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Dominant multiparticle interactions can give rise to exotic physical phases with anyonic excitations and
phase transitions without local order parameters. In spin systems with a global SU(N) symmetry, cyclic
ring-exchange couplings constitute the first higher-order interaction in this class. In this Letter, we propose
a protocol showing how SU(N)-invariant multibody interactions can be implemented in optical tweezer
arrays. We utilize the flexibility to rearrange the tweezer configuration on short timescales compared to the
typical lifetimes, in combination with strong nonlocal Rydberg interactions. As a specific example, we
demonstrate how a chiral cyclic ring-exchange Hamiltonian can be implemented in a two-leg ladder
geometry. We study its phase diagram using density-matrix renormalization group simulations and identify
phases with dominant vector chirality, a ferromagnet, and an emergent spin-1 Haldane phase. We also
discuss how the proposed protocol can be utilized to implement the strongly frustrated J—Q model,
a candidate for hosting a deconfined quantum critical point.
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Introduction.—Ultracold atoms in optical lattices have
become a versatile platform for performing analog quantum
simulations, with widely tunable interactions [1] and the
ability to control the single-particle band structure [2—8].
Using atoms with permanent electric or magnetic dipole
moments [9] or in Rydberg states [10] allows us to study
systems with long-range dipole-dipole or van der Waals
interactions, which can mimic the long-range Coulomb
repulsion between electrons in a solid. These ingredients
can be combined to study exotic phenomena in strongly
correlated many-body systems, related, for example, to
quantum magnetism [11-17] or the fractional quantum Hall
effect [18-20]. Leveraging the capabilities of ultracold
atoms, such experiments promise new insights, for exam-
ple, to directly measure topological invariants [21-25] or
image the quantum mechanical wave function with single-
site resolution [26-31].

In this Letter, we go beyond the two-body interactions
realized so far and propose a general protocol to implement
highly symmetric multiparticle interactions with ultracold
atoms in optical tweezer arrays. Multiparticle interactions
can lead to exotic ground states with intrinsic topological
order [32,33], with applications for quantum computation
[34,35], and they are an important ingredient for realizing
lattice gauge theories [36-39] central to the quantum
simulation of high-energy phenomena or deconfined
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quantum criticality [40,41]. If these higher-order couplings
possess additional symmetries, e.g., SU(N) invariance in
spin systems, models with strong frustration can be realized
for which the ground states are strongly correlated quantum
liquids.

In condensed matter systems, multispin interactions of
this type emerge from higher-order virtual processes [42],
leading to corrections to the pairwise Heisenberg couplings
of SU(2) spins in a half filled Hubbard model. These cyclic
ring-exchange terms play a role in frustrated quantum
magnets like solid *He [43] and possibly also for the phase
diagram of high-T. cuprate superconductors [44,45]. In
this Letter, we demonstrate how such multispin interactions
can be realized and independently tuned in ultracold atom
systems without resorting to high-order virtual processes.

A promising route to implementing multiparticle proc-
esses is to use strong interactions between atoms in different
Rydberg states representing spin degrees of freedom (d.o.f.).
This allows us to build a versatile quantum simulator that can
be used to realize ring-exchange interactions in spin systems
by representing them as sums of products of Pauli matrices
[46] or to implement local constraints giving rise to
emergent dynamical gauge fields [47,48].

Here we follow a similar strategy, but propose to
combine strong Rydberg interactions with the capabilities
to quickly change the spatial configuration of atoms

© 2020 American Physical Society
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FIG. 1. Proposed setup: SU(2)-invariant chiral cyclic ring-
exchange interactions can be realized by combining state-depen-
dent lattices generated by optical tweezer arrays and strong
Rydberg interactions with a central Rydberg-dressed control
qubit (C). The auxiliary states |z = 1)|o) with 6 = 1, | (orange)
of the atoms on the sites of the plaquette are subject to a state-
dependent tweezer potential, which allows us to permute them
coherently around the center. Our protocol makes use of strobo-
scopic 7 pulses between the physical states 7 = 0 (green) and the
auxiliary states z = 1, which only take place collectively on all
sites and are conditioned on the absence of a Rydberg excitation
in the control atom.

trapped in optical tweezer arrays [49-53]. We consider
general lattice models with one N-component particle per
lattice site (fermionic or bosonic) and show, as an explicit
example, how a general class of SU(N)-invariant chiral
cyclic ring-exchange (CCR) interactions can be realized.
They are described by a Hamiltonian (A = 1)

’HCCR(¢) = KZ(EMJIS;: + e—i¢ja;), (1)

p

where the sum is over all plaquettes p of the underlying
lattice, the operator ﬁ’; (131,) cyclically permutes the spin
configuration on plaquette p in the clockwise (counter-
clockwise) direction, and ¢ is a tunable complex phase. A
generalization to finite hole doping, with zero or one
particle per lattice site, is straightforward.

Nonchiral cyclic ring-exchange interactions, realized by
Eq. (1) for ¢ = 0, are believed to play a role in the high-T,
cuprate compounds. These materials can be described by
the 2D Fermi-Hubbard model on a square lattice, with
weak couplings between multiple layers in the z direction
[54]. For the relevant on site interactions U, which
dominate over the nearest-neighbor tunneling < U,
this model can be simplified by an expansion in powers
of t/U. To lowest order, one obtains a r—J model [55] with
nearest-neighbor spin-exchange interactions of strength
J =412/U. Next to leading order, cyclic ring-exchange
terms on the plaquettes of the square lattice contribute with
strength K = 20¢*/U3. By comparison of first principle
calculations and measurements in the high-temperature
regime, it was shown that K~ 0.13 xJ in La,CuQO,
[56], but its effect on the phase diagram remains debated.

In ultracold atoms, similar higher-order processes have
been used to realize nonchiral cyclic ring-exchange cou-
plings [57,58].

We start by explaining the general scheme using the
example of CCR interactions. Our method is more versa-
tile, however, and we discuss how it can be adapted to
implement the /J—Q model, which has been proposed as a
candidate system realizing deconfined quantum criticality
[40,41]. We also analyze the phase diagram of the CCR
Hamiltonian (1) in a ladder geometry, with exactly one SU
(2) spin per lattice site. We show that the phase diagram
contains a gapped Haldane phase with topologically
protected edge states [59-61] at intermediate values of
/4 < ¢ < 3n/4, a ferromagnetic phase for ¢ = 37/4, and
a dominant vector chirality for ¢ < z/4.

Implementation.—For simplicity, we consider a single
plaquette, restrict ourselves to N, = 4 sites and assume
SU(2) symmetry, see Fig. 1. Generalizations of our scheme
to more than one plaquette, N, # 4, and SU(N) symmetry
are possible (see Supplemental Material [62]).

Each of the four sites, labeled j = 1, ..., 4, consists of a
static optical tweezer trapping a single atom, where recently
demonstrated rearrangement methods [49-53] allow for
populating each site with high fidelity. We assume that the
atoms remain in the vibrational ground states of the
microtraps throughout the sequence. Every atom has two
internal states ¢ = 1, |, which we use to implement an
effective spin-1/2 system. As a specific configuration we
suggest to use '3*Cs atoms and utilize their F = 3, mp=2, 3
hyperfine states to represent the two spins. Optical pump-
ing with site-resolved addressing can then be employed to
prepare arbitrary initial spin patterns [58] and study their
dynamics under Eq. (1).

The key ingredient for our proposed implementation of
CCR interactions is to realize collective permutations of the
entire spin configuration in the plaquette. This can be
achieved by physically rotating the tweezer array around
the center of the plaquette, while ensuring that the motional
and spin states of the atoms are preserved and coherence is
not lost. The effect of clockwise rotations of the microtraps
on the spin states is described by the operator P,

Pl61.06y.05.064) = |64.01,064.03). (2)

Optimized trajectories can be chosen to cancel heating
effects from the motion [65]. These require a timescale set
by the quantum speed limit that scales as the inverse energy
gap of each trap t,,, ~ 1/Ae. For deep trapping potentials
where Ae = 150 kHz, rotation times of 7, < 10 us are
achievable.

In contrast to Eq. (2), the effective Hamiltonian leads
to a superposition of permuted and nonpermuted states
in every infinitesimal time step Af, as can be seen from

a Taylor expansion: e Mcer®" — | — jH g At. To create
such superposition states in our time evolution, we assume
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that every atom has a second internal d.o.f. labeled by
7 =0, 1. Concretely, we propose to realize the new states
|t = 1)|6) in '33Cs atoms by F = 4, my; = 3, 4 hyperfine
levels, where my; =3 (mp =4) corresponds to ¢ = |
(6 = 1). These additional levels will be used as auxiliary
states, whereas the states |z = 0)|o) introduced before—
implemented as F = 3, my = 2, 3 levels in '33Cs—realize
the physical spin states.

One part of our protocol consists of a permutation of the
spins o, but only in the manifold of auxiliary states. This
step requires a total time #,,; and can be described by the
unitary transformations

o, =[[I;01ep+[0);0 e, o.=0. @3)
i j

To implement this evolution, two sets of optical tweezer
arrays can be used, of which only one is rotating. We
suggest to realize it by the near-magic wavelength A;,,0ic &

871.6 nm in '33Cs, which strongly confines atoms in the
state 7 = 1, but almost does not affect atoms in 7 = 0. By
applying U, to superposition states with either all atoms in
7 =1 or all atoms in 7 = 0, one can realize the desired
superpositions of permuted and nonpermuted spin con-
figurations. Such states can be realized by collective #
pulses conditioned upon a control qubit trapped in the
center of the plaquette [66], as described next.

If the control atom is in the state |+),, it is transferred to
a Rydberg state |r). with a resonant 7 pulse and Rabi
frequency Q,, see Fig. 1. If the control atom is in state |-),,
the laser Q, is off-resonant and no Rydberg excitation is

created. Next, a Raman transition by lasers Q;l), Q§2>
through an intermediate Rydberg state |r); is used to
implement a z pulse transferring the physical states
0); to |1);, without changing their spin state |o);. In the
presence of a coupling field QF'T that establishes two-
photon resonance to the Rydberg state with each Raman
laser, electromagnetically induced transparency (EIT) [67]
suppresses the transition |0); <> |1);. However, the EIT
condition is lifted by the Rydberg blockade mechanism if
the control atom is in the Rydberg state |r), [66], enabling
the transfer. After the transfer is complete, another 7 pulse
by Q, is applied to the control atom. This ensures that the
control atom remains trapped during the protocol, even if
the Rydberg excited state is not subject to a trapping
potential. In summary, this part is described by the unitary
transformation

O = 90041 ® (TTI0 0+ He) @1,

+ 1) ® 1 ® 1,. (4)

The total time required to implement this switch (sw) is
denoted by 7.

Finally, we need to introduce quantum dynamics between
the states of the control atom. This can be realized by a
dressing laser Q. driving transitions between |£)., at a
detuning A.. These dynamics take place over a period
of time 7. and are described by the unitary evolution

A

U.= e~ Mee with 7:[0 = Ac|+>c<+| +QC<|+>C<_| +HC)
During the remaining steps of the protocol, Egs. (3) and (4),
we assume that Q. = 01s off and the control atom picks up a
phase +¢. if it is in state |+) .. This phase can be adjusted
by the detuning A, and the duration f, = 2, + f.o
during which the time evolution of the control is tp, =
[+)c(HleFe 4+ [=) (=

The complete protocol is summarized in Fig. 2. It
consists of a periodic repetition of the individual steps
described above. At the discrete time steps n7, where
T = 2(t. + t,), the unitary evolution is described by an
effective Hamiltonian ﬂeff,

A A

e_inTﬂEff = (UT)n = (UIX,+UCUFX,—UC)n’ (5)

where we defined U, ;. = lA]SW(lA]i{,,C ® U,)Ug,. As will

be shown below, ﬂeff realizes CCR interactions with a
tunable phase ¢ = —¢,. and amplitude

K= —% (1.A,) <i—>2 (6)

c

provided that

t. K 2x/A,, Q. <A, (7)

Now we estimate the strength |K| of the CCR inter-
actions that can be achieved with the proposed setup. To
satisfy Eq. (7), we assume Q. = 0.2A, and t.A. = 0.4. For

(a) tiTe t | Urx,+ Uc ﬁrx,— Uc |
‘ fZL trx tc trx 75c (I)
(b) < s
J = teA. < 1
2 ‘
le
tsw trot tsw
" Usw U:I: Usw S
Uy — ‘_‘ | A | }7 Q, =0
< Uty d
[~ =%e |

FIG. 2. Proposed protocol: The sequence in (a) is repeated
periodically with period 7 = 2(¢, + t,). When ¢, < 2z/A,,
1/Q, it implements a Trotterized time evolution of the effective
Hamiltonian (8), which realizes CCR couplings when A, > Q..
The individual time steps are illustrated in (b).
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a rotation time ft,,; = 10 pus and assuming .y, . < ;o @
reasonable strength of K/A = 50 Hz x 2z can be achieved.
This requires Q./2z > 1.3 kHz, which can be easily real-
ized; the condition 7., << 10 us can also be met, as the
Rydberg 7 pulses on the control atom can be executed in
~100 ns each, and the Raman transfer between the states |0) ;
and [1); can be driven with coupling strengths above 1 MHz.

Effective Hamiltonian.—Next we show that our protocol
realizes the Hamiltonian in Eq. (1). When 7./27 <
1/A,,1/Q., we can write U, = 1 — iz, and calculate
exp|[—iHT] to leading order in .. Equations (3) and (4)
yield

~

Floy = 5 {28:]4) o (+]
F Q)1+ e P + Hel)  (8)

When Q. < A, we can eliminate the state |+),., which is
only virtually excited. This further simplifies the effective
Hamiltonian and we obtain

Pl = K(2+ 70 P + e P). 9)

Up to the energy shift 2K this realizes CCR interactions in
an isolated plaquette. The result can be extended to multiple
plaquettes by implementing the Trotterized time step Uy
interchangeably on inequivalent plaquettes.

Two-leg ladder with CCR.—Now we discuss the physics
of the SU(2) CCR Hamiltonian in a two-leg ladder. We vary
the phase ¢ in the Hamiltonian (1) with K =1 and
calculate the ground state phase diagram using the den-
sity-matrix renormalization group (DMRG). For ¢ = =, the
ground state has ferromagnetic correlations, see Fig. 3(c). It
can be readily seen that the variational energy (Hccg (7)) is
minimized for ferromagnetic configurations. In the sector
Stot = 0 used in our DMRG in Fig. 3(c), we find phase
separation with two ferromagnetic domains of opposite
magnetization.

At intermediate ¢, we find an emergent Haldane phase,
with two-fold degenerate states in the entanglement spec-
trum, see Fig. 3(a). For a finite S, = 1, the expectation
value (S5 ) at the edge is nonzero, see Fig. 3(b). The spin
gap AEg = Eyg_; —Egs—g, defined as the difference
between the ground state energy with and without finite
total magnetization, is zero in this phase, since the addi-
tional spin can be placed in the spin-1/2 topological edge
states of the system without increasing the total energy. We
corroborate this picture further by considering the K—K’
model with alternating strengths K, K’ of the CCR
interactions on adjacent plaquettes. In the Supplemental
Material [62], we provide an explicitly derivation of a spin-
1 model with a gapped Haldane ground state [60,68] for
¢ =nrn/2 and K' < K.

SPT transition

vedcct)cr)nr"éi?rtality : Haldane : ferromagnet
(a) :
0.2 '\ : entanglement gap
v
by R,
001 ¥ ssney : [ Tteseeasss
(b) 5 v 5
0.24(5% Pt Bt
( L,1> :'-‘ '
0.1 A o N~ ¥
1  edge magnetization v
0_0, E E,-I-l-l-"ﬂﬂ-.—
© . — o seeeeeeeEe
0.2{(Sz/2.1 - So,1) 2
' I
0.1 intrachain spin correlations h
1
0.0 dosessscceses : oo
(d) : — ;
5 1 staggered vector chirality : 02
20 H P ~ N g 0.1
c F(=1)7{(S/21 x S1/02) - (821 X SL/2pes 50
.8 <( L/2,1 L/ZZ) ( L/24w,1 L/:2+ 2)> "
= 00 0 0'2 0'4 0'6 0'8 1.0
X 10. 4 g O 1 0. X
FIG. 3. Phase diagram of the CCR Hamiltonian on a ladder,

obtained from DMRG in a system with 64 sites: different
observables are evaluated in the ground state of the Hamiltonian
(1) to characterize the phases. Upon varying ¢, three different
phases can be identified: (a) a topological Haldane phase
featuring a vanishing gap in the entanglement spectrum, (b) edge
states with a nonzero local magnetization for S, =1, (c) a
symmetry-broken phase around ¢ = 7 with long-range ferro-
magnetic correlations, and (d) a symmetric phase for small ¢,
where the staggered vector chirality remains nonvanishing over
long distances.

For small values of ¢, the ground state of the CCR
Hamiltonian is a dominant vector chirality phase, as
discussed in Ref. [69]. This phase is characterized by
correlations of the form S"W X S‘xr‘yr in a staggered arrange-
ment around each plaquette. We find that the staggered
correlation between different rungs, measured from the
center L/2 of the chain,

(_1)x<(SL/2,1 X SL/Z,Z) : (SL/2+X,1 X SL/2+X.2)>’ (10)

decays slowly as a function of the distance x and retains
significant nonzero values over the considered system
sizes, see Fig. 3(d). The transition between the dominant
vector chirality and Haldane phases is a symmetry-pro-
tected topological (SPT) phase transition.

Using the global SU(2) symmetry, the staggered
vector chirality becomes 6(S; , |5} /2,2(3‘{ P41y Jix2 =

A

S{/zﬂlA)L‘/zﬂ,z))(—l)x. Measuring it requires access to

two four-point functions of the form (85 8;57), which can
be detected by making use of local addressing techniques
(see, e.g., [70]). To detect the Haldane phase experimen-
tally, we propose to study weakly magnetized systems and
image the topological edge states. Alternatively, one could
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work in the plaquette basis (see Supplemental Material
[62]) and measure the Haldane string order parameter. An
interesting future extension would be to use machine
learning techniques to retrieve nonlocal order parameters
from a series of quantum projective measurements.

Summary and outlook.—In summary, we propose a
general method for implementing multibody interactions
in ultracold atom experiments using optical tweezer
arrays. The approach is particularly useful in the presence
of additional, e.g., global SU(N) spin, symmetries.
Specifically, we consider a four-body cyclic ring-exchange
term, which can be realized with a combination of multi-
qubit gates based on Rydberg states and movable optical
tweezers. We numerically study the ground state of the
cyclic ring-exchange Hamiltonian and find different dom-
inant correlation functions as the complex phase of the
ring-exchange term is varied.

Our Letter paves the way for future studies of the
interplay between ring- and pair-exchange terms, as dis-
cussed in Ref. [71] for the nonchiral case ¢ = 0. In the
experimental realization proposed here, it is conceptually
straightforward to introduce mobile holes into the system,
leading to a finite doping. The interplay between spin and
charge d.o.f. could be further studied by adding direct
tunneling terms, which lead to rich Hamiltonians in the
spirit of 7—J-like models. The physics of this type of model
is completely unknown and provides an exciting prospect
for future theoretical and experimental research. The
proposed protocol is versatile enough to implement larger
classes of models with multispin interactions, such as the
J—Q model [41] (as we discuss in the Supplemental
Material [62]). In two dimensions, this model features a
phase transition between an antiferromagnet and a valence-
bond solid, which has been proposed as a candidate for a
deconfined quantum critical point [41]. Moreover, the
experimental protocol can be varied to study different
types of problems, such as discrete time evolutions of
complex models or impurity models, which can be realized
by an inclusion of the control qubits into the models.
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