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We develop an efficient variational approach to studying dynamics of a localized quantum spin coupled to a
bath of mobile spinful bosons. We use parity symmetry to decouple the impurity spin from the environment via
a canonical transformation and reduce the problem to a model of the interacting bosonic bath. We describe
coherent time evolution of the latter using bosonic Gaussian states as a variational ansatz. We provide full
analytical expressions for equations describing variational time evolution that can be applied to study in- and
out-of-equilibrium phenomena in a wide class of quantum impurity problems. In the accompanying paper
[Ashida et al., Phys. Rev. Lett. 123, 183001 (2019)], we present a concrete application of this general formalism
to the analysis of the Rydberg central spin model, in which the spin-1/2 Rydberg impurity undergoes spin-
changing collisions in a dense cloud of two-component ultracold bosons. To illustrate new features arising from
orbital motion of the bath atoms, we compare our results to the Monte Carlo study of the model with spatially
localized bosons in the bath, in which random positions of the atoms give rise to random couplings of the standard
central spin model.
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I. INTRODUCTION

Understanding dynamics of a quantum system coupled to a
reservoir is a ubiquitous problem in modern physics. Models
of this type can be used as a starting point for describing many
important phenomena in condensed-matter physics, atomic
and molecular physics, and optics. Furthermore, coherent con-
trol and manipulation of quantum systems coupled to many-
body reservoirs are the primary prerequisite for a successful
implementation of quantum information processing. Current
constraints on the applications of quantum technologies arise
from practical limitations on coherence of quantum systems
due to their interaction with external environments.

In the context of many-body physics, a problem of partic-
ular importance is the model of quantum impurity interacting
with a bosonic bath. This class of models can be used to
describe a large number of physical systems, including elec-
trons coupled to phonons [1–3], spins coupled to a dissipative
environment [4], the Bose Kondo problem [5–8], electrons in
semiconductors [9–11], and 3He-4He mixtures [12]. Renewed
interest in these problems comes from recent experiments
with ultracold atoms [13–22] that allow one to create many-
body systems with tunable parameters and to obtain detailed
characterizations of the dynamics. Theoretical studies lead
to significant advances in understanding of polaron physics
[23–39] beyond the conventional paradigm established in the
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previous studies of solid-state systems [40,41]. An important
common feature of these systems is that bath modes are
delocalized. Typical examples include phonons in crystal lat-
tices or Bose-Einstein condensates (BEC). In the Bose Kondo
model [42], the bosonic spinful bath consists of paramagnons
of the nearby antiferromagnetic phase and is thus delocalized.

Another important class of quantum baths features local-
ized bath modes, such as nuclear spins that interact with
the electron spin on a quantum dot [43–45]. A paradigmatic
model for describing such systems is the central spin model
[46–59], which couples a central two-level system to localized
(i.e., immobile) environmental spins. This model is also com-
monly used to describe dynamics of spin qubits realized with
phosphorus impurities in silicon [60,61] and nitrogen-vacancy
centers in diamond [62]. A particularly intriguing feature of
the central spin model is its quantum integrability [46], which
implies the existence of an extensive number of integrals of
motion. Several powerful techniques have been developed
to analyze dynamics of this model, including Bethe ansatz
[46,51,63], the Chebyshev-expansion method [64], pertur-
bative approaches [45,65,66], effective-Hamiltonian methods
[67,68], cluster correlation expansion [69], the nonpertur-
bative master-equation approach [70], and a self-consistent
Holstein-Primakoff approximation [57]. Relation between the
central spin model and the BCS theory of superconductivity
has also been actively explored [50,71].

Until now the above two classes of many-body systems,
namely, quantum impurity problems with mobile and local-
ized bath modes, have been analyzed separately. In particular,
it is not obvious how to generalize the previous theoretical
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approaches developed in the central spin problem so as to
handle the case of delocalized (i.e., mobile) environmental
spins. In this paper, we develop a variational approach to
study a generalized type of a quantum impurity problem in
which environmental bosons are mobile and spinful while
interaction between the localized spin and the surrounding
mobile spins is spatially extended. A particularly intriguing
aspect of this problem is the interplay between spin dynamics
and orbital motion of host particles. A flip of the impu-
rity spin dramatically changes the interaction between the
impurity and environmental bosons, and vice versa, orbital
motion of bosons affects spin-exchange processes because the
interaction depends on the positions of atoms. This unique
interplay thus compounds the difficulties of including both
orbital motion of mobile bosons and nonlocal spin interactions
characteristic of the central spin model. To solve such a class
of challenging problems, we describe a variational approach
that first decouples the impurity by employing the canonical
transformation [72] (at the expense of introducing interactions
among the bath particles) and then approximates coherent
dynamics of the bath with the bosonic Gaussian states. We
provide explicit analytical expressions for the nonlinear time-
evolution equations of the vector of coherent expectation
values and the covariance matrix of individual modes.

The past two decades have witnessed remarkable devel-
opments in giant Rydberg impurities in ultracold atoms, of-
fering a new experimental platform for quantum informa-
tion processing [73] and for realizing new types of strongly
correlated many-body states [74–81]. In the accompanying
paper [82], we point out that Rydberg excitations in ultracold
atoms naturally realize the new class of the quantum impurity
problem, which we term as the Rydberg central spin model
(RCSM). We here discuss in detail how our general theoretical
approach can be applied to study nonequilibrium properties of
the RCSM. While polaronic effects in Rydberg spectroscopy
have recently attracted considerable attention, the focus of
previous studies has been either on settings in which only a
triplet scattering channel needs to be included and thus spin
dynamics is frozen [74–81] or on low-density regimes, where
only few-body molecular physics is relevant [83–87].

This paper is organized as follows. In Sec. II, we present
details of the variational approach to studying dynamics of
a quantum spin coupled to a generic bosonic environment
with the only requirement of having parity symmetry (e.g.,
symmetry of the rotation by π around a certain axis). We in-
troduce a canonical transformation that completely decouples
the impurity from the environment. We present the formal-
ism to approximate the time evolution of the environmental
wave function in the transformed frame using a bosonic
Gaussian state as a variational ansatz. We derive analytical
expressions of the equations of motion for the variational
parameters. In Sec. III, we apply our general approach to
analyze nonequilibrium dynamics of the RCSM. We compute
an absorption spectrum that can be experimentally probed
with Rydberg spectroscopy and obtain real-time dynamics of
the Rydberg-electron spin. To elucidate the crucial role of the
orbital motion of bath atoms, we also analyze the central spin
model with random couplings by employing the Monte Carlo
sampling. Finally, we summarize the results and present an
outlook in Sec. IV.

II. GENERAL FORMULATION

A. Impurity decoupling

In this section, we formulate the variational approach in
a general way so that it can be applied to a wide class of
quantum impurity problems. Specifically, we consider the
following class of Hamiltonians:

Ĥ =
∑
nα

εnα b̂
†
nα b̂nα + Ŝe · Ŝenv + hzŜ

z
e, (1)

where b̂nα (b̂†
nα) are bosonic annhiliation (creation) operators

of environmental modes n = 1, 2, . . . ,Nb of energy εnα with
two internal degrees of freedom α = ⇑,⇓. We note that
environmental modes are not specified here; they can be,
for example, momentum eigenstates or single-particle bound
states. The localized spin-1/2 operator is denoted by Ŝe =
σ̂e/2. The second term represents a Kondo-type interaction
between the localized spin and the environmental spins, in
which we introduce the spin-density operator Ŝenv including
couplings as

Ŝaenv = 1

2

∑
mnαβ

gamnb̂
†
mασ a

αβ b̂nβ, (2)

with a = x, y, z. Here, the gamn are arbitrary Nb × Nb Hermitian
matrices labeled by a and represent a generic form of an
impurity-environment coupling that can in general be long-
ranged and anisotropic. We note that this class of interaction
reduces to the standard Kondo coupling [88–90] when it is
local in space. The last term in Eq. (1) is a magnetic-field
term acting on the localized spin only. This term should be
understood as a difference of Zeeman energies between the
impurity and the bath spins. We note that the Hamiltonian
commutes with the total spin Ŝztot = Ŝze + Ŝzenv, and thus the
term proportional to it merely shifts the spectrum by a global
constant. In this paper, we set hz = 0 (except the results
plotted in Fig. 4). The magnetic term can be neglected if either
the magnetic field is switched off or one uses atoms having the
same Zeeman energies.

The first key step in our variational approach is to employ
the canonical transformation [72] to decouple the localized
spin operator. Since the Hamiltonian (1) satisfies the parity
symmetry with respect to π rotation of the entire system
around the z axis, it commutes with the parity operator P̂ =
σ̂ z
e P̂env with P̂env = eiπN̂⇑ and N̂⇑ = ∑

n b̂
†
n⇑b̂n⇑. This con-

served parity operator can be mapped onto the localized spin-
1/2 operator via Û †P̂Û = σ̂ x

e with the unitary transformation
[72]:

Û = 1√
2

(
1 + iσ̂ y

e P̂env
)
. (3)

Thus, transforming to the “corotating” frame of the impurity
via Û , the localized spin operator turns out to be a conserved
quantity and its dynamics freezes, i.e., the system satisfies[ ˆ̃H, σ̂ x

e

] = 0, (4)

where ˆ̃H ≡ Û †ĤÛ is the transformed Hamiltonian. Specify-
ing the parity-symmetry sector P = ±1, we can treat the spin
operator as a classical number σ x

e = ±1 in the transformed
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frame. The resulting Hamiltonian thus only contains the envi-
ronmental degrees of freedom:

ˆ̃H = ˆ̃H0 + ˆ̃H1, (5)

ˆ̃H0 =
∑
nα

εnα b̂
†
nα b̂nα + 1

4
σ x
e Ŝ

x
env, (6)

ˆ̃H1 = 1

2
P̂env

(
σ x
e Ŝ

z
env − iŜyenv

) + hz
2

σ x
e P̂env. (7)

Here, ˆ̃H0 represents the quadratic part of the transformed
Hamiltonian, while ˆ̃H1 represents interactions among envi-
ronmental bosons that are in general multibody due to the
nonlocality of the operator P̂env. The latter appears at the cost
of the elimination of the impurity degree of freedom and can
be interpreted as effective boson-boson interactions mediated
via the impurity spin.

B. Variational principle

The next step is to approximate the time-evolved bath state
governed by the transformed Hamiltonian ˆ̃H by a tractable
many-body wave function. To this end, we choose a bosonic
Gaussian state |�GS〉 [91,92] as an efficient variational state
to describe the bath wave function in the transformed frame.
The Gaussian states naturally include, as certain subclasses,
variational states appropriate for the standard mean-field the-
ory based on, e.g., the Gross-Pitaevskii equation and the
Bogoliubov–de Gennes equations.

We here consider a generic Gaussian state, which is
parametrized by a 4Nb-dimensional real vector φ and a 4Nb ×
4Nb real symmetric matrix �:

φ = 〈ψ̂〉GS, (8)

� = 1
2 〈{δψ̂, δψ̂

T}〉GS, (9)

where 〈· · · 〉GS denotes the expectation value with respect to
the Gaussian state (GS) and ψ̂ = (x̂, p̂)T denotes a vector of
the quadrature operators x̂nα = b̂†

nα + b̂nα and p̂nα = i(b̂†
nα −

b̂nα ) as

x̂ = (
x̂1⇑, . . . , x̂Nb⇑, x̂1⇓, . . . , x̂Nb⇓

)
, (10)

p̂ = (
p̂1⇑, . . . , p̂Nb⇑, p̂1↓⇓, . . . , p̂Nb⇓

)
, (11)

and δψ̂ = ψ̂ − φ is the fluctuation from the mean-field value.
Physically, nonvanishing values of the vector φ indicate
macroscopic occupations of certain environmental modes as
appropriate for a description of BEC. In addition, the covari-
ance matrix � in the Gaussian state describes the squeezing
of environmental bosons, enabling one to take into account
quantum depletion arising from Bogoliubov excitations on top
of a simple coherent state. Note that the number of parameters
grows at most quadratically with the number of environmental
modes.

An explicit form of the Gaussian state is given by

|�GS〉 = eiθe
i
2 ψ̂

T
σφe− i

4 ψ̂
T
ξ ψ̂|0〉 ≡ ÛGS|0〉, (12)

where σ = iσ y ⊗ I2Nb with Id being the d × d unit matrix (d
is a positive integer) and ξ is a 4Nb × 4Nb real-symmetric
matrix. A matrix dimension is 4Nb (2Nb) if a matrix acts on

spinful (spinless) single-particle modes. These matrices can
be related to the covariance matrix via

� = γ γ T, (13)

γ = eσξ . (14)

Note that in Eq. (12) we explicitly include a phase factor θ ,
which is necessary to obtain the absorption spectrum of the
system as detailed later.

The time-evolution equation can be obtained from the
time-dependent variational principle [92–94]. Specifically, we
project the exact real-time evolution of the environmental state
(in the transformed frame),

ih̄∂t |�(t )〉 = ˆ̃H |�(t )〉, (15)

on the manifold spanned by the present variational states.
This procedure is equivalent to minimizing the deviation
ε = ‖(ih̄∂t − ˆ̃H )|�GS(t )〉‖2 from the exact evolution at each
moment, leading to

ih̄∂t |�GS(t )〉 = P̂∂
ˆ̃H |�GS(t )〉, (16)

where P̂∂ is a projection operator onto the tangent space of the
variational manifold. The time derivative of the Gaussian state
can be rewritten as

∂t |�GS(t )〉

= ÛGS

(
c + i

2
ψ̂

T
γ Tσdtφ + i

4
: ψ̂

T
γ Tσ (dtγ )ψ̂ :

)
|0〉,

(17)

with c = idtθ + (i/4)Tr[γ Tσ (dtγ )�] being a scalar, while the
state acted by the transformed Hamiltonian can be repre-
sented as
ˆ̃H |�GS(t )〉
= ÛGS

(〈 ˆ̃H〉GS + 1
2 ψ̂

T
γ THφ + 1

4 : ψ̂
T
γ TH�γ ψ̂ : +δÔ

)|0〉.
(18)

Here, : : indicates the normal order of the bosonic operators
b̂nα and b̂†

nα and we introduce the functional derivatives of the
variational energy as

Hφ ≡ 2
δ〈 ˆ̃H〉GS

δφ
, (19)

H� ≡ 4
δ〈 ˆ̃H〉GS

δ�
. (20)

The operator P̂∂ projects out the higher-order contributions of
ψ̂, which are denoted as δÔ in Eq. (18). Using Eqs. (17) and
(18) and comparing linear and quadratic terms in ψ̂ on both
sides of Eq. (16), we obtain the set of variational equations:

h̄dtφ = σHφ, (21)

h̄dt� = σH�� − �H�σ. (22)

We emphasize that these variational equations should in gen-
eral offer better results than the standard mean-field theories
since the present approach is based on a general Gaussian state
and thus can autonomously take into account all the possible
two-point correlations on top of an arbitrary BEC state in an
unbiased manner.
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C. Equations of motion

To integrate the real-time evolutions (21) and (22) of the
time-dependent variational parameters φ and �, we need
analytical expressions of the functional derivatives Hφ and
H� . To this end, we first express the expectation values of
the quadratic and interaction Hamiltonians in the transformed
frame in terms of the variational parameters as follows:

〈 ˆ̃H0〉GS = 1

4
Tr[H0�] + 1

4
φTH0φ − 1

4
Tr[H0], (23)

〈 ˆ̃H1〉GS = 1

4
Tr

[
�T

g �
] + hz

2
σ x
e 〈P̂env〉GS, (24)

where we introduce a 4Nb × 4Nb real-symmetric matrix H0 =
S[(I2 − σ y) ⊗ h̃0] with S[A] ≡ (A + AT)/2 being the matrix
symmetrization and h̃0 being the single-particle Hamiltonian
in the transformed frame [cf. Eq. (6)]:

h̃0 = diag(εnα ) + (
σ x
e

/
4
)
σ x ⊗ gxmn. (25)

In the interaction energy (24), we introduce a 2Nb × 2Nb

matrix

�g = σ x
e σ z ⊗ gzmn − iσ y ⊗ gymn (26)

and define the 2Nb × 2Nb matrix � including the environmen-
tal parity operator by [92]

� ≡ 〈P̂envb̂
†
b̂〉GS

= −�z〈P̂env〉GS
(
I2Nb,−iI2Nb

)
× (

�−1
B

)T
[

1

2

(
� − I4Nb

)+φφT�−1
B

](
I2Nb

iI2Nb

)
. (27)

Here, we represent the vector of the bosonic creation operators
of different environmental modes as

b̂ = (
b̂1⇑, . . . , b̂Nb⇑, b̂1⇓, . . . , b̂Nb⇓

)
, (28)

and introduce matrices �z = σ z ⊗ INb , � = I2 ⊗ �z, and
�B = (I4Nb + �)� + I4Nb − �. The expectation value of the
environmental parity operator is given by

〈P̂env〉GS = 1√
det(�B/2)

e− 1
2 φT�−1

B (1+�)φ. (29)

Calculating the derivatives of the variational energy 〈 ˆ̃H〉GS

with respect to the parameters φ and � in Eqs. (19) and (20),
we now obtain the analytical expressions of Hφ and H� as
follows:

Hφ = H0φ − 2〈 ˆ̃H1〉GS�
−1
B (1 + �)φ

−〈P̂env〉GS�
−1
B S[G]

(
�−1
B

)T
φ, (30)

H� = H0 + S
[
2〈 ˆ̃H1〉GS�

−1
B (1 + �)

(
� − I4Nb

)
+〈P̂env〉GS�

−1
B G

(
�−1
B

)T(
2� − I4Nb

)]
, (31)

where we introduce the 4Nb × 4Nb matrices

� = φφT�−1
B (1 + �), (32)

G =
(

I2Nb

−iI2Nb

)
�z�g

(
I2Nb, iI2Nb

)
. (33)

We note that the variational equations (21) and (22) together
with the analytical formulas (30) and (31) are general and can
be readily applied to studying out-of-equilibrium dynamics of

a quantum system coupled to various types of environments.
While we focus on the real-time evolution in this paper,
the ground-state properties can also be analyzed by using
Eqs. (30) and (31) to integrate the variational imaginary-time
evolution whose explicit form is given in Appendix A.

D. Absorption spectrum

Out-of-equilibrium properties can be studied by analyzing
the absorption spectrum [95]

A(ω) = Re

[∫ ∞

0
dt eiωt S(t )

]
, (34)

where S(t ) is the overlap between the initial state and a time-
evolved state

S(t ) = 〈�(0)|e−i ˆ̃Ht/h̄|�(0)〉. (35)

For the sake of simplicity, a contribution from the free time
evolution (e.g., the one without Rydberg interactions in the
model discussed later) is not included here as it just shifts
A(ω) by a trivial constant. To calculate S(t ) in the present
variational approach, we have to obtain an equation of motion
of the phase factor θ of the Gaussian environmental state in
addition to that of the mean-field vector φ and the covari-
ance matrix �. To this end, the most convenient way is to
parametrize the Gaussian state in the basis of b̂nα and b̂†

nα
operators as follows:

|�GS〉 = eiθe
i
2 ψ̂

T
σφeb̂

†T
�b̂

†

eb̂�
′b̂

†

eb̂�
′′b̂

T |0〉, (36)

where �, �′, and �′′ are 2Nb × 2Nb matrices. The overlap can
then be obtained from

S(t ) = eiθe− 1
2 |δβ|2eδβ†�δβ∗

, (37)

where δβ is the difference mean-field vector in the basis of

(b̂, b̂
†
)T defined as follows:

δβ(t ) = β(t ) − β(0), (38)

β = 1
2B

†φ, (39)

with B being the 4Nb × 4Nb matrix

B =
(

I2Nb I2Nb

−iI2Nb iI2Nb

)
. (40)

The time evolution of the variational parameters δβ is ob-
tained by integrating the equations of motion (21) to yield φ(t )
and by applying Eq. (39) to transform it into an expression in
the basis of b̂nα and b̂†

nα operators. Following the same pro-
cedures relying on the time-dependent variational principle
as discussed in Sec. II B, we obtain the set of time-evolution
equations for the parameters θ and �,

h̄dtθ = −〈 ˆ̃H〉GS + 1
4δφTHφ + 1

4 Tr[H��]

− 1
2 Tr[h�] − Tr[h′∗

� �], (41)

ih̄dt� = 1
2h

′
� + h�� + �h� + 2�h′∗

� �. (42)

Here we denote δφ(t ) = φ(t ) − φ(0) and define the 2Nb ×
2Nb matrices h� and h′

� by(
h� h′

�

h′∗
� h�

)
= 1

2
B†H�B. (43)
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Integrating Eqs. (41) and (42) together with Eqs. (30) and
(31), we calculate the overlap S(t ) from Eq. (37) whose
Fourier transform provides the absorption spectrum (34).

III. APPLICATION TO THE RYDBERG CENTRAL SPIN
MODEL

A. Variational results with orbital motion

We now discuss the application of our general variational
approach to a new class of the quantum impurity problem, in
which bath bosons are mobile and spinful while interaction
between the localized spin and the surrounding particles is
spatially extended. This class of many-body problems can be
naturally realized with Rydberg gases [82]. Rydberg excita-
tions have been powerful probes for studying new regimes
of out-of-equilibrium dynamics of molecular states and quan-
tum many-body systems [74–81,83–87]. When an atom in a
BEC is excited into a Rydberg state with a high principal
quantum number n, the surrounding environmental bosons are
subject to Fermi’s pseudopotential [96] created by frequent
elastic scattering of the weakly bound Rydberg electron. If
the electron-atom scattering length is negative, the interaction
between the Rydberg electron and the environmental atoms
is attractive and the atoms can become bound to the Rydberg
excitations. This can lead to giant molecular states known as
Rydberg molecules whose size can be several thousand of the
Bohr radius [74,76].

We consider a situation in which internal dynamics of
environmental bosons is restricted to two internal states α =
⇑,⇓. Thus the bosons act as mobile pseudospin-1/2 particles
and their scattering with the Rydberg electron separates into
two channels. We denote these scattering channels as 1 and 2,
and the corresponding pseudopotentials as V1,2. The resulting
Hamiltonian is (cf. Ref. [82])

Ĥ =
∑

α=⇑,⇓

∫
dr �̂†

rαh0�̂rα +
∑

a=x,y,z

Ŝae

∫
dr garŜ

a
r + hzŜ

z
e,

(44)

where �̂rα (�̂†
rα) are annihilation (creation) operators of

bosons at position r with internal state α = ⇑,⇓, Ŝe = σ̂e/2
is the spin operator of the Rydberg electron, hz is a magnetic
field acting on the impurity spin, and Ŝr is the environmental
spin density

Ŝr =
∑

α,β=⇑,⇓
�̂†

rα

(σ

2

)
αβ

�̂rβ. (45)

We introduce h0 as the matrix elements of a single-particle
Hamiltonian

h0 = − h̄2∇2

2m
+V0(r), (46)

where m denotes the atomic mass. The potential V0 and the
long-range Kondo coupling gar are in general given by linear
combinations of the two Rydberg potentials V1,2, in which the
coefficients depend on the internal structure of environmental
atoms. As appropriate for the simplest setup of the scattering
between two spin-1/2 particles, hereafter we choose V0 =
(3V1 +V2)/4 and gzr = g‖

r ≡ V1 −V2 with V1 and V2 being
the triplet and singlet pseudopotentials characterizing the

interaction between the Rydberg electron and the surrounding
atoms. As a representative case, we use the data for the
potential profiles of the scattering between the electron of
the 87Rb(87s) state and the ground-state 87Rb atoms; all the
numerical results presented below are obtained for the triplet
and singlet Rydberg potentials of Rb atoms with n = 87.
Yet, in practice we envision using two-electron environmental
atoms (e.g., Sr atoms), in which the hyperfine coupling can
be neglected as discussed in the accompanying paper [82].
The potential profiles in this two-electron atomic setup are
analogous to those in the Rb setup used here [97]. Thus
essential features of the RCSM discussed below, which are
qualitatively insensitive to these specific choices of potentials,
will remain in the two-electron atomic setup. Meanwhile,
a possible difference in using the two-electron atom is the
anisotropy in the spin interaction [82]. To address this effect,
we set gx,yr = g⊥

r ≡ √
2gzr. We neglect a temperature effect,

boson-boson interactions, and the ion recoil because the Ryd-
berg potentials typically exceed those energy scales. We also
omit contributions from p-wave scattering.

Previous works on Rydberg molecule and polaron for-
mation in a high-density regime [74–81] have exclusively
focused on the following polarized initial state:

|�triplet〉 = |↑〉e|BEC⇑〉, (47)

where only the triplet channel is relevant to the dynamics.
Thus the interaction part of Eq. (44) plays no role and the
resulting Hamiltonian is quadratic. In this case, the spin
dynamics is completely frozen and the orbital motion of
environmental atoms solely characterizes the nonequilibrium
properties of the system.

In the present work, we are interested in a different initial
state with the Rydberg spin and the surrounding bosons being
polarized into the opposite directions:

|�0〉 = | ↑〉e|BEC⇓〉. (48)

We note that such an initial condition has already been real-
ized in the experiments at low-density regimes [83–87]. In this
setting, the central spin-type interaction [cf. the second term
on the right-hand side of Eq. (44)] now plays an important
role and the nonequilibrium properties of the system are
characterized by the interplay between the spin and orbital
degrees of freedom of the environmental particles.

The main difficulty here is taking into account mesoscopic
collective response of the orbital motion as well as the entan-
glement of the impurity and environmental spins. The main
idea of the variational approach presented in this paper is
to employ the disentangling transformation (3) to decouple
the impurity spin and reduce the problem to that of the bath
degrees of freedom with additional interactions. We then ap-
proximate the evolution of the environmental wave function in
the transformed frame by the Gaussian state, which guarantees
that all two-particle correlations are taken into account.

To apply the general formulation presented in the previous
section, it is useful to introduce single-particle energy eigen-
states as the computational basis:

h0ψnr = εnψnr, (49)

b̂†
nα =

∫
drψnr�̂

†
rα, (50)
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FIG. 1. Applications of the variational approach to nonequilibrium dynamics of a Rydberg impurity interacting with surrounding bosons
via the anisotropic central spin coupling. The obtained overlaps S(t ) (top panels) and the corresponding absorption spectra A(ω) (bottom
panels) are plotted at different densities. In the top panels, the blue solid curves (red dashed curves) show the real (imaginary) parts of the
overlaps. The absolute values |S(t )| are shown in the insets. In the bottom panels, the dashed lines indicate the mean-field (MF) shifts �MF [cf.
Eqs. (55) and (56)].

where n = 1, 2, . . . ,Nb is the nodal quantum number of the
single-particle state ψnr. While we focus on the situation in
which only states with zero angular momentum l = 0 are
relevant, the formulation can be easily generalized to include
effects of nonzero angular momentum. Further details about
the calculations of the eigenenergies εn and the wave functions
ψnr are given in Appendix B. The central spin couplings in
this basis are given by

gamn =
∫

dr garψ
∗
mrψnr, (51)

with a = x, y, z. These identifications lead to the Hamiltonian
(1), and Eqs. (5), (6), and (7) after performing the decoupling
transformation (3). The initial state (48) corresponds to the
following initial values of the variational parameters:

φ(t = 0) =
√
NB

(∫
drψ∗

nrψini,rδα⇓∫
drψnrψ

∗
ini,rδα⇓

)
, (52)

�(t = 0) = I4Nb, (53)

where N is the total number of environmental bosons, which
can be related to the density ρ, and ψini,r is the initial
lowest-energy wave function without Rydberg potentials (see
Appendix B for further details). We note that this value N
represents the number of bosons in the box used to calculate
eigenstates rather than the number of bosons in the Rydberg
potential. Because the initial state (48) resides in the parity
sector P = +1, we can treat the Rydberg spin as a classical
number σ x

e = +1 in the transformed frame.

To obtain values of the time-dependent variational param-
eters, we integrate the variational time-evolution equations
(21), (22), (41), and (42) with the use of the analytical ex-
pressions of the functional derivatives (30) and (31). We then
calculate the overlap S(t ) from Eq. (37) and obtain its Fourier
spectrum A(ω) from Eq. (34). The magnetization dynamics of
the central spin

mz(t ) ≡ 〈
σ̂ z
e (t )

〉 = σ x
e 〈P̂env〉GS (54)

can be obtained from Eq. (29). To improve the numerical
accuracy, we find it useful to implement a penalty term to
ensure the spin conservation (see Appendix C for details).
A typical number Nb of single-particle states necessary to
converge the variational results is an order of several tens of
states; for instance, Nb ∼ 80 is sufficient for the parameters
considered here.

Figure 1 shows the results obtained for the overlap S(t )
and the corresponding absorption spectrum A(ω) at different
densities ρ. As shown in the top panels in Fig. 1, we find a fast
decay in S(t ) that signals the rapid dephasing dynamics due to
the creation of high-energy excitations of the environmental
bosons. The fast decay of S(t ) in the time domain corresponds
to the emergence of a Gaussian profile of the Fourier spectra
A(ω) in the frequency domain in the high-density regime as
shown in the bottom panels in Fig. 1. As indicated by the
dashed lines in the same panels, the centers of the Gaus-
sian profiles agree with the following mean-field shift which
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neglects the flip-flop coupling:

�MF = 〈�0|Ĥ‖|�0〉, (55)

Ĥ‖ =
∑

α=⇑,⇓

∫
dr �̂†

rαh0�̂rα + Ŝze

∫
dr gzrŜ

z
r. (56)

From the initial condition (48), we can set the central spin
to be a classical number Sze = +1/2. This approximation of
neglecting the flip-flop interaction with setting Sze = +1/2
can be a useful starting point since the central spin is largely
polarized during the dynamics in the case of a dense polarized
spin bath [51]. The resulting longitudinal Hamiltonian Ĥ‖ is
quadratic in terms of the bosonic operators, where free bosons
feel the mean-field potential Vmean = (VT +VS )/2. Thus the
emergent Gaussian feature can be understood as a conse-
quence of a large number of atoms stochastically occupying
single-particle eigenstates of the mean-field Hamiltonian Ĥ‖,
which defines one of the key features of the Rydberg polaron
[80,81]. We note that this feature is determined entirely by
the longitudinal couplings gzr and is thus not influenced by the
anisotropy in the spin-interaction term. We also remark that
the peaks in A(ω) in the limit of ρ → 0 eventually match with
bound-state energies for each of the Rydberg potentials, VT
and VS [76–78].

The overlap S(t ) also accompanies oscillations, which can
be best understood from the corresponding Fourier spectrum
A(ω). For a noninteracting setup described by a quadratic
Hamiltonian [such as the triplet setting (47) in Refs. [76–81]],
the frequency spacing of peaks matches the single-particle
energy of the dominant bound state that has the largest overlap
with the initial single-particle wave function. Correspond-
ingly, the sharp peaks in the spectra indicate the formation
of Rydberg molecular states, where one, two, or more envi-
ronmental atoms are bound to and localized in the outermost
well of the molecular potential. In contrast, in the present case
of an interacting system, the central spin interaction causes
the formation of a correlated many-body bound state. While
the existence of sharp peaks in A(ω) still has its root in
molecular physics, the simple explanation based on single-
particle energies is no longer applicable to understanding the
underlying rich structures such as positions and spacings of
the peaks and their sensitivity to the environmental density
[82]. More specifically, the many-body feature manifests itself
as the spin-interaction-induced renormalization of A(ω) from
that of noninteracting, bare molecular states (see Fig. 2).
These results are qualitatively insensitive to specific details of
the Rydberg potentials and thus should remain in a different
choice of a Rydberg state as long as it has no angular momen-
tum. In particular, choosing a small principal quantum number
n for a Rydberg state, one can obtain a better resolution of the
peaks in A(ω) whose energy scale can be an order of, e.g.,
MHz in contrast to a rather small energy scale in Fig. 2.

In the noninteracting triplet setting, the anisotropy does
not affect values of single-particle energies of the mean-field
Hamiltonian (56) and thus the spectra remain the same as in
the isotropic case [82]. In the present interacting problem,
quantitative values of many-body bound-state energies can
depend on the anisotropy since the interaction term includes
the transverse couplings g⊥

r ; however, the qualitative features
remain the same.

FIG. 2. Comparison between the absorption spectra obtained
from the variational approach for the full interacting Hamiltonian Ĥ
(blue) and the results for the noninteracting (quadratic) Hamiltonian
Ĥ‖ (red). The density is ρ = 3 × 1012 cm−3. We use the isotropic
interaction as consistent with Fig. 3 in the accompanying paper [82]
and rescale the overall factors of A(ω) for the sake of comparison
between the two cases.

Figure 3(a) shows the corresponding spin dynamics mz(t )
of the Rydberg electron at different densities ρ. Due to a large
energy cost to flip the central spin coupled to a polarized
environment, only a small fraction of a many-body state with
the opposite central spin |↓〉e can be admixed. The resulting
large polarization of the Rydberg spin again indicates that
the flip-flop coupling does not play a significant role at the
level of the mean-field feature of the absorption spectrum [cf.
Eq. (55)].

Remarkably, the spin dynamics is accompanied by fast,
long-lasting oscillation that is reminiscent of the nondecaying
oscillations found in the central spin problem [51]. To fur-
ther study this feature, we plot the Fourier spectra m̃z(ω) of
the spin dynamics in Fig. 3(b). The oscillation frequencies
become higher as the density ρ is increased and exhibit a
square root scaling ω = a

√
ρ as indicated by the dashed lines

in Fig. 3(b). We find that the proportionality constant a is
larger than the corresponding value in the isotropic case [82]
by the anisotropic factor g⊥

r /g‖
r (which is chosen to be

√
2

in the present numerical calculation). This fact indicates that
the frequency of the central spin oscillation is mainly char-
acterized by the transverse spin-exchange couplings Ĥ⊥ =
(Ŝ+

e

∫
dr g⊥

r Ŝ
−
r + H.c.)/2. The square root scaling

√
ρ can

then be interpreted as a BEC enhancement factor that arises
when the bosonic annihilation operator b̂⇓ in Ĥ⊥ acts on a
macroscopically occupied single-particle state of environmen-
tal bosons. Another interesting feature in Fig. 3(a) is that the
oscillations exhibit the collapse and revival in accordance with
the motional wave-packet dynamics of bath atoms, whose
time scale is roughly on the order of the binding energy.
We note that a large scattering-length difference is crucial to
observe these many-body features as it directly relates to the
spin-exchange couplings g⊥

r .
Atoms coupled to the central spin via strong flip-flop

interactions are also subject to the strong orbital potential and
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FIG. 3. (a) Dynamics of the electron spin mz(t ) = 〈σ̂ z
e (t )〉 of

the Rydberg impurity interacting with environmental bosons via
the anisotropic central spin coupling. The results are obtained
from the variational approach and plotted at different densities ρ.
(b) The corresponding Fourier spectra m̃z(ω). The dashed lines
indicate the values of the square root scaling ω ∝ √

ρ.

thus typically occupy the dominant bound state localized in
the outermost well of the Rydberg potential. We note that
the observed square-root scaling with density is distinguished
from the conventional linear scaling found in the standard
central spin problem [43–45], where the environmental spins
are immobile and thus a macroscopically occupied state is
absent. This weaker dependence of the oscillation frequency
on a density is advantageous when one attempts to experimen-
tally realize the predicted oscillation in atom clouds of inho-
mogeneous density. In practice, the magnetization dynamics
might be measured by the Stern-Gerlach-like experiment. For
instance, one may send back the Rydberg excitation to, e.g.,
the 6p state whose optical transition conserves the spin num-
ber, and then the transitioned atoms can be separated by using
optical dipole traps. Measuring the population of the separated
atoms with, for instance, using the ion microscopes, one could
obtain information about the magnetization dynamics.

The spin oscillation is strongly influenced by controlling an
external magnetic field. Figures 4(a) and 4(b) show the spectra
m̃z(ω) and the real-time evolution mz(t ) of the dynamics of
the Rydberg electron spin at different magnetic fields hz,
respectively. The oscillation frequencies of the spin oscillation
can be controlled by changing hz. We find that the shift δω

[kHz]

m
 (

)
z

~

h  = 62 kHzz

h  = 62 kHzz

h  = 21 kHzz
h  = 0 kHzz
h  = -21 kHzz
h  = -62 kHzz

h  = -62 kHzz
h  = 0 kHzz

m
  (

t)
z

t [ms]

(a)

(b)

FIG. 4. (a) Fourier spectra m̃z(ω) of the time evolution of the
Rydberg electron spin with the anisotropic central spin coupling
at different magnetic fields hz. The dashed lines indicate the linear
scaling δω = −hz. (b) The corresponding real-time dynamics of the
Rydberg spin at different magnetic fields. In (a) and (b), we set
ρ = 6 × 1011 cm−3.

of the oscillation frequency from the zero-field value scales
linearly with magnetic field, δω = −hz, as indicated by the
dashed lines in Fig. 4(a). The amplitude of the oscillation is
enhanced for a positive field hz > 0 for which the resonance
is approached, while it is suppressed for the opposite sign
of the field hz < 0. These findings are consistent with the
previously known magnetic-field dependences in the standard
central spin problem [51]. This fact shows that it is possible
to manipulate the electron spin of dense Rydberg gases in the
similar way as in solid-state qubits [43–45,60–62]. Further-
more, our findings also suggest that the Rydberg electron may
be used to prepare and manipulate a mesoscopic, delocalized
spin environment in a way analogous to localized nuclear-spin
environments [98].

B. Monte Carlo results without orbital motion

To elucidate the importance of taking into account the
orbital motion of the environmental particles, we analyze the
case of infinite-mass environmental particles (m → ∞). In
this limit, the atomic orbital motion is completely frozen,
and the position operators of the environmental bosons com-
mute with the Hamiltonian. For each set of positions of
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environmental atoms {ri}, we can thus reduce the problem to
the ordinary central spin problem:

Ĥ {ri}
m→∞ = V +

∑
a=x,y

Ŝae

N∑
i=1

g⊥
i Ŝ

a
i + Ŝze

N∑
i=1

g‖
i Ŝ

z
i , (57)

where V = ∑N
i=1V0(ri ) and we denote the central spin cou-

plings as g‖
i = gzri and g⊥

i = gx,yri . Because of the conservation
of the total spin-z components, the time-evolved wave func-
tion is restricted to the sector of σ̂ z

e + 2
∑

i Ŝ
z
i = 1 − N and

can be parametrized as∣∣�{ri}
t

〉 = e−iĤ{ri}
m→∞t/h̄|�0〉

= ξ0(t )|↑〉e|⇓1 · · · ⇓N 〉

+
N∑
i=1

ξi(t )|↓〉e|⇓1 · · · ⇑i · · · ⇓N 〉. (58)

The time-evolution equations of the variables ξ are given by

ih̄dtξ0 =
(
V − G

4

)
ξ0 + 1

2

N∑
i=1

g⊥
i ξi, (59)

ih̄dtξi =
(
V + G − 2g‖

i

4

)
ξi + 1

2
g⊥
i ξ0, (60)

where G = ∑N
i=1 g

‖
i . This equation can be solved analytically

by performing the Laplace transformation

ξ̃ (s) =
∫ ∞

0
dt ξ (t )e−st , (61)

dtξ → sξ̃ (s) − ξ (0). (62)

Using the initial conditions ξ0(0) = 1 and ξi(0) = 0 for i =
1, 2, . . . ,N , we obtain the analytical expression for ξ0,

ξ0(t )= 1

2π i

∫
C
dω e−iωt−iω0t

⎡
⎣ω+G

2
− 1

4

N∑
i=1

g⊥2
i

ω + g‖
i

2

⎤
⎦

−1

,

(63)

where ω0 = (V + G/4)/h̄ and the contour C is chosen so that
all the poles in the integral lie above it; one can choose the
contour that extends from −∞ to ∞ along the real axis and
is closed via a half circle in the upper complex plane. After
performing the integration, we find

ξ0(t ) = e−iω0t
N+1∑
l=1

wl e
−iωl t . (64)

Here, wl = 1/[1 + ∑N
i=1 g

⊥2
i /(2ωl + g‖

i )
2] and {ωl}N+1

l=1 are
the poles enclosed by the integration contour, which can be
obtained from the algebraic equation

N∑
i=1

g‖
i + (

g‖2
i − g⊥2

i

)
/(2ω)

2ωl + g‖
i

= −1. (65)

We note that Eq. (65) reproduces the previous result [51] for
obtaining the Bethe roots in the case of isotropic couplings

g⊥
i = g‖

i . The overlap is given by

S{ri}(t ) = 〈�0|e−iĤ{ri}
m→∞t/h̄|�0〉 = ξ0(t ), (66)

leading to the absorption spectrum

A{ri}(ω) =
N+1∑
l=1

δ(ω − ω0 − ωl )wl . (67)

Similarly, the central spin dynamics is given by

m{ri}
z (t ) ≡ 〈

�
{ri}
t

∣∣σ̂ z
e

∣∣�{ri}
t

〉
= |ξ0(t )|2 −

N∑
i=1

|ξi(t )|2. (68)

To calculate the absorption spectrum appropriate for the
initial state (48), we randomly generate sets of atomic
positions {ri} according to the initial BEC wave func-
tion

∏N
i=1 ψini,ri and obtain the corresponding A{ri}(ω) from

Eq. (67). This procedure is repeated to calculate the ensemble
average over different atomic configurations to yield

Am→∞(ω) =
∑
{ri}

Prob[{ri}]A{ri}(ω). (69)

Similarly, the central spin dynamics is obtained from Eq. (68)
and reads

mm→∞
z (t ) =

∑
{ri}

Prob[{ri}]m{ri}
z (t ). (70)

Figures 5(a) and 5(b) show the calculated absorption
spectrum A(ω) and the corresponding central spin dynamics
mz(t ) for the infinite-mass environmental particles at typical
parameters. The results are obtained by taking the ensemble
average over 105 different stochastic realizations of atomic
configurations. As shown in Fig. 5(a), the absorption spectrum
exhibits the Gaussian feature which is the consequence of the
average over various occupations of energy eigenstates of the
stochastic central spin Hamiltonian (57) [cf. Eqs. (67) and
(69)]. We note that, to obtain the spectrum, one still needs
to solve the (integrable) many-body problem (57), which
should be distinguished from the single-particle calculations
performed in, e.g., the triplet setting (47). To illustrate such
a quantum aspect of the present problem, we plot typical
single realizations of the central spin dynamics with the fixed
spin couplings [see the dashed thin curves in Fig. 5(b)]. For
each single realization, the spin exhibits nondecaying oscil-
lations as previously discussed in the literature on the cen-
tral spin coupled to polarized spin environments [51]. How-
ever, after taking the ensemble average over different atomic
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FIG. 5. (a) Absorption spectrum A(ω) and (b) the corresponding
central spin dynamics mz(t ) for environmental particles of infinite
mass (i.e., localized environmental spins). The results are obtained
from Eqs. (67) and (68) and by taking the ensemble average over
105 different stochastic realizations of atomic configurations [cf.
Eqs. (69) and (70)]. In (a), the dashed line indicates the mean-
field shift �MF. In (b), the blue thick solid curve indicates the
ensemble-averaged result, while the dashed thin curves show typical
dynamics for single stochastic realizations. We set the density to
ρ = 6 × 1012 cm−3.

configurations [cf. Eq. (70)], these oscillations are averaged
out, and the actual spin dynamics quickly relaxes to a station-
ary finite value as shown by the thick curve in Fig. 5(b).

We note that the key features found in the previous subsec-
tion, in which both the spin dynamics and the orbital motion
are taken into account, are absent in the present infinite-mass
treatment. For instance, the peaks in the absorption spectrum
do not appear as the Monte Carlo analysis cannot describe
the formation of the Rydberg molecular state. Also, the char-
acteristic spin-precession dynamics is found to be absent in
the infinite-mass treatment. These facts again highlight the
importance of orbital motion of environmental particles to
understand the dynamics of the RCSM. We remark that it
would be useful to work out in a different single-particle basis
such as position eigenstates for doing a direct comparison
between the Monte Carlo analysis and the variational method
in the large-mass regime.

IV. CONCLUSIONS AND OUTLOOK

We developed an efficient variational approach to solving
quantum spin systems coupled to bosonic environments and
applied this technique to analyze nonequilibrium properties
of the Rydberg central spin model (RCSM) proposed in the
accompanying paper [82]. The key element of this approach
is the decoupling of the impurity spin using the canonical
transformation (3). This transformation maps the conserved
parity operator into one of the components of the impurity-
spin operator and thus makes this spin component an integral
of motion. In the transformed frame, we then only need to con-
sider the wave function of the bosons, which we approximate
by the bosonic Gaussian state. This wave function includes
all two particle correlations and requires the number of pa-
rameters growing only quadratically with the system size. We
utilized time-dependent variational principle to derive analyt-
ical expressions for the variational time-evolution equations
[see Eqs. (21) and (22) together with (30) and (31)]. These
equations are general and can be readily applied to analyze
the in- and out-of-equilibrium properties of a wide class of
systems, in which quantum impurities are coupled to bosonic
environments. As concrete examples, we applied our theory
to analyze several dynamical aspects of the RCSM. In par-
ticular, we predicted sharp peaks in the absorption spectrum
corresponding to dressed many-body molecular states, and
long-lasting central spin oscillations. To elucidate the crucial
role of the orbital motion of atoms in these two features, we
also analyzed the situation of immobile (i.e., infinitely heavy)
bath atoms located at random positions. In this limit, the
problem can be solved exactly for each stochastic realization;
we then used the Monte Carlo sampling to take an ensemble
average over possible atomic configurations. While the results
are obtained by using the Rydberg potential of Rb atoms as an
illustration, the qualitative physics found here will remain the
same as long as the mean-field potentialVmean is attractive and
supports a bound state, and also non-s-wave contributions do
not play significant roles. Moreover, owing to the versatility
of the developed variational approach, one can readily obtain
quantitative predictions appropriate for concrete setups by
using specific experimental parameters.

Our study suggests several promising directions for future
research. First, in the context of solid-state systems, it is
intriguing to apply the present variational approach to study
the Bose Kondo problems [5–8] in both in- and out-of-
equilibrium regimes. In the field of ultracold atoms, our analy-
sis can be extended to make predictions of site-resolved many-
body dynamics as appropriate for experiments using quantum
gas microscopy [99–107]. The covariance matrix obtained in
our approach can be expressed in the real-space basis, from
which one can readily extract spatiotemporal dynamics of
correlation functions. It is intriguing to extend the present
approach to analyze dissipative dynamics of quantum systems
coupled to generic bosonic baths at finite temperatures. This
can be done by generalizing the variational state to Gaussian
density matrices. Another interesting direction is to extend
our approach to Markovian open quantum systems subject
to dissipation [57,108–110] and measurements [111–115] by
employing the variational principle appropriate for master-
equation dynamics [116,117]. Generalizing the decoupling
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canonical transformation, our approach can also be applied to
multiple impurities [118] coupled to bosonic environments. In
these ways, our approach can serve as a powerful theoretical
tool to study a multitude of interesting quantum many-body
problems.

Secondly, it is intriguing to study the RCSM in a fermionic
setup, where the interplay between the conventional cen-
tral spin problem [46–59] and fermionic Kondo physics
[89,119,120] should offer another distinct class of many-body
problems. Thirdly, our study suggests a promising direction
of using Rydberg electrons to prepare and manipulate meso-
scopic spin environments. While this technique has been im-
plemented in solid-state devices [98] with a localized nuclear-
spin environment, it remains an open question to what extent
this method can be generalized to setups with delocalized
(i.e., mobile) bath particles. Finally, it merits further study to
explore the impact of other experimental details arising from,
e.g., nonzero angular momentum of the Rydberg electron and
bath bosons or the hyperfine couplings. These effects are
expected to be important in several types of atoms [83–85,87].
We hope that our work stimulates further studies in these
directions.
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APPENDIX A: IMAGINARY-TIME EVOLUTION

We here provide the variational equations for the
imaginary-time evolution, which can be useful to analyze
ground-state properties. The exact form of the imaginary-time
evolution in the transformed frame is given by

|�(τ )〉 = e− ˆ̃Hτ |�(0)〉
‖e− ˆ̃Hτ |�(0)〉‖

. (A1)

Minimizing the error of the variational evolution from the
exact one, we arrive at the following differential equation [cf.
discussions above Eq. (16)]:

dτ |�GS(τ )〉 = −P̂∂ ( ˆ̃H − 〈 ˆ̃H〉GS)|�GS(τ )〉. (A2)

Using the expressions (17) and (18) and comparing the lin-
ear and quadratic terms of ψ̂ on both sides of Eq. (A2),
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FIG. 6. Radial wave functions of the single-particle energy
eigenstates for the mean-field Rydberg potential Vmean. Solution ν =
1 is the most dominant bound state having the largest overlap with
the initial single-particle wave function. The black dashed curve
indicates the spatial profile of the Rydberg potential. The bound-state
energies for ν = 1, 2, 3 modes are −21.5, −13.1, and −3.8 (in the
unit of kHz), respectively.

we obtain

dτφ = −�Hφ, (A3)

dτ� = σ TH�σ − �H��. (A4)

Integrating these variational equations together with the an-
alytical expressions (30) and (31) of Hφ and H� , one can
analyze the ground-state properties in the limit of τ → ∞.

APPENDIX B: RYDBERG WAVE FUNCTION

We here briefly outline the calculation of single-particle
energy eigenstates of atoms subject to a Rydberg potential. We
first note that, since the Hamiltonian is rotationally symmetric
and the initial single-particle wave function ψini,r has zero an-
gular momentum, the system resides in the sector with angular
momentum l = 0 during the course of the time evolution. The
resulting radial single-particle Schrödinger equation is thus
given by [

− h̄2

2m

d2

dr2
+V (r)

]
un(r) = εnun(r), (B1)

where r denotes the radial coordinate,V (r) is the Rydberg po-
tential, and we introduce the radial wave function by un(r) =√

4πr2ψnr. We numerically solve Eq. (B1) in a spherical box
of radius R by imposing the boundary conditions un(r0) =
un(R) = 0 with r0 = 2200 and R = 105 in the atomic units.
We then obtain Nb = 80 energy eigenstates from the lowest-
energy solution. Figure 6 shows three typical bound states
for the mean-field pseudopotential Vmean = (VT +VS )/2 for
the scattering between the electron of the 87Rb(87s) state and
the surrounding ground-state 87Rb atoms. The state indicated
by the label ν = 1 is localized around the outermost antin-
ode of the potential and corresponds to the dominant bound
state having the largest overlap with the initial single-particle
wave function. We note that the contributions from the states
with the principal numbers n = 1, 2, which are localized in
the inner region and cutoff dependent, are tiny due to the
vanishingly small overlaps with the initial state and thus are
neglected in the analysis here.
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The initial single-particle wave function is the lowest-
energy state in the absence of an external potential and, by im-
posing the boundary conditions above, we obtain its solution
as uini(r) = √

2/R sin(πr/R), where uini(r) =
√

4πr2ψini,r.
We relate the total number N of particles in the sphere with
radial R to the density ρ by using the value of the initial wave
function at the origin, i.e., ρ = N |ψini,r=0|2. Finally, we note
that the initial coefficients in Eq. (52) are obtained from

∫
drψ∗

nrψini,r =
∫ R

0
dr u∗

n(r)

√
2

R
sin

(π

R
r
)
. (B2)

APPENDIX C: PENALTY TERM ENSURING THE SPIN
CONSERVATION

In general, if the Hamiltonian Ĥ in the original frame
satisfies a certain symmetry and has a conserved quantity
Ô, then the corresponding quantity ˆ̃O = Û †ÔÛ in the trans-
formed frame is also guaranteed to be exactly conserved
through the variational time-evolution equations. This follows
from the fact that the time-dependent variational principle
ensures the symplecticity [121]. Yet, in practice, numerical
errors accumulated during the integration of highly nonlinear
variational equations can lead to an apparent violation of the
conservation law. To remedy this, it is useful to add a penalty
term as a perturbation on the Hamiltonian so as to make sure
that the conservation law is satisfied during the variational
time evolution. In particular, in our problem, we ensure the
spin conservation σ̂ z

e + σ̂ z
env + N̂ = σ̂ z

e + 2N̂⇑ = 1 by adding
the penalty term

V̂ = λ
(
σ̂ z
e + 2N̂⇑ − 1

)2
. (C1)

In the transformed frame, it is given by

ˆ̃V = Û †V̂ Û = λ
(
σ̂ x
e P̂env + 2N̂⇑ − 1

)2
. (C2)

Its expectation value with respect to the Gaussian state can be
expressed as

〈 ˆ̃V 〉GS = λ
[
2 − Tr

[
P↑(� − I4Nb

)] − φTP↑φ

+ 1
4

(
Tr

[
P↑

(
� − I4Nb

)] + φTP↑φ
)2 + φTP↑�P↑φ

+ 1
2 (Tr[P↑�P↑�] − Tr[P↑]) + 2σ x

eP
]
, (C3)

where P↑ = I2 ⊗ [(σ z + 1)/2 ⊗ INb] and P = 2 Tr[P↑�] −
〈P̂env〉GS. Its functional derivative with respect to the mean-
field vector φ is given by

HV
φ = 2

δ〈 ˆ̃V 〉GS

δφ
= λ

(
2
(
Tr

[
P↑

(
� − I4Nb

)] + φTP↑φ − 2
)
P↑φ

+ 4P↑�P↑φ + 4σ x
e

δP
δφ

)
, (C4)

δP
δφ

= −P�−1
B

(
I4Nb + �

)
φ

− 4〈P̂env〉GS�
−1
B S[ϒ↑]

(
�−1
B

)T
φ, (C5)

where we introduce the matrix ϒ↑ as

ϒ↑ =
(

I2Nb

−iI2Nb

)
�zP↑

(
I2Nb, iI2Nb

)
. (C6)

Similarly, the functional derivative with respect to the
covariance matrix � can be calculated as

HV
� = 4

δ〈 ˆ̃V 〉GS

δ�
= λ

(
2
(
Tr

[
P↑

(
� − I4Nb

)] + φTP↑φ − 2
)
P↑

+ 4P↑(� + φφT)P↑ + 8σ x
e

δP
δ�

)
, (C7)

δP
δ�

= S
[
P�−1

B

(
I4Nb + �

)(
� − I4Nb

)
/2

+ 2〈P̂env〉GS�
−1
B ϒ↑

(
�−1
B

)T(
2� − I4Nb

)]
.

(C8)

The perturbations (C4) and (C7) are added to the functional
derivatives (30) and (31), respectively, and ensure the spin
conservation during the variational calculations.
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