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A B S T R A C T

Self-templating propagation of protein aggregate conformations is increasingly becoming a significant factor in
many neurological diseases. In Alzheimer disease (AD), intrinsically disordered amyloid-β (Aβ) peptides undergo
aggregation that is sensitive to environmental conditions. High-molecular weight aggregates of Aβ that form
insoluble fibrils are deposited as senile plaques in AD brains. However, low-molecular weight aggregates called
soluble oligomers are known to be the primary toxic agents responsible for neuronal dysfunction. The ag-
gregation process is highly stochastic involving both homotypic (Aβ-Aβ) and heterotypic (Aβ with interacting
partners) interactions. Two of the important members of interacting partners are membrane lipids and surfac-
tants, to which Aβ shows a perpetual association. Aβ–membrane interactions have been widely investigated for
more than two decades, and this research has provided a wealth of information. Although this has greatly
enriched our understanding, the objective of this review is to consolidate the information from the literature that
collectively showcases the unique phenomenon of lipid-mediated Aβ oligomer generation, which has largely
remained inconspicuous. This is especially important because Aβ aggregate “strains” are increasingly becoming
relevant in light of the correlations between the structure of aggregates and AD phenotypes. Here, we will focus
on aspects of Aβ-lipid interactions specifically from the context of how lipid modulation generates a wide variety
of biophysically and biochemically distinct oligomer sub-types. This, we believe, will refocus our thinking on the
influence of lipids and open new approaches in delineating the mechanisms of AD pathogenesis. This article is
part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by
Ayyalusamy Ramamoorthy.

1. Aβ and Alzheimer disease pathology

Alzheimer disease (AD) is a fatal, progressive neurodegenerative
disorder with clinical manifestations that include acute memory loss,
cognitive decline and behavioral changes resulting in social in-
appropriateness. AD is the most common among all neurodegenerative
disorders, with over five million people affected in the United States
alone [1]. Without medicinal intervention, this number is expected to
nearly triple by 2050 [1]. According to the US Centers for Disease
Control (CDC), the death rates from AD dramatically climbed to 55%
between 1999 and 2014, making viable diagnostic and therapeutic
avenues a critical need [2]. Discovered by the Bavarian psychiatrist
Alois Alzheimer in 1905, significant advancements in understanding AD
only began to occur 7–8 decades later with the morphological under-
standing of two main pathological hallmark lesions in the AD brain:

extracellular neuritic plaques and intracellular neurofibrillary tangles.
During the 1990s, it became clear that two proteins, amyloid-β (Aβ)
and hyperphosphorylated tau, are the major components of plaques and
tangles, respectively [3,4].

Aβ is generated by the proteolytic processing of amyloid precursor
protein (APP), which is abundant in the central nervous system but
ubiquitously expressed in many cell types [5,6]. APP is an integral
membrane protein containing a single transmembrane domain, and the
cleavage occurs sequentially by the aspartyl proteases, β- and γ-secre-
tases (Fig. 1). While β-secretase cleaves APP on the extracellular side,
the γ-secretase complex hydrolyzes the protein within the transmem-
brane domain (Fig. 1). The γ-secretase complex comprises the proteins
Aph-1, presenelin-1 (PS1), presenelin-2 (PS2), and nicastrin, and has a
broader specificity in cleavage that leads to the generation of multiple
Aβ isoforms ranging from Aβ1–38 to Aβ1–43 [7]. The cleavage
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specificity of the γ-secretase complex is also controlled by genetic
mutations in APP; however, the precise mechanism of the enzyme re-
mains uncertain [8]. Among the isoforms, Aβ1–40 (Aβ40) is the pre-
dominant form followed by Aβ1–42 (Aβ42), but the latter is initially
observed in diffuse amyloid aggregates [9] and is believed to be re-
sponsible for early synaptic and neuronal dysfunction in AD brains.

2. Aggregation of Aβ and significance of pathways

2.1. Spatiotemporal profile of Aβ aggregation

Upon cleavage from APP by aspartyl proteases, Aβ peptide is mainly
released from the membrane into the extracellular matrix. The newly
generated Aβ is intrinsically disordered, which is reflected in its random
coil conformation [10–12]. The monomeric Aβ is highly susceptible to
aggregating with other Aβmolecules, and does so almost spontaneously
upon its generation from APP. Aggregation of Aβ is a nucleation-de-
pendent process that follows a sigmoidal growth kinetics with the for-
mation of a critical mass of aggregates called nucleus, being obligatory
for the emergence of mature fibrils (Fig. 2). A schematic of homotypic
Aβ aggregation shows three broadly-defined phases of aggregation,
namely a lag phase (I), growth phase (II) and a saturation phase (III)
(Fig. 2). The lag phase of aggregation is perhaps the most important
phase during aggregation from a physiological perspective, as elabo-
rated later in this manuscript, and is mechanistically the most con-
founding of all the phases. Although there is consensus regarding the
formation of a nucleus during the lag phase, uncertainty remains about
the nature of nucleus; whether it is heterogeneous or homogenous [13],
or whether there is a single nucleation event or multiple events
[14–17]. In sum, one could describe the lag phase of aggregation as
being in dynamic flux dominated by stochastic interactions between Aβ
conformeric ensembles until an ordered, relatively stable nucleus (or
nuclei) is (are) formed. Once the prerequisite and a critical aggregate
size is achieved (I in Fig. 2), the propagation phase ensues with forward
rates involving predominantly aggregate – monomer interactions that
result in an exponential increase in the rates of aggregation towards
high molecular weight protofibrils (II in Fig. 2), which then form in-
soluble fibrils in the saturation phase (III in Fig. 2) [18,19].

This aggregation mechanism, although consistent with numerous
reports, does not represent the complete picture of the aggregation
landscape. As previously described by Radford and others [20,21],

protein aggregation and amyloid formation in itself is an alternate
pathway during protein folding. In a typical aggregation pathway,
smaller oligomers are formed transiently along the fibril formation
pathway that “roll down” the energy landscape towards energetically
favorable fibrils. In reality, even within the energy landscape along the
“aggregation funnel” there are many different pathways containing
several kinetic traps in which specific conformeric and structurally
variant species could be present. Indeed, it has become evident that
there are alternative pathways and kinetic traps along the aggregation
pathway [22,23], and that neurotoxic oligomers can also be populated
via such alternate pathways [24–27]. As mentioned earlier, the early
stages of aggregation (lag phase), being dominated by homotypic and
heterotypic stochastic interactions, could likely contain numerous ki-
netic traps. An obvious characteristic of such traps is that the oligomeric
aggregates that are formed may differ in their conformation, degree of
aggregation (number of monomers within the assembly), heterogeneity,
or all of these factors. Such differences within these aggregates could
manifest in differences in their ability to seed the propagation of fibrils.
Thus, depending on the number of such conformeric strains, fibrils are
formed via different pathways displaying structural heterogeneity and
polymorphism [28]. This has been further elaborated in the concluding
sub-section of this manuscript.

2.2. Aβ aggregate structure and AD phenotypes

Aβ aggregation is strongly driven by both homotypic (Aβ-Aβ) and
heterotypic (Aβ-solvent and/or Aβ-solute) interactions. Because of
stochasticity, the lag phase is highly susceptible to heterotypic inter-
actions with other solutes present in the system. From years of research,
we have known that the Aβ “interactome” includes a variety of agents
such as metal ions [29,30], protein binding partners [31,32], natural
products and metabolites [33–37], as well as lipids and surfactants (as
elaborated in this article). Therefore, heterotypic interactions with any
Aβ interactome molecules have the potential to change the conforma-
tion of Aβ during the lag phase and alter the pathway of aggregation,
which could result in multiple conformational variants of aggregates
with distinct biochemical and cellular properties. Manifestations of
conformational and morphological differences in cellular toxicity have
been established in the past [38,39]. The significance of Aβ fibril
structure and morphology in AD is becoming far more critical than
originally thought. Somewhat similar to the observations in prion dis-
eases [40,41], structure-to-phenotype correlations are beginning to
emerge. Recently, using brain-derived fibrils as seeds, the Tycko la-
boratory has elegantly established that clinical phenotypic differences,
especially those leading to rapid-onset AD (rAD), could emerge in part
from the structure and morphology of the propagating fibrils [42,43].
Along similar lines, Cohen et al. have reported conformationally-dis-
tinct Aβ aggregates in rAD cases as compared with typical AD [44]. In
recent reports by the Jucker and Prusiner laboratories, the authors re-
vealed structural variations in etiological subtypes of AD brains on the
basis of their ability to bind fluorescent probes [45,46]. Prion-like
propagation of Aβ has now been well understood from the demon-
stration that intracerebral injection of endogenous Aβ seeds induces
widespread deposition of Aβ in transgenic mice [47–53]. Inoculations
in such experiments either used Aβ-laden brain homogenates or exo-
genous fibrils as seeds, and therefore, structural diversity of fibril seeds
has mainly been attributed to propagation behavior of the seeds
[51,54,55].

3. Lipids and membranes could be important members of the Aβ
interactome

The main focus of this review is to bring forth how lipids and sur-
factants are able to modulate the aggregation behavior of Aβ to gen-
erate a multitude of structurally and functionally different aggregates
depending on the physiochemical nature of the surfactant. The affinity

Fig. 1. Aβ generation by sequential protease cleavage involving β- and γ-secretases.
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of Aβ peptides for membranes becomes obvious when one looks at the
generation of the peptides, as described above. The C-terminal sequence
of Aβ within APP is buried in the phospholipid bilayer, while the N-
terminal remains outside. This is reflected in the sequence of the pep-
tide with the N-terminal side of the peptide containing many polar
amino acids and the C-terminus containing a majority of hydrophobic
residues (Fig. 2). The amphipathic nature of Aβ peptides uniquely
presents itself to preferential interactions with interfaces such as liquid-
gaseous (water-air), liquid-solid (solvent-surface) and liquid-liquid
(phase separated). In this context, there is a high likelihood of amphi-
pathic lipids and other surfactants to interact with Aβ by providing a
template for aggregation. When Aβ is released as a soluble monomer,
charged membranes act as two-dimensional aggregation-templates to
initiate accumulation of surface-associated Aβ, typically to augment
aggregation into neurotoxic structures [56].

4. Interaction and modulation of Aβ aggregation by lipids

4.1. Interactions with bilayer-forming lipids

A wealth of information has been generated from over two decades
of research on the interactions of Aβ with membrane surfactants. The
amphipathic Aβ peptide shows strong affinity for membranes, and such
heterotypic interactions may affect early steps of Aβ aggregation sig-
nificantly [57–62]. First, we will focus on the surfactants (lipids) con-
taining two fatty acid acyl chains that predominantly form a lipid bi-
layer. In pathological contexts, lipid membranes, sub-cellular organelle
surfaces, synaptic vesicles, lipid rafts as well as endo- and exosomes can
significantly affect Aβ aggregation by accelerating and nucleating fibril
formation, generating and stabilizing specific oligomers and even pro-
moting polymorphic aggregates.

4.1.1. Interactions leading to pore formation and membrane disruption
One of the widely investigated phenomena of Aβ-membrane inter-

actions is the insertion of Aβ into the membranes and subsequent dis-
ruption. Importantly, Aβ has been long known to form Ca(II) permeable
channels in the membrane [63,64]. Association of Aβ with anionic lipid
monolayers has been observed leading to partial insertion of Aβ into the
membrane [65]. Such an interaction consequently promotes aggrega-
tion to Aβ fibrils [66]. Investigation of such mechanisms by Aβ40 using
NMR spectroscopy indicated that the N-terminal region is unstructured
while the C-terminal hydrophobic region adopts an α-helical

conformation [67]. The two regions are separated by a kink, which is
significant in membrane insertion [67]. Molecular dynamics (MD) si-
mulations to model the interactions between Aβ oligomers and mem-
branes showed formation of ion channels with two different topologies,
suggesting a modulatory effect of the membranes on Aβ structure and
conformation. More importantly, Aβ oligomers have now been widely
understood to form pores in both synthetic as well as cellular mem-
branes, capable of generating conductance and classical channel ac-
tivity [64,68,69]. Both Aβ monomers reconstituted with lipids as well
as pre-formed oligomers deposited on to synthetic or brain-derived li-
pids formed channels [70,71]. In addition, experimental observation of
the effect of this channel on Ca2+ selectivity was supported by such
models [72,73]. Another study using MD simulations on Aβ42 peptide
monomers and oligomers identified insertion into the lipid bilayer in
agreement with other reports [74]. These theoretical results were also
consistent with the experimental observation that Aβ forms a cation
selective channel in both synthetic lipid-bilayers [75] and cellular
membranes [76]. However, it remains unknown whether the all oli-
gomers are able to form channels in the membrane, and whether oli-
gomer conformation capable of pore formation is induced by the in-
teraction with lipid surfaces, which that precedes it. Such is the case
with zwitterionic lipids, to which a conserved region (K16-E22) within
the central region of Aβ bound to lipid surface prior to surface-cata-
lyzed Aβ fibril formation and transmembrane pore formation [77].

4.1.2. Interactions on lipid surfaces
Interactions of Aβ with lipid surfaces have been investigated by

using many different models including solid support, self-assembled
monolayers, and membrane-mimics [78–80]. Many reports indicate
that Aβ interactions with the anionic phospholipids on reconstituted
liposomes and unilamillar vesicles are largely limited to the lipid sur-
face at neutral pH [58,81,82]. In one report, anionic phospholipids
increased the fibrillation of Aβ, while neutral, zwitterionic, and lipids
lacking phosphate groups did not show significant effect on Aβ fi-
brillation rates [83]. Investigation into the effects of surface charges on
Aβ aggregation using zwitterionic (2-dioleoylphosphatidylcholine
(DPPC) or 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)), anionic
(1,2-dioleoyl-sn-glycero-3–[phospho-rac-(3-lysyl(1-glycerol))] (DOPG))
and cationic (1,2-dioleoyl-sn-glycero-3-methylammonium-propane
(DOTAP)) lipids led to the finding that Aβ aggregated in zwitterionic
DPPC and anionic DOPG, while it inserted and disrupted the mem-
branes of cationic DOTAP and zwitterionic DOPC [84]. In one report,

Fig. 2. Protein sequence of Aβ1–42 protein (a) and schematic of aggregation reaction involving pure homotypic (Aβ-Aβ) interactions.
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aggregation of Aβ on zwitterionic DOPC LUVs by FRET analysis in-
dicated that the liposomes were able to catalyze fibril formation via
secondary nucleation mechanisms involving aggregate fragmentation
[85]. This report also revealed that the binding on the lipid surface was
restricted to only aggregated Aβ and not the monomer, suggesting
secondary pathways induced by oligomeric forms of Aβ on the mem-
brane surface. In negatively charged lipids, Aβ40 oligomer binding was
dependent on surface charges, while membrane insertion was dictated
by membrane rigidity, and both processes were clearly distinct [86].
MD simulations involving Aβ peptides and the phospholipid bilayer
using DPPC and dioleoyl phosphatidylserine (DOPS) vesicles showed
fibril promotion on the surface of the membrane lipids because of the
peptide re-distribution on the surface via charged interactions, ex-
hibiting an auto-regulation type behavior [87]. The interactions of Aβ
with membranes depend not only on the former's structure and con-
formational state, but also on reaction conditions. Good et al. observed
that Aβ-liposome interactions were higher for Aβ aggregates than
monomeric Aβ [88]. They found that Aβ aggregates bind to both cor-
tical homogenates and membranes, whereas Aβ monomers bind to
homogenates only. However, another report using different experi-
mental conditions revealed that monomeric Aβ bound rapidly to lipo-
somes, while the Aβ aggregates bind slowly [89]. An MD simulation
study on the interactions of a pre-formed Aβ42 tetramer on POPC
membranes showed that the tetramers were elongated, and changed
their overall structure upon interaction with the membrane surface
[90], suggesting that the membrane surface characteristics play an
important role in Aβ aggregate structure. Overall, these reports indicate
the surface characteristics of membranes, which are mainly dominated
by the lipid head groups, behave as specificity inducing factors for Aβ
oligomer conformations during aggregation.

4.2. Interactions of Aβ with micelle-forming lipids

As a rule of thumb, lipids containing a single acyl chain tend to form
micelles as opposed to a bilayer. Similar to the liposomal systems, mi-
celles as membrane-mimicking environments have also provided a
wealth of information on a mechanistic understanding of Aβ – lipid
interactions. Anionic surfactants such as sodium dodecylsulfate (SDS),
often used as denaturants, have been used as model polar-nonpolar
interfaces to investigate the aggregation of Aβ and other amyloid pro-
teins [67,91–95]. Yamamoto and colleagues investigated the effect of
neutral, zwitterionic and anionic surfactants on Aβ aggregation and
found that all three surfactants were able to augment Aβ40 and Aβ42
aggregation in a concentration-dependent manner [92]. The effects of
surfactants on the two peptides varied, with Aβ42 showing more pro-
nounced aggregation than Aβ40. More importantly, the aggregation
behavior of the peptides showed strong dependence on surfactant
concentration. Only in a narrow range of concentrations below its cri-
tical micelle concentration (CMC), SDS was able to augment Aβ42 ag-
gregation without any observable lag time [92]. Based on the idea that
micellar interfaces uniquely affect Aβ aggregation, Nichols and cow-
orkers demonstrated the phenomena of interfacial aggregation using
model interfaces composed of dilute hexafluoro isopropanol (HFIP) as
well as buffer-chloroform [96,97]. They elegantly showed that Aβ ag-
gregation is preferentially augmented at the polar – non-polar inter-
faces. Similar to Yamamoto and co-workers, Rangachari et al. also de-
monstrated that SDS accelerates Aβ40 aggregation in a concentration-
dependent manner and compared the similarities to aggregates formed
in HFIP interfaces [93]. While near-CMC SDS promoted β-sheet con-
formations and fibrillar aggregates, micellar SDS above the CMC sta-
bilized Aβ40 in an α-helical conformation. Furthermore, near the CMC,
Aβ40 initially adopted an α-helical conformation corresponding to
amorphous oligomers, which eventually converted into β-sheet fibrils
over time. Similar structural transitions from α-helix to β-sheet with a
concomitant increase in fibril formation were also observed with Aβ40
in the presence of DPC surfactants [98]. Rangachari and co-workers

also demonstrated the effects of SDS on Aβ42 aggregation, which was
dependent on SDS concentration [99]. However, unlike Aβ40, within a
narrow range of SDS concentrations, soluble Aβ42 oligomers were
formed along a pathway different from fibril formation, which was
strictly dependent on the CMC of SDS [99]. This observation parallels
the one on well-characterized, 60 kDa “Aβ globulomers” which are also
formed along a pathway that is independent of the fibril formation
pathway [100,101]. It is noteworthy that globulomers are generated in
the presence of 0.2% SDS, which is close to its CMC. Moreover, glo-
bulomers are shown to be neurotoxic by specifically blocking long-term
potentiation in rat hippocampal slices [100]. Characterization of SDS-
derived off-pathway oligomers showed a unique structure by NMR
spectroscopy [102,103]. Studies using DHPCs as micellar surfactants
also showed modulation of aggregation based on their CMCs - en-
hancement of fibril formation was observed at submicellar concentra-
tions (below CMC), while micellar concentrations (above CMC) stabi-
lize Aβ in an α-helical conformation [104]. Non-esterified fatty acids
(NEFAs) have been used as model surfactants to investigate their effects
on Aβ42 aggregation. Similar to those observed with SDS, NEFAs also
induce concentration-dependent effects on Aβ. Three broadly categor-
ized regimes based on the respective CMCs of NEFAs such as below,
near and above CMC, either augmented or inhibited Aβ42 aggregation
[105]. Only at near and above the CMCs did NEFAs induce oligomers of
Aβ42 via alternative pathways, while enhancement of fibril formation
was observed below the CMC [105,106].

4.3. Modulation of aggregation by lipids and membrane constituents

4.3.1. Evidence for lipid involvement in Aβ modulation
The effects of Aβ interaction with lipids are diverse. Perhaps the

most significant of them all is the ability of membrane lipids to mod-
ulate Aβ aggregation pathways in generating polymorphic aggregates
and many oligomer strains. Numerous reports over the last decade
using reconstituted phospholipid vesicles indicate formation of ag-
gregates along off-fibril forming pathways, paving a way for the gen-
eration of structurally-diverse oligomers [107–109]. Recently, Aβ42
aggregation on SUV and large unilamellar vesicles (LUV) from POPC
lipids showed formation of polymorphic aggregates with distinct bio-
physical characteristics [110]. In this study, LUVs with high POPC
concentrations suppressed amyloid formation that affected fibrillation
kinetics, as opposed to those with low POPC concentrations, demon-
strating the effect of concentration gradients along the liposome surface
in modulating aggregation pathways. To investigate the effect of
membrane thickness on Aβ aggregation, Korshavn et al. used bilayers
formed by the short-chain 1,2-dilauroyl-sn-glycero-3-phosphocholine
(DLPC) lipid as a model for disease bilayers, while 1,2-dioleoyl-sn-gly-
cero-3-phosphocholine (DOPC) as a model of normal bilayers [111].
They found that DLPC-assisted oligomers could disrupt the membranes
more effectively than those generated from POPC vesicles, providing
evidence for the deleterious effects of reduced membrane thickness. In
one report, zwitterionic lipid vesicles not only promoted Aβ42 ag-
gregation, they did so by interacting specifically with the growing fi-
brils, showing aggregate-specific interaction of these lipids [85]. Fur-
thermore, these lipid vesicles were thought to augment monomer-
dependent secondary nucleation at the surface of existing fibrils and
facilitate monomer-independent catalytic processes consistent with fi-
bril fragmentation and concomitant secondary aggregation pathways
[85]. In a different study, it was also noted that Aβ aggregates formed
in solution could present a different structure and toxicity upon inter-
acting with the membranes [112]. It appears as though PG lipids
modify the aggregation process and induce toxic oligomers in-
dependently from the fibrils along “off-pathways”, and their formation
is enhanced by the presence of OH groups on the membrane surface
[113]. In our laboratory, we have demonstrated the generation of off-
pathway oligomers in the presence of NEFAs, which show distinct
biophysical and pathological properties from on-pathway fibrils
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[114–116]. We have also shown that the aggregation pathway is de-
pendent on the surfactant-Aβ ratio [105,117]. Thus, given the mobility
of cell membranes and lipid rafts in cellular environments, because of
which charge concentration variations develop along the cell surface, it
is highly likely that such surfactant interfaces are able to induce similar
effects on Aβ aggregation. Some of the aforementioned reports establish
the fact that the physicochemical composition and concentration of the
membranes lead to different specificities of interaction among Aβ ag-
gregates, and promote aggregation in various ways. The data also
suggest that oligomers formed along off-fibril formation pathways,
which may structurally differ from their on-pathway counterparts,
could exhibit different interaction regimes with the membrane.

Modulatory effects were also observed for physiological lipids de-
rived from endogenous sources. First, toxic oligomeric Aβ has been
observed in patients with AD [118], HCHWA-D [119], and after fatal
head injury [120] were found to be associated with membrane lipids as
complexes, suggesting a strong interaction between Aβ oligomers and
lipids. Aβ deposition in a form bound to plasma membranes resulted in
the formation of non-fibrillar diffuse aggregates [121]. In their in-
vestigation into the interactions of Aβ with GM1-containing liposomes,
Hayashi and co-workers observed that Aβ peptides showed altered
aggregation kinetics with detectable protofibrils [57]. They concluded
that this is due to the altered conformation adopted by Aβ in the pre-
sence of liposomes, which drives the aggregation into an alternate
pathway. Aβ42 interactions with brain-derived lipids also resulted in an
exclusive formation of small aggregates without any fibrils, suggesting
generation and stabilization of off-pathway oligomers. A similar ob-
servation was also made with the co-incubation of Aβ with lipid rafts
isolated from brain tissues in which a rapid formation of tetrameric Aβ
was identified without the appearance of fibrils even after long in-
cubation times, indicating the generation and stabilization of oligomers
potentially as an off-pathway species [122].

4.3.2. Evidence of modulation based on temporal models
Modulation of aggregation pathways to populate both oligomers

and fibrils was also observed using non-physiological models of anionic,
cationic and neutral surfactants, further emphasizing the potential role
of surfactants in the modulation of aggregation [123,124]. Fig. 3
summarizes the dynamics of Aβ-surfactant interactions reported earlier
[117]. One of the main signatures of oligomers formed along the off-
fibril formation pathways is the temporal kinetics. “Off-pathway” ag-
gregates tend to have a longer half-life and are slow in converting to
fibrils because of their potential stabilization in kinetics traps (Fig. 4).
To gain insights into the formation and decay of such aggregates,
temporal modeling is necessary. Over the years, mathematical models
and simulations have provided some important insights into the com-
plex temporal behavior of Aβ aggregation and modulation, but such
models largely remain sparse. Mathematical models have been applied
to simulate the kinetics of different types of protein aggregation path-
ways including amyloid proteins [125–128]. Such models can be
broadly categorized into kinetic, empirical and their variants such as
the Finke-Watzky (F-W) kinetic model [129]. Unfortunately, very few
models have considered amyloid and lipid/membrane interactions and
their effects in protein aggregation. In her paper, Murphy stated the
urgency and importance of such modeling approaches [130]: “Eluci-
dation of the intricate kinetic interplay between amyloidogenesis and
membranes provides a challenge that will need to be addressed to
completely ascertain the role of membranes in amyloid disease pa-
thology.” To our knowledge, the first mathematical formulation to
consider temporal modulation of aggregation involving competition
between on- and off-pathway was presented by Powers et al. [131]. The
specific effects of lipids/membranes on the structure of Aβ oligomers
were not studied in this work; however, the bulk effects of lipids/
membranes on aggregation behavior were modeled through fitting the
experimental data. In this model, the monomers were considered to
aggregate via two different, mutually exclusive pathways involving

fibril formation (on) and oligomer formation (off). The off-pathway
considers structurally different monomers (formed by membrane/lipid
interactions) that proceed to form higher molecular weight oligomers
that are structurally different from their on-pathway counterparts. This
study elegantly demonstrated the see-saw effect of two mutually com-
peting pathways, laying a foundation for simulating such dynamics in
Aβ aggregation. Friedman et al. modeled dynamics of amphipathic
peptide aggregation in the presence of surfactants [132]. They showed
that there are two specific states, aggregation prone and aggregation
protected, which correlate with the extent of aggregation. This work
further supports the premise that by altering surfactant to peptide ratio
one could generate different aggregates. Recently, our work on Aβ –
NEFA interactions considers a modification of the Powers' model to
incorporate the effects of fatty acids on fibril formation and off-pathway
micellar dynamics [117]. In this work, the combined on-pathway and
off-pathway dynamics were modeled. The models from these compu-
tations establish a competition between the on- and off-pathway reac-
tions with the outcome of aggregation pathway clearly dependent upon
the surfactant concentration and phase transitions [117].

4.3.3. Membrane components involved in the modulation of Aβ aggregation
Despite the establishment of possible alternative pathways of ag-

gregation and stabilization of oligomers, it remains unclear what mo-
lecular factors precisely control Aβ to adopt multiple aggregation
pathways. However, many reports do suggest several key players that
may play a role in the modulation of aggregation. An early report on Aβ
aggregation in the presence of different sub-cellular organelle mem-
branes showed accelerated fibril formation by endosomal and lyso-
somal membranes while it was inhibited by Golgi membranes, which
promoted oligomers exclusively [133]. This report brought out the fact
that lipid constitution could be key in dynamic regulation of Aβ ag-
gregation pathways. In another report, the investigators show that the
presence of cholesterol within membranes influences the membrane
fluidity, which in turn could control the outcome of their interactions
with Aβ leading to the adoption of alternate aggregation pathways and
polymorphic aggregates [134]. Several other reports have indicated
both GM1 and cholesterol as key factors affecting the Aβ fibrillation on
membranes. Aβ is known to recognize cholesterol-dependent clusters of
GM1-containing liposomes [135], and aggregation kinetics and path-
ways are found to be strictly controlled by cholesterol and ganglioside
amounts within the liposomes [58]. Although the nature of GM1
ganglioside interaction with Aβ remains controversial, the involvement
of GM1 gangliosides in Aβ aggregation was unambiguously established
when pretreatment of brain-derived GM1-containing liposomes with
CTxB, a GM1 ligand, showed inhibition of Aβ fibrillation [136]. Fur-
thermore, liposome-containing clusters of highly dense GM1 trans-
formed Aβ into toxic oligomers without noticeable fibrils, indicate the
modulatory effects of GM1 on Aβ aggregation [137–140]. In a MD si-
mulation study, GM1 interactions with Aβ and POPC and palmitoyl-
oleoyl-phosphatidyl ethanolamine (POPE) membranes lead to the re-
lease of Aβ from the membranes, further envisaging the diverse effect
GM1 can cause on Aβ [141]. In addition, single molecule experiments
on live neuroblastoma cells showed that interaction of gangliosides
with Aβ42 led to the formation of at least two oligomeric forms with
distinct biophysical and structural differences that show different cy-
totoxicities [140]. Mechanistically, ganglioside clusters seem to offer a
unique platform at their hydrophobic/hydrophilic interface for binding
of Aβ molecules and confining their spatial movements to promote
aggregation on the ganglioside clusters [142]. Furthermore, membrane
curvature also seems to play a role in modulating aggregation [143],
which parallels some of the observations on membrane rigidity and
fluidity both as cause and consequence of Aβ interactions [144–146]. In
a recent review, Cebecauer et al. elegantly presented a unifying view on
the concentration-dependent modulatory effects of gangliosides on Aβ
aggregation and oligomer formation [147]. Furthermore, simulations
also reveal and support experimental observations that chemical
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composition of the membrane also affects the Aβ-lipid interactions. For
example, low cholesterol content and increased membrane fluidity re-
sults in partial Aβ membrane insertion, while at high cholesterol con-
tent, Aβ diffuses into a more rigid membrane resulting in higher Aβ
membrane associations [147]. In a separate study, Evengelisti et al
studied the cytotoxic effects of protein oligomers on membranes and
came to the conclusion that toxicity not only depends on the nature of
oligomers but also on the chemical composition of the membranes that
they interact with [148]. The same principle seems to hold true for
other amyloid proteins including Aβ.

5. Consequence of Aβ-lipid interactions

5.1. Cellular toxicity

Three broadly categorized mechanisms of oligomer-induced neu-
rotoxicity have been revealed by prior research [149]. a) Extracellular
Aβ aggregates can bind to various receptors leading to the activation of
signaling pathways. b) Aβ oligomers can form membrane pores or
channels [64] leading to cell death, known as the “channel hypothesis”
[150,151]. c) Oligomers can be transported within the cells to induce
dysfunction of mitochondria, lysosome and breakdown of other cellular
processes. While these mechanisms have been recently reviewed by
Kotler et al. and Kayed et al. [152] and [149], there are a few points
worth noting here. First, the receptor-mediated mechanism postulated
by many reports involving receptors such as advanced glycation end
(AGE) products, nerve growth factor (NGF), NMDA, and NF-κB, un-
derscores the involvement and importance of structurally diverse oli-
gomers in neurotoxicity. A report by Kourie et al. investigated over 100
channels formed by Aβ40, which could be grouped into one of four
categories based on conductance, kinetics, selectivity, and pharmaco-
logical properties of the pores [153]. This report showed that hetero-
geneity of Aβ can manifest in part to the pore forming structure of
aggregates and their toxicity. More recently Serra-Batiste and co-
workers generated a 60 kDa oligomer of Aβ42 in high concentrations of

Fig. 3. Schematic diagram showing modulation of Aβ aggregation pathways by micelle-forming lipids (adapted from [117]). Lipid and surfactants show dynamics involving three
categorized phases depending on their equilibrium concentrations: below critical micelle concentrations (CMC), they exist predominantly in the non-micellar form while at high CMC
they are present as micelles. Near their CMCs, they exist in unstable and dynamic “pseudo-micellar” form. Binding of Aβ to these forms could change the lipid phase-transition dynamics
that result in modulation of aggregation pathways distinctly.

Fig. 4. Kinetic and thermodynamic profiles of Aβ aggregation pathways in the absence
(orange) and in the presence of (green) surfactants. a) Homotypic aggregation (Aβ-Aβ) in
the absence of any interacting partners such as lipids, typically displays a sigmoidal
growth curve (orange) with lag phase, growth phase and saturation (on-pathway).
Heterotypic aggregation (Aβ-surfactants) is significantly altered (represented as dashed
lines along a green background) depending on the nature of lipids (off-pathway). Such
alteration of pathways leads to different oligomer and fibrils strains. b) Aggregation
funnel represented in terms of energy landscape for homotypic (orange) and heterotypic
(green) interactions.
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DPC micelles, which upon addition to lipid bilayers formed β-sheet rich
nanopores [154]. These oligomers were similar in size to the SDS-
generated Aβ globulomers, which have been shown to inhibit long-term
potentiation in hippocampal slices [100]. This reveals that lipids can
mediate the formation of pore-forming oligomers, which are implicated
in neurotoxicity. Another method by which Aβ induces toxicity is by
modulating membrane fluidity and conductance. Increase of membrane
conductance by several different soluble oligomers (and not monomers
or fibrils) was reported, and occurred without the formation of pores
[155]. A report by Kremer et al. on membrane fluidity changes during
Aβ aggregation revealed that aggregates, but not monomers, decreased
membrane fluidity, the extent of which could be correlated to aggregate
growth [144], in agreement with other reports [156,157]. Vestergaard
et al. have investigated the effect that Aβ aggregates have on mod-
ulating membrane morphology and fusion events, and revealed that
Aβ42 oligomers localize more closely than fibrils to mediate fusion of
LUVs with GUVs [158]. Furthermore, Aβ42 oligomers have also been
shown to promote oxidative lipid damage [159] and disrupt membrane
integrity [111,113]. The C-terminal fragment (29–42) of Aβ has been
shown to form β-sheet aggregates in the presence of lipid bilayers (PC/
PE (2:1) SUVs), which induced cellular apoptosis by fragmenting DNA
and activating Caspase-3 in PC-12 cells [160]. Along similar lines,
Marzesco et al. have demonstrated the potency of membrane-associated
Aβ through inoculation in transgenic mice [161]. Work from Wang and
co-workers has shown that Aβ-induced toxicity can be reduced by in-
hibiting cholesterol and ganglioside synthesis in PC-12 cells [162].
Some of the aforementioned reports signify the roles of a wide variety
of oligomer assemblies with distinct conformations, which were gen-
erated under the influence of membrane lipids that manifest in a wide
variety of different cellular responses depending oligomer structure.

5.2. Oligomer strains and phenotypic outcomes

A wave of recent research, driven by pathologic similarities between
prion diseases and AD [163], supports the hypothesis that corruptive
protein templating, or seeding, is a prime mover of disease propagation.
Although it is unclear whether AD is infectious as are prion diseases,
Aβ, like prions, can form polymorphic and polyfunctional strains [51].
Several lines of evidence collectively argue that aggregated Aβ in the
brain extract is critical for in vivo seeding and the phenotype of the
induced Aβ deposits mirrors that of the deposits in the extract, sug-
gesting an Aβ-templating mechanism [48]. Indeed, a large body of work
has demonstrated that intracerebral injection of endogenous Aβ seeds
induces widespread deposition of Aβ in transgenic mice [47–53]. In-
oculations in such experiments used either Aβ-laden brain homogenates
or exogenous fibrils as seeds. Strain-specific propagation of aggregates
and their eventual physiopathological fates are starting to correlate
with the structure of the propagation units [164–167]. Recently, the
Tycko laboratory elegantly established that phenotype differences
could indeed emerge in part from Aβ fibril structure and morphology by
propagating fibrils using brain derived fibrils as seeds [42,43]. How-
ever, correlation between oligomer strains and fibril morphology vis-à-
vis phenotypes remains elusive. Heterogeneity and diversity among
oligomers, as well as the difficulty in their isolation as discrete units
has, to a large extent, impeded our understanding of oligomeric struc-
tures and their behavior. This is especially true in the context of diverse
strains generated in the presence of lipids, which remains largely un-
explored. Other manifestations of oligomer strains may involve cross-
propagation of other amyloidogenic proteins leading to exacerbation
and/or clinically observed co-pathological phenotypes [168–171].

6. Summary and perspectives

It has now been established that many interacting partners in-
cluding lipids, metal ions, proteins and natural products influence the
structure and aggregation of Aβ. Lipids are perhaps the most important

and are the very first family of molecules to interact with Aβ mainly
because of their perpetual association. As detailed above, lipids and Aβ
can reciprocally affect each other. While Aβ can affect lipid structure
and cause membrane disruption, pore formation and damage, lipid
constitution and its physicochemical character can induce conforma-
tional changes to Aβ and catalyze the formation of diverse oligomers.
Being an IDP, the structural plasticity of monomeric Aβ, together with
its amphipathic character, makes it highly susceptible for structural
transitions and modifications by lipids with significant physiological
consequences. Lipid-Aβ interactions have particularly become relevant
in light of the recent findings that similar to prions, polymorphic ag-
gregates could behave as distinct strains in imparting phenotypic dif-
ferences in AD brains [167]. The conformationally-distinct oligomers
seed Aβ aggregation by recruiting disordered monomers towards ag-
gregates with specific morphology. One of the defining events in the
generation of stable, structurally-distinct oligomer seeds during the
early stages of aggregation is the interaction of monomers with lipids.
As elaborated above, membranes play a crucial role in initial structural
transitions of Aβ. Depending on the nature of interactions between Aβ
and membranes, oligomer seed-dependent propagation of aggregates
towards various different structural forms results in discrete, structure-
based cellular responses.

We now can realign our ideas on how membranes and lipids could
influence the aggregation and consequently AD pathogenesis. As sche-
matically shown in Fig. 4a, temporal evolution of purely homotypic Aβ
aggregation displays a sigmoidal growth curve (orange trace; Fig. 4a).
Depending on parameters such as charge distribution, phase transition,
rigidity, and hydropathy, surfactants can alter this temporal evolution
of aggregates either by augmenting or inhibiting it (dashed lines;
Fig. 4a). One obvious consequence of such effects is the generation of
conformationally-changed aggregates, which may propagate their
structure in many ways leading to distinct strains. This phenomenon
could also be understood based on a thermodynamic perspective also as
shown in Fig. 4b. Here, the so called “aggregation funnel” in orange
represents purely homotypic Aβ aggregation without the influence of
surfactants. The introduction of heterotypic interactions changes the
free energy landscape to accommodate and direct many conformational
strains into deeper kinetic pits (green area; Fig. 4b). Scenarios by which
surfactant-mediated strains can be generated are schematically de-
picted in Fig. 5. Monomer interaction with different surfactant com-
position and chemistry may lead to the formation of oligomer strains,
which can propagate into morphologically-distinct fibril strains (Fig. 5).
Such strains could interact and propagate differently to generate a
multitude of strains with potentially diverse pathological effects.
Keeping such a picture in mind, one can see a correlation between
dynamic changes in aggregation and diversity in cellular response of Aβ
aggregates. The diverse cellular effects in turn emerge from diversity in
aggregate structures, vis-à-vis strains. Systematic structure-receptor
correlations are yet to be clearly established, which may provide a
much deeper understanding into the emergence of phenotypic differ-
ences from conformational strains. Nevertheless, as described above, a
careful analysis of the large volume of literature on Aβ-membrane in-
teractions generated over 2–3 decades indicates a conspicuous pattern
involving a modulatory role and a catalytic role of surfactants in gen-
erating key oligomer strains. However, more needs to be done to as-
certain unambiguously a clear cause-and-effect role of surfactants on
phenotypic divergence in AD, which perhaps holds the fundamental
basis for all Aβ-related pathologies.
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Fig. 5. Schematic representation of interactions between
Aβ and surfactants leading to strain generation. Based on
the many reports detailed in this manuscript, the interac-
tion of Aβ monomers with lipids are initiated by the surface
interactions, which are dictated by the physicochemical
characteristics of lipid head groups and other molecule
present on the membrane surface. Various hexagonal
structures on the surface indicate this aspect. The hex-
agonal structures embedded in the membrane represent
cholesterol. Aβ undergoes conformational changes based on
the nature of the lipid which generates different con-
formational oligomer strains (denoted here as different
shapes of yellow structures). Each strain can propagate
their structures resulting in polymorphic fibrils.

V. Rangachari et al. BBA - Biomembranes 1860 (2018) 1652–1662

1659

http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0005
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0005
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0010
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0010
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0010
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0015
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0015
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0015
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0015
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0020
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0020
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0020
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0025
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0025
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0025
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0025
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0030
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0030
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0030
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0030
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0035
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0035
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0040
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0040
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0045
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0045
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0045
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0045
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0050
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0050
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0050
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0055
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0055
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0055
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0055
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0060
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0060
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0060
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0065
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0065
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0065
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0070
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0070
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0075
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0075
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0080
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0080
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0080
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0085
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0085
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0085
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0085
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0090
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0090
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0095
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0095
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0095
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0095
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0100
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0100
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0105
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0105
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0110
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0110
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0110
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0115
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0115
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0115
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0120
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0120
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0120
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0125
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0125
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0125
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0125
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0125
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0130
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0130
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0130
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0130
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0135
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0135
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0135
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0140
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0140
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0140
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0145
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0145
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0145
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0150
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0150
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0150
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0155
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0155
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0155
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0160
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0160
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0160
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0160
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0165
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0165
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0165
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0165
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0170
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0170
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0170
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0170
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0175
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0175
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0175
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0180
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0180
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0180
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0180
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0185
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0185
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0185
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0190
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0190


Chem. 272 (1997) 22364–22372.
[39] R.V. Ward, K.H. Jennings, R. Jepras, W. Neville, D.E. Owen, J. Hawkins,

G. Christie, J.B. Davis, A. George, E.H. Karran, D.R. Howlett, Fractionation and
characterization of oligomeric, protofibrillar and fibrillar forms of beta-amyloid
peptide, Biochem. J. 348 (Pt 1) (2000) 137–144.

[40] P. Aguilar-Calvo, X. Xiao, C. Bett, H. Erana, K. Soldau, J. Castilla, K.P. Nilsson,
W.K. Surewicz, C.J. Sigurdson, Post-translational modifications in PrP expand the
conformational diversity of prions in vivo, Sci. Rep. 7 (2017) 43295.

[41] A. Natalello, V.V. Prokorov, F. Tagliavini, M. Morbin, G. Forloni, M. Beeg,
C. Manzoni, L. Colombo, M. Gobbi, M. Salmona, S.M. Doglia, Conformational
plasticity of the Gerstmann-Straussler-Scheinker disease peptide as indicated by its
multiple aggregation pathways, J. Mol. Biol. 381 (2008) 1349–1361.

[42] J.X. Lu, W. Qiang, W.M. Yau, C.D. Schwieters, S.C. Meredith, R. Tycko, Molecular
structure of beta-amyloid fibrils in Alzheimer's disease brain tissue, Cell 154
(2013) 1257–1268.

[43] W. Qiang, W.M. Yau, J.X. Lu, J. Collinge, R. Tycko, Structural variation in amy-
loid-beta fibrils from Alzheimer's disease clinical subtypes, Nature 541 (2017)
217–221.

[44] J.G. Safar, X. Xiao, M.E. Kabir, S. Chen, C. Kim, T. Haldiman, Y. Cohen, W. Chen,
M.L. Cohen, W.K. Surewicz, Structural determinants of phenotypic diversity and
replication rate of human prions, PLoS Pathog. 11 (2015) e1004832.

[45] J. Rasmussen, J. Mahler, N. Beschorner, S.A. Kaeser, L.M. Hasler, F. Baumann,
S. Nystrom, E. Portelius, K. Blennow, T. Lashley, N.C. Fox, D. Sepulveda-Falla,
M. Glatzel, A.L. Oblak, B. Ghetti, K.P.R. Nilsson, P. Hammarstrom, M. Staufenbiel,
L.C. Walker, M. Jucker, Amyloid Polymorphisms Constitute Distinct Clouds of
Conformational Variants in Different Etiological Subtypes of Alzheimer's Disease,
114 (2017), pp. 13018–13023.

[46] C. Condello, T. Lemmin, J. Stohr, M. Nick, Y. Wu, A.M. Maxwell, J.C. Watts,
C.D. Caro, A. Oehler, C.D. Keene, T.D. Bird, S.G. van Duinen, L. Lannfelt,
M. Ingelsson, C. Graff, K. Giles, W.F. DeGrado, S.B. Prusiner, Structural
Heterogeneity and Intersubject Variability of Abeta in Familial and Sporadic
Alzheimer's Disease, 115 (2018), pp. E782–e791.

[47] M. Jucker, L.C. Walker, Pathogenic protein seeding in Alzheimer disease and other
neurodegenerative disorders, Ann. Neurol. 70 (2011) 532–540.

[48] L.C. Walker, J. Schelle, M. Jucker, The Prion-Like Properties of Amyloid-β
Assemblies: Implications for Alzheimer's Disease, Cold Spring Harb. Perspect. Med.
6 (2016) pii: a024398.

[49] J. Rasmussen, M. Jucker, L.C. Walker, Aβ seeds and prions: How close the fit?
Prion 11 (2017) 215–225.

[50] F. Langer, Y.S. Eisele, S.K. Fritschi, M. Staufenbiel, L.C. Walker, M. Jucker, Soluble
Abeta seeds are potent inducers of cerebral beta-amyloid deposition, J. Neurosci.
31 (2011) 14488–14495.

[51] M. Meyer-Luehmann, J. Coomaraswamy, T. Bolmont, S. Kaeser, C. Schaefer,
E. Kilger, A. Neuenschwander, D. Abramowski, P. Frey, A.L. Jaton, J.M. Vigouret,
P. Paganetti, D.M. Walsh, P.M. Mathews, J. Ghiso, M. Staufenbiel, L.C. Walker,
M. Jucker, Exogenous induction of cerebral beta-amyloidogenesis is governed by
agent and host, Science (New York, N.Y.) 313 (2006) 1781–1784.

[52] R.F. Rosen, J.J. Fritz, J. Dooyema, A.F. Cintron, T. Hamaguchi, J.J. Lah, H. LeVine
3rd, M. Jucker, L.C. Walker, Exogenous seeding of cerebral beta-amyloid deposi-
tion in betaAPP-transgenic rats, J. Neurochem. 120 (2011) 660–666.

[53] J. Stohr, J.C. Watts, Z.L. Mensinger, A. Oehler, S.K. Grillo, S.J. Dearmond,
S.B. Prusiner, K. Giles, Purified and synthetic Alzheimer's amyloid beta (Abeta)
prions, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 11025–11030.

[54] S.K. Fritschi, F. Langer, S.A. Kaeser, L.F. Maia, E. Portelius, D. Pinotsi,
C.F. Kaminski, D.T. Winkler, W. Maetzler, K. Keyvani, P. Spitzer, J. Wiltfang,
G.S. Kaminski Schierle, H. Zetterberg, M. Staufenbiel, M. Jucker, Highly potent
soluble amyloid-beta seeds in human Alzheimer brain but not cerebrospinal fluid,
Brain J. Neurol. 137 (2014) 2909–2915.

[55] M.D. Kane, W.J. Lipinski, M.J. Callahan, F. Bian, R.A. Durham, R.D. Schwarz,
A.E. Roher, L.C. Walker, Evidence for seeding of β-amyloid by intracerebral in-
fusion of Alzheimer brain extracts in β-amyloid precursor protein-transgenic mice,
J. Neurosci. 20 (2000) 3606–3611.

[56] M. Bokvist, F. Lindström, A. Watts, G. Gröbner, Two types of Alzheimer's β-
amyloid (1–40) peptide membrane interactions: aggregation preventing trans-
membrane anchoring versus accelerated surface fibril formation, J. Mol. Biol. 335
(2004) 1039–1049.

[57] H. Hayashi, N. Kimura, H. Yamaguchi, K. Hasegawa, T. Yokoseki, M. Shibata,
N. Yamamoto, M. Michikawa, Y. Yoshikawa, K. Terao, K. Matsuzaki, C.A. Lemere,
D.J. Selkoe, H. Naiki, K. Yanagisawa, A seed for Alzheimer amyloid in the brain, J.
Neurosci. 24 (2004) 4894–4902.

[58] A. Kakio, S. Nishimoto, K. Yanagisawa, Y. Kozutsumi, K. Matsuzaki, Interactions of
amyloid beta-protein with various gangliosides in raft-like membranes: im-
portance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer
amyloid, Biochemistry 41 (2002) 7385–7390.

[59] C.M. Yip, J. McLaurin, Amyloid-beta peptide assembly: a critical step in fi-
brillogenesis and membrane disruption, Biophys. J. 80 (2001) 1359–1371.

[60] E. Terzi, G. Holzemann, J. Seelig, Interaction of Alzheimer beta-amyloid peptide
(1–40) with lipid membranes, Biochemistry 36 (1997) 14845–14852.

[61] M.F. Walter, P.E. Mason, R.P. Mason, Alzheimer's disease amyloid beta peptide
25–35 inhibits lipid peroxidation as a result of its membrane interactions,
Biochem. Biophys. Res. Commun. 233 (1997) 760–764.

[62] T. Pillot, M. Goethals, B. Vanloo, C. Talussot, R. Brasseur, J. Vandekerckhove,
M. Rosseneu, L. Lins, Fusogenic properties of the C-terminal domain of the
Alzheimer beta-amyloid peptide, J. Biol. Chem. 271 (1996) 28757–28765.

[63] N. Arispe, H.B. Pollard, E. Rojas, Zn2+ interaction with Alzheimer amyloid beta
protein calcium channels, Proc. Natl. Acad. Sci. U. S. A. 93 (1996) 1710–1715.

[64] H. Lin, R. Bhatia, R. Lal, Amyloid beta protein forms ion channels: implications for
Alzheimer's disease pathophysiology, FASEB J. 15 (2001) 2433–2444.

[65] C. Ege, K.Y. Lee, Insertion of Alzheimer's A beta 40 peptide into lipid monolayers,
Biophys. J. 87 (2004) 1732–1740.

[66] E.Y. Chi, C. Ege, A. Winans, J. Majewski, G. Wu, K. Kjaer, K.Y. Lee, Lipid mem-
brane templates the ordering and induces the fibrillogenesis of Alzheimer's disease
amyloid-beta peptide, Proteins 72 (2008) 1–24.

[67] M. Coles, W. Bicknell, A.A. Watson, D.P. Fairlie, D.J. Craik, Solution structure of
amyloid beta-peptide(1–40) in a water-micelle environment. Is the membrane-
spanning domain where we think it is? Biochemistry 37 (1998) 11064–11077.

[68] H. Jang, F.T. Arce, S. Ramachandran, R. Capone, R. Azimova, B.L. Kagan,
R. Nussinov, R. Lal, Truncated beta-amyloid peptide channels provide an alter-
native mechanism for Alzheimer's disease and Down syndrome, Proc. Natl. Acad.
Sci. U. S. A. 107 (2010) 6538–6543.

[69] J. Lee, Amyloid Beta Ion Channels in a Membrane Comprising Brain Total Lipid
Extracts, 8 (2017), pp. 1348–1357.

[70] H. Jang, F. Teran Arce, S. Ramachandran, R. Capone, R. Lal, R. Nussinov,
Structural convergence among diverse, toxic beta-sheet ion channels, J. Phys.
Chem. B 114 (2010) 9445–9451.

[71] H. Jang, F.T. Arce, S. Ramachandran, R. Capone, R. Lal, R. Nussinov, beta-Barrel
topology of Alzheimer's beta-amyloid ion channels, J. Mol. Biol. 404 (2010)
917–934.

[72] H. Jang, J. Zheng, R. Nussinov, Models of beta-amyloid ion channels in the
membrane suggest that channel formation in the bilayer is a dynamic process,
Biophys. J. 93 (2007) 1938–1949.

[73] H. Jang, J. Zheng, R. Lal, R. Nussinov, New structures help the modeling of toxic
amyloidbeta ion channels, Trends Biochem. Sci. 33 (2008) 91–100.

[74] B. Strodel, J.W. Lee, C.S. Whittleston, D.J. Wales, Transmembrane structures for
Alzheimer's Abeta(1–42) oligomers, J. Am. Chem. Soc. 132 (2010) 13300–13312.

[75] A. Quist, I. Doudevski, H. Lin, R. Azimova, D. Ng, B. Frangione, B. Kagan, J. Ghiso,
R. Lal, Amyloid ion channels: a common structural link for protein-misfolding
disease, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 10427–10432.

[76] D.C. Bode, M.D. Baker, J.H. Viles, Ion channel formation by amyloid-beta42 oli-
gomers but not amyloid-beta40 in cellular membranes, J. Biol. Chem. 292 (2017)
1404–1413.

[77] K.J. Korshavn, A. Bhunia, M.H. Lim, A. Ramamoorthy, Amyloid-beta adopts a
conserved, partially folded structure upon binding to zwitterionic lipid bilayers
prior to amyloid formation, Chem. Commun. (Camb.) 52 (2016) 882–885.

[78] T.L. Williams, L.C. Serpell, Membrane and surface interactions of Alzheimer's
Abeta peptide–insights into the mechanism of cytotoxicity, FEBS J. 278 (2011)
3905–3917.

[79] Q. Wang, J. Zhao, X. Yu, C. Zhao, L. Li, J. Zheng, Alzheimer Abeta(1–42) monomer
adsorbed on the self-assembled monolayers, Langmuir 26 (2010) 12722–12732.

[80] J. Zhao, Q. Wang, G. Liang, J. Zheng, Molecular dynamics simulations of low-
ordered Alzheimer beta-amyloid oligomers from dimer to hexamer on self-as-
sembled monolayers, Langmuir 27 (2011) 14876–14887.

[81] M. Ogawa, M. Tsukuda, T. Yamaguchi, K. Ikeda, T. Okada, Y. Yano, M. Hoshino,
K. Matsuzaki, Ganglioside-mediated aggregation of amyloid beta-proteins (Abeta):
comparison between Abeta-(1–42) and Abeta-(1–40), J. Neurochem. 116 (2011)
851–857.

[82] K. Ikeda, K. Matsuzaki, Driving force of binding of amyloid beta-protein to lipid
bilayers, Biochem. Biophys. Res. Commun. 370 (2008) 525–529.

[83] A. Chauhan, I. Ray, V.P. Chauhan, Interaction of amyloid beta-protein with an-
ionic phospholipids: possible involvement of Lys28 and C-terminus aliphatic
amino acids, Neurochem. Res. 25 (2000) 423–429.

[84] E. Drolle, F. Hane, B. Lee, Z. Leonenko, Atomic force microscopy to study mole-
cular mechanisms of amyloid fibril formation and toxicity in Alzheimer's disease,
Drug Metab. Rev. 46 (2014) 207–223.

[85] D.J. Lindberg, E. Wesen, J. Bjorkeroth, S. Rocha, E.K. Esbjorner, Lipid membranes
catalyse the fibril formation of the amyloid-beta (1–42) peptide through lipid-fibril
interactions that reinforce secondary pathways, Biochim. Biophys. Acta 1859
(2017) 1921–1929.

[86] P.T. Wong, J.A. Schauerte, K.C. Wisser, H. Ding, E.L. Lee, D.G. Steel, A. Gafni,
Amyloid-beta membrane binding and permeabilization are distinct processes in-
fluenced separately by membrane charge and fluidity, J. Mol. Biol. 386 (2009)
81–96.

[87] C.H. Davis, M.L. Berkowitz, Interaction between amyloid-beta (1–42) peptide and
phospholipid bilayers: a molecular dynamics study, Biophys. J. 96 (2009)
785–797.

[88] T.A. Good, R.M. Murphy, Aggregation state-dependent binding of beta-amyloid
peptide to protein and lipid components of rat cortical homogenates, Biochem.
Biophys. Res. Commun. 207 (1995) 209–215.

[89] R.M.M. John, J. Kremer, Kinetics of adsorption of β-amyloid peptide Aβ(1–40) to
lipid bilayers, J. Biochem. Biophys. Methods 57 (2003) 159–169.

[90] A.M. Brown, D.R. Bevan, Molecular dynamics simulations of amyloid beta-peptide
(1–42): tetramer formation and membrane interactions, Biophys. J. 111 (2016)
937–949.

[91] H. Shao, S. Jao, K. Ma, M.G. Zagorski, Solution structures of micelle-bound
amyloid beta-(1–40) and beta-(1–42) peptides of Alzheimer's disease, J. Mol. Biol.
285 (1999) 755–773.

[92] N. Yamamoto, K. Hasegawa, K. Matsuzaki, H. Naiki, K. Yanagisawa, Environment-
and mutation-dependent aggregation behavior of Alzheimer amyloid beta-protein,
J. Neurochem. 90 (2004) 62–69.

[93] V. Rangachari, D.K. Reed, B.D. Moore, T.L. Rosenberry, Secondary structure and
interfacial aggregation of amyloid-beta(1–40) on sodium dodecyl sulfate micelles,
Biochemistry 45 (2006) 8639–8648.

V. Rangachari et al. BBA - Biomembranes 1860 (2018) 1652–1662

1660

http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0190
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0195
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0195
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0195
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0195
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0200
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0200
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0200
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0205
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0205
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0205
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0205
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0210
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0210
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0210
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0215
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0215
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0215
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0220
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0220
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0220
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0225
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0225
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0225
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0225
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0225
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0225
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0230
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0230
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0230
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0230
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0230
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0235
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0235
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0240
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0240
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0240
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0245
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0245
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0250
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0250
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0250
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0255
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0255
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0255
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0255
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0255
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0260
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0260
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0260
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0265
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0265
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0265
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0270
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0270
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0270
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0270
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0270
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0275
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0275
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0275
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0275
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0280
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0280
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0280
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0280
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0285
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0285
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0285
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0285
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0290
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0290
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0290
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0290
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0295
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0295
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0300
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0300
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0305
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0305
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0305
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0310
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0310
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0310
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0315
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0315
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0320
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0320
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0325
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0325
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0330
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0330
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0330
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0335
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0335
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0335
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0340
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0340
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0340
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0340
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0345
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0345
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0350
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0350
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0350
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0355
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0355
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0355
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0360
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0360
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0360
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0365
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0365
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0370
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0370
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0375
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0375
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0375
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0380
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0380
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0380
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0385
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0385
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0385
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0390
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0390
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0390
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0395
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0395
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0400
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0400
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0400
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0405
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0405
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0405
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0405
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0410
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0410
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0415
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0415
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0415
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0420
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0420
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0420
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0425
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0425
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0425
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0425
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0430
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0430
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0430
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0430
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0435
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0435
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0435
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0440
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0440
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0440
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0445
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0445
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0450
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0450
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0450
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0455
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0455
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0455
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0460
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0460
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0460
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0465
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0465
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0465


[94] M. Bisaglia, A. Trolio, M. Bellanda, E. Bergantino, L. Bubacco, S. Mammi, Structure
and topology of the non-amyloid-beta component fragment of human alpha-sy-
nuclein bound to micelles: implications for the aggregation process, Protein Sci. 15
(2006) 1408–1416.

[95] Y. Hagihara, D.P. Hong, M. Hoshino, K. Enjyoji, H. Kato, Y. Goto, Aggregation of
beta(2)-glycoprotein I induced by sodium lauryl sulfate and lysophospholipids,
Biochemistry 41 (2002) 1020–1026.

[96] M.R. Nichols, M.A. Moss, D.K. Reed, S. Cratic-McDaniel, J.H. Hoh,
T.L. Rosenberry, Amyloid-beta protofibrils differ from amyloid-beta aggregates
induced in dilute hexafluoroisopropanol in stability and morphology, J. Biol.
Chem. 280 (2005) 2471–2480.

[97] M.R. Nichols, M.A. Moss, D.K. Reed, J.H. Hoh, T.L. Rosenberry, Rapid assembly of
amyloid-beta peptide at a liquid/liquid interface produces unstable beta-sheet fi-
bers, Biochemistry 44 (2005) 165–173.

[98] P.K. Mandal, J.W. Pettegrew, Alzheimer's disease: soluble oligomeric Abeta(1–40)
peptide in membrane mimic environment from solution NMR and circular di-
chroism studies, Neurochem. Res. 29 (2004) 2267–2272.

[99] V. Rangachari, B.D. Moore, D.K. Reed, L.K. Sonoda, A.W. Bridges, E. Conboy,
D. Hartigan, T.L. Rosenberry, Amyloid-beta(1–42) rapidly forms protofibrils and
oligomers by distinct pathways in low concentrations of sodium dodecylsulfate,
Biochemistry 46 (2007) 12451–12462.

[100] S. Barghorn, V. Nimmrich, A. Striebinger, C. Krantz, P. Keller, B. Janson, M. Bahr,
M. Schmidt, R.S. Bitner, J. Harlan, E. Barlow, U. Ebert, H. Hillen, Globular amyloid
beta-peptide oligomer - a homogenous and stable neuropathological protein in
Alzheimer's disease, J. Neurochem. 95 (2005) 834–847.

[101] L. Yu, R. Edalji, J.E. Harlan, T.F. Holzman, A.P. Lopez, B. Labkovsky, H. Hillen,
S. Barghorn, U. Ebert, P.L. Richardson, L. Miesbauer, L. Solomon, D. Bartley,
K. Walter, R.W. Johnson, P.J. Hajduk, E.T. Olejniczak, Structural characterization
of a soluble amyloid beta-peptide oligomer, Biochemistry 48 (2009) 1870–1877.

[102] W.M. Tay, D. Huang, T.L. Rosenberry, A.K. Paravastu, The Alzheimer's amyloid-
beta(1–42) peptide forms off-pathway oligomers and fibrils that are distinguished
structurally by intermolecular organization, J. Mol. Biol. 425 (2013) 2494–2508.

[103] D. Huang, M.I. Zimmerman, P.K. Martin, A.J. Nix, T.L. Rosenberry, A.K. Paravastu,
Antiparallel beta-sheet structure within the C-terminal region of 42-residue
Alzheimer's amyloid-beta peptides when they form 150-kDa oligomers, J. Mol.
Biol. 427 (2015) 2319–2328.

[104] K. Dahse, M. Garvey, M. Kovermann, A. Vogel, J. Balbach, M. Fandrich, A. Fahr,
DHPC strongly affects the structure and oligomerization propensity of Alzheimer's
Abeta(1–40) peptide, J. Mol. Biol. 403 (2010) 643–659.

[105] A. Kumar, R.L. Bullard, P. Patel, L.C. Paslay, D. Singh, E.A. Bienkiewicz,
S.E. Morgan, V. Rangachari, Non-esterified fatty acids generate distinct low-mo-
lecular weight amyloid-β (Aβ42) oligomers along pathway different from fibril
formation, PLoS One 6 (2011) e18759.

[106] A. Kumar, L.C. Paslay, D. Lyons, S.E. Morgan, J.J. Correia, V. Rangachari, Specific
soluble oligomers of amyloid-β peptide undergo replication and form non-fibrillar
aggregates in interfacial environments, J. Biol. Chem. 287 (2012) 21253–21264.

[107] T.G. Fletcher, D.A. Keire, The interaction of beta-amyloid protein fragment
(12–28) with lipid environments, Protein Sci. 6 (1997) 666–675.

[108] P.K. Mandal, R.J. McClure, J.W. Pettegrew, Interactions of Abeta(1–40) with
glycerophosphocholine and intact erythrocyte membranes: fluorescence and cir-
cular dichroism studies, Neurochem. Res. 29 (2004) 2273–2279.

[109] H. Zhao, E.K. Tuominen, P.K. Kinnunen, Formation of amyloid fibers triggered by
phosphatidylserine-containing membranes, Biochemistry 43 (2004)
10302–10307.

[110] M. Kinoshita, E. Kakimoto, M.S. Terakawa, Y. Lin, T. Ikenoue, M. So, T. Sugiki,
A. Ramamoorthy, Y. Goto, Y.H. Lee, Model membrane size-dependent amyloido-
genesis of Alzheimer's amyloid-beta peptides, Phys. Chem. Chem. Phys. 19 (2017)
16257–16266.

[111] K.J. Korshavn, C. Satriano, Y. Lin, R. Zhang, M. Dulchavsky, A. Bhunia,
M.I. Ivanova, Y.H. Lee, C. La Rosa, M.H. Lim, A. Ramamoorthy, Reduced lipid
bilayer thickness regulates the aggregation and cytotoxicity of amyloid-beta, J.
Biol. Chem. 292 (2017) 4638–4650.

[112] F. Tofoleanu, B.R. Brooks, N.V. Buchete, Modulation of Alzheimer's Abeta proto-
filament-membrane interactions by lipid headgroups, ACS Chem. Neurosci. 6
(2015) 446–455.

[113] S. Henry, H. Vignaud, C. Bobo, M. Decossas, O. Lambert, E. Harte, I.D. Alves,
C. Cullin, S. Lecomte, Interaction of Abeta(1–42) amyloids with lipids promotes
“off-pathway” oligomerization and membrane damage, Biomacromolecules 16
(2015) 944–950.

[114] A. Kumar, K.M. Pate, M.A. Moss, D.N. Dean, V. Rangachari, Self-propagative re-
plication of Abeta oligomers suggests potential transmissibility in Alzheimer dis-
ease, PLoS One 9 (2014) e111492.

[115] D.N. Dean, K.M. Pate, M.A. Moss, V. Rangachari, Conformational dynamics of
specific Aβ oligomers govern their ability to replicate and induce neuronal
apoptosis, Biochemistry 55 (2016) 2238–2250.

[116] D.N. Dean, P.K. Das, P. Rana, F. Burg, Y. Levites, S.E. Morgan, P. Ghosh,
V. Rangachari, Strain-specific fibril propagation by an Aβ dodecamer, Sci. Rep. 7
(2017) 40787.

[117] P. Rana, D.N. Dean, E.D. Steen, A. Vaidya, V. Rangachari, P. Ghosh, Fatty Acid
Concentration and Phase Transitions Modulate Abeta Aggregation Pathways, 7
(2017), p. 10370.

[118] A. Tamaoka, N. Sawamura, A. Odaka, N. Suzuki, H. Mizusawa, S. Shoji, H. Mori,
Amyloid beta protein 1–42/43 (A beta 1–42/43) in cerebellar diffuse plaques:
enzyme-linked immunosorbent assay and immunocytochemical study, Brain Res.
679 (1995) 151–156.

[119] R. Natte, H. Yamaguchi, M.L. Maat-Schieman, F.A. Prins, P. Neeskens, R.A. Roos,

S.G. van Duinen, Ultrastructural evidence of early non-fibrillar Abeta42 in the
capillary basement membrane of patients with hereditary cerebral hemorrhage
with amyloidosis, Dutch type, Acta Neuropathol. 98 (1999) 577–582.

[120] K. Horsburgh, G.M. Cole, F. Yang, M.J. Savage, B.D. Greenberg, S.M. Gentleman,
D.I. Graham, J.A. Nicoll, beta-Amyloid (Abeta)42(43), abeta42, abeta40 and apoE
immunostaining of plaques in fatal head injury, Neuropathol. Appl. Neurobiol. 26
(2000) 124–132.

[121] H. Yamaguchi, M.L. Maat-Schieman, S.G. van Duinen, F.A. Prins, P. Neeskens,
R. Natte, R.A. Roos, Amyloid beta protein (Abeta) starts to deposit as plasma
membrane-bound form in diffuse plaques of brains from hereditary cerebral he-
morrhage with amyloidosis-Dutch type, Alzheimer disease and nondemented aged
subjects, J. Neuropathol. Exp. Neurol. 59 (2000) 723–732.

[122] S.I. Kim, J.S. Yi, Y.G. Ko, Amyloid beta oligomerization is induced by brain lipid
rafts, J. Cell. Biochem. 99 (2006) 878–889.

[123] J.A. Loureiro, S. Rocha, C. Pereira Mdo, Charged surfactants induce a non-fibrillar
aggregation pathway of amyloid-beta peptide, J. Pept. Sci. 19 (2013) 581–587.

[124] R. Sabate, J. Estelrich, Stimulatory and inhibitory effects of alkyl bromide sur-
factants on beta-amyloid fibrillogenesis, Langmuir 21 (2005) 6944–6949.

[125] F. Chiti, M. Stefani, N. Taddei, G. Ramponi, C.M. Dobson, Rationalization of the
effects of mutations on peptide and protein aggregation rates, Nature 424 (2003)
805–808.

[126] K.F. DuBay, A.P. Pawar, F. Chiti, J. Zurdo, C.M. Dobson, M. Vendruscolo,
Prediction of the absolute aggregation rates of amyloidogenic polypeptide chains,
J. Mol. Biol. 341 (2004) 1317–1326.

[127] A. Lomakin, D.S. Chung, G.B. Benedek, D.A. Kirschner, D.B. Teplow, On the nu-
cleation and growth of amyloid beta-protein fibrils: detection of nuclei and
quantitation of rate constants, Proc. Natl. Acad. Sci. U. S. A. 93 (1996) 1125–1129.

[128] A.M. Morris, M.A. Watzky, J.N. Agar, R.G. Finke, Fitting neurological protein
aggregation kinetic data via a 2-step, minimal/“Ockham's razor”model: the Finke-
Watzky mechanism of nucleation followed by autocatalytic surface growth,
Biochemistry 47 (2008) 2413–2427.

[129] A.M. Morris, M.A. Watzky, R.G. Finke, Protein aggregation kinetics, mechanism,
and curve-fitting: a review of the literature, Biochim. Biophys. Acta 1794 (2009)
375–397.

[130] R.M. Murphy, Kinetics of amyloid formation and membrane interaction with
amyloidogenic proteins, Biochim. Biophys. Acta 1768 (2007) 1923–1934.

[131] E.T. Powers, D.L. Powers, Mechanisms of protein fibril formation: nucleated
polymerization with competing off-pathway aggregation, Biophys. J. 94 (2008)
379–391.

[132] R. Friedman, A. Caflisch, Surfactant effects on amyloid aggregation kinetics, J.
Mol. Biol. 414 (2011) 303–312.

[133] S.A. Waschuk, E.A. Elton, A.A. Darabie, P.E. Fraser, J.A. McLaurin, Cellular
membrane composition defines A beta-lipid interactions, J. Biol. Chem. 276
(2001) 33561–33568.

[134] C.M. Yip, A.A. Darabie, J. McLaurin, Abeta42-peptide assembly on lipid bilayers,
J. Mol. Biol. 318 (2002) 97–107.

[135] M. Wakabayashi, T. Okada, Y. Kozutsumi, K. Matsuzaki, GM1 ganglioside-medi-
ated accumulation of amyloid beta-protein on cell membranes, Biochem. Biophys.
Res. Commun. 328 (2005) 1019–1023.

[136] N. Yamamoto, T. Matsubara, T. Sato, K. Yanagisawa, Age-dependent high-density
clustering of GM1 ganglioside at presynaptic neuritic terminals promotes amyloid
beta-protein fibrillogenesis, Biochim. Biophys. Acta 1778 (2008) 2717–2726.

[137] X. Hu, S.L. Crick, G. Bu, C. Frieden, R.V. Pappu, J.M. Lee, Amyloid seeds formed by
cellular uptake, concentration, and aggregation of the amyloid-beta peptide, Proc.
Natl. Acad. Sci. U. S. A. 106 (2009) 20324–20329.

[138] C. Cecchi, D. Nichino, M. Zampagni, C. Bernacchioni, E. Evangelisti, A. Pensalfini,
G. Liguri, A. Gliozzi, M. Stefani, A. Relini, A protective role for lipid raft choles-
terol against amyloid-induced membrane damage in human neuroblastoma cells,
Biochim. Biophys. Acta 1788 (2009) 2204–2216.

[139] C. Cecchi, E. Evangelisti, R. Cascella, M. Zampagni, S. Benvenuti, P. Luciani,
C. Deledda, I. Cellai, D. Wright, R. Saccardi, A. Peri, M. Stefani, Neuronal differ-
entiation of human mesenchymal stromal cells increases their resistance to
Abeta42 aggregate toxicity, J. Alzheimers Dis. 27 (2011) 651–664.

[140] M. Calamai, E. Evangelisti, R. Cascella, N. Parenti, C. Cecchi, M. Stefani,
F. Pavone, Single molecule experiments emphasize GM1 as a key player of the
different cytotoxicity of structurally distinct Abeta1–42 oligomers, Biochim.
Biophys. Acta 1858 (2016) 386–392.

[141] J.A. Lemkul, D.R. Bevan, Lipid composition influences the release of Alzheimer's
amyloid beta-peptide from membranes, Protein Sci. 20 (2011) 1530–1545.

[142] M. Yagi-Utsumi, K. Kato, Structural and dynamic views of GM1 ganglioside,
Glycoconj. J. 32 (2015) 105–112.

[143] Y. Sugiura, K. Ikeda, M. Nakano, High membrane curvature enhances binding,
conformational changes, and fibrillation of amyloid-beta on lipid bilayer surfaces,
Langmuir 31 (2015) 11549–11557.

[144] J.J. Kremer, M.M. Pallitto, D.J. Sklansky, R.M. Murphy, Correlation of beta-
amyloid aggregate size and hydrophobicity with decreased bilayer fluidity of
model membranes, Biochemistry 39 (2000) 10309–10318.

[145] J.J. Kremer, D.J. Sklansky, R.M. Murphy, Profile of changes in lipid bilayer
structure caused by beta-amyloid peptide, Biochemistry 40 (2001) 8563–8571.

[146] Y. Tashima, R. Oe, S. Lee, G. Sugihara, E.J. Chambers, M. Takahashi, T. Yamada,
The effect of cholesterol and monosialoganglioside (GM1) on the release and ag-
gregation of amyloid beta-peptide from liposomes prepared from brain membrane-
like lipids, J. Biol. Chem. 279 (2004) 17587–17595.

[147] M. Cebecauer, M. Hof, M. Amaro, Impact of GM1 on membrane-mediated ag-
gregation/oligomerization of beta-amyloid: unifying view, Biophys. J. 113 (2017)
1194–1199.

V. Rangachari et al. BBA - Biomembranes 1860 (2018) 1652–1662

1661

http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0470
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0470
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0470
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0470
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0475
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0475
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0475
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0480
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0480
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0480
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0480
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0485
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0485
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0485
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0490
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0490
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0490
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0495
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0495
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0495
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0495
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0500
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0500
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0500
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0500
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0505
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0505
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0505
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0505
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0510
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0510
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0510
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0515
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0515
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0515
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0515
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0520
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0520
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0520
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0525
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0525
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0525
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0525
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0530
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0530
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0530
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0535
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0535
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0540
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0540
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0540
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0545
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0545
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0545
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0550
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0550
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0550
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0550
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0555
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0555
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0555
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0555
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0560
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0560
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0560
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0565
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0565
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0565
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0565
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0570
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0570
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0570
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0575
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0575
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0575
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0580
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0580
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0580
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0585
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0585
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0585
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0590
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0590
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0590
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0590
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0595
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0595
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0595
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0595
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0600
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0600
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0600
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0600
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0605
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0605
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0605
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0605
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0605
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0610
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0610
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0615
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0615
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0620
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0620
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0625
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0625
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0625
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0630
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0630
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0630
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0635
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0635
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0635
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0640
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0640
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0640
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0640
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0645
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0645
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0645
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0650
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0650
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0655
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0655
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0655
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0660
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0660
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0665
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0665
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0665
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0670
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0670
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0675
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0675
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0675
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0680
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0680
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0680
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0685
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0685
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0685
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0690
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0690
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0690
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0690
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0695
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0695
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0695
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0695
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0700
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0700
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0700
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0700
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0705
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0705
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0710
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0710
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0715
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0715
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0715
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0720
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0720
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0720
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0725
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0725
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0730
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0730
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0730
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0730
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0735
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0735
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0735


[148] E. Evangelisti, C. Cecchi, R. Cascella, C. Sgromo, M. Becatti, C.M. Dobson, F. Chiti,
M. Stefani, Membrane lipid composition and its physicochemical properties define
cell vulnerability to aberrant protein oligomers, J. Cell Sci. 125 (2012)
2416–2427.

[149] R. Kayed, C.A. Lasagna-Reeves, Molecular mechanisms of amyloid oligomers
toxicity, J. Alzheimers Dis. 33 (Suppl. 1) (2013) S67–78.

[150] B.L. Kagan, Y. Hirakura, R. Azimov, R. Azimova, M.C. Lin, The channel hypothesis
of Alzheimer's disease: current status, Peptides 23 (2002) 1311–1315.

[151] B.L. Kagan, R. Azimov, R. Azimova, Amyloid peptide channels, J. Membr. Biol.
202 (2004) 1–10.

[152] S.A. Kotler, P. Walsh, J.R. Brender, A. Ramamoorthy, Differences between amy-
loid-beta aggregation in solution and on the membrane: insights into elucidation
of the mechanistic details of Alzheimer's disease, Chem. Soc. Rev. 43 (2014)
6692–6700.

[153] J.I. Kourie, C.L. Henry, P. Farrelly, Diversity of amyloid beta protein fragment
[1–40]-formed channels, Cell. Mol. Neurobiol. 21 (2001) 255–284.

[154] M. Serra-Batiste, M. Ninot-Pedrosa, M. Bayoumi, M. Gairi, G. Maglia, N. Carulla,
Abeta42 assembles into specific beta-barrel pore-forming oligomers in membrane-
mimicking environments, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 10866–10871.

[155] R. Kayed, Y. Sokolov, B. Edmonds, T.M. McIntire, S.C. Milton, J.E. Hall,
C.G. Glabe, Permeabilization of lipid bilayers is a common conformation-depen-
dent activity of soluble amyloid oligomers in protein misfolding diseases, J. Biol.
Chem. 279 (2004) 46363–46366.

[156] W.E. Muller, S. Koch, A. Eckert, H. Hartmann, K. Scheuer, beta-Amyloid peptide
decreases membrane fluidity, Brain Res. 674 (1995) 133–136.

[157] W.E. Muller, G.P. Eckert, K. Scheuer, N.J. Cairns, A. Maras, W.F. Gattaz, Effects of
beta-amyloid peptides on the fluidity of membranes from frontal and parietal lobes
of human brain. High potencies of A beta 1–42 and A beta 1–43, Int. J.
Experiment. Clin. Investig. 5 (1998) 10–15.

[158] M.C. Vestergaard, M. Morita, T. Hamada, M. Takagi, Membrane fusion and vesi-
cular transformation induced by Alzheimer's amyloid beta, Biochim. Biophys. Acta
1828 (2013) 1314–1321.

[159] I.V. Murray, M.E. Sindoni, P.H. Axelsen, Promotion of oxidative lipid membrane
damage by amyloid beta proteins, Biochemistry 44 (2005) 12606–12613.

[160] N. Demeester, G. Baier, C. Enzinger, M. Goethals, J. Vandekerckhove,

M. Rosseneu, C. Labeur, Apoptosis induced in neuronal cells by C-terminal amy-
loid beta-fragments is correlated with their aggregation properties in phospholipid
membranes, Mol. Membr. Biol. 17 (2000) 219–228.

[161] A.M. Marzesco, M. Flotenmeyer, A. Buhler, U. Obermuller, M. Staufenbiel,
M. Jucker, F. Baumann, Highly potent intracellular membrane-associated Abeta
seeds, Sci. Rep. 6 (2016) 28125.

[162] S.S. Wang, D.L. Rymer, T.A. Good, Reduction in cholesterol and sialic acid content
protects cells from the toxic effects of beta-amyloid peptides, J. Biol. Chem. 276
(2001) 42027–42034.

[163] S.B. Prusiner, Some speculations about prions, amyloid, and Alzheimer's disease,
N. Engl. J. Med. 310 (1984) 661–663.

[164] M. Cohen, B. Appleby, J.G. Safar, Distinct prion-like strains of amyloid beta im-
plicated in phenotypic diversity of Alzheimer's disease, Prion 10 (2016) 9–17.

[165] J. Stohr, C. Condello, J.C. Watts, L. Bloch, A. Oehler, M. Nick, S.J. DeArmond,
K. Giles, W.F. DeGrado, S.B. Prusiner, Distinct synthetic Abeta prion strains pro-
ducing different amyloid deposits in bigenic mice, Proc. Natl. Acad. Sci. U. S. A.
111 (2014) 10329–10334.

[166] J.C. Watts, C. Condello, J. Stohr, A. Oehler, J. Lee, S.J. DeArmond, L. Lannfelt,
M. Ingelsson, K. Giles, S.B. Prusiner, Serial propagation of distinct strains of Abeta
prions from Alzheimer's disease patients, Proc. Natl. Acad. Sci. U. S. A. 111 (2014)
10323–10328.

[167] C. Condello, J. Stohr, Abeta propagation and strains: implications for the pheno-
typic diversity in Alzheimer's disease, Neurobiol. Dis. 109 (2017) 191–200.

[168] J.A. Schneider, Z. Arvanitakis, S.E. Leurgans, D.A. Bennett, The neuropathology of
probable Alzheimer disease and mild cognitive impairment, Ann. Neurol. 66
(2009) 200–208.

[169] J.A. Schneider, D.A. Bennett, Where vascular meets neurodegenerative disease,
Stroke 41 (2010) S144–146.

[170] R. Resende, S.C. Marques, E. Ferreiro, I. Simoes, C.R. Oliveira, C.M. Pereira, Effect
of alpha-synuclein on amyloid beta-induced toxicity: relevance to Lewy body
variant of Alzheimer disease, Neurochem. Res. 38 (2013) 797–806.

[171] M.A. Zea-Sevilla, M.A. Fernandez-Blazquez, M. Calero, P. Bermejo-Velasco,
A. Rabano, Combined Alzheimer's disease and cerebrovascular staging explains
advanced dementia cognition, Alzheimers Dement. 11 (2015) 1358–1366.

V. Rangachari et al. BBA - Biomembranes 1860 (2018) 1652–1662

1662

http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0740
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0740
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0740
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0740
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0745
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0745
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0750
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0750
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0755
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0755
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0760
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0760
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0760
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0760
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0765
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0765
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0770
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0770
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0770
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0775
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0775
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0775
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0775
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0780
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0780
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0785
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0785
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0785
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0785
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0790
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0790
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0790
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0795
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0795
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0800
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0800
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0800
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0800
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0805
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0805
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0805
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0810
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0810
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0810
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0815
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0815
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0820
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0820
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0825
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0825
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0825
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0825
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0830
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0830
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0830
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0830
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0835
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0835
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0840
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0840
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0840
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0845
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0845
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0850
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0850
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0850
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0855
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0855
http://refhub.elsevier.com/S0005-2736(18)30084-1/rf0855

	Cause and consequence of Aβ – Lipid interactions in Alzheimer disease pathogenesis
	Aβ and Alzheimer disease pathology
	Aggregation of Aβ and significance of pathways
	Spatiotemporal profile of Aβ aggregation
	Aβ aggregate structure and AD phenotypes

	Lipids and membranes could be important members of the Aβ interactome
	Interaction and modulation of Aβ aggregation by lipids
	Interactions with bilayer-forming lipids
	Interactions leading to pore formation and membrane disruption
	Interactions on lipid surfaces

	Interactions of Aβ with micelle-forming lipids
	Modulation of aggregation by lipids and membrane constituents
	Evidence for lipid involvement in Aβ modulation
	Evidence of modulation based on temporal models
	Membrane components involved in the modulation of Aβ aggregation


	Consequence of Aβ-lipid interactions
	Cellular toxicity
	Oligomer strains and phenotypic outcomes

	Summary and perspectives
	Transparency document
	References




