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Abstract

We investigate approximate Bayesian inference
techniques for nonlinear systems described by ordinary
differential equation (ODE) models. In particular,
the approximations will be based on set-valued
reachability analysis approaches, yielding approximate
models for the posterior distribution. Nonlinear
ODEs are widely used to mathematically describe
physical and biological models. However, these
models are often described by parameters that are not
directly measurable and have an impact on the system
behaviors. Often, noisy measurement data combined
with physical/biological intuition serve as the means
for finding appropriate values of these parameters.

Our approach operates under a Bayesian framework,
given prior distribution over the parameter space
and noisy observations under a known sampling
distribution. We explore subsets of the space of model
parameters, computing bounds on the likelihood
for each subset. This is performed using nonlinear
set-valued reachability analysis that is made faster by
means of linearization around a reference trajectory.
The tiling of the parameter space can be adaptively
refined to make bounds on the likelihood tighter. We
evaluate our approach on a variety of nonlinear bench-
marks and compare our results with Markov Chain
Monte Carlo and Sequential Monte Carlo approaches.

1 Introduction

In this paper, we study the problem of inferring posterior
probabilities of parameters of ODE models. ODE models are
common in numerous scientific applications and often, they
involve parameters whose values are to be estimated from given
observation data. Our approach considers ODEs with unknown
parameters over which a prior distribution is defined. We then
condition this model on noisy observations over time, to compute
a posterior distribution using the Bayes rule. Such estimation
has been studied across numerous scientific and engineering
disciplines. Common approaches include the use of Monte-Carlo
methods [Robert and Casella, 1999; Doucet et al., 2001;
Robert, 2016] such as Markov Chain Monte Carlo (MCMC) and
Sequential Monte Carlo (SMC). MCMC approaches perform
a random walk over the space of parameters using a carefully

designed transition kernel whose invariant distribution matches
the desired posterior that we wish to sample from [Robert and
Casella, 1999]. On the other hand, particle filters (a prototypical
SMC approach) uses numerous particles which are periodically
resampled in proportion to their likelihoods [Doucet et al., 2001].
These approaches produce samples that converge in distribution to
the actual posterior in the limit, provided they are run long enough
(for MCMC approaches) or sufficiently many particles are chosen
(for particle filters). In this paper, we examine an approach that
uses imprecise probability models for the posterior distributions
in the form of probability intervals defined over a decomposition
of the parameter space. Such models can be complementary to
sampling-based approaches described previously [Ferson, 1996].

The key idea is to iteratively partition the space of parameters
into finitely many cells, and find interval bounds on the posterior
likelihood for each cell. The likelihood bounds can be normalized
and as a result, we produce bounds on the posterior probability of
each cell. The result of our approach is an imprecise probability
distribution that takes on the same form as Dempster-Shafer
structures or p-boxes [Halpern, 2005; Ferson et al., 2003;
Dempster, 1967; Shafer, 1976]. Once the likelihood bounds are
produced for a coarse partition of the parameter space, we can
further refine cells whose upper and lower bounds are far apart
to improve the approximation of the posterior.

We evaluate our approach on a series of benchmarks ranging
from 2−6 parameters, comparing the results from our approach
with those obtained from a sufficient number of MCMC and
SMC simulations for each benchmark. The results show that
our approach yields an accurate description of the posterior
distribution but at the same time suffers from the curse of
dimensionality beyond 6 parameters.

1.1 Related Work

The problem of finding parameters of a dynamical system that
fit given data has been the subject of much work in the fields of
system identification [Nelles, 2001; Söderström and Stoica, 1989].
Broadly, the approaches fall into two categories: (a) approaches
that attempt to find parameters that minimize a loss function such
as least squares that measures the disagreement between the model
predictions and the actual data; and (b) approaches that use a prior
distribution over the parameters and use Bayes rule to compute a
posterior given the data [McElreath, 2015]. Beyond applications
to control, the Bayesian approach has been applied to perform
parameter inference for biological models [Girolami, 2008;



Coelho et al., 2011; Vanlier et al., 2013]. Recently, the
convergence of programming languages and Bayesian inference
methods has led to the area of probabilistic programming, wherein
executable programs are used as models conditioned on observa-
tion data [Goodman et al., 2008; Goodman and Stuhlmüller, 2014;
Radul, 2007; Wood et al., 2014]. Our future work will explore
extensions of these languages by adding support for continuous-
time dynamics to tackle applications hybrid cyber-physical
systems. In this context, Bayesian inference approaches for linear
hybrid models have been well-studied (Cf. [Fox, 2009]).

Our approach uses ideas from reachability analysis of
nonlinear ODEs. Given a set of initial states and parameters,
reachability analysis computes a guaranteed over-approximation
of the reachable set of states at time t. Numerous ap-
proaches exist to compute reachable set approximations
efficiently for large linear systems with tens of thousands
of state variables [Bak and Duggirala, 2017]. For nonlinear
systems, however, the problem is much harder. However,
recent advances using higher order interval analysis ap-
proaches have shown much promise, leading to tools such as
VNODE-LP [Nedialkov, 2006], COSY-INFINITY [Berz, 1999;
Makino and Berz, 2003], CAPD [Kapela et al., 2010], and
Flow* [Chen et al., 2013]. Interestingly, our experience in this
paper shows that such rigorous approaches are often prohibitively
expensive for Bayesian inference since they need to be run repeat-
edly over many different subsets of parameters. In this paper, we
use a sensitivity analysis approach based on numerical simulations
to perform an approximate but inexpensive reachability analysis.

In our paper, we employ an imprecise probability model similar
to Dempster-Shafer structures that provide upper and lower
bounds on the likelihoods to cells in the parameter space [Demp-
ster, 1967; Shafer, 1976; Ferson et al., 2003]. We normalize
these likelihood bounds to obtain bounds on probabilities. The
idea of using imprecise probabilities to explore uncertainty is
not new. Mooij et al represent the marginal probability for each
variable using a box over the set of measures for graphical models
with discrete random variables [Mooij and Kappen, 2009]. Our
approach focuses solely on ODE models rather than graphical
models with only discrete variables. Secondly, we focus on
representing the joint posterior as a set of measures rather than just
the marginals over each individual random variable, and finally
we provide a hierarchical box partitioning scheme to avoid the
problem of the uniformly sized grids, and thus enhance scalability.

Enszer et al used a combination of reachability analysis and
the decomposition of the parameter space into cells to propagate
a given distribution over initial states and parameters forward in
time, thus obtaining an imprecise probability distribution at a fu-
ture time point [Enszer et al., 2011]. The key difference is that our
approach conditions the result of the reachability analysis on obser-
vation data, whereas Enszer et al focus on uncertainty propagation.
Likewise Shmarov et al use reachability as part of the tool Pro-
bReach [Shmarov and Zuliani, 2015] but treat the “forward model”
without conditioning on data. Milanese et al present set-valued
approaches for system identification - the problem of deriving a
functional form of a dynamical system from observations [Mi-
lanese and Novara, 2009]. However, their approach avoids the
use of regression or parameterization of the dynamics, focusing
instead on interval bounds over the unknown function. Benavoli
et al also define the set of possible posteriors using a semi-infinite

LP, that uses the classic Lassere’s moment problem to reduce to
a Sum-of-square (SOS) polynomial optimization [Benavoli and
Piga, 2016]. It can be used to infer unknowns such as bounds
on the posterior moments and posterior probabilities in certain
regions. However, their approach is limited when addressing the
nonpolynomial systems. Our approach is found capable of dealing
with nonpolynomial systems by performing sensitivity analysis.
Although SOS programs are solved by reduction to convex semi-
definite optimization problems (SDP), the relaxation can involve
high degree polynomials that in turn lead to large SDPs. Numer-
ical issues have been commonly observed [Roux et al., 2016].

2 Preliminaries

We consider dynamical systems S defined by a system of ODEs
dx
dt
=f(x,p) over state space x∈R

n, and a parameter space p∈
P . Let the number of parameters be given by np≥1. Fixing the
parameters p∈P , a trajectory of the system starting from initial
state x(0) at time t=0, is defined as a function x : [0,T ] 7→R

n

such that dx
dt
|(t=s) = f(x(s),p). Assuming that f is Lipschitz

continuous in x and continuous in p, we obtain that the time
trajectory x(t) is unique for fixed x(0) and p. Let us denote x(t):
SIM(x(0),p,t) as the state reached at time t≥0. Let us consider
two illustrative examples, starting with a simple ball example.

Example 2.0.1 (Simple Ball Example) Consider a ball thrown
into the air starting at initial position (0,0) and initial velocity
(vx(0)=5,vy(0)=−4). Its motion is described by the equations

dx

dt
=vx,

dy

dt
=vy,

dvx
dt

=0,
dvy
dt

=−g.

The state space is given by (x,y,vx,vy) and the single parameter
is g.

Example 2.0.2 (Fitzhugh-Nagumo Model) Consider the non-
linear Fitzhugh-Nagumo model for a neuron over states (x1,x2)
with initial state (−1, 1) and γ = 0.5, involving parameters
(θ1,θ2):

.

x1 = γ(x1−(x31)/3+x2)
.

x2 = − 1
γ
(x1−θ1+θ2x2)

2.1 Observations, Priors and Bayesian Inference

Let S be a dynamical system over state space x and parameters
p ∈ P defined by a vector field f(x,p). We define a prior
distribution π over the parameter space P . For convenience, let
π(p) denote the density function of the prior distribution over
p ∈ P . We also assume that π is supported over P . Next, let
g :Rn 7→R

m be an output map from states x to output y : g(x).
We assume that the outputs can be measured with an error e
that is distributed as a zero mean normal random variable with
variance σ2: e∼N (0,σ2Im×m). Let the samples be observed
at some pre-specified times 0 < t1 < t2 ··· < tk, with k > 0
observations. The overall model is specified as follows:

p ∼ π Prior distribution for p
x(t) = SIM(x(0),p,t) t≥0, State trajectory

y(tj) ∼ N (g(x(tj)),σ
2I) j=1,...,k,Observations

Let Y : (y(t1),...,y(tk)) represent the observations. The goal
is to compute posterior distributions over the parameters that



factor in the observations and the prior. Recall that the posterior
is defined as:

P(p|Y )=
P(Y |p)π(p)

P(Y )
(1)

The left hand side is the posterior probability of p whereas
the right hand side involves P(Y |p) which is the probability of
observations Y for a specific value of parameter p, the prior
distribution at p given by π(p). The denominator P(Y ) is a
normalizing constant

∫

P
P(Y |p) π(p)dp. This is often called the

evidence and equals the probability that the observations Y are
obtained under the prior. Note that the posterior is well-defined
only if P(Y ) 6=0. We will assume this is the case throughout this
paper. However, P(Y ) is difficult to compute, in general. As a
result, we often consider the unnormalized likelihood function,
the numerator of Eq. (1).

L(p|Y )=P(Y |p)π(p),

The goal of Bayesian inference is to obtain the posterior
distribution P(p|Y ). The posterior distribution can be used to
solve many problems:

1. Sampling Problem: Obtain samples from the posterior
distribution.

2. Posterior Mean/Moments: Compute mean/moments from
the posterior.

3. Maximum A posteriori (MAP) Estimate: Obtain the
parameter p that has maximum probability (density) under
the posterior distribution.

4. Property Checking: Estimate the probability that the
system behaviors satisfy a property of interest, assuming
parameters are sampled from the posterior.

Example 2.0.3 Going back to Example 2.0.1, let us add
observations of the y-position to the model at times y1=−9 at
t1=1 and y2=−31 at t2=2 seconds respectively. We assume
that the sampling distribution is a Gaussian with zero mean
and σ=1. We seek to compute the posterior distribution of the
parameter g, given these observations. The prior distribution for
g is taken to be uniform over the interval g∈ [7,12]. The reader
will notice that no value of g explains the data perfectly. However,
since we assume measurement errors, no value of g over the
range can be ruled out as having zero The posterior likelihood
of g can now be calculated using the formula

P(g|y(1),y(2)) = 1
P(y(1),y(2))P(y(1)|g)P(y(2)|g)π(g)

= Cexp
(

− (0.5g−5)2

2

)

exp
(

− (2g−23)2

2

)

= Cexp
(

−2.125g2+48.5g
)

C is a normalizing constant obtained by calculating the integral:
∫ 12

7
exp

(

−2.125g2+48.5g
)

dg.
The reader may recognize the posterior distribution of g as

a truncated Gaussian with a peak at g=11.41. Figure 1 shows
the posterior distribution.

2.2 Monte Carlo Sampling Methods

Monte Carlo approaches seek to derive samples from the posterior.
These approaches produce sample values p1,p2,...,pN such that
as N →∞, the distribution of these samples converges to the

Figure 1: The truncated Gaussian distribution of ball Example: green-
solid line represents the exact solution; red (blue) lines represent the
upper (lower) bounds for the posterior probability in each cell P(g∈Ci).

posterior P(p|Y ). There are numerous Monte Carlo approaches.
However, they can be generally categorized into two major
classes: (a) Markov-Chain Monte Carlo (MCMC) methods and
(b) Sequential Monte Carlo (SMC) approaches. Naturally, many
approaches can be seen as a mix of MCMC and SMC. Details of
these approaches, including their relative advantages/drawbacks
are discussed in detail elsewhere [Robert and Casella, 1999;
Robert, 2016; Doucet et al., 2001]. MCMC and SMC approaches
are widely applicable, needing just repeated simulations of the
model. However, both MCMC and SMC approaches produce
parameter samples such that the distributions they sample from
converge in probability to the true posterior in the limit as the
number of samples goes to infinity. In this paper, we consider
using reachability analysis and interval analysis to derive an
approximation of the actual posterior.

3 Overall Approach

In this section, we provide a high-level overview of our approach.
Rather than compute samples from the posterior, our approach
seeks to represent the posterior in an abstract manner by bounding
the measure associated with subsets of the parameter space
P . Such an abstract representation will represent a family of
probability distributions. Building on the soundness of the
reachability analysis, we can provide a guarantee that the true
posterior P(p|Y ) belongs to the family of distributions. The
overall approach consists of three steps:

1. Partition the parameter space P into cells C1,...,CK

2. For each cell Ci, compute likelihood bounds [li,ui] for the
posterior probability P(p∈Cj|Y ).

3. Refine the approximation by further partitioning a subset
of cells.

3.1 Partitioning

We first partition the parameter space P into a set of cells
C1,...,CK such that

⋃

Cj =P and furthermore, Ci∩Cj =∅ for
i 6=j. This condition can be relaxed to allow Ci∩Cj to be a set



of measure zero. Such a tiling can be obtained by gridding the
parameter space and using half-open boxes to ensure that there
are no intersections between adjacent cells. Moving forward, we
assume that the cells C1,...,CK are fixed.

3.2 Computing Likelihood Bounds For a Cell

There are two steps in computing likelihood bounds for a cell
Cj. (a) First, we perform a reachability analysis to bound the
output at time ti as a function of the parameter value p for all
p∈Cj. (b) Next, we will express the integral P(p∈Cj|Y ) and
provide interval bounds on it. For each p∈Cj, let x(ti;p) denote
the state reached at time ti; and y(ti;p) be the output obtained as
g(x(ti;p)). The first idea is to express y(ti;p) as a polynomial
over p plus an interval Ij,i.

y(ti;p)∈qj,i(p)+Ij,i. (2)

The polynomial qj,i and the error interval are derived using reach-
ability analysis approaches using Taylor model arithmetic and
implemented in tools such as Flow* and COSY-INFINITY [Chen
et al., 2012; 2013; Berz, 1999; Berz and Makino, 1998]. The
main guarantee of the approach is that

(∀ p∈Cj) y(ti;p)∈qj,i(p)+Ij,i.

Next, we compare the output y(ti;p) with the actual data yi.
Since the sampling distribution is a Gaussian, we can write the
posterior probability as the integral:

P(Cj|Y )=

∫

Cj

k
∏

i=1

[

Cexp

(

‖y(ti;p)−yi‖
2

2σ2

)]

π(p)dp. (3)

Here C is the normalization constant for the Gaussian distribution
1

(
√
2πσ2)

k . Substituting y(ti;p) : qj,i(p)+Ij,i yields an integral

that calculates the expectation of a polynomial over p plus an
error interval over a box. As such, these integrals are hard to
compute precisely. Therefore, we will need to bound the value
of the integral in an interval [l,u]. A simple strategy to bounding
integrals is to bound the integrand.

Lemma 3.0.1 Let
∏k

i=1

[

Cexp
(

‖y(ti;p)−yi‖2
2σ2

)]

∈ [m,M ] for

all p∈Cj. The value of the integral from Eq. 3 is bounded by
[mπ(Cj),Mπ(Cj)] wherein π(Cj) is the prior probability of the
cell Cj.

Combining these bounds provides a representation of the
unnormalized posterior likelihood L(p) : P(Y |p)π(p) over the
parameter space P that associates upper and lower bounds with
each cell Cj⊆P .

Example 3.0.1 We will illustrate this on the simple ball example
(Ex. 2.0.3) which seeks to infer a parameter g∈ [7,12] under the
uniform prior. We partition the parameter space into five cells

C1 : [7,8], C2 : [8,9], C3 : [9,10], C4 : [10,11], C5 : [11,12].

Let us consider the cell C1. We know that the value of y(t) is
given as y(t)=y0+vy(0)t−

1
2gt

2. Thus, we have

y(1)=−4−0.5g=q1,1(g), y(2)=−8−2g=q1,2(g).

As a result, we obtain

P(C1|Y )=

∫ 8

7

1

2π
e

(

−

(0.5g+4−9)2+(2g+8−31)2

2

)

1

5
︸ ︷︷ ︸

I1(g)

dg

We can compute bounds for the integrand I1(g) as
I1(g) ∈ [10−56, 10−41]. Similarly the bounds for other
intervals are obtained as follows:

C1 C2 C3

[2.6E−20,4.4E−13] [4.4E−13,1.1E−7] [1E−7,3.5E−4]

C4 C5

[3.5E−4,0.018] [0.017,0.024]

As the reader will notice, the posterior probability of cells
C1−C3 is negligibly small compared to the remaining ones.

3.3 Normalization

Next, we will consider the problem of constructing a normal-
ized distribution from the unnormalized model. Thus far, we
have computed bounds [lj, uj], corresponding to the cell Cj, for
j=1,...,K. This provides an interval for the unnormalized like-
lihood for each cell. Let W be a normalization constant P(Y )=
∫

P
P(Y |p)π(p)dp. A distribution D over P is compatible with

the bounds [lj,uj] for each cell Cj iff PD(Cj)∈
1
W
([lj,uj]). Let

unknowns pj∈ [0,1] represent the unknown probability PD(Cj)
under some compatible distribution D. We have the constraint

Ŵlj≤pj≤Ŵuj,

wherein Ŵ is a place holder for 1
W

Thus, we can formulate
a linear program to compute bounds on the upper and lower
probabilities for each cell and the constant W .

max(min) pj
s.t. Ŵ lj≤pj≤Ŵuj, j=1,...,K

Ŵ≥0 p1+...+pK=1 p1,...,pK∈ [0,1]
(4)

The LP can be solved analytically to yield the bounds [Wang
and Elhag, 2006]

lj
lj+

∑

i6=jui
≤pj≤

uj
uj+

∑

i6=jli
.

Besides minimizing/maximizing the probability of a cell, we
can use the model to estimate bounds on the expectation of
function h(p) over the parameters.

Example 3.0.2 Returning to Ex. 3.0.1, we note can compute
bounds on the probability of cell C5 as

0.017

0.17+0.018+ǫ
≤p5≤

0.024

0.024+ǫ
,

wherein ǫ≤0.001. The bounds are p5∈ [0.48,0.986]. The bounds
for theC4 are p4∈ [0.014,0.514]. CellC3 bounds are in the range
[8.2×10−3,2.4×10−6]. The remaining cells have probabilities
less than or equal to 10−5. The bounds are illustrated in Figure 1.

Thus, as we see in the example, a uniform decomposition often
yields many cells with negligibly small probabilities and relatively
fewer cells that carry the bulk of the probability. Thus, we need
a refinement process that adaptively creates smaller sub cells to
refine the approximation of the posterior.



Figure 2: Upper bounds (red) and lower bounds (blue) for the posterior
probabilities of each cell in the Fitzhugh-Nagumo model along with
histogram of samples from MCMC (lightblue).

3.4 Refining the Decomposition

The key drawback of our approach thus far is the need to de-
compose the parameter space, which makes the computational
cost prohibitively expensive as the number of parameters grows.
One approach to alleviate this lies in adaptively decomposing the
parameter space. The adaptive decomposition is useful in many
cases wherein large portions of the parameter space have very low
posterior probabilities since they exhibit severe mismatches with
the observed data. In these situations, a coarse approximation of
these low probability regions combined with a finer abstraction of
the higher probability regions yields a faster approach. To enable
this approach, we choose an initial partition width ∆0. After
partitioning the parameter space, we compute likelihood bounds
for each cell, as described thus far. Next, we select a subset of the
cells according to a refinement criterion. For this paper, we pro-
pose a refinement strategy that refines a cell Cj based on whether
its difference in the log upper-bound likelihood uj from the max-
imum log upper-bound likelihood umax within a range W , i.e.
logumax−loguj ≤W . The threshold W is chosen by trial and
error for each benchmark example. Additionally, for a cell to be

refined relative difference d= (u−l)
u

of the likelihood interval [l,u]
must be smaller than the threshold d. In our evaluation, the relative
difference is chosen to be 0.1. Other refinement strategies could
include selecting cells with maximum uncertainty width (uj−lj);
or using samples from a numerical Monte-Carlo scheme to select
cells according to the decreasing order of the number of samples
drawn inside each cell. Once a cell is chosen, it is further decom-
posed into smaller sub-cells and the entire process is repeated.

Example 3.0.3 (Fitzhugh-Nagumo Model Posterior) We will
consider the Fitzhugh-Nagumo model from Ex. 2.0.2. We fix
the nominal parameters to θ1 = 0.3 and θ2 = 0.15 and create
simulations. Now, we set the parameter space to be θ1 ∈
[0,0.5],θ2∈ [0,0.3]. The posterior bounds are shown in Figure 2.

3.5 Rapid Exploration Using Sensitivity Analysis

Thus far, we have used ideas from reachability analysis to
infer likelihood bounds on cells. However, in practice, running
reachability analysis for each cell can be quite expensive, since
these approaches attempt to maintain error intervals within
specified ranges by taking even smaller steps over time or
increasing the degree of the Taylor model. As a result, we find
that existing solvers rapidly exhaust computational resources at
the very first step which involves coarse refinement of P .

We can however achieve a speedup using sensitivity analysis
to find a linear mapping between the parameter values and the
outputs y(ti;p) for the current cell Cj. To achieve this, we
proceed as follows:

1. We compute a Jacobian matrix J(pj, ti) =
∂y(ti)
∂p

|p=pj

around a center point pj chosen in cell Cj. This allows us
to approximate the effect of a perturbation pj+δ:

y(ti;pj+δ)≈y(ti;pj)+J(pj;ti)δ. (5)

2. We use Eq (5) rather than a sound Taylor model approx-
imation as shown in Eq. (2) in order to obtain a rapid
approximation of the likelihood bounds according to Eq (3).

The use of an unsound approximation is motivated by two
important considerations: (a) For cells Cj that have a very low
likelihood in the posterior, an approximation of the trajectory
suffices to note that the bounds are quite coarse. (b) On the
other hand, since we repeatedly refine the cells Cj that have
larger likelihoods, although the bounds obtained are inaccurate
for large cells due to the linearization error, the refinement to
smaller cells makes the linearization quite precise and can bring
the error to within acceptable limits. As a result, we use linear
sensitivity analysis rather than sound reachability analysis to
rapidly compute reachable state estimates for each cell Cj.

4 Experiments

We have implemented the ideas presented thus far in the C++
programming language using the ODEINT ODE solver. Our
implementation uses the adaptive refinement strategy presented in
Section 3. A detailed description of the benchmarks will be made
available in the future as an extended technical report. Table 1
shows the benchmarks and the number of parameters considered
for each benchmark as well as the number of state variables in
the model. For each benchmark a “ground truth” parameter value,
given in Table 1, was fixed to generate simulations from a fixed
initial condition. One of the state variables is taken to be the
output and thus the data is generated. The sampling distribution
is taken to be a zero mean Gaussian distribution whose variance
is adjusted based on the magnitude of the outputs.

Table 1 presents the computation time and the expectation
E(p) of the parameters. The expectation of the posterior obtained
from our approach is computed using the upper bounds of the
probability of each cell and the center point pj of cell Cj as its

nominal parameter value:

∑

j
P(p∈Cj|Y )uppj

∑

j
P(p∈Cj|Y )up

. We compare this

against the expectations obtained from the MCMC and SMC
samples, noting that the computed values are nearly identical in
all cases. This agreement serves to quantify the precision that
can be derived from our approach.



Benchmark n,np Time(s) E(p)DSA Time(s) NMCMC E(p)MCMC NSMC E(p)SMC Ground
of DSA of MCMC truth

FITZHUGH-NAGUMO

model-1 2, 2 38 [0.295,0.16] 2011 7K [0.29,0.16] 100K [0.29,0.16] [0.3,0.15]
model-2 2, 3 1077 [0.26,0.10,0.41] 11410 30K [0.26,0.09,0.39] 400K [0.26,0.09,0.40] [0.3,0.15,0.5]

Rossler 3, 2 34 [0.12,0.09] 1386 5K [0.11,0.09] 200K [0.11,0.10] [0.1,0.1]

LAUB-LOOMIS

model-1 7, 3 2612 [1.83,0.80,0.34] 1282 5K [1.52,0.80,0.39] 400K [1.92,0.80,0.33] [1.8,0.8,0.3]
model-2 7, 3 848 [0.93,0.77,0.27] 1251 5K [0.90,0.82,0.28] 400K [0.89,0.82,0.28] [0.9,0.8,0.3]
model-3 7, 4 557 [1.85,0.79, 4008 10K [1.64,0.79, 700K [1.39,0.78, [1.8,0.8,

0.29,2.49] 0.33,2.54] 0.50,2.58] 0.3,2.5]
model-4 7, 4 1794 [0.94,0.78, 3828 10K [0.94,0.80, 700K [0.95,0.80, [0.9,0.8,

0.26,1.46] 0.28,1.47] 0.26,1.48] 0.3,1.4]
model-5 7, 5 3974 [0.89,0.78, 4213 10K [0.86,0.85, 800K [0.87,0.82,0.29, [0.9,0.8,0.3,

0.29,2.63,1.27] 0.28,2.52,1.26] 2.59,1.27] 2.5,1.3]
model-6 7, 5 5239 [1.82,0.76, 3811 10K [1.62,0.77, 800K [1.92,0.77,0.32, [1.8,0.8,0.3,

0.31,2.67,1.26] 0.37,2.66,1.29] 2.67,1.29] 2.5,1.3]
model-7 7, 6 75166 [0.89,0.78,0.34, 4189 13K [0.85,0.84,0.34, 1M [0.84,0.87,0.34, [0.9,0.8,0.3,

2.68,1.28,1.99] 2.78,1.3,2.14] 2.67,1.3,2.04] 2.5,1.3,1.8]

GENETIC 9, 2 155 [50,49.1] 3120 10K [50,49.1] 200K [50,49.0] [50,50]

DALLA-MAN 10, 2 9119 [0.055,0.082] 24000 60K [0.055,0.081] 400K [0.055,0.082] [0.0581,0.0871]

P53 6,2 111 [8.96×10−4, 15600 12K [8.96×10−4, 250K [8.95×10−4, [9.0×10−4

9.90×10−6] 9.89×10−6] 9.89×10−6] 9.963×10−6]

ANALOG 3, 1 6 5.02 2010 5K 5.01 100K 5.06 5.0

Table 1: Comparison between our approach (DSA) and MCMC samples. n: number of state variables, np: number of parameters for inference,
E(p) estimated posterior expectation, NMCMC and NSMC: number of MCMC and SMC samples, and the ground truth of each benchmark is given.
All timings are in seconds. K denotes ×103 and M denotes ×106.

Figure 3: Dalla Man model: 60000 samples from MCMC.

The time taken by our approach is quite competitive when
compared to MCMC samples. However, the timing comparison
is not representative since the number of samples for MCMC
varies across benchmarks to achieve a given variance for our
estimates of E(p). In general, larger benchmarks require more
samples. However, some of the benchmarks are challenging
even though the number of parameters is small. For instance,
the two-parameter Dalla-Man model instance exhibits a strong
correlation between the parameters as seen in Fig. 3. This poses
a challenge for all the MC approaches as well as our approach.

5 Conclusion

We propose an approach to compute the approximation of the
posterior distribution. In the proposed method, the parameter
space is divided into multiple subsets, and the cells with the
highest probability are refined through iterations. The proposed
method calculates the probability bounds of the cells for
computing the likelihood. This calculation is achieved by using
a reachability analysis and bounding the value of the integration
of likelihood. The approach is evaluated over several nonlinear
benchmarks with a varying number of parameters and compared
with MCMC samplers. The bounds of the posterior can also to be
used to infer the probability bounds of satisfaction of properties.
Future work will investigate approaches to factor the joint
distribution over numerous parameters into simpler distributions
over subsets of parameters by analyzing how they are correlated.
This can help our approach scale to larger parameter spaces.
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