1038/s41586-020-2051-0
http://www.nature.com/reprints

Article

a Sensing dot response (a.u.) _
b Sensing dot response (a.u.) _
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Extended DataFig.1|Charge stability diagram ofthe relevant voltage the2001:1101 charge transition, where spin measurements are performed

regions. a, Measured charge stability diagram showing both point Nand point (pointM).
M, as highlighted in Fig. 2a. b, Measured charge stability diagram focusing on
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Extended DataFig.2|Tuning the gate voltages to the Nagaoka condition
using charge stability diagrams. a, Sample charge stability diagram where we
have highlighted the visible interdot transitions, where the electrochemical
potentials of two dots become resonant (thatis, an electronis allowed to tunnel
between the two dots). b, Charge stability diagram similar to a, where we have
modified gates P, and P;such that theinterdot transitions appear at different
locationsinthe diagram. Dashed blacklines delimit the regions withafixed

total electron occupationin the system.c, Inthis diagram, gates P,and P, have
beentunedto observe the Nagaoka condition, where the three visible interdot
transitions arealigned in the three-electron configuration. Theintersite
interactioninthe system provides an effective isolation from the reservoirs for
anarrow range of gate voltages, such that the system can remain stable with
threeelectronsintheresonant configuration.
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Extended DataFig. 3 | Effects of spin-coupling mechanisms. Calculated
spectraofthesystemintheregionofp,closetothelevel crossingof thes=1/2
ands=3/2energies, comparing the effects of different mechanisms for spin
coupling.a, Spectrum without any spin coupling effects. b, Spectrum
including only spin-orbit coupling (SOC) effects. ¢, Sample spectrum with

Detuning proportion p,
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bothspin-orbitand hyperfineinduced Overhauser field gradients, using a
single combination of hy, fields (as defined in the Supplementary Methods)
selected fromanormaldistribution with standard deviation 6y =73 neV.
The Supplementary Methods describe theimplementations of these spin-
coupling termsin the theoretical model.
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simulations describedin the Supplementary Methods, for different values of
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lowest four eigenstate probabilities from the final evolved state. b, Thermal
relaxation measurements. P is measured for increasing wait times at point N,
for diabatic (blue) and adiabatic (red) passages. Solid lines are exponential fits
asguidetotheeye.
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the angle 6, which effectively varies the distance between two of the dots. b, c,
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Extended DataFig. 6| Abinitio simulations forlocal energy offsets.
a,Schematic of the methodology usedin the ab initio simulations to reproduce
theeffect ofalocal energy offset. The amplitude of the potential Vof one of the
quantumwellsis changed by anamount dV. The variation of the single-well
potential by positive or negative dV/gives unbalanced site energies. Besides,
with the change of eigenstate basis, the hybridization and interaction
parametersare also affectedin the abinitio calculation. b, ¢, The ground-state
energy and spin configuration (b) and the ferromagnetic to low-spin energy

-0.2 -0.1 0

dV [meV]

0.1 0.2 0.3 0.4 0.5

gap AFasafunctionof dV(c). When the potential detuningisdV=0.11meV or
dV=-0.07 meV, the system undergoes a transition to alow-spin ground state.
Thetransitions at these two directions have a different nature, as drawnin the
insets. For dV >0, the particular quantum dotis deeper and tends to trap more
electrons. However, anegative dVraises the energy cost on the particular
quantumwell and leads to alower probability of occupationin athree-electron
system. Without the ‘mobile” holein the ‘half-filled’ system, the ground state
becomesalow-spinstateinstead of aNagaoka ferromagnetic state.
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Extended DataFig.7|Local energy offsets on all dots. Same measurement

Detuning proportion p.

asinFig. 6, applying the £50 peV offset on each of the four dots. Panels

correspond to offsetsindots1to 4, clockwise fromthe top left. Note that the

Detuning proportion p.

areinanasymmetric detuning configuration and we pulse linearly from this

configurationto point N. As expected, the simulated energies of the different

asymmetry inthe plotsisrelated to the fact that thelocal energies at point M

spinstatesat point N (p,.=1),arethesameinallfour plots.
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points used to obtain the valuesin Fig. 6b. For experimental plots, these points
where obtained using a peak-finding algorithm (local maxima by simple
comparisonwith neighbouring values); for simulated plots, the points
correspond to the energy-level crossings.

Extended DataFig. 8 |Largelocal offsets. Each pair of panels show experimental
measurements (left) and simulated spectra (right), where point Nhasbeen
redefined such that the chemical potential of dot 1is offset by the amount
shownonthetopright of each panel. Green crosses highlight the detuning
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