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Abstract

The paper continues (Shcherbina and Shcherbina in Commun Math Phys 351:1009-1044,
2017); Shcherbina in Commun Math Phys 328:45-82, 2014) which study the behaviour of
second correlation function of characteristic polynomials of the special case of n x n one-
dimensional Gaussian Hermitian random band matrices, when the covariance of the elements
is determined by the matrix J = (—W?2A + 1)~!. Applying the transfer matrix approach,
we study the case when the bandwidth W is proportional to the threshold /.

Keywords Band matrices - Characteristic polynomials - Transfer matrices

1 Introduction

Asin[18,21], we consider Hermitian n x n matrices H whose entries H;; are random complex
Gaussian variables with mean zero such that

E{H;;Hi} = 8ixdji Jij, (L.1)

where X
Jij=(=W2A+1), . (1.2)
and A is the discrete Laplacian on £ = [1, n] N Z with Neumann boundary conditions. It is
easy to see that the variance of matrix elements J;; is exponentially small when [i — j| > W,
and so W can be considered as the width of the band.
The density of states p of the ensemble is given by the well-known Wigner semicircle law
(see [3,16]):

p(E) = Q2n) W4 —E2, Ee[-22]. (1.3)

Random band matrices (RBM) provide a natural and important model to study eigenvalue
statistic and quantum transport in disordered systems as they interpolate between classical
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Wigner matrices, i.e. Hermitian random matrices with all independent identically distributed
elements, and random Schrodinger operators, where only arandom on-site potential is present
in addition to the deterministic Laplacian on a regular box in d-dimension lattice. Such matri-
ces have various application in physics: the eigenvalue statistics of RBM is in relevance in
quantum chaos, the quantum dynamics associated with RBM can be used to model conduc-
tance in thick wires, etc.

One of the main long standing problem in the field is to prove a fundamental physical
conjecture formulated in late 80th (see [8,10]). The conjecture states that the eigenvectors of
n x n RBM are completely delocalized and the local spectral statistics governed by random
matrix (Wigner-Dyson) statistics for large bandwidth W, and by Poisson statistics for a small
W (with exponentially localized eigenvectors). The transition is conjectured to be sharp
and for RBM in one spatial dimension occurs around the critical value W = ./n. This is
the analogue of the celebrated Anderson metal-insulator transition for random Schrodinger
operators.

The conjecture on the crossover in RBM with W ~ /n is supported by physical derivation
due to Fyodorov and Mirlin (see [10]) based on supersymmetric formalism, and also by the
so-called Thouless scaling. However, there are only partial results on the mathematical level
of rigour (see reviews [5,17] and references therein for the details).

The only result that rigorously demonstrate the threshold around W ~ ./n for a certain
eigenvalue statistics was obtain in [21] (regime W > /n), [18] (regime W <« /n). Instead
of eigenvalue correlation functions these papers deal with more simple object which is the
second correlation functions of characteristic polynomials:

Fy(x1, x2) = E[det(xl — Hdet(xy — H)}. (1.4)

Characteristic polynomials of random matrices were studied for many classical ensembles
(see e.g. [1,2,4,6,7,11,15-20,22] and references therein). The interest to this spectral char-
acteristic is stimulated by its connections to the number theory, quantum chaos, integrable
systems, combinatorics, and representation theory.

The main results of [18,21] concern the asymptotic behaviour of F, with

&12
np(E)’
for RBM (1.1)—(1.2). Namely, let

x12=E+ Ee(=2,2), &,5%¢[-C,C]

D, = F2(E,E), F(xj,x2) = DQ_I - Fa(xy, x2).
Then we have the following theorem
Theorem 1.1 [18,21] For the 1d RBM of (1.1)—(1.2) we have
sinmé
lim 7 (E § _p-_¢ )=1 ™

+ , b=
00 2np(E) 2np(E) I, 1W< - ,
—V Cilogn

where the limit is uniform in & varying in any compact set C C R. Here E € (—2,2), and
p(x) is defined in (1.3).

W > pl/2+0.

)

The purpose of the present paper is to complete Theorem 1.1 by the study of correlation
functions of characteristic polynomials (1.4) near the threshold W ~ ,/n. The main result is

@ Springer



922 T. Shcherbina

Theorem 1.2 For the 1d RBM of (1.1)~(1.2) with n = C.W? we have

S
2np(E)" " 2np(E)

lim FQ(E +

n—0o0

) — (e—C*AU—ifﬂl’) . 1’ 1)’

where C* = C*/(27'rp(E))2. In this formula (-, -) is an inner product on a 2-dimensional
sphere S*, Ay is a Laplace operator on S?

Ay = -4 (1 )d = |Up)? (1.5)
U = dxx xdx’ X = 121 » .

U is a2 x 2 unitary matrix, and v is an operator of multiplication by
v(U) =1-2Upf (1.6)
on S?.

Remark 1.1 1t is easy to see that if W >> /n (and so C* — 0), then we have

sinmé

a3

(e—C*AU—ﬂi%'ﬁ . 1’ 1) ~ (e—ﬂifﬁ . 1, 1) —

Similarly if W <« /n (and so C* — ©0), then we get
(e—C*AU—rriEf) 1, 1) ~ (E_C*AU 1, =1.
Thus the result of Theorem 1.2 “glues” together two parts of Theorem 1.1.

Remark 1.2 The study of eigenfunctions and spectral statistics in the critical regime (near the
threshold) is of independent interest. Critical wave-functions at the point of the Anderson
localization transition are expected to be multifractal. Moreover, multifractal structure occurs
in a critical regime of power-law banded random matrices (see the review [9] and reference
therein for the details). Although the correlation functions of characteristic polynomials (1.4)
are not reach enough to feel this phenomena, the techniques developed in the paper can be
useful in studying the usual correlation functions of 1d RBM near the threshold.

The proof of Theorem 1.2 is based on the techniques of [18]. Namely, we apply the version
of transfer matrix approach introduced in [18] to the integral representation obtained in [21]
by the supersymmetry techniques (note that the integral representation does not contain
Grassmann integrals, see Proposition 2.1).

The paper is organized as follows. In Sect.2 we rewrite F> as an action of the n-th degree
of some transfer operator K¢ (see (2.5) below) and outline the proof of Theorem 1.2. In
Sect.3 we collect all preliminaries results obtained in [18]. Section4 deals with the proof of
Theorem 1.2.

We denote by C, Cq, etc. various W and n-independent quantities below, which can be
different in different formulas. To reduce the number of notations, we also use the same
letters for the integral operators and their kernels.

2 Outline of the Proof of Theorem 1.2

First, we rewrite F; as an action of the (n — 1)-th degree of some transfer operator, as it was
done in [18].
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For X € Herm(2) define

1 ihoy\2 1 ,
f:=}‘(X)=exp[—ZTr<X+TO> +§Tr10g(X—zA0/2)—C+}, @.1)
fe 1= Fe(X) = F(X) - exp [ - 2np’(E) Tr Xg}

with & = diag (€, —&}, Ao = E - Iy,

ay = +,/1— E2/4 (2.2)
Co=imy <a+1 + ﬂ)2 ~ Lt tog (ay 1 = in0/2). (2.3)
4 2 2
Set also H = Ly[Herm(2)], and let K, K¢ : H — H be operators with the kernels

2

w* w

K(X.Y) = 5 F(X) exp { - ST - Y)2] F(Y): (2.4)
w* w2

Ke(X.Y) = 3 Fe(X) exp[ - ST (X - Y)2} Fe(Y). 2.5)

As it was proved in [18], Sect.2, we have

Proposition 2.1 ([18]) The second correlation function of characteristic polynomials of (1.4)
for 1D Hermitian Gaussian band matrices (1.1)—(1.2) can be represented as follows:

& E_ &
np(E) np(E)

where (-, -) is a standard inner product in H

F2<E i ) = —Ca(®) - W ¥det2J (K[ fe. fo). (26)

(f(X). g(X)) = / FX)ZX)dX, dX =dX11dXndMX)d(S3X 1),
p is defined in (1.3), and
Ca(§) = exp {2nCy + &% /np(E)*}
with C4. of (2.3).

For an arbitrary compact operator M denote by A ; (M) the jth (by its modulo) eigenvalue
of M, so that [Lg(M)| > |AM(M)]| > ....

The idea of the transfer operator approach is very simple and natural. Let (X, Y) be the
matrix kernel of the compact integral operator in L[ X, diu(X)]. Then

/ gXDK(X1, X2) ... K(Xno1, Xa) f (Xo) [ [din(Xi) = (K" £, 8)

=Y ¥ ®)ej, with ¢ = (f 978 V),
j=0

where {1/} are eigenvectors corresponding to {A;(KC)}, and {1/?,-} are the eigenvectors of C*.
Hence, to study the integral, it suffices to study the eigenvalues and eigenfunctions of the
integral operator with the kernel (X, Y).
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924 T. Shcherbina

The main difficulties in application of this approach to (2.6) are the complicated structure
and non self-adjointness of the corresponding transfer operator K¢ of (2.5).

In fact, since the analysis of eigenvectors of non self-adjoint operators is rather involved,
it is simpler to work with the resolvent analog of (2.6)

n 1 n
(KE™' fe, fo) = —Tf NG @ fe, fe)dz, Ge(2) = (Ke =), 2.7)
Tt Jr

where L is any closed contour which enclosed all eigenvalues of K.
To explain the idea of the proof, we start from the following definition

Definition 2.1 We shall say that the operator A, w is equivalent to B, w (A, w ~ By, w) on
some contour £ if

/ N Anw — 27V, 9)dz =/ I HBaw — 27 fL9)dz (1 +0(1), n, W — o0,
L L

with some particular functions f, g depending of the problem.

The aim is to find some operator equivalent to K¢ whose spectral analysis we are ready
to perform. Now we are going to discuss how this was done on the ideological level. The
specific choice of the contour £ and functions f, g for each step will be discussed in details
in Sect. 4.

It is easy to see that the stationary points of the function F of (2.1) are

Xy=ay-h, X _=a_ Iy
X+(U)=a, ULU*, U€eU(Q), (2.8)
where a4 is defined in (2.2), 10](2) =U®R)/U(1) x U(1), L = diag {1, —1}. Notice also
that the value of || at points (2.8) is 1.
The first step in the proof of Theorem 1.2 is to apply the saddle-point approximation.
Roughly speaking, we show that if we introduce the projection P onto the W~/ log W-

neighbourhoods of the saddle points X, X_ and the saddle “surface” X, then in the sense
of Definition 2.1

Kg ~ PSKEPS = Ks’g. (2.9)

This step was done in [18]. The exact meaning of the projection operator Py will be explained
in Sect. 3 (see the definition of the operator P in (3.11)).

To study the operator K ¢ near the saddle “surface” X+ we use the “polar coordinates”.
Namely, introduce

t=(ar —bi)(ax—b2), pla,b)= %(61 —b)*, (2.10)

and denote by dU the integration with respect to the Haar measure on the group U (2): in the
standard parametrization

L6
U:< .COS(p_ie sing - e >’ @.11)
—sing -e cos @

we have

1
dU = —ududf, u=|sing|el[0,1], 0 €]0,2n).
T
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Consider the space L» [R2, p]x Lz[f/ (2), dU]. The inner product and the action of an integral
operator in this space are

(frg)p = / Fa. b)g(a. b)pa. b) da db:

Mf)ay, by, Uy) = /M(al, b1, Ur; az, by, Us) f(az, by, Uz) plaz, by)dar dby dUs.
(2.12)

Changing the variables
X =U*AU, A =diag{a,b}, a>b, UceUQ),

we obtain that Kz = K + I?; can be represented as an integral operator in L[R2, p] x
L,[U(2), dU] defined by the kernel

K:(X,Y) = K(a1, b1, Us; az, by, Up) + Kg (ar, by, Uy az, ba, Un), (2.13)
where
K (a1, by, Uis az, by, Up) =t~ A(ar, ) A(b1, b2) K (t, Uy, Ua);
Ko(t, Uy, Up) = W2 . ezWZTrU1U§L(U1U2*)*L/4—rwz/2;

Ke(ay, by, U1' az, by, Us) = K (ai, by, U1' az, by, Ua)(e it (viar—by.Un)-+viaa—ba.U)/n _ 1);
vix,U) =

TrULU*L =
(E ) (E)

(1 =2|U*) (2.14)
with 7 of (2.10). K, here is a contribution of the umtary group U(2) into operator K, and
exp{—i&mv(x, U)/n} comes from the factor exp{— 5,7 p Tr X fE} which is 1/n order pertur-
bation of F appearing in F (see (2.1)). Operator A is a Contrlbutlon of eigenvalues a, b and
it has the form

Alx,y) = (27_[)—1/2We—g(x)/2e—Wz(x—y)z/Ze—g(y)/Z;
g(x) = (x +iE/2)%/2 —log(x —iE/2) — C4. (2.15)

Note also that _
[Kell < C/n (2.16)

with some absolute C > 0.

Observe that the operator K. (f, Uy, Uz) with some ¢ > 0 is self-adjoint and its kernel
depends only on |[(U1UJ )12|%. Thus by the standard representation theory arguments (see
e.g. [23]), its eigenfunctions are the classical spherical harmonics. More precisely:

Proposition 2.2 Consider any self-adjoint integral operator M in Lo[U(2), dU] (see (2. 11))
with kernel M (U, Up) depending only on |(U; U2*)12|2. Then its eigenvectors {¢](U)} (j =
(j,$), j=0,1,...,s =—]j,..., j)are the standard spherical harmonics:

. |2(2(_/11U12)S, (2.17)
=1l= 12

d
015 (U) =1 P (cosp) e =1 (=) P;x)
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926 T. Shcherbina

where U has the form (2.11), and P; is an associated Legendre polynomial

PS(cos x) = (sinx)S(L)sP(cosx) Pi(x) = Ld—j(xz 1)
J - dcosx/ "’ I T i jrdxi ’
I 2j+ DG —9)!
Jj.s = . .
(j + 9!
Moreover, the subspace
La[u,dU] C Ly[U(2),dU] (2.18)

of the functions depending on |Uy2|* only is invariant under M, and the restriction of M to
Lo[u, dU] has eigenvectors

¢;(U) == ¢j o). (2.19)

If M(Uy, Uz) = K (t, Uy, Up) of (2.14), then the corresponding eigenvalues {A (t)}?ozo, if
t > d > 0, where d is some absolute positive constant, have the form '

M) =1—e"",

) _ . —W?2¢ _ ](/ +1D .2 2
A =(—e )(1 S (407w t)). (2.20)
The proof of the proposition can be found in [18] (see the proof of Proposition 3.2 in

Appendix).
Notice that since
TrU*LUL = 2(1 — 2u?),

functions F, F¢ do not depend on 6 of (2.11), and hence according to Proposition 2.2 in what
follows we can consider restrictions of K, K, and I?g of (2.14) to La[u, dU] (to simplify
notations we will denote these restrictions by the same letters).

In addition, it follows from Proposition 2.2 that if we introduce the following basis in
Ly[R?, p] x Lofu, dU] (see (2.12))

Vi j(a, b, U) = Vi(a, b)g;(U),

2
Yi(a,b) = \/;w — b)Y, (@)Y, (b),

where k = (k1, k), and {k (x)},fio is a certain basis in L, [R], then the matrix of K of (2.14)
in this basis has a “block diagonal structure”, which means that
(KW Ve )p =0, j#J1
(K\I-',;,’j, lIJ,;’j)p = (K;jVp, ¥,

=/?»j(t)A(al,az)A(bl,bz)lﬁkl(al)lﬂkz(bl)llfk; (a2)¥p, (b2)dardbidardb,.  (2.21)

The next step in the proof of Theorem 1.2 is to show that only the neighbourhood of the
saddle “surface” X4 gives the main contribution to the integral, and moreover we can restrict
the number of ¢; to I = [log W]. More precisely, we are going to show that in the sense of
Definition 2.1

Kse~PKsePr=: K1t (2.22)
where P is the projection on the linear span of {\IJ,;’j (a, b, U)}jsl,llE\Sm'
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For the further resolvent analysis we want to change ¢ in the definition of K, and a; — by,
ay — by in the definition of I?; (see (2.10), (2.13)—(2.14)) by their saddle-point values * =
(ay — a_)? =4x%p(E)? and aty —a_ = 2np(E) correspondingly. More precisely we want
to show that in the sense of Definition 2.1

Kimig ~ An @ Kyg (2.23)
where

Ky = Q1 Kye Q1
K*E (Ul, UZ) — Wzt* _et*W2(TrU1 UZ*L(UI Uz*)*L—Z)/4 . e—ién(u(an(E),w)+v(271,0(E),U2))/n
(2.24)

and Q) is the projection on {¢; (U)} ;<. The operator A,, in (2.23) is defined as
Am = PpA(ar, a2) A(by, b2) Py, (2.25)

where Py, is the projection on {Wj(a, b)}|,;|§m.
Now (2.23), (2.7) and Definition 2.1 give

& E_ &
2np(E)’ 2np(E)

F2<E n ) - c,,((/c’;g} ® Af’n_l)fg, f;)(l +o(1))
= (7 i DKL 1L DA+ o(1)),

where we used that fg asymptotically can be replaced by fi ® 1, where f; does not depend
on £ and U;. Similarly

Dy = Co(Klg" @ Ap7 £, (1L +0(1) = (A1 f1, fKLG) L DA+ o(1).

According to Proposition 2.2, ¢o(U) = 1 is an eigenvector of Ko of (2.24) with & = 0 and
the corresponding eigenvalue is 1, thus

(Kiyj1.h =1 (2.26)
Hence
I E ‘?5_ _ n—1
Fr(E+ o E 2n,o(E)> = (K" 11, D1+ o(1)). 2.27)

Recall that according to Proposition 2.2 the eigenvectors of Ko ; are (2.19) and the corre-
sponding eigenvalues are (see (2.20))

A=) = 11—+ D/EWHO0GG+D)/WHD, j=0,1...,1. (2.28)
Moreover, it follows from (2.13)—(2.14) that
Kig1 = Ksog —n " 'migd +o(n™") (2.29)

where D is the operator of multiplication by (1.6), and o(1/n) means some operator whose
normis o(1/n). Thus the eigenvalues of /Cy¢ ; are in the n~!-neighbourhood of A j- Therefore
in the regime of localization W2 n~! considered in [18]

M (K)l < 1 - 0(W™?),
thus only Ao(KCyg) gives the contribution to (2.27). Since

(1,1 =0,
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928 T. Shcherbina

we get
r(Kug) = 1 +om™")

and so the limit of (2.27) is 1.

In the regime of delocalization considered in [21] (by another approach) all eigenvalues
of K¢, give contribution to (2.27), but IC:(I ll — I (roughly speaking, this means that the
second term in the r.h.s. of (2.28) does not give a contribution). Hence we have

sin(rr&)

Kies ~1—n"ligmo = (KI7 LD —> (75771, 1) = e

In the critical regime W2 = C,n~! considered in the current paper again all eigenvalues of
K¢, give contribution, but now both second term in the r.h.s. of (2.28) and 1/n-order term
in the r.h.s. of (2.29) make an impact.

It is well-known that the spherical harmonics (2.17) are the eigenfunctions of the spher-
ical Laplace operator. In our case Ay of (1.5) depends on |U 12|2 only, so its restriction to
Lo[u, dU] has eigenvectors (2.19) with corresponding eigenvalues

M= G+ ).

Thus 1 — n~'C* Ay with C* = C,/t* has the same basis of eigenvectors with eigenvalues
1—j(j+ 1)/ rw2.

Recall that we are interested in j </ = [log W] and Q is the projection on {¢; (U)};<;.
Hence, according to (2.28)—(2.29), in the regime W2 = C,n~! we can write

Kigr = Qi(1 —n N (C*Ay +i&mv) 0 + O(*n™2), (2.30)

which implies o
(KI 11, 1) — (e CAu=itmiy ), 2.31)

and finishes the proof of Theorem 1.2. The detailed proof of (2.31) is given in Sect.4 (see
Lemma 4.1).

3 Preliminary Results

Recall that stationary points X, X_, and X+ (U) of the function F of (2.1) are defined
in (2.8). Now choose W, n-independent § > 0, which is small enough to provide that the
domain

Qs = {X:|FX)| > 1— 5}

contains three non-intersecting subdomains Qfst Q; 2 , such that each of Q; Q2 contains
one of the points X4, X_, and Q;‘ contains the surface X4 (U) of (2.8).
To study K, K¢ near Qf;t we will use the representation described in (2.13)—(2.14).
Considering the operators K (X, Y), K¢ (X, Y) near the points X and X_, we are going
to extract the contribution from the diagonal elements of X, Y. To this end, put

_ ( a (x1 +iy1)/ﬁ> Y — ( a (x2 +iy2)/ﬁ)
(x1 —iy1) /2 by ' (x2 —iy2) /2 by '

@ Springer



Characteristic Polynomials for Random Band Matrices Near the Threshold 929

Now rewrite K (X, Y), K¢(X,Y) of (2.4)—(2.5) as

Ke(X,Y) = K(X,Y)+ Ke(X,Y),
K(X,Y) = A(a1,a2) A(b1, b2) A1 (X, Y), 3.1
where the kernels A (the contribution of the diagonal elements) is defined in (2.15), and A

(the contribution of the off-diagonal elements, which however depends on diagonal elements
as well) has the form

AL(X,Y) = Qo) ' W2FI(X) - exp{—W2(x1 — x2)2/2 — W2 (31 — y2)?/2} - Fi(Y);

_ PN _ x4+ yi
FI(X)_GXP{ 4()””1”210‘%(1 Z(al—iE/Z)(bl—iE/Z))}’ -2

The perturbation kernel K ¢ in this coordinates is

Ke(X,Y) = Alar, a2) A(b1, b2) A1(X, Y) (e—ﬁim(“l—”“*(“z—hﬂ) - 1). (33)
It is easy to check that for g defined in (2.15)
glar +x) —glax) = cixz + C3ix3 +...
with
cr =a,(V4— E2EiE)/2, %y =Re_ > 0, (3.4)

and some constants ¢34+, C4+, . . .

As was mentioned above, the first step (2.9) in the analysis of operators K, K¢ is based on
the saddle-point approximation and was done in [18] (Sect. 4). The main idea was to prove
that the main contribution was given by the “projections” onto the domains Q;E, Q;, Qy,
where the operators A, A are close to their quadratic approximations near the saddle-points
a+ of (2.2). Thus the information about the “projections” of K, K¢ onto the domains Qgt,
Qj 25 can be obtained by the analysis of A, A near the saddle points a+ (see Sect. 3.1
of [18]) and information about K, provided in Proposition 2.2. Following [18], define the
useful basis in which the quadratic approximation of A near a. is an upper-triangular matrix
(see Lemma 3.1 of [18]). Namely, consider the orthonormal in L;[R] system of functions

Y (x) = e_"‘wxz(‘/aW/n;

Yo (x) = h;l/Ze—awﬂezmww%(%)ke—zmwwﬁ — W ()
¢ = Kl@Ra - W2V 2m, k=1,2,... (3.5)
with some « such that R > 0. It is easy to see that for any C > 0
Ur(x) = 0(e=Y) for|x| > C, k< W. (3.6)
Set
Ve @) =Yt (x —ax) (3.7)
with
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930 T. Shcherbina

To define the precise “projections” on the domains Qf, Qj, Qy, set
m = [log® W]. (3.8)

The order of m is chosen in such a way that m > Clog W, and m? /W — 0,as W — oo,
forany C, p,o > 0.

It follows from (3.6) that wki are exponentially small outside of the small neighbourhood
of ay for any k < W, and so the projection on {w,fc}Z’zo gives the “projection” onto the
neighbourhoods of a+. More accurately, consider the system of functions

(WL j shiki<m. j<emwyir2s
k = (ki, k2), |k| = max{ky, k}, (3.9)

obtained by the Gram—Schmidt procedure from

Uo Ve Yt <m: j=mmwy1r2:
where

Vi i@, b, U) =¥i(a,b)¢;U),

2
Wi, b) = \Ew =)~ @ (). (3.10)

Notice that according to (2.28) the eigenvalues of K, (¢, Uy, U>) of (2.14) corresponding to
¢;(U) with j > (mW)Y/2 are smaller than 1 — Cm?/W for anyt >d > 0.

Similarly, consider the system of functions {\plgfs}llz\fm (with k = (k1, ko, ka3, ka), |k| =

max{k;}) obtained by the Gram-Schmidt procedure from
(g Y3 @ Vs B) Wit (6 + ) Ui (6 + @) g

and define {\IJ/; a}l Fl<m by the same way. Denote Py, P4, and P_ the projections on the
subspaces sparfned on these three systems. Evidently these three projection operators are
orthogonal to each other. Set

P:Pi+P++P7, '}-[1:})7—[7 Hz:(l—P)H, H:HI@HZ» (311)

where H = L;[Herm(2)] (the projector P corresponds to projector P in (2.9)).
Besides, it is easy to see that for any ¢ supported in some domain €2 and any C > 0

(Ko)(X) = 0(e=") for X : dist{X, Q) > C > 0 (3.12)

with K of (2.4) (see (4.4) of [18]).
Consider the operator K as a block operator with respect to the decomposition (3.11). It
has the form

KW =K+ Ky + K-+ 0",
Ki:=P.KP., K,=P.KP,, K_:=P_KP_,
K19 = PyK(I+ — Px)+ PLK(Iu — Py) + P_K(I_ — P_) + O(e™™),
K® = (I — PO)KPy + Iy — PO)KPy + (I — PO)KP_ + O(e™W),
K@ =1 -P)K(1—-P), (3.13)
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where I+, I, and /_ are operators of multiplication by lgsi, IQ;, and 1% respectively.

Indeed, it is easy to see from (3.12) and (3.6) that,e.g., Py KP_f = 0(e~"), PLK(I+ —
P f = 0(e=W), etc. Similar decomposition can be written for K.
Notice that by (2.21) K+ also has a block diagonal structure:

(mw)1/2 . '
Ki= Y kY. KY =P;PLKkP.P;. (3.14)
=0

Here and below we denote by P; the projection on ¢; (U).

Remember that the final goal is to prove that K¢ ~ A,, ® K¢ ; in a certain sense, where
A, Kyg 1 are defined in (2.25) and (2.24). As will be shown below (see Lemma 3.1), the top
eigenvalue of A,, is close to Ag(K), and the spectral gap of A, is of order 1/W. Moreover,
since ||I€§ | < C/n with some n, W-independent C, the eigenvalues of K¢ ; lie in C/n-
neighbourhoods (an so in C;/ W2—neighb0urh00ds) of the eigenvalues (2.28) of Ko, thus
in C1/WZ-neighbourhoods of points

JjG+1

Va7 (3.15)

Ajx=1~—
Hence the top eigenvalues of A, ® K lie in C/n-neighbourhoods (thus in C/W?2-
neighbourhoods) of points A; . - Ag(K) with some n, W-independent C. For small j the
distance between A 4 - Ao(K) is also of order c¢/n, so such neighbourhoods cannot be dis-
tinguished, but for j > D with sufficiently big D they do not have intersections. All other

eigenvalues (corresponding to j > [) are smaller than [1o(K )|(1 - %) and so do
not important for us (see Lemma 4.2 below).
This motivates the following choice of the contour L£:
L=L1ULy, (3.16)
where
log? W
.c={: =AK<1—7)], 3.17
2= {2l = o1 = = s (3.17)
and
£y =1LuL’,
0 D’
2= estemnat = — 2,
z |z — Ao(K)| @ —a 2W2
_ )4
L! :UljleLj, Li={z:|z—Xjs ro(K)]| :W} (3.18)
with
[ =logW. (3.19)

Here y > 0 and D > 0 are sufficiently large (but y < D/2(ay — a_)?). Notice that
D

dist{L’, L'}y > ————— 3.20
ist{ )= 3, —a W2 (3:20)
. ClogW

dlSt{El, [Q} > T (321)

We have the following lemma
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Lemma 3.1 Given (2.25),

Ao(Am) = 2o(K) + 0™ E W) [31(A)] < 1ho(K) = C/W.  (322)
Moreover, the contour L encircles all eigenvalues of A, @ Kye i and if we set
GY(2) = (An ® Ksey — )7, (3.23)
then
1G22 < C\W? (3.24)
for z outside of L.

Proof of Lemma 3.1 According to (2.25) and the choice of W in (3.10) we have
Ap=AD @ AS) 1 0(eclog? W), (3.25)
where
A = P APy,

where Py and P_ are the projections on the subspaces spanned on the systems {w,i shieo
and {1//,; s respectively (see (3.7)). The behaviour of Aini) was studied in [18], Sect. 3.1.

In particular, it was proved in Lemma 3.3, [18] that
ro(AR)) = 14+ 0(1/W),  M(AG)] < ho(AF)] - (1 —¢/W).  (3.26)
Since also (see [18], Eq. (4.22))
ho(K) = Ao(AS) - 2o(AS)) + 018 W), (3.27)

we get (3.22).

Also according to (2.28)—(2.29) the eigenvalues of K¢ ; lie in the C/n-neighbourhood
of A« of (3.15) with some uniformly (in W and n) bounded C. Now this and (3.22) imply
(3.24) for the contour £ with sufficiently big D, y. O

It appears that eigenvalues of K, K¢ also lie inside £. Moreover, to implement the strategy
described in Sect. 2, we need additional information about K, K¢ described in the following
theorem (based on consideration in [18]):

Theorem 3.1 For the operators K defined in (2.4) we have

(1) the contour L of (3.16) encircles all eigenvalues of K, and for z outside of L we have
(K —2)7 1| < CW?;
(ii) Given 7z such that

2
y log® W
o RO 2 g 12 2 0RO (1= ) 3.28
o= R 0l = 450 1el 2 otOI(1 = (= (3.28)
with sufficiently big y > 0, consider G (z) = (K(ij) —2)"L. Then
1G] < Ciw?/y (3.29)
with some absolute constant Cy which does not depend on y.
In addition, for any z such that
Ao (ROI(1 log” W )<l =14Cf (3.30)
- n. .
0 (s —a_p2w2) == 2
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we have

Ky =2 <CW, I(K-—27'I<cw, (K®® -7 <cw/m'?

(3.31)
(iii) We have
1K@V < em®2 /w32, Ik < Cm/w, (3.32)
and for z outside of L we also have
KT =27 K| < cmP, IKPV KD — 27| < em? (3.33)

with some p > 0.

Same statements are valid for K¢ of (2.5).

Proof of Theorem 3.1 1t is easy to see that the part £; of the contour £ of (3.16) satisfies
(3.30), and £, satisfies (3.28). Although (3.28) and the domain (3.30) is slightly different
from eq. (4.33), [18] and

. 14
Dy ={z: |r(K)| — WS lz| = 1}

considered in [18], it does not change anything in the proof of Proposition 4.1 and Lemmas
4.1 — 4.3 of [18], and thus the proof of Theorem 3.1 for K and (3.24) follows from those
lemmas of [18].
To obtain the result for K¢ set
Gie = (KS(“) — = (kD 4 I?E(ll) — !
Gae = (KE(ZZ) — = (k™ 4 I?E(zz) — (3.34)

and denote by p and g some absolute exponents which could be different in different formulas.
Using the well-known Schur formula we get

(Ke =)' = ( Ge ~G{ VK PG > (3.35)
- - 1) ~(11) (21) ~(11) - (12) ’ :
—Goe KS GS Gos + Gz,gKé Gé Ké G

where
GUV = (KD = 2~ K026 e KO = (1= 61K Gre K2V) G e,
Denoting
R=(1-GeK!"Grek )™, (3.36)

we get

¢" = RG (3.37)

g = 1E- .
Notice that

1G ekl = IKTD =24+ KM ™KW + K

=11+ KT — )T KI)THKID — )l (k1D + K. (3.38)
Moreover (3.13) and part (ii) of the Theorem for operator K yield
Cin
1KY =271 < ==, (339)
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where y is sufficiently big and C; does not depend on y. Hence
KM = KV <c < 1.
Thus according to (3.38), (3.33) for K, and (2.16)
1G 1K = IR — 7 KT 4+ K]
< CUKM =T K 41k 1D — TR
< C(log? W+ Cy) < Clogl W.
Similarly

IKEDGrell < CIKPY + KEVYKTD — )71 < Clog? W

The bound (3.32) for K¢ trivially follow from (3.32) for operator K and (2.16), which finishes

the proof of (iii) for K.
In addition, due to the last bound of (3.31) for operator K and (2.16) we have

~(22 _
1G2ell = (K@ + K — 27!
= 1+ K =) KPP TKP — 7 = cW/m'

which gives the last bound of (3.31) for operator K. This implies

162,k < P2
Thus
1G1eK{P G KEVI < 1G1Le K| - 1626 KV < Ci;#
and so
IR =< C.
This, (3.36)—(3.37), and (3.39) yield
I1G¢" 1 < Cn.

Similarly (3.37) gives
11 12 12 12
IGIV KN = 1RG1eK ™| < IRI - 1G1e K™ < Clogh W,

which implies
I1GEVK{P Goell < Clog? W - W.

It is easy to see that
D 'lccaA-BD'O) "= -cAa'B)lca!,
thus
G27§K§(21)Gé11) _ (Kg(n) —z— Kg(Zl)GI,SKg(IZ))_lKE(ZI)Gl,é
= (1= G2eKPVG1 K Goe KV G .
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But
21 12 21 12 Clog? W
1626 KV GLeKE ™ | < 162KV - 161Kl < =
hence using (3.33) for Kz we obtain
1G2eKEVGIV | < CllGoe |l - 1KEV Grell < Clog? W - W. (3.45)

We also can write
21 11 12 21 11 12
1G2: KZV GV K Gaell < 1G2e P IKEVIIGE K| < Clog? w- w72 (3.46)

which finishes the proof of (i) for K.
Bounds (3.29)—(3.31) for K¢ can be obtained easily from those for K and from (2.16). O

4 Proof of Theorem 1.2

The key step in the proof of Theorem 1.2 is the following theorem

Theorem 4.1 Given G¢(z) = (K¢ — 2! with K: of (2.5), fe of (2.1), and the contour L
defined in (3.16)—(3.19), we can write for the integral in (2.7)

/ N Ge @) fe fo)dz

L

~ 1
- /z"*(G(;(z)(fli ® 1), (fi.2® D)dz + oK) -1 fil 0<1og7>
L

4.1)

where

fi=Pf, 4.2)

where P is the orthogonal projector to the the space H; (see (3.11)), and Gg is defined in
(3.23). Here f1 + is a projection of f on the linear span of {¥y, o(a, b), |k| < m} of (3.10).
In addition, given (2.25),

A fre fre) = oI AN - (1 +o(D)). “-3)

Let us assume that Theorem 4.1 is proved and derive the assertion of Theorem 1.2.
Indeed, since £ encircles all eigenvalues of A, ® K¢ (see Lemma 3.1), according to
the Cauchy theorem we get

1 _ _
~ 5 / NG (fre ® D, (fie ® D)dz = ((An ® Kue)" ' (frz® D, (L ® 1))

L
= (A fie i) - (KIS D).
Now let us prove
Lemma 4.1 Given (2.24), ifn = C.W?2, | = [log W] we have
(KI 1 D) = (72050 1), W oo,

with C* = Cy,/t* and ¥ as in Theorem 1.2.
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Proof of Lemma 4.1 Recall that according to (2.30)

Kier = Qi1 —n~'(C* Ay +igv) + 0@n )@y = g™ Q€ dutiEm0nnei g,
Here O(/2n~2%) means an operator whose norm is bounded by C/?n~2. Thus

Kngll _ Qle—Q,(C*Au+i§nv+0(12n’l))Q[ 01 = Qe 2C AUHEM (| 4 02 /n))Q;
A&, ;

ans so
(K11, 1) = (7 QCAvHEM QI 1) 1 012 /n).

Consider the basis {¢;} of (2.19). In this basis Laplace operator Ay is diagonal, and operator
» is three diagonal (since it corresponds to the multiplication by x in the space of Legendre
polynomials). To simplify notations, let F' be an operator of multiplication by (iw&v) and
A =C*Ay. Set

D=A+F,
DO =A+FD, (4.4)
where FO be the matrix F where we put Fyj+1 = Fry1; = 0. It is evident that (recall

o =1
€ g0, 40) = (e79P 910, o) = (e7 A AuHiETIC ),
Thus we are left to prove that

((e—D —eP")g0, ¢0) =0 (4.5)

Notice that both e~ 2, e’D(D are bounded operators, and |F| < C, |F(”| < C . We will use
the well-known Duhamel formula

t
el A = /6_('_3)A2(A1 — Ap)e*Mids. (4.6)
0

ForA; =D, Ay = DU andr =1 it gives
D D" ! 1-5)D® ! D
‘(e_ —e )qbo‘:‘/ e U=9DV (F _ FDye—s ¢0ds‘
0
1
—(1—5)D® _

=| [ P E B+ B B Pgnds|

0

1
=| /O eI (Fiprgran (™20, ¢r) + Fieu (e~ Do, b)) ds|
< C(|(67SD¢>07 o1)| + | (e P, ¢>1+1)|).

Here Ej ;4 is an operator whose matrix in the basis {¢;} has 1 at (/, [ + 1) place and zeros

everywhere else, and E;1 is defined in a similar way. Fj, Fj4q are (I,/ 4+ 1) and (I 4+ 1,1)
elements of the matrix F in the same basis.
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Now let us bound |(e =Py, ¢)|. To this end apply Duhamel’s formula (4.6) p = [1/2]
times with A; = D and A» = A. We obtain

4
(e Peo. ¢1) = Z/ (718 Fe™2AF . e 1%, 1) dsi..ds;

j=1 S1t..+sj<s
+ / (e_““DFe_SZAF e e P80, dp) dsy..dsp.
s1+ +v,,<r

SA

Since e™*7 is diagonal in the basis {¢;}, and F is only three diagonal, the expression

e SIAFe™2AF . e7Si%¢y is in the linear span of {¢}]_, and thus the sum above is 0.
Hence

‘ (7P o, ¢ ‘< ‘/ (e P Fe™8F .. e 2o, 1) dsi..ds)
1+ +vp<v

1.l

C's
§Cl‘/ dSl..dSp’ - <Cie” llogl_>0
S1ttsp<s I!

which finishes the proof of (4.5). m]

Lemmas 4.1 and (4.3) imply that

1 _
—5 / NG (e ® D), (fie ® 1)dz
Tl
L

is of order
oK™ 11 f1 2112,

and so (4.1) can be rewritten as

1 _ _
—%/Z"—‘(Gaz)fg,fg)dz = (A e fre) - (KL DU+ o(1), 7 — oo

This, a similar relation with £ = 0, (2.6), and (2.7), yield
Dy Fa(E + L B )
2p(E) " mp(E)
A i fue) - (Kl LD
A e A (K LD

Here we used (2.26). This relation and Lemma 4.1 complete the proof of Theorem 1.2.

(1+o0(1) = (Kig /1. {1 +o(1)).

4.1 Proof of Theorem 4.1

We are left to prove Theorem 4.1.
First we decompose f = (fi1, f2) with respect to decomposition (3.11). Observe that
since

IF(X)] < 1,
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and F(X) exponentially decreases at oo (in eigenvalues a, b), we have || f|| = const < 1.
Moreover it is easy to see that

22 C
IAIP = Uil = 170Ul = | @Witas) ([ @reev el aa) "2 £
with W50 of (3.10). Therefore

LAl = I fiell = €/W2, 4.7
We start with the following simple lemma

Lemma 4.2 The main contribution to the integral in (2.7) is given by the integral over the
contour L1 of (3.18), i.e.

bﬂ)

fz”“(Gs(z)fg, foydz = /z"‘%Gg(z)f, Pz + oGOr - 1A 0=

L L
where f is defined in (2.1). In addition,

/ HGUD 1 @ D, (fixe ® D)z = ro(K" ™ - I AIP - 0(e W), 48)
Lo
where L is defined in (3.17), and Gg(z) is defined in (3.23).
Proof of Lemma 4.2 Since for z € £, we have
12I"~1 < Ao (K) "] 'e—ClogZW’
we getusing [|Gg (2)|| < CW? (see part (i) of Theorem 3.1 for K:) that
’/ZH—I(GE(Z)fE’ fg)dz < C1lro(K)"! L e—C2log? W w2
Lo
= oGO AP oemCRE W),

Here we used (4.7). Similarly one can obtain (4.8) from (3.24).
Besides,
|£1] < Clog W/W?, (4.9)

and for z € £
Iz < Clag(K)|" . (4.10)

Thus, since || f — f¢ || < C/n, we get according to (4.7)

| [ £ Gertse = . Fordz| = o W = fel 124
L1

., logW _
< (KIS0 < oK - LA O

),

which gives the lemma. O

Lemma 4.2 yields that we can prove (4.1) for £ instead of L.
The next step is to prove that we can consider only the upper-left block K 5(1 D of K¢ (see
(3.13)). More precisely, we are going to prove
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Lemma 4.3 Given (3.34) and (4.2), we have

log? W)

/z"‘l(Gs(z)f, Dz = /z”‘l(sz) fi fodz+ PoGOI" - 112 - 0( o ).

Ly Ly

Proof of Lemma 4.3 According to (3.35) we have

/ N(Ke — )7V f, fHdz =/ z”fl(Gén)fl, fdz
L £
_/ NGV K Gag fo. fr)dz
Ly
Ly
+f£ &N (Gag + Goe KV GV K Go) fo. fodz.
1

Thus, we get using (3.44)—(3.45), (4.9)—-(4.10), || f2]| < C, and (4.7)

— 3 11 2 —
\/ G KM Goe fo. oz < 1G{ K )Gz,gll-llflll-lllel-/ 2"~ 1z
Ly

L)

Clogh W - W _ Clogh W B
ngviz'MO(K)w 1”fl”SO(W)||f1||2|),0(K)|n I
[ @7 Gaek 6L i | < 162KV GLVN AN - [ 1z
L1 1
Clog? W - W _ Clog? W _
= gT AR KOl < O(W) AN oK)

Notice that G, ¢ of (3.34) is analytic outside of £, (see (3.31)), and so

/ " NGag fo. fr)dz = 0.
L
Hence
/ N (Gog + GreKEVGL VKPP Gog) fo. )dz
Ly
= /[: Znil(Gz,gKg(zl)Géll)Ké(lz)Gz,gfz, fdz.
1

Thus (3.46) and (4.7) yield

| / PG KGR G 1o, forde]
Ly

IA

21 11 12 _
1G2: KV GV K, )G2,5||~||f2||2'/ 2"z

Ly
Clog’ W
w2

Clog? W - wl/2
B

= )" = o

) I oGO,
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Besides, according to (3.37) and (3.42)

[ 276 — G fode] < 1 = RI-1Ge AR [ e
1

Ly
< Sl W e ool = oS WY g2 oo
These bounds imply Lemma 4.3. O
Now write KE(H) —z, KD — 7 in the block form
according to decomposition
Hy = M| & Mo,

where M is a linear span of {W; x5, j < logW, k| < m} (see (3.9)). Then (see (3.13),
(3.14))
log W ) )
My=Y kY. KY =P;P.KP.P;.
=0

(mw)1/2 ‘
My=K;+K_+ Y K¢,

j=log W+1
M= 0"y, My =0, (4.12)

where P; is the projection on {W;(a, b)¢; (U)}.
Set
Grie@ = Knie—2) ' =M, (4.13)

where K, ;¢ is defined in (2.22). Notice also that, since fi does not depend on (U}, the
part of f corresponding to My is f1 + ® 1.
The next step is to show

Lemma 4.4 The operator Kg(“) of (3.13) can be replaced by K, 1 ¢ of (2.22), i.e. we can
write

/ N Gre (D) f1, Fi)dz

Ly

- 1
= [ £ Gre@ (s © . (i ® Dz + oGO L O(iogw)
Ly

Proof of Lemma 4.5 Denote
De =M ¢ — M12’§M2_’§M21,§, Dog=1-— M12,§M2_’51M21,§M1_é

and write f1 = (f+ ® 1, f12) according to the decomposition (4.11).
Using Schur’s formula we get

D! —D; "My M5}
Gl,gz( ¢ X § 12870 (4.14)

—My (Mo D' My g + My { Moy Dy ' Mo g M,
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Notice that according to (ii) of Theorem 3.1 M{; is analytic inside of £, and so
/ VM fia, fiodz =0,
Ly
thus
[ 27 Gre@pi. fidz = [ #7107 (e ® 1. (s © D)z
L Ly
- /Z”il(Dg_lMIZ,&MZ_’éf]Zv (f1.+ ® D)dz
Ly
— /Z”_I(M£§M21,ngl(f1,i ® 1), fi2)dz
L
+ / (M Moy D My e M5 fio, fio)dz 4.15)
Ly
Let z € £1. Then using (3.14) and (3.21) we can write (recall that log W ~ logn)
IM; 'l < Cn/logn.
In addition,
Ik — kD) < C/n,
_ _ 1 Cin Cy (-1
M = 1IM (4 (Mye — My)M;HT) < (1 - < Cn/logn,
M50 = WMy (1 Mg = MM D! s (o (1= o2 ™ < Con/logn
Mi2ell < C/n, Mgl < C/n. (4.16)
Here we used (2.16). Part (ii) of Theorem 3.1 also gives (recall n = C.W?)
IM 2l < Cn. (4.17)
In addition, using the resolvent identity we obtain
-1 -1 -1 —1 —1 -1
Dy — My} = MM M5 My e M EDG L (4.18)
According to (4.16)—(4.17) we get
||M12,§M£§M21,§M[§I| < C/logn,
thus
IDg ¢l < C. (4.19)
In view of (4.18)
_ _ Cn
D5 = Migl < o —.
’ ogn

Therefore, since according to (3.15), we have for z € L of (3.18)

21" < Cilro(K)I" ! - e IUHD,
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and |L;| = 2ny/W2, we get
]/ (D7 =MD (fia® 1), (fis ® Dz
I

Cn _ P
—— [ frxl? - oK) D L - e U
logn j_D

I A

s C _
AN o) Ze I < AN - RO
ogn

j=D
Now consider another integrals in (4.15). Using D¢ = Dy, é M g we obtain similarly

‘/z"_l(DglMlz,gM{éflz, (f1e® 1))dz‘
Ly

1
Cn n—1 —C2j(j+1)
sﬁ‘nfl,in-||f12||.|xo<1<>| Y L)l e

j=D

AN oK),

- log
and by the same argument
_ _ _ = C -
| [ Mz D (s 0 1. itz < 17‘||f1||2'|}~0(K)|n 3
’ ogn
L)

‘/ "N (M i My ¢ D! Mlngzgflz,flz)dz‘
Ly

LA - R (KM

log

This implies the lemma. O

Now we have the integral

/ NG fia @ D), (e ® D)dz.

Ly
The last step is to show

Lemma 4.5 The operator K, 1 ¢ of (2.22) can be replaced by Ay ® K i ;| (see (2.24)—(2.25)),
i.e. we have

/z"—l(GI,z(zxfl,i ® 1), (fi,e ®1))dz
Ly

= /z"“(G?(z)(fl,i ® 1), (fi+ ® D)z + oK™ - AP O
L)

log? W
wl/2 )

where G{ is defined in (3.23).
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Proof of Lemma 4.5 Using the resolvent identity we can write
G11(2) — G(2) = —GLR) (M ¢ — Ap ® Kue.)G1,1(2)
Since for (3.5)
i) = 0 W), x| = 2w P logW, k< m,

we get that both K, 1 ¢, Ay @ Ky are concentrated in the log W/ W1/2_neighbourhoods of
a+ (see [18], for details). In this neighbourhood

log W log W
a1—b1:a+—a_+0<%>, az—bzza_,_—a_—}-O(W,gl/z),
log W log W
_ _ 2 _
t=(a+—a-) +0(W1/2>_t*+0(W1/2)'
Thus according to (2.20)
ClogW

”Km,l,O - Am ® K*O,l” =< Wv

where K, 1.0, An ® Ky0,1 are Ky 1.6, An @ Kyg; with & = 0. In addition, in this neighbour-
hood

~ ~ ClogW
[Ke(X,Y) = Ke(X, Y)|y_y_y, I < .
§ & |X_Y_Xi W
Hence, since n ~ W2, we get
ClogW
||Km,l.§ - Am ® K*E,l” =< W,

and so

| /z"” (GL@UL @D, (fie® ) = (G @D, (fis®1))de|
Ly

CW* - log? W 5 ., _Clog?w 5 .
< ClLil - IAIP - o)™ < =2 8m= AP - 1o (I
O
We are left to prove (4.3).

It follows from (3.25)—(3.27) that
A" fies fre) = 2o(K)" 1 (A1, W5 0) P+ o(1)),

where we used that (f1 +, ‘I’(),o) = (f1, lIl(),O).
According to the definition of {Wz}z -, it is also easy to see that

117 = (1, W5 )P (1 + O(1/W)).
Thus

APV f o fia) = A(K)" ™ AP+ o0(1)),

which completes the proof of Theorem 4.1.
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