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ABSTRACT

Spatio-temporal event data are becoming increasingly com-
monplace in a wide variety of applications, such as electronic
transaction records, social network data, and crime incident
reports. How to efficiently detect anomalies in these dynamic
systems using these streaming event data? This work pro-
poses a novel anomaly detection framework for such event
data combining the Long Short-Term Memory (LSTM) and
marked spatio-temporal point processes. The detection pro-
cedure can be computed in an online and distributed fashion
via feeding the streaming data through an LSTM and a neu-
ral network-based discriminator. This work studies the false-
alarm-rate and detection delay using theory and simulation
and shows that it can achieve weak signal detection by ag-
gregating local statistics over time and networks. Finally, we
demonstrate the good performance using real-world data sets.

Index Terms— Anomaly detection, adversarial learning,
long short-term memory, marked spatio-temporal point pro-
cesses.

1. INTRODUCTION

Data recording spatio-temporal events exist ubiquitously in
our daily life. These spatio-temporal data range from elec-
tronic transaction records at large chain department stores,
earthquake records, to criminal history records by the po-
lice. In many cases when an abnormal incident takes place, it
will result in anomalies in the recorded sequence (Figure 1).
Such sequential anomaly data usually have a distinctive pat-
tern compared to normal data, but they are difficult to obtain.
Therefore, it has been a challenge to capture the anomalous
pattern and detect such anomalies in the dynamic systems
efficiently and accurately, especially when only insufficient
one-class anomaly data are available.

In this work we propose a novel anomaly detection frame-
work for streaming event data leveraging the power of ad-
versarial learning [1, 2, 3]. The anomaly events are mod-
eled using marked spatio-temporal point processes, where the
historical information is specified as the last hidden state of
the Long Short-Term Memory (LSTM). The neural network-
based discriminator in the adversarial framework can be nat-
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urally used as an anomaly detector. The detection procedure
can be carried out in an online and distributed fashion via
feeding the streaming data through the LSTM and the dis-
criminator.

The major contribution of this work is two-fold: (1) The
work has obtained a robust anomaly detector based on a lim-
ited amount of training real data. It is proposed to gener-
ate “’realistic” fake samples using an adversarial framework
to improve the discriminator; (2) The work proposes model-
ing the event sequence data by integrating the versatile point
process framework with LSTM. This gives the model better
interpretability and flexibility in capturing the true underlying
pattern.

We focus on the prediction accuracy and detection de-
lay from application data and simulations. Our study shows
the proposed approach is capable of achieving sequential
anomaly detection for weak signals by aggregating local
statistics over time and networks over time, location, and
mark space. Finally, we demonstrate the satisfactory perfor-
mance using data from real-world applications.
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Fig. 1: An example of anomaly detection for marked spatio-temporal
streaming data.
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Related work. In the field of signal processing, there have
been numerous articles tackling anomaly/outlier detection
problem from other perspectives. [4] employs a statistic
based on log-likelihood ratio or log-posterior density ratio,
which is claimed to be a good estimator of goodness-to-fit.
This statistic is used for anomaly test. In [5], outlier detection
in sequential online data is looked into. This work adopts
incremental decision trees for multi-model density estima-
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tion, which forms the basis of an online anomaly detector.
The /; norm principle component analysis and its variations
are introduced in [0], which is able to catch change in signal
subspace, effectively detecting the anomaly. These novel and
rigorous approaches prove to be performing well for detect-
ing signal anomalies. However, they are not an ideal fit in
this problem setting, since the streaming data in our problem
contain extra categorical information such as location.

Recently, there have been a number of attempts in inte-
grating the idea of General Adversarial Network (GAN) and
anomaly detection. Several existing methods are analyzed in
[7]. These methods discussed stem directly from the structure
of GAN without modeling of the streaming data. In the work
of [%], Long Short Term-Recurrent Neural Network (LSTM-
RNN) is applied in GAN to capture the distribution of mul-
tivariate time series of streaming data for cyber-physical sys-
tems. The work of [¥] uses a GAN-based approach to carry
out anomaly detection for medical image scans, taking advan-
tage of discriminator feature information. Similarly looking
into image anomaly detection, the work in [10] attempts to
obtain the latent space representation from the generator of
GAN to identify anomalies.

Typical adversarial problems draw attention to obtaining
a high-quality fake data generator using the adversarial net-
work. It aims to detect anomalies when normal data pattern
is available and can be exploited for a traditional two-class
change detection. However, in the setting of this work, only
anomaly data are available, which calls for a one-class de-
tection approach. Therefore in our work, more emphasis is
placed on learning an efficient discriminator which is able to
detect anomaly data accurately.

A few pieces of more recent research are closely related
to this work in the effort of exploiting the LSTM structure or
adversarial learning setting. In [11, 12], Hawkes process is
combined with recurrent neural networks. Both make use of
the LSTM structure to model the conditional intensity func-
tion similar to our work. However, the detailed structure of
the two approached differ. In [12], the model consists of stan-
dard discrete-time LSTM which results in event intervals be-
ing coded into the model. The model also only contains a
single intensity function A(t) with simple exponential decay.
On the other hand, [11] proposed a continuous-time LSTM
model by constructing a modular model with separate inten-
sity functions, allowing more flexibility. Both of the papers
look into temporal settings only. Our work further extends the
modeling to a marked spatio-temporal setting. Additionally,
in the work of [13], an adversarial learning strategy similar
to this work is deployed. The objective is to improve maxi-
mum likelihood estimation (MLE) of predictive point process
models. The aforementioned papers focus on modeling using
point processes with adversarial learning strategies. But these
papers do not take anomaly detection into consideration. A fi-
nal relevant paper [ 1] applies the adversarial network to the
classification problem, but it is limited to images only.

2. MODELING

Assume we have a set of marked spatio-temporal anomalous
sequences X = {x}. Letx = {x1, T2, ..., TN, } be asingle
sequence where N is the number of events in the time win-
dow T. Each tuple z; = {¢;, 8;, m;} denotes a single event
occurred at time ¢; € [0,T), at location 8; € S C R?, associ-
ated with marks m; € Q* = R? x Q where Q is a categorical
mark space.

Our goal is to devise a discriminator D : [0,T) x § x
Q* — (0,1). Given a sequence = with arbitrary length, this
discriminator D(x) > b if the sequence x is anomalous. Oth-
erwise D(x) < b, where b is a preset threshold.

Now we present our sequential data model, which is
adapted from the neural Hawkes model in [11, 12, 15, 16].
The model represents the historical information of a sequence
x using the final hidden state hy,. 1 after feeding the data
sequentially into the LSTM.
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Fig. 2: An illustration of our proposed LSTM based model. The
model can either take external points as input or generate points in-
ternally. The final hidden embedding after the last moment contains
the information for the entire input or generated sequence.

We characterize the anomaly behavior of events in a se-
quence using a conditional intensity function A(t, s, m|H;),
which is the probability of observing an event in the marked
spatio-temporal space [0,T") x & x (* given the history of
past events Hy: A(t, s, m|H;)didsdm = P{z;41 € [t,t +
dt] x | B(s, As)| x |B(m, Am)||H:}, where | B(v, Av)| are
the Lebesgue measure of the ball B(v, Av) with radius Av.

We model the nonlinear dependency of current event from
past events using the LSTM. As shown in Figure 2, for the i
event occurring at the time ¢;, the data tuple (¢;, s;) is fed as
input into the LSTM unfolded up to the i + 1" event. The
embedding h; € RP represents the memory effect, which is
the influence from the past events. The LSTM updates h;_4
to h; by taking into account the impact of the current event
z;. Finally, we use h; to represent the influence of the history
up to time ¢,Vt 1 t; <t < tig1.

Given the ™ input x; and the last hidden state h;_1, we
can obtain the hidden state h; of LSTM (p is the dimension
of the hidden state), which is defined as

h; = Oz'(iﬂz') ° Uh(Cz'(ﬂ?i)) = hi—l(Ii):

where o, is the hyperbolic tangent function, o; is the current
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Fig. 3: Architecture of the adversarial learning framework, which consists of a LSTM structure and a fully connected neural network. For
generator, the LSTM generates fake samples =z = {z;} given the initial hidden state h{. For discriminator, it takes real samples @ = {z;} as
input given the initial hidden state ho. A fully-connected neural network takes the last hidden state Ay 41 or hiy 41 of a sequence of samples

as input, and yields the probability of being anomaly.

output gate’s activation state, and ¢; is the current cell state.
Both of o; and ¢; depend on the last hidden state h;_;, and
take z; as the current input. It differs from the conventional
LSTM structure because the external input of hidden state is
the LSTM’s output at the last moment. For more details of
the LSTM structure, please refer to Appendix A'.

Since we have assumed the mark is conditionally indepen-
dent of location and time of events, the conditional intensity
function is defined as

)"(t'.! 8, m|Ht) ~ )"(t'.' 8, m|hi)

1
= 2t slhy) -p(mlhy),

where A, (£, s|h;) is the spatio-temporal conditional intensity
and p(m/|h;) is the conditional probability density of marks.
Spatio-temporal representation. The spatio-temporal con-
ditional intensity function A4 (¢, s|h;) can be specified as

Ag(tislh’i) :f(wlh’l(t) 8)+bh)) (2)

where f(-) is the softplus function. h;(t, 8) is the hidden state
with partial input ¢, s (see Appendix A). Weights W and
bias by, are the trainable parameters. To attain more expres-
siveness for the conditional intensity function, it can also be
extended to multi-layers structure without too much efforts.
For simplicity of notation, we denote the conditional in-
tensity A(-|hi), Ag(-|hi) as A*(-), A(-). Let f; (¢, s) be the
corresponding conditional spatio-temporal probability den-
sity. Note the conditional spatio-temporal intensity )\;(t, 8).
The conditional probability density f5 (¢, s) is defined as:

f3(0:9) = Xy(t,9) o { = / [ Astmarav).

Then we can estimate the time and location for the next
event using the expectation:

[fm] _ l ST [s £, v)drdu] ‘
Jsv [} i (r,v)drdv

i1
In general, the integration above cannot be obtained analyti-
cally. Therefore, numerical integration techniques which are

lhttps://arxiv.org/abs/1910.09161

commonly utilized are applied here to compute the expecta-
tion.

Mark representation. Given the hidden representation h;
up to the i™ event, we consider each type of the marks
conditional independent of each other, ie., p(m|h;) =
17, p(m[€]|hs). For the categorical mark m[0] € {1,..., K},
we model the conditional probability of mark rm[0] as a multi-
nomial distribution defined as:

exp(Vihi + by)
Z{f:l exp(V,{hi + bn) ,
where weights V' = {V;} and bias {b;} are the trained pa-
rameters.

For continuous marks m[f] € R,¥1 < ¢ < d, we model

their conditional probability density m[f] as a Gaussian dis-
tribution defined by:

m[£]|h1 NN(U,ghg + b,g., Cr).,

p(m[0] = k|hi) =

where weights U = {U,} and bias {b,} are the trained pa-
rameters.

3. ADVERSARIAL ANOMALY DETECTION

The anomaly data is assumed to be generated by a real data
distribution denoted by pg. The fake data is generated by a
fake data distribution denoted by p,. Denote G(z) the LSTM
generator and D(x) the discriminator. The generator G im-
plicitly defines a probability distribution z ~ p, as the dis-
tribution of fake trajectories obtained by G(z) when z is a
random initialization of the LSTM state. The discriminator
D is a fully connected multi-layer neural network where the
input layer of D is the last LSTM hidden state with external
input =, and the output layer is a softmax which yields the
probability that the sequence is an anomaly trajectory.

To learn the discriminator while improving the generator,
we follow [2, 3] to play an adversarial game by minimax the
following objective function as shown in Figure 3.

mg.xméin Egnpa(z) llog D(z)] +
Eznp. (2) [log(1 — D(G(2)))]

Performing the anomaly detection, we feed the data points
of an unknown sequence @ into our well-trained LSTM one at

3)
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a time. Denote the first 7 events in x as ;. The alarm would
be raised at step i once D(ax;) is larger than a preset threshold
b. A general threshold of b = 0.5 can be adopted here.

4. NUMERICAL EXAMPLES

To evaluate the performance of the proposed anomaly detec-
tion approach, we apply it to two real applications as below:
Earthquake event data. The Northern California Earth-
quake Data Center (NCEDC) provides data [ 1 7] which comes
from broadband, short period, strong motion seismic sensors,
GPS, and other geophysical sensors. This dataset contains
16,401 major earthquake records with magnitudes larger than
3 from 1978 to 2018 in the Northern California area.

Credit card fraud transaction data. The records of identi-
fied fraudulent credit card transactions contain date and loca-
tion of transaction, transaction amount, and loss type. Each
case is associated with a sequence of frauds on a specific card.
There are in total 534 different locations, 641,071 fraud trans-
actions observed, and 30,078 credit cards involved.

Comparing the proposed approach (AdvLSTM) with three
other baseline methods, its efficacy can be understood. These
baselines are briefly introduced as follow: (1) PCA. Princi-
ple component analysis is carried out and the principle fea-
ture components are obtained. Then the event sequences of
various lengths are compared with the features. If a specific
testing sequence corresponds to an outlier from the principle
features, then it is determined that such sequence should not
be considered as an anomaly. PCA does not take the order
of events in the sequence into account; (2) PCA + CUSUM.
PCA-based detection with CUSUM has a similar structure to
the standard PCA method. The major difference is the intro-
duction of CUSUM statistics to the method as the trigger for
detection. This takes the sequence of events into consider-
ation. (3) MLE-LSTM. Using the LSTM framework only to
find representations of events by Maximum Likelihood Esti-
mation as shown in Appendix B. Detection is declared if the
event is sufficiently dissimilar to these representations.

All approaches are applied to both the credit card fraudu-
lent transactions and NCDEC earthquake event data. The de-
sired performance is that anomalies can be correctly detected
as quickly as possible at a considerable level of accuracy. On
the other hand, if random noise data is fed towards the de-
tection metric, ideally they should not be picked up by the
detector as anomalies.

Following the experiments, the performance of these
methods can be obtained in terms of the accuracy of detecting
anomaly and erroneously identifying noise data as anoma-
lies. It is observed in Fig.4 that for the method proposed in
our work, the detection probability of correctly detecting the
anomaly data in both cases is high. For the credit card fraud,
the probability of detection reaches 80% within the first 5
events of a sequence, whilst for the earthquake case, the same
level of detection is reached within the first 40 events. Si-
multaneously the probabilities of identifying random noise

as anomalies in both cases are significantly lower. This in-
dicates the proposed method is able to detect the anomalies
while being resistant to random noise, indicating the power
of adversarial learning. On the contrary, the baselines are
not performing as well. They have generally failed to dif-
ferentiate between the noise data and genuine anomaly data.
Therefore they are not as accurate in anomaly detection as the
devised method in this work.
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Fig. 4: Comparisons between our method and baselines.
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5. CONCLUSIONS

This paper has proposed a novel anomaly detection approach
leveraging the power of adversarial learning. The anomaly
data is modeled using marked spatio-temporal point processes
framework where historical information is specified as the fi-
nal hidden embedding of an LSTM. Using real credit card
frauds and earthquake records, it is shown that this approach
outperforms other baseline methods in terms of prediction ac-
curacy.
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