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The rapid growth of autonomous vehicles is expected to improve roadway safety. However, certain levels of 
vehicle automation will still require drivers to ‘takeover’ during abnormal situations, which may lead to 
breakdowns in driver-vehicle interactions. To date, there is no agreement on how to best support drivers in 
accomplishing a takeover task. Therefore, the goal of this study was to investigate the effectiveness of 
multimodal alerts as a feasible approach.  In particular, we examined the effects of uni-, bi-, and trimodal 
combinations of visual, auditory, and tactile cues on response times to takeover alerts. Sixteen participants 
were asked to detect 7 multimodal signals (i.e., visual, auditory, tactile, visual-auditory, visual-tactile, 
auditory-tactile, and visual-auditory-tactile) while driving under two conditions: with SAE Level 3 
automation only or with SAE Level 3 automation in addition to performing a road sign detection task. 
Performance on the signal and road sign detection tasks, pupil size, and perceived workload were measured. 
Findings indicate that trimodal combinations result in the shortest response time. Also, response times were 
longer and perceived workload was higher when participants were engaged in a secondary task. Findings 
may contribute to the development of theory regarding the design of takeover request alert systems within 
(semi) autonomous vehicles. 
 

INTRODUCTION 
 

The past several decades have witnessed unprecedented 
changes to the design of motor vehicles. For example, 
assisted-driving systems, such as navigation, rear cameras, and 
blind spot warnings, all attempt to make driving safer. 
However, in 2017, the National Highway Traffic Safety 
Administration still reported 37,133 vehicle fatalities 
(National Center for Statistics and Analysis, 2018). This 
accident statistic has, in part, triggered the rapid development 
of semi- and fully autonomous vehicles that can operate 
without continuous human intervention. It is expected that by 
the year 2030, 25% of cars will be self-driving (Johnstone, 
2018).  

However, semi-autonomous vehicles present their own 
set of challenges. One of which is the requirement to ‘take 
over’ control from partial and conditional vehicle automation, 
i.e., SAE Levels 2 and 3, respectively (Li, Blythe, Guo, & 
Namdeo, 2018; Litman, 2018; National Highway Traffic 
Safety Administration, 2017). For example, in these modes, 
speed and lane position are controlled by the automation, but 
system failure can occur for many reasons, such as loss of 
GPS signal, unclear and/or missing lane markers, construction 
zone entry or road closure, or high traffic density (e.g., 
Körber, Prasch, & Bengler, 2018; Molnar et al., 2017). 
However, under these levels of automation, drivers may 
decide to engage in non-driving related tasks (such as cell 
phone use, reading, or eating; Llaneras, Salinger, & Green, 
2013). Therefore, reliable in-vehicle warning systems may be 
critical in order to alert drivers of the need to resume manual 
control of the car.  

To date, there is no consensus on how to best design 
effective warning systems to capture drivers’ attention in this 
particular situation. Multimodal information presentation, the 
presentation of information to the visual, auditory, and tactile 
sensory channels, represents one feasible approach for 

creating such interface (Sarter, 2006; Wickens, 2008). One 
major benefit of multimodal displays is their ability to support 
effective attention and interruption management (Brickman, 
Hettinger, & Haas, 2000; Ho, Nikolic, & Sarter, 2001; 
Latorella, 1999). In particular, redundancy, i.e., the use of two 
or more modalities for presenting the same information 
(Sarter, 2006), can significantly increase alertness, and thus 
response, to warning notifications (e.g., Hecht, Reiner, & 
Karni, 2008). 

Several research studies have demonstrated the benefits 
of redundant multimodal signals in driving (e.g., Kramer, 
Cassavaugh, Horrey, Becic, & Mayhugh, 2007; Lundqvist & 
Eriksson, 2019; Petermeijer, Bazilinskyy, Bengler, & de 
Winter, 2017; Pitts & Sarter, 2018; Politis, Brewster, & 
Pollick, 2014, 2015; Yoon, Kim, & Ji, 2019). In general, these 
studies report that response time to redundant multimodal 
signals (that is, bi- or trimodal combinations) are significantly 
shorter than those of a single (unimodal) stimulus. For 
example, in manual driving, Lundqvist and Eriksson (2019) 
and Politis, Brewster, and Pollick (2014), evaluated all uni-, 
bi-, and trimodal combinations of visual (V), auditory (A), and 
tactile (T) cues (i.e., V, A, T, VA, VT, AT, and VAT) and 
showed multisensory performance gains, in terms of response 
times to signals. Pitts and Sarter (2018) confirmed these 
benefits, even though they explained that their 7 stimuli were 
partially redundant. Still, to date, very few studies have 
investigated the extent to which these findings generalize to 
the context of autonomous driving, where the attention 
allocation of a driver disengaged from the driving task may be 
very different from that of a manual driver. Politis et al. (2015) 
was one of the first sets of researchers to evaluate the above 7 
combinations in autonomous driving. However, here, the 
authors were more interested in the perceived intensity of 
different cues and reported that higher urgency warning 
signals led to quicker takeover transitions. More recently, 
Yoon et al. (2019) used the same 7 multimodal combinations 
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to examine takeover performance (as opposed to perception 
time). Their results agreed with previous findings regarding 
combined signals, independent of the type of non-driving 
related secondary task drivers were engaged in.  

Given the limited number of studies in this area, the aim 
of the current paper was to evaluate how quickly drivers 
perceive multimodal takeover requests of equal importance 
during autonomous driving. This work serves as the initial 
step towards evaluating the effectivenes of multimodal 
warning signals for the entire takeover process. Specifically, 
this study quantified drivers’ response times to the 7 cue 
combinations (V, A, T, VA, VT, AT, and VAT). The study 
used Level 3 autonomous driving, the lowest level for which a 
driver may disengage from the driving task, but still be ready 
to take over at any given time. Additionally, a driving-related 
secondary task was introduced to determine its influence on 
cue detection performance. Based on the findings of Pitts and 
Sarter (2018), Politis, Brewster, and Pollick (2013), Politis et 
al. (2015), and Politis, Brewster, and Pollick (2017), our 
hypothesis was that drivers will respond faster to bi- and 
trimodal cues compared to single cues. Also, the secondary 
task was expected to induce higher objective and subjective 
workload and result in longer response time to cues.  
 

METHOD 
 
Participants 
 

Sixteen participants volunteered to take part in this study. 
All participants were students from Purdue University. The 
average age was 22.8 years (SD = 1.95). The average number 
of self-reported weekly driving hours was 4.1 (SD = 2.83) and 
the average number of years of driving experience was 4.7 
(SD = 2.2). Eligibility requirements included: 1) possession of 
a valid driver’s license; 2) normal or corrected-to-normal 
vision; 3) no hearing nor compromised sense of touch 
impairments; 4) no known susceptibility to motion sickness. 
This study was approved by the Purdue University 
Institutional Review Board (IRB Protocol ID: 1802020214). 
 
Apparatus 
 

The Driving Simulator. The experiment was conducted 
using a medium-fidelity (simplified cab) driving simulator, 
miniSim, developed by The National Advanced Driving 
Simulator. The simulator is comprised of three 48-inch 
monitors, a steering wheel, foot pedals, panel controls and a 
full LED dashboard (Figure 1). Data was collected in 60 Hz. 

Eye tracker. The eye tracking device was a 31cm × 40cm 
FOVIO system developed by EyeTracking, Inc. This desktop-
mounted, contact-free device was located behind the steering 
wheel, below the main center display. It has a sampling rate of 
60 Hz. 

 
Stimulus 
 

Visual Signal (V). The visual signal was a red circle 
displayed on the center display monitor. Its color was similar 
to that of a stop sign. The circle was 200 × 200 pixels. 

 
Figure 1: MiniSim driving simulator 

 
Auditory Signal (A). The auditory signal was a 6-burst, 

400-Hz moderately-intensive alert (85 dB). 
Tactile Signal (T). Tactile signals were created using two 

C-2 tactors, which are 1” × 0.5” × 0.25” piezo-buzzers 
(developed by Engineering Acoustics, Inc.) with frequency of 
250 Hz. The two tactors were attached to a belt and positioned 
across the lower back (as in Pitts & Sarter, 2018). When 
activated, both tactors vibrated at the same time.  

Driving Environment: Road Signs. Road signs were used 
as the stimulus for the secondary detection task. During the 
secondary task condition, these signs appeared periodically 
along the right side of the road (and at least three seconds 
before and after each warning signal). Participants were asked 
to distinguish between the two signs, shown in Figure 2 
below, and verbally report when they detected them. In this 
task, the left and right signs were referred to as “1” and “2”, 
respectively. 

 
Figure 2: Road signs 

 
Experimental Conditions 
 

A 2 (condition: driving only vs. driving with secondary 
task) × 7 (cue combination: V, A, T, VA, VT, AT, and VAT) 
within-subjects full factorial design was used. Participants 
completed two separate tasks, namely, Condition A (driving 
only) and Condition B (driving with secondary task). Each 
condition consisted of a total of 35 cue presentations (i.e., each 
of the 7 cue combinations repeated 5 times) in random order. 
The average time between two cue combinations was 15 
seconds (range: 8.8-19.9 seconds). Both conditions 
represented Level 3 autonomous driving on a straight four 
lane-highway (two lanes in each direction). The same 
procedure was used for both conditions except that, in 
Condition B, participants were presented with road signs (as 
described in the “Stimulus” section) and required to verbally 
report which sign they detected. A counterbalancing method 
was used to mitigate the learning effect in which participants 
either started with Condition A then moved to Condition B, or 
vice versa.  
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Procedure 
 

Each participant followed a standardized experimental 
procedure which lasted about 45 minutes from beginning to 
end. First, they were asked to sign a consent form outlining the 
study purpose and frequently-asked questions. Then, they 
completed a pre-experimental questionnaire to gather 
information about their demographics, current in-vehicle 
equipment, and driving experiences. The experiment began 
with a 10-minute training session, where they became familiar 
with the operation of the pedals, steering wheel, and 
autonomous driving mode. They were instructed to sit 
comfortably with their feet on the floor of the driving 
simulator and hands in their lap; no driving was necessary in 
this autonomous mode as speed and lane position were being 
controlled by the (simulated) vehicle. During the drive, 
participants were presented with the 7 cue combinations in 
random order. Each stimulus combination lasted for 1 second 
and participants were asked to press the brake as quickly as 
possible with their right foot (which deactivated the 
automation), and then immediately reactivate the autonomous 
mode by pressing a designated button on the steering wheel. 
We emphasized the importance of responding quickly and 
accurately. Immediately following each driving trial, a NASA-
TLX workload assessment (Hart & Staveland, 1988) was 
administered to the participants to evaluate their perceived 
workload. Finally, all participants completed a post-
experimental questionnaire to comment about their experience 
in the study, which included questions regarding their 
perception of the various stimuli.  

 
Dependent Measures 
 

The dependent measures in the study included: response 
time, sign detection accuracy, pupil diameter, and subjective 
workload ratings.  

Response time. Response time (in seconds) was 
calculated as the time difference between the initial pressing 
of the brake pedal and the presentation of a cue or cue 
combination.  

Road sign detection accuracy. Road sign detection 
accuracy (%) was calculated as the proportion of correct signs 
identified to the total number of sign presentations (in 
Condition B only).  

Pupil diameters. Pupil-diameter (average of left and right 
eye; in centimeters) data was recorded at the presentation of 
each cue and road sign. This measure has been cited as a 
reliable indicator of mental workload (Marquart, Cabrall, & de 
Winter, 2015; Pomplun & Sunkara, 2013). As such, a larger 
pupil size suggests an increase in workload. 

Subjective data. NASA-TLX scores were recorded to 
compare the perceived workload between experimental 
conditions A and B. Each individual subscale of the NASA-
TLX was rated on a 0-20 scale.  

 
RESULTS 

 
A two-way repeated measures ANOVA, with post-hoc 

comparisons, was conducted. Bonferroni corrections were 

applied for multiple comparisons. The dependent measures 
used in this model were response time and pupil size, since 
they were collected under both experimental conditions. 
Results were considered significant at 𝑝𝑝 <  .05. 

 

 
 

Figure 3. Response time as a function of cue combination for each 
experimental condition; V = visual cue; A = auditory cue; T = tactile cue. 

 
Overall response times for each cue combination are 

presented in Figure 3. 
Response time (RT). There was a significant main effect 

of cue combination on response time, (𝐹𝐹 (6, 90) = 140.947, 
𝑝𝑝 <  .001,  𝜂𝜂𝑝𝑝2 =  .904). Post-hoc comparisons revealed that 
the single auditory cue (A) produced the longest response time 
(mean = 1.19 secs, standard error of the mean (SEM) = 0.047), 
followed by the single visual cue (V) (mean = 0.97 secs, SEM 
= 0.037), and the combined visual and auditory signal (VA) 
(mean = 0.95 secs, SEM = 0.045).  

 With respect to uni-, bi- and trimodal combinations, 
response time to the VAT combination (mean = 0.73 seconds, 
SEM = 0.025) was significantly shorter than that of the 
bimodal cue combinations (VA, VT, and AT) (mean = 0.84 
secs, SEM = 0.031) and unimodal cue (V, A, and T) (mean = 
0.99 secs, SEM = 0.030; p < .05). Also, signals that contained 
a tactile component (mean = 0.78 secs, SEM = 0.030) were 
responded to faster than those that did not contain the tactile 
modality (mean = 1.03 secs, SEM = 0.030; p < .05).  

There was also a significant main effect of experimental 
condition on response time, (𝐹𝐹 (1, 15) = 9.492, 𝑝𝑝 = .008, 
 𝜂𝜂𝑝𝑝2 =  .388). In particular, response time in Condition A 
(driving only) (mean = 0.86 secs, SEM = .038) was 
significantly shorter than Condition B (driving with secondary 
task) (mean = 0.92 seconds, SEM = .045). No cue 
combination × condition interaction effect was observed.  

Road sign detection accuracy. A ceiling effect was found 
on the road sign detection task such that accuracy was 100%. 

Pupil diameters. There was no significant main effect of 
cue combination (𝐹𝐹 (6, 66) =  3.502, 𝑝𝑝 =  .076,  𝜂𝜂𝑝𝑝2 =  .779), 
nor experimental condition (𝐹𝐹 (1, 11) = .397, 𝑝𝑝 =  .542, 
 𝜂𝜂𝑝𝑝2 =  .035) on pupil size. Also, no cue combination × 
condition interaction was found.  

NASA-TLX score. A paired t-test was used to identify 
differences in perceived (global) workload between the two 
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driving conditions. For the unweighted global scores, 
workload in Condition A (mean = 31.81, SEM = 4.571) was 
significantly lower than in Condition B (mean = 39.56, SEM = 
4.959; 𝑡𝑡 (15) = −3.669, 𝑝𝑝 =  .002). To further investigate 
the subjective measure between the two experimental 
conditions, a two-way repeated measures ANOVA: 2 (task 
condition: driving only vs. driving with secondary task) × 6 
subscales (mental demand, physical demand, temporal 
demand, performance, effort, and frustration) was performed 
(as in Satterfield, Ramirez, Shaw, & Parasuraman, 2012).  A 
significant main effect of subscales �𝐹𝐹(2.93, 44.00) =
6.969,𝑝𝑝 =  .001, 𝜂𝜂𝑝𝑝2 =  .317� was observed. In particular, 
post-hoc comparisons showed that mental demand (mean = 
8.60, SEM = 0.952), temporal demand (mean = 6.72, SEM = 
0.928), and effort (mean = 7.53, SEM = 1.153) resulted in the 
highest scores. No condition × subscale interaction effect was 
observed.  

 

 
Figure 4. Unweighted subjective workload scores from the subscales of the 

NASA-TLX for driving conditions A and B 
 

DISCUSSION AND CONCLUSIONS 
 

The goal of this paper was to examine the effect of 
singles, pairs, and triples of multimodal signals on response 
times to semi-autonomous driving takeover requests. Uni-, as 
well as redundant bi- and trimodal combinations of visual, 
auditory, and tactile cues were employed to alert drivers to 
takeover events during Level 3 autonomous driving. Overall, 
response time to cues was affected by the number of signals 
presented to drivers at once, as well as whether or not a person 
was engaged in a secondary task.  

The findings of this study were highly consistent with 
those of previous studies (Lundqvist & Eriksson, 2019; Pitts & 
Sarter, 2018; Politis et al., 2013; Yoon et al., 2019) and 
suggest the occurrence of intersensory facilitation (Forster, 
Cavina-Pratesi, Aglioti, & Berlucchi, 2002). In our 
experiment, the average response time to the combined VAT 
cue (mean = 0.73 secs) was shortest, followed by bimodal 
cues (VA, VT, or AT: mean = 0.84 secs), followed by the 
unimodal cues (V, A, or T; mean = 0.99 secs). Although a 
prior study employed directional cues (Lundqvist & Eriksson, 
2019) and a different one focused on the execution of takeover 
actions as opposed to the perception of the 7 warning signals 
(Yoon et al., 2019), results across studies appear to reach 
consensus. One possible explanation for this convergent 

pattern is that information presented to more than one 
modality might implicitly communicate higher urgency to 
drivers (Politis et al., 2013; Suied, Susini, & McAdams, 2008), 
even though the signals had no inherent hierarchy. Another 
possible explanation involves the presence of tactile cues. In 
our study, response times to cues that contained a tactile signal 
were 0.25 seconds faster than cues that did not contain a 
tactile signal. Pitts and Sarter (2018) reported the same finding 
and described this phenomenon as response time being 
dominated by the sensory channel with the quickest 
stimulation rate (the tactile modality in this case).  

One interesting finding from this work was the 
discrepancy between participants’ perception of the cues and 
their actual performance. Specifically, during the post-
experiment debriefings, drivers reported that single visual 
signals were more difficult to detect than single auditory cues. 
However, according to our data, response times were faster to 
visual cues than auditory ones. This seems contradictory to 
previous studies that have found reaction times to auditory 
information to be faster than that of visual (e.g., Ghuntla, 
Gokhale, Mehta, & Shah, 2014; Jain, Bansal, Kumar, & 
Singh, 2015; Shelton & Kumar, 2010). One possibility is that 
participants, unknowingly, took slightly more time to delineate 
the auditory alert from the constant background noise of the 
driving simulation (i.e., wind and tires-on-road sounds), even 
though these tones were at different sound frequencies. Visual 
signals, on the other hand, were projected onto the forward 
driving scenery (close to focal vision) and, as a result, might 
have led to less interference with the background scene.  

 With respect to the driving-related secondary task, as 
expected, response times were significantly longer when 
drivers had to divide their attention between the multimodal 
cue and road sign detection tasks (in Condition B). This 
suggests that performing the two tasks – even without 
manually controlling the vehicle – still increased overall task 
and attentional demands, which is much more representative 
of how drivers are expected to behavior during real-world 
autonomous driving operations. Though the millisecond 
difference appears relatively small, in the driving 
environment, it is large enough to increase the chance of a 
near-miss and/or crash.  

Finally, we also expected the road sign detection task to 
increase both objective (i.e., physiological measurement) and 
subjective (i.e., self-reported) mental workload. In the latter 
case, using the NASA-TLX ratings, participants did report an 
increase in overall workload between the driving only versus 
driving with secondary task conditions. However, with respect 
to pupil size – our objective indicator of workload – no 
differences were found between the two conditions. One 
possible explanation for this finding is that since overall 
workload was lowered during Level 3 autonomous driving, 
participants now had more available mental resources to 
devote to the detection task. Here, only some of these 
resources were being utilized to complete the secondary task, 
which still did not impose high cognitive demands equivalent 
to those that may be seen in lower levels of vehicle automation 
(i.e., Levels 0-2). The observed ceiling effect on the road sign 
detection task may further infer the low level of difficulty 
associated with this task. Also, most participants self-reported 
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proficiency with multitasking (in general), and this ability 
could have helped drivers manage the increased task load.  

There are some limitations of this study. First, 
crossmodal matching, the process of equating the perceived 
intensities of visual, auditory, and tactile stimuli, was not 
performed prior to the experiment. Instead, through pilot 
testing, and given that redundant cues were being evaluated, 
the experimenter selected values for each stimulus that would 
be perceptible by participants. Also, additional eye tracking 
measures, such as fixations and saccades might have helped to 
better highlight the attention allocation of drivers between the 
two task conditions.  

In summary, trimodal signals may be the most effective 
way to alert drivers to critical takeover situations. However, 
additional research is needed to explore this display format 
under a wider range of independent variables, such as 
road/traffic conditions, visibility, and various demographic 
factors. Overall, the results of this study may help to inform 
the design of next-generation human-machine interfaces for 
autonomous vehicle systems. 
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