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Abstract
The paper continues (Shcherbina and Shcherbina in Commun Math Phys 351:1009–1044,
2017); Shcherbina in Commun Math Phys 328:45–82, 2014) which study the behaviour of
second correlation function of characteristic polynomials of the special case of n × n one-
dimensional Gaussian Hermitian random bandmatrices, when the covariance of the elements
is determined by the matrix J = (−W 2� + 1)−1. Applying the transfer matrix approach,
we study the case when the bandwidth W is proportional to the threshold

√
n.

Keywords Band matrices · Characteristic polynomials · Transfer matrices

1 Introduction

As in [18,21], we considerHermitian n×nmatrices H whose entries Hi j are randomcomplex
Gaussian variables with mean zero such that

E
{
Hi j Hlk

} = δikδ jl Ji j , (1.1)

where
Ji j = (−W 2� + 1

)−1
i j , (1.2)

and � is the discrete Laplacian on L = [1, n] ∩ Z with Neumann boundary conditions. It is
easy to see that the variance of matrix elements Ji j is exponentially small when |i − j | � W ,
and so W can be considered as the width of the band.

The density of states ρ of the ensemble is given by the well-knownWigner semicircle law
(see [3,16]):

ρ(E) = (2π)−1
√
4 − E2, E ∈ [−2, 2]. (1.3)

Random band matrices (RBM) provide a natural and important model to study eigenvalue
statistic and quantum transport in disordered systems as they interpolate between classical
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Wigner matrices, i.e. Hermitian randommatrices with all independent identically distributed
elements, and randomSchrödinger operators, where only a randomon-site potential is present
in addition to the deterministic Laplacian on a regular box in d-dimension lattice. Suchmatri-
ces have various application in physics: the eigenvalue statistics of RBM is in relevance in
quantum chaos, the quantum dynamics associated with RBM can be used to model conduc-
tance in thick wires, etc.

One of the main long standing problem in the field is to prove a fundamental physical
conjecture formulated in late 80th (see [8,10]). The conjecture states that the eigenvectors of
n × n RBM are completely delocalized and the local spectral statistics governed by random
matrix (Wigner-Dyson) statistics for large bandwidthW , and by Poisson statistics for a small
W (with exponentially localized eigenvectors). The transition is conjectured to be sharp
and for RBM in one spatial dimension occurs around the critical value W = √

n. This is
the analogue of the celebrated Anderson metal-insulator transition for random Schrödinger
operators.

The conjecture on the crossover in RBMwithW ∼ √
n is supported by physical derivation

due to Fyodorov and Mirlin (see [10]) based on supersymmetric formalism, and also by the
so-called Thouless scaling. However, there are only partial results on the mathematical level
of rigour (see reviews [5,17] and references therein for the details).

The only result that rigorously demonstrate the threshold around W ∼ √
n for a certain

eigenvalue statistics was obtain in [21] (regime W � √
n), [18] (regime W � √

n). Instead
of eigenvalue correlation functions these papers deal with more simple object which is the
second correlation functions of characteristic polynomials:

F2(x1, x2) = E
{
det(x1 − H)det(x2 − H)

}
. (1.4)

Characteristic polynomials of random matrices were studied for many classical ensembles
(see e.g. [1,2,4,6,7,11,15–20,22] and references therein). The interest to this spectral char-
acteristic is stimulated by its connections to the number theory, quantum chaos, integrable
systems, combinatorics, and representation theory.

The main results of [18,21] concern the asymptotic behaviour of F2 with

x1,2 = E + ξ1,2

nρ(E)
, E ∈ (−2, 2), ξ1, ξ2 ∈ [−C,C].

for RBM (1.1)–(1.2). Namely, let

D2 = F2(E, E), F̄2(x1, x2) = D−1
2 · F2(x1, x2).

Then we have the following theorem

Theorem 1.1 [18,21] For the 1d RBM of (1.1)–(1.2) we have

lim
n→∞ F̄2

(
E + ξ

2nρ(E)
, E − ξ

2nρ(E)

)
=

⎧
⎪⎪⎨

⎪⎪⎩

sin πξ

πξ
, W ≥ n1/2+θ ;

1, 1 � W ≤
√

n

C∗ log n
,

where the limit is uniform in ξ varying in any compact set C ⊂ R. Here E ∈ (−2, 2), and
ρ(x) is defined in (1.3).

The purpose of the present paper is to complete Theorem 1.1 by the study of correlation
functions of characteristic polynomials (1.4) near the threshold W ∼ √

n. The main result is
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922 T. Shcherbina

Theorem 1.2 For the 1d RBM of (1.1)–(1.2) with n = C∗W 2 we have

lim
n→∞ F̄2

(
E + ξ

2nρ(E)
, E − ξ

2nρ(E)

)
= (e−C∗�U−iξπν̂ · 1, 1),

where C∗ = C∗/(2πρ(E))2. In this formula (·, ·) is an inner product on a 2-dimensional
sphere S2, �U is a Laplace operator on S2

�U = − d

dx
x(1 − x)

d

dx
, x = |U12|2, (1.5)

U is a 2 × 2 unitary matrix, and ν̂ is an operator of multiplication by

ν(U ) = 1 − 2|U12|2 (1.6)

on S
2.

Remark 1.1 It is easy to see that if W � √
n (and so C∗ → 0), then we have

(e−C∗�U−π iξ ν̂ · 1, 1) ≈ (e−π iξ ν̂ · 1, 1) = sin πξ

πξ
.

Similarly if W � √
n (and so C∗ → ∞), then we get

(e−C∗�U−π iξ ν̂ · 1, 1) ≈ (e−C∗�U · 1, 1) = 1.

Thus the result of Theorem 1.2 “glues” together two parts of Theorem 1.1.

Remark 1.2 The study of eigenfunctions and spectral statistics in the critical regime (near the
threshold) is of independent interest. Critical wave-functions at the point of the Anderson
localization transition are expected to bemultifractal. Moreover, multifractal structure occurs
in a critical regime of power-law banded random matrices (see the review [9] and reference
therein for the details). Although the correlation functions of characteristic polynomials (1.4)
are not reach enough to feel this phenomena, the techniques developed in the paper can be
useful in studying the usual correlation functions of 1d RBM near the threshold.

The proof of Theorem 1.2 is based on the techniques of [18]. Namely, we apply the version
of transfer matrix approach introduced in [18] to the integral representation obtained in [21]
by the supersymmetry techniques (note that the integral representation does not contain
Grassmann integrals, see Proposition 2.1).

The paper is organized as follows. In Sect. 2 we rewrite F2 as an action of the n-th degree
of some transfer operator Kξ (see (2.5) below) and outline the proof of Theorem 1.2. In
Sect. 3 we collect all preliminaries results obtained in [18]. Section4 deals with the proof of
Theorem 1.2.

We denote by C , C1, etc. various W and n-independent quantities below, which can be
different in different formulas. To reduce the number of notations, we also use the same
letters for the integral operators and their kernels.

2 Outline of the Proof of Theorem 1.2

First, we rewrite F2 as an action of the (n − 1)-th degree of some transfer operator, as it was
done in [18].
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For X ∈ Herm(2) define

f := F(X) = exp
{

− 1

4
Tr

(
X + i	0

2

)2 + 1

2
Tr log

(
X − i	0/2

) − C+
}
, (2.1)

fξ := Fξ (X) = F(X) · exp
{

− i

2nρ(E)
Tr X

ˆ
ξ
}

with ξ̂ = diag {ξ,−ξ}, 	0 = E · I2,

a± = ±
√
1 − E2/4 (2.2)

C+ = 1

4
Tr

(
a+ I + i	0

2

)2 − 1

2
Tr log

(
a+ I − i	0/2

)
. (2.3)

Set also H = L2[Herm(2)], and let K , Kξ : H → H be operators with the kernels

K (X , Y ) = W 4

2π2 F(X) exp
{

− W 2

2
Tr (X − Y )2

}
F(Y ); (2.4)

Kξ (X , Y ) = W 4

2π2 Fξ (X) exp
{

− W 2

2
Tr (X − Y )2

}
Fξ (Y ). (2.5)

As it was proved in [18], Sect. 2, we have

Proposition 2.1 ( [18]) The second correlation function of characteristic polynomials of (1.4)
for 1D Hermitian Gaussian band matrices (1.1)–(1.2) can be represented as follows:

F2
(
E + ξ

nρ(E)
, E − ξ

nρ(E)

)
= −Cn(ξ) · W−4ndet−2 J · (Kn−1

ξ fξ , f̄ξ ), (2.6)

where (·, ·) is a standard inner product in H
(
f (X), g(X)

) =
∫

f (X)ḡ(X) dX , dX = dX11 dX22 d(�X12)d(�X12),

ρ is defined in (1.3), and

Cn(ξ) = exp
{
2nC+ + ξ2/nρ(E)2

}

with C+ of (2.3).

For an arbitrary compact operator M denote by λ j (M) the j th (by its modulo) eigenvalue
of M , so that |λ0(M)| ≥ |λ1(M)| ≥ . . . .

The idea of the transfer operator approach is very simple and natural. Let K(X , Y ) be the
matrix kernel of the compact integral operator in L2[X , dμ(X)]. Then

∫
g(X1)K(X1, X2) . . .K(Xn−1, Xn) f (Xn)

∏
dμ(Xi ) = (Kn−1 f , ḡ)

=
∞∑

j=0

λn−1
j (K)c j , wi th c j = ( f , ψ j )(g, ψ̃ j ),

where {ψ j } are eigenvectors corresponding to {λ j (K)}, and {ψ̃ j } are the eigenvectors ofK∗.
Hence, to study the integral, it suffices to study the eigenvalues and eigenfunctions of the
integral operator with the kernel K(X , Y ).
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924 T. Shcherbina

The main difficulties in application of this approach to (2.6) are the complicated structure
and non self-adjointness of the corresponding transfer operator Kξ of (2.5).

In fact, since the analysis of eigenvectors of non self-adjoint operators is rather involved,
it is simpler to work with the resolvent analog of (2.6)

(Kn−1
ξ fξ , f̄ξ ) = − 1

2π i

∮

L
zn−1(Gξ (z) fξ , f̄ξ )dz, Gξ (z) = (Kξ − z)−1, (2.7)

where L is any closed contour which enclosed all eigenvalues of Kξ .
To explain the idea of the proof, we start from the following definition

Definition 2.1 We shall say that the operatorAn,W is equivalent to Bn,W (An,W ∼ Bn,W ) on
some contour L if
∫

L
zn−1((An,W − z)−1 f , ḡ)dz =

∫

L
zn−1((Bn,W − z)−1 f , ḡ)dz (1 + o(1)), n,W → ∞,

with some particular functions f , g depending of the problem.

The aim is to find some operator equivalent to Kξ whose spectral analysis we are ready
to perform. Now we are going to discuss how this was done on the ideological level. The
specific choice of the contour L and functions f , g for each step will be discussed in details
in Sect. 4.

It is easy to see that the stationary points of the function F of (2.1) are

X+ = a+ · I2, X− = a− · I2;
X±(U ) = a+ ULU∗, U ∈ Ů (2), (2.8)

where a± is defined in (2.2), Ů (2) := U (2)/U (1) × U (1), L = diag {1,−1}. Notice also
that the value of |F | at points (2.8) is 1.

The first step in the proof of Theorem 1.2 is to apply the saddle-point approximation.
Roughly speaking, we show that if we introduce the projection Ps onto the W−1/2 logW -
neighbourhoods of the saddle points X+, X− and the saddle “surface” X±, then in the sense
of Definition 2.1

Kξ ∼ PsKξ Ps =: Ks,ξ . (2.9)

This step was done in [18]. The exact meaning of the projection operator Ps will be explained
in Sect. 3 (see the definition of the operator P in (3.11)).

To study the operator Ks,ξ near the saddle “surface” X± we use the “polar coordinates”.
Namely, introduce

t = (a1 − b1)(a2 − b2), p(a, b) = π

2
(a − b)2, (2.10)

and denote by dU the integration with respect to the Haar measure on the group Ů (2): in the
standard parametrization

U =
(

cosϕ sin ϕ · eiθ
− sin ϕ · e−iθ cosϕ

)
, (2.11)

we have

dU = 1

π
u du dθ, u = | sin ϕ| ∈ [0, 1], θ ∈ [0, 2π).
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Characteristic Polynomials for Random Band Matrices Near the Threshold 925

Consider the space L2[R2, p]×L2[Ů (2), dU ]. The inner product and the action of an integral
operator in this space are

( f , g)p =
∫

f (a, b)ḡ(a, b)p(a, b) da db;

(M f )(a1, b1,U1) =
∫

M(a1, b1,U1; a2, b2,U2) f (a2, b2,U2) p(a2, b2)da2 db2 dU2.

(2.12)

Changing the variables

X = U∗	U , 	 = diag{a, b}, a > b, U ∈ Ů (2),

we obtain that Kξ = K + K̃ξ can be represented as an integral operator in L2[R2, p] ×
L2[Ů (2), dU ] defined by the kernel

Kξ (X , Y ) = K (a1, b1,U1; a2, b2,U2) + K̃ξ (a1, b1,U1; a2, b2,U2), (2.13)

where

K (a1, b1,U1; a2, b2,U2) = t−1A(a1, a2)A(b1, b2)K∗(t,U1,U2);
K∗(t,U1,U2) := W 2t · etW 2TrU1U∗

2 L(U1U∗
2 )∗L/4−tW 2/2;

K̃ξ (a1, b1,U1; a2, b2,U2) = K (a1, b1,U1; a2, b2,U2)
(
e−iξπ

(
ν(a1−b1,U1)+ν(a2−b2,U2)

)
/n − 1

);
ν(x,U ) = x

4πρ(E)
TrULU∗L = x

2πρ(E)
(1 − 2|U12|2) (2.14)

with t of (2.10). K∗ here is a contribution of the unitary group Ů (2) into operator K , and
exp{−iξπν(x,U )/n} comes from the factor exp{− i

2nρ(E)
Tr X ξ̂} which is 1/n order pertur-

bation of F appearing in Fξ (see (2.1)). Operator A is a contribution of eigenvalues a, b and
it has the form

A(x, y) = (2π)−1/2We−g(x)/2e−W 2(x−y)2/2e−g(y)/2;
g(x) = (x + i E/2)2/2 − log(x − i E/2) − C+. (2.15)

Note also that
‖K̃ξ‖ ≤ C/n (2.16)

with some absolute C > 0.
Observe that the operator K∗(t,U1,U2) with some t > 0 is self-adjoint and its kernel

depends only on |(U1U∗
2 )12|2. Thus by the standard representation theory arguments (see

e.g. [23]), its eigenfunctions are the classical spherical harmonics. More precisely:

Proposition 2.2 Consider any self-adjoint integral operator M in L2[Ů (2), dU ] (see (2.11))
with kernel M(U1,U2) depending only on |(U1U∗

2 )12|2. Then its eigenvectors {φ j̄ (U )} ( j̄ =
( j, s), j = 0, 1, . . ., s = − j, . . . , j ) are the standard spherical harmonics:

φ j,s(U ) = l j,s P
s
j (cos(2ϕ)) eisθ = l j,s

( d

dx

)s
Pj (x)

∣∣∣
x=1−2|U12|2

(2Ū11U12)
s, (2.17)
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926 T. Shcherbina

where U has the form (2.11), and Ps
j is an associated Legendre polynomial

Ps
j (cos x) = (sin x)s

( d

d cos x

)s
Pj (cos x), Pj (x) = 1

2 j j !
d j

dx j
(x2 − 1) j ,

l j,s =
√

(2 j + 1)( j − s)!
( j + s)! .

Moreover, the subspace

L2[u, dU ] ⊂ L2[Ů (2), dU ] (2.18)

of the functions depending on |U12|2 only is invariant under M, and the restriction of M to
L2[u, dU ] has eigenvectors

φ j (U ) := φ j,0(U ). (2.19)

If M(U1,U2) = K∗(t,U1,U2) of (2.14), then the corresponding eigenvalues {λ j (t)}∞j=0, if
t > d > 0, where d is some absolute positive constant, have the form

λ0(t) = 1 − e−W 2t ,

λ j (t) = (1 − e−W 2t )
(
1 − j( j + 1)

W 2t
(1 + O( j2/W 2t)

)
. (2.20)

The proof of the proposition can be found in [18] (see the proof of Proposition 3.2 in
Appendix).

Notice that since

TrU∗LUL = 2(1 − 2u2),

functionsF ,Fξ do not depend on θ of (2.11), and hence according to Proposition 2.2 in what
follows we can consider restrictions of K , K∗ and K̃ξ of (2.14) to L2[u, dU ] (to simplify
notations we will denote these restrictions by the same letters).

In addition, it follows from Proposition 2.2 that if we introduce the following basis in
L2[R2, p] × L2[u, dU ] (see (2.12))

�k̄, j (a, b,U ) = �k̄(a, b)φ j (U ),

�k̄(a, b) =
√

2

π
(a − b)−1ψk1(a)ψk2(b),

where k̄ = (k1, k2), and {ψk(x)}∞k=0 is a certain basis in L2[R], then the matrix of K of (2.14)
in this basis has a “block diagonal structure”, which means that

(K�k̄′, j , �k̄, j1)p = 0, j �= j1

(K�k̄′, j , �k̄, j )p = (K j�k̄′ , �k̄)p

=
∫

λ j (t)A(a1, a2)A(b1, b2)ψk1(a1)ψk2(b1)ψk′
1
(a2)ψk′

2
(b2)da1db1da2db2. (2.21)

The next step in the proof of Theorem 1.2 is to show that only the neighbourhood of the
saddle “surface” X± gives the main contribution to the integral, and moreover we can restrict
the number of φ j to l = [logW ]. More precisely, we are going to show that in the sense of
Definition 2.1

Ks,ξ ∼ Pl Ks,ξPl =: Km,l,ξ , (2.22)

where Pl is the projection on the linear span of {�k̄, j (a, b,U )} j≤l,|k̄|≤m .
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Characteristic Polynomials for Random Band Matrices Near the Threshold 927

For the further resolvent analysis we want to change t in the definition of K∗ and a1 − b1,
a2 − b2 in the definition of K̃ξ (see (2.10), (2.13)–(2.14)) by their saddle-point values t∗ =
(a+ −a−)2 = 4π2ρ(E)2 and a+ −a− = 2πρ(E) correspondingly. More precisely we want
to show that in the sense of Definition 2.1

Km,l,ξ ∼ Am ⊗ K∗ξ,l (2.23)

where

K∗ξ,l = Ql K∗ξ Ql ,

K∗ξ (U1,U2) = W 2t∗ · et∗W 2(TrU1U∗
2 L(U1U∗

2 )∗L−2)/4 · e−iξπ(ν(2πρ(E),U1)+ν(2πρ(E),U2))/n

(2.24)

and Ql is the projection on {φ j (U )} j≤l . The operator Am in (2.23) is defined as

Am = Pm A(a1, a2)A(b1, b2)Pm, (2.25)

where Pm is the projection on {�k̄(a, b)}|k̄|≤m .
Now (2.23), (2.7) and Definition 2.1 give

F2
(
E + ξ

2nρ(E)
, E − ξ

2nρ(E)

)
= Cn

((
Kn−1

∗ξ,l ⊗ An−1
m

)
fξ , f̄ξ

)
(1 + o(1))

= (An−1
m f1, f̄1)(Kn−1

∗ξ,l 1, 1)(1 + o(1)),

where we used that fξ asymptotically can be replaced by f1 ⊗ 1, where f1 does not depend
on ξ and Uj . Similarly

D2 = Cn(Kn−1
∗0 ⊗ An−1

m f , f̄ )(1 + o(1)) = (An−1
m f1, f̄1)(Kn−1

∗0,l 1, 1)(1 + o(1)).

According to Proposition 2.2, φ0(U ) = 1 is an eigenvector of K∗0 of (2.24) with ξ = 0 and
the corresponding eigenvalue is 1, thus

(Kn−1
∗0,l 1, 1) = 1. (2.26)

Hence

F̄2
(
E + ξ

2nρ(E)
, E − ξ

2nρ(E)

)
= (Kn−1

∗ξ,l 1, 1)(1 + o(1)). (2.27)

Recall that according to Proposition 2.2 the eigenvectors of K∗0,l are (2.19) and the corre-
sponding eigenvalues are (see (2.20))

λ j := λ j (t
∗) = 1 − j( j + 1)/t∗W 2 + O(( j( j + 1)/W 2)2), j = 0, 1 . . . , l. (2.28)

Moreover, it follows from (2.13)–(2.14) that

K∗ξ,l = K∗0,l − n−1π iξ ν̂ + o(n−1) (2.29)

where ν̂ is the operator of multiplication by (1.6), and o(1/n) means some operator whose
norm is o(1/n). Thus the eigenvalues ofK∗ξ,l are in the n−1-neighbourhood of λ j . Therefore
in the regime of localization W−2 � n−1 considered in [18]

|λ1(K∗ξ )| ≤ 1 − O(W−2),

thus only λ0(K∗ξ ) gives the contribution to (2.27). Since

(ν̂ 1, 1) = 0,
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928 T. Shcherbina

we get

λ0(K∗ξ ) = 1 + o(n−1),

and so the limit of (2.27) is 1.
In the regime of delocalization considered in [21] (by another approach) all eigenvalues

of K∗ξ,l give contribution to (2.27), but Kn−1
∗0,l → I (roughly speaking, this means that the

second term in the r.h.s. of (2.28) does not give a contribution). Hence we have

K∗ξ,l ≈ 1 − n−1iξπν ⇒ (Kn−1
∗ξ 1, 1) → (e−iξπν̂1, 1) = sin(πξ)

πξ
.

In the critical regimeW−2 = C∗n−1 considered in the current paper again all eigenvalues of
K∗ξ,l give contribution, but now both second term in the r.h.s. of (2.28) and 1/n-order term
in the r.h.s. of (2.29) make an impact.

It is well-known that the spherical harmonics (2.17) are the eigenfunctions of the spher-
ical Laplace operator. In our case �U of (1.5) depends on |U12|2 only, so its restriction to
L2[u, dU ] has eigenvectors (2.19) with corresponding eigenvalues

λ∗
j = j( j + 1).

Thus 1 − n−1C∗�U with C∗ = C∗/t∗ has the same basis of eigenvectors with eigenvalues
1 − j( j + 1)/t∗W 2.

Recall that we are interested in j ≤ l = [logW ] and Ql is the projection on {φ j (U )} j≤l .
Hence, according to (2.28)–(2.29), in the regime W−2 = C∗n−1 we can write

K∗ξ,l = Ql
(
1 − n−1(C∗�U + iξπν

)
)Ql + O(l2n−2), (2.30)

which implies
(Kn−1

∗ξ,l 1, 1) → (e−C∗�U−iξπν̂1, 1), (2.31)

and finishes the proof of Theorem 1.2. The detailed proof of (2.31) is given in Sect. 4 (see
Lemma 4.1).

3 Preliminary Results

Recall that stationary points X+, X−, and X±(U ) of the function F of (2.1) are defined
in (2.8). Now choose W , n-independent δ > 0, which is small enough to provide that the
domain

�δ = {X : |F(X)| > 1 − δ}
contains three non-intersecting subdomains�±

δ ,�
+
δ ,�

−
δ , such that each of�

+
δ ,�

−
δ contains

one of the points X+, X−, and �±
δ contains the surface X±(U ) of (2.8).

To study K , Kξ near �±
δ we will use the representation described in (2.13)–(2.14).

Considering the operators K (X , Y ), Kξ (X , Y ) near the points X+ and X−, we are going
to extract the contribution from the diagonal elements of X , Y . To this end, put

X =
(

a1 (x1 + iy1)/
√
2

(x1 − iy1)/
√
2 b1

)
, Y =

(
a2 (x2 + iy2)/

√
2

(x2 − iy2)/
√
2 b2

)
.
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Now rewrite K (X , Y ), Kξ (X , Y ) of (2.4)–(2.5) as

Kξ (X , Y ) = K (X , Y ) + K̃ξ (X , Y ),

K (X , Y ) = A(a1, a2) A(b1, b2) A1(X , Y ), (3.1)

where the kernels A (the contribution of the diagonal elements) is defined in (2.15), and A1

(the contribution of the off-diagonal elements, which however depends on diagonal elements
as well) has the form

A1(X , Y ) = (2π)−1W 2F1(X) · exp{−W 2(x1 − x2)
2/2 − W 2(y1 − y2)

2/2} · F1(Y );

F1(X) = exp
{

− 1

4
(x21 + y21 ) + 1

2
log

(
1 − x21 + y21

2(a1 − i E/2)(b1 − i E/2)

)}
. (3.2)

The perturbation kernel K̃ξ in this coordinates is

K̃ξ (X , Y ) = A(a1, a2) A(b1, b2) A1(X , Y )
(
e− iξ

2nρ(E)

(
(a1−b1)+(a2−b2)

)
− 1

)
. (3.3)

It is easy to check that for g defined in (2.15)

g(a± + x) − g(a±) = c±x2 + c3±x3 + . . .

with

c± = a+(
√
4 − E2 ± i E)/2, �c+ = �c− > 0, (3.4)

and some constants c3±, c4±, . . .

As was mentioned above, the first step (2.9) in the analysis of operators K , Kξ is based on
the saddle-point approximation and was done in [18] (Sect. 4). The main idea was to prove
that the main contribution was given by the “projections” onto the domains �±

δ , �+
δ , �−

δ ,
where the operators A, A1 are close to their quadratic approximations near the saddle-points
a± of (2.2). Thus the information about the “projections” of K , Kξ onto the domains �±

δ ,
�+

δ , �−
δ can be obtained by the analysis of A, A1 near the saddle points a± (see Sect. 3.1

of [18]) and information about K∗ provided in Proposition 2.2. Following [18], define the
useful basis in which the quadratic approximation of A near a± is an upper-triangular matrix
(see Lemma 3.1 of [18]). Namely, consider the orthonormal in L2[R] system of functions

ψα
0 (x) = e−αWx2 4

√
αW/π;

ψα
k (x) = h−1/2

k e−αWx2e2�α·Wx2
( d

dx

)k
e−2�α·Wx2 = e−αWx2 pk(x);

hα
k = k!(4�α · W )k−1/2

√
2π, k = 1, 2, . . . (3.5)

with some α such that �α > 0. It is easy to see that for any C > 0

ψk(x) = O(e−cW ) for |x | ≥ C, k � W . (3.6)

Set
ψ±
k (x) = ψ

α±
k (x − a±) (3.7)

with

α± =
√
c±
2

(
1 + c±

2W 2

)1/2
.
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To define the precise “projections” on the domains �±
δ , �

+
δ , �

−
δ , set

m = [log2 W ]. (3.8)

The order of m is chosen in such a way that m > C logW , and mp/W σ → 0, as W → ∞,
for any C, p, σ > 0.

It follows from (3.6) that ψ±
k are exponentially small outside of the small neighbourhood

of a± for any k � W , and so the projection on {ψ±
k }mk=0 gives the “projection” onto the

neighbourhoods of a±. More accurately, consider the system of functions

{�k̄, j,δ}|k̄|≤m, j≤(mW )1/2 ,

k̄ = (k1, k2), |k̄| = max{k1, k2}, (3.9)

obtained by the Gram–Schmidt procedure from

{1�±
δ
�k̄, j }|k̄|≤m; j≤(mW )1/2 ,

where

�k̄, j (a, b,U ) = �k̄(a, b)φ j (U ),

�k̄(a, b) =
√

2

π
(a − b)−1ψ+

k1
(a)ψ−

k2
(b). (3.10)

Notice that according to (2.28) the eigenvalues of K∗(t,U1,U2) of (2.14) corresponding to
φ j (U ) with j > (mW )1/2 are smaller than 1 − Cm2/W for any t > d > 0.

Similarly, consider the system of functions {�+
k̄,δ

}|k̄|≤m (with k̄ = (k1, k2, k3, k4), |k̄| =
max{ki }) obtained by the Gram-Schmidt procedure from

{1�+
δ

ψ+
k1

(a) ψ+
k2

(b) ψ+
k3

(x + a+) ψ+
k4

(y + a+)}|k̄|≤m,

and define {�−
k̄,δ

}|k̄|≤m by the same way. Denote P±, P+, and P− the projections on the
subspaces spanned on these three systems. Evidently these three projection operators are
orthogonal to each other. Set

P = P± + P+ + P−, H1 = PH, H2 = (1 − P)H, H = H1 ⊕ H2, (3.11)

where H = L2[Herm(2)] (the projector P corresponds to projector Ps in (2.9)).
Besides, it is easy to see that for any ϕ supported in some domain � and any C > 0

(Kϕ)(X) = O(e−cW 2
) for X : dist{X ,�} ≥ C > 0 (3.12)

with K of (2.4) (see (4.4) of [18]).
Consider the operator K as a block operator with respect to the decomposition (3.11). It

has the form

K (11) = K± + K+ + K− + O(e−cW ),

K± := P±K P±, K+ = P+K P+, K− := P−K P−,

K (12) = P±K (I± − P±) + P+K (I+ − P+) + P−K (I− − P−) + O(e−cW ),

K (21) = (I± − P±)K P± + (I+ − P+)K P+ + (I− − P−)K P− + O(e−cW ),

K (22) = (1 − P)K (1 − P), (3.13)
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where I±, I+, and I− are operators of multiplication by 1�±
δ
, 1�+

δ
, and 1�−

δ
respectively.

Indeed, it is easy to see from (3.12) and (3.6) that, e.g. , P+K P− f = O(e−cW ), P±K (I+ −
P+) f = O(e−cW ), etc. Similar decomposition can be written for Kξ .

Notice that by (2.21) K± also has a block diagonal structure:

K± =
(mW )1/2∑

j=0

K ( j)
± , K ( j)

± = P j P±K P±P j . (3.14)

Here and below we denote by P j the projection on φ j (U ).
Remember that the final goal is to prove that Kξ ∼ Am ⊗ K∗ξ,l in a certain sense, where

Am , K∗ξ,l are defined in (2.25) and (2.24). As will be shown below (see Lemma 3.1), the top
eigenvalue of Am is close to λ0(K ), and the spectral gap of Am is of order 1/W . Moreover,
since ‖K̃ξ‖ ≤ C/n with some n,W -independent C , the eigenvalues of K∗ξ,l lie in C/n-
neighbourhoods (an so in C1/W 2-neighbourhoods) of the eigenvalues (2.28) of K∗0,l , thus
in C1/W 2-neighbourhoods of points

λ j,∗ = 1 − j( j + 1)

W 2(a+ − a−)2
. (3.15)

Hence the top eigenvalues of Am ⊗ K∗ξ,l lie in C/n-neighbourhoods (thus in C/W 2-
neighbourhoods) of points λ j,∗ · λ0(K ) with some n,W -independent C . For small j the
distance between λ j,∗ · λ0(K ) is also of order c/n, so such neighbourhoods cannot be dis-
tinguished, but for j > D with sufficiently big D they do not have intersections. All other

eigenvalues (corresponding to j > l) are smaller than |λ0(K )|(1 − log2 W
(a+−a−)2W 2

)
and so do

not important for us (see Lemma 4.2 below).
This motivates the following choice of the contour L:

L = L1 ∪ L2, (3.16)

where

L2 =
{
z : |z| = |λ0(K )|

(
1 − log2 W

(a+ − a−)2W 2

)}
, (3.17)

and

L1 = L0 ∪ L1,

L0 =
{
z : |z − λ0(K )| = D2

(a+ − a−)2W 2

}
;

L1 = ∪l−1
j=DL j , L j = {

z : ∣∣z − λ j,∗ · λ0(K )
∣∣ = γ

W 2

}
(3.18)

with
l = logW . (3.19)

Here γ > 0 and D > 0 are sufficiently large (but γ < D/2(a+ − a−)2). Notice that

dist{L0, L1} ≥ D

3(a+ − a−)2W 2 , (3.20)

dist{L1,L2} ≥ C logW

W 2 . (3.21)

We have the following lemma
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Lemma 3.1 Given (2.25),

λ0(Am) = λ0(K ) + O(e−c log2 W ), |λ1(Am)| ≤ |λ0(K )| − C/W . (3.22)

Moreover, the contour L encircles all eigenvalues of Am ⊗ K∗ξ,l and if we set

G0
ξ (z) = (Am ⊗ K∗ξ,l − z)−1, (3.23)

then
|G0

ξ (z)| ≤ C1W
2 (3.24)

for z outside of L.
Proof of Lemma 3.1 According to (2.25) and the choice of �k̄ in (3.10) we have

Am = A(+)
m ⊗ A(−)

m + O(e−c log2 W ), (3.25)

where

A(±)
m = P±AP±,

where P+ and P− are the projections on the subspaces spanned on the systems {ψ+
k,δ}mk=0

and {ψ−
k,δ}mk=0 respectively (see (3.7)). The behaviour of A

(±)
m was studied in [18], Sect. 3.1.

In particular, it was proved in Lemma 3.3, [18] that

λ0(A
(±)
m ) = 1 + O(1/W ), |λ1(A(±)

m )| ≤ |λ0(A(±)
m )| · (1 − c/W ). (3.26)

Since also (see [18], Eq. (4.22))

λ0(K ) = λ0(A
(+)
m ) · λ0(A

(−)
m ) + O(e−c log2 W ), (3.27)

we get (3.22).
Also according to (2.28)–(2.29) the eigenvalues of K∗ξ,l lie in the C/n-neighbourhood

of λ j,∗ of (3.15) with some uniformly (in W and n) bounded C . Now this and (3.22) imply
(3.24) for the contour L with sufficiently big D, γ . ��

It appears that eigenvalues of K , Kξ also lie insideL. Moreover, to implement the strategy
described in Sect. 2, we need additional information about K , Kξ described in the following
theorem (based on consideration in [18]):

Theorem 3.1 For the operators K defined in (2.4) we have

(i) the contour L of (3.16) encircles all eigenvalues of K , and for z outside of L we have
||(K − z)−1|| ≤ CW 2;

(ii) Given z such that

∣∣z − λ j,∗ · |λ0(K )|∣∣ ≥ γ

W 2 , |z| ≥ |λ0(K )|
(
1 − log2 W

(a+ − a−)2W 2

)
(3.28)

with sufficiently big γ > 0, consider G( j)(z) = (K ( j)
± − z)−1. Then

||G( j)|| ≤ C1W
2/γ (3.29)

with some absolute constant C1 which does not depend on γ .
In addition, for any z such that

|λ0(K )|
(
1 − log2 W

(a+ − a−)2W 2

)
≤ |z| ≤ 1 + C2/n. (3.30)
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we have

‖(K+ − z)−1‖ ≤ CW , ‖(K− − z)−1‖ ≤ CW , ||(K (22) − z)−1|| ≤ CW/m1/3.

(3.31)

(iii) We have

||K (21)|| ≤ Cm3/2/W 3/2, ||K (12)|| ≤ Cm/W , (3.32)

and for z outside of L we also have

||(K (11) − z)−1K (12)|| ≤ Cmp, ||K (21)(K (11) − z)−1|| ≤ Cmp (3.33)

with some p > 0.

Same statements are valid for Kξ of (2.5).

Proof of Theorem 3.1 It is easy to see that the part L1 of the contour L of (3.16) satisfies
(3.30), and L2 satisfies (3.28). Although (3.28) and the domain (3.30) is slightly different
from eq. (4.33), [18] and

Dγ = {z : |λ0(K )| − γ

W 2 ≤ |z| ≤ 1}
considered in [18], it does not change anything in the proof of Proposition 4.1 and Lemmas
4.1 – 4.3 of [18], and thus the proof of Theorem 3.1 for K and (3.24) follows from those
lemmas of [18].

To obtain the result for Kξ set

G1,ξ = (K (11)
ξ − z)−1 = (K (11) + K̃ (11)

ξ − z)−1,

G2,ξ = (K (22)
ξ − z)−1 = (K (22) + K̃ (22)

ξ − z)−1, (3.34)

and denote by p andq some absolute exponentswhich could be different in different formulas.
Using the well-known Schur formula we get

(Kξ − z)−1 =
(

G(11)
ξ −G(11)

ξ K (12)
ξ G2,ξ

−G2,ξ K
(21)
ξ G(11)

ξ G2,ξ + G2,ξ K
(21)
ξ G(11)

ξ K (12)
ξ G2,ξ

)

, (3.35)

where

G(11)
ξ = (K (11)

ξ − z − K (12)
ξ G2,ξ K

(21)
ξ )−1 = (1 − G1,ξ K

(12)
ξ G2,ξ K

(21)
ξ )−1G1,ξ .

Denoting
R = (1 − G1,ξ K

(12)
ξ G2,ξ K

(21)
ξ )−1, (3.36)

we get
G(11)

ξ = RG1,ξ . (3.37)

Notice that

‖G1,ξ K
(12)
ξ ‖ = ‖(K (11) − z + K̃ (11)

ξ )−1(K (12) + K̃ (12)
ξ )‖

= ‖(1 + (K (11) − z)−1 K̃ (11)
ξ )−1(K (11) − z)−1(K (12) + K̃ (12)

ξ )‖. (3.38)

Moreover (3.13) and part (ii) of the Theorem for operator K yield

‖(K (11) − z)−1‖ ≤ C1n

γ
, (3.39)
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where γ is sufficiently big and C1 does not depend on γ . Hence

‖(K (11) − z)−1 K̃ (11)
ξ ‖ ≤ C < 1.

Thus according to (3.38), (3.33) for K , and (2.16)

‖G1,ξ K
(12)
ξ ‖ ≤ C‖(K (11) − z)−1(K (12) + K̃ (12)

ξ )‖
≤ C(‖(K (11) − z)−1K (12)‖ + ‖(K (11) − z)−1 K̃ (12)

ξ ‖)
≤ C(logp W + C1) ≤ C logp W .

Similarly

‖K (21)
ξ G1,ξ‖ ≤ C‖(K (21) + K̃ (21)

ξ )(K (11) − z)−1‖ ≤ C logp W .

The bound (3.32) for Kξ trivially follow from (3.32) for operator K and (2.16), which finishes
the proof of (iii) for Kξ .

In addition, due to the last bound of (3.31) for operator K and (2.16) we have

‖G2,ξ‖ = ‖(K (22) + K̃ (22)
ξ − z)−1‖

= ‖(1 + (K (22) − z)−1 K̃ (22)
ξ )−1(K (22) − z)−1‖ ≤ CW/m1/3 (3.40)

which gives the last bound of (3.31) for operator Kξ . This implies

‖G2,ξ K
(21)
ξ ‖ ≤ logp W

W 1/2 . (3.41)

Thus

‖G1,ξ K
(12)
ξ G2,ξ K

(21)
ξ ‖ ≤ ‖G1,ξ K

(12)
ξ ‖ · ‖G2,ξ K

(21)
ξ ‖ ≤ C logp W

W 1/2 , (3.42)

and so

‖R‖ ≤ C .

This, (3.36)–(3.37), and (3.39) yield

‖G(11)
ξ ‖ ≤ Cn. (3.43)

Similarly (3.37) gives

‖G(11)
ξ K (12)

ξ ‖ = ‖RG1,ξ K
(12)
ξ ‖ ≤ ‖R‖ · ‖G1,ξ K

(12)
ξ ‖ ≤ C logp W ,

which implies
‖G(11)

ξ K (12)
ξ G2,ξ‖ ≤ C logp W · W . (3.44)

It is easy to see that

D−1C(A − BD−1C)−1 = (D − CA−1B)−1CA−1,

thus

G2,ξ K
(21)
ξ G(11)

ξ = (K (22)
ξ − z − K (21)

ξ G1,ξ K
(12)
ξ )−1K (21)

ξ G1,ξ

= (1 − G2,ξ K
(21)
ξ G1,ξ K

(12)
ξ )−1G2,ξ K

(21)
ξ G1,ξ .
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But

‖G2,ξ K
(21)
ξ G1,ξ K

(12)
ξ ‖ ≤ ‖G2,ξ K

(21)
ξ ‖ · ‖G1,ξ K

(12)
ξ ‖ ≤ C logp W

W 1/2 ,

hence using (3.33) for Kξ we obtain

‖G2,ξ K
(21)
ξ G(11)

ξ ‖ ≤ C‖G2,ξ‖ · ‖K (21)
ξ G1,ξ‖ ≤ C logp W · W . (3.45)

We also can write

‖G2,ξ K
(21)
ξ G(11)

ξ K (12)
ξ G2,ξ‖ ≤ ‖G2,ξ‖2·‖K (21)

ξ ‖·‖G(11)
ξ K (12)

ξ ‖ ≤ C logp W ·W 1/2 (3.46)

which finishes the proof of (i) for Kξ .
Bounds (3.29)–(3.31) for Kξ can be obtained easily from those for K and from (2.16). ��

4 Proof of Theorem 1.2

The key step in the proof of Theorem 1.2 is the following theorem

Theorem 4.1 Given Gξ (z) = (Kξ − z)−1 with Kξ of (2.5), fξ of (2.1), and the contour L
defined in (3.16)–(3.19), we can write for the integral in (2.7)

∫

L
zn−1(Gξ (z) fξ , f̄ξ )dz

=
∫

L
zn−1(G0

ξ (z)( f1,± ⊗ 1), ( f̄1,± ⊗ 1))dz + |λ0(K )|n−1 · ‖ f1‖2 · O
( 1

logW

)
,

(4.1)

where
f1 = P f , (4.2)

where P is the orthogonal projector to the the space H1 (see (3.11)), and G0
ξ is defined in

(3.23). Here f1,± is a projection of f on the linear span of {�k̄,0(a, b), |k| ≤ m} of (3.10).
In addition, given (2.25),

(An−1
m f1,±, f1,±) = |λ0(K )|n−1 · ‖ f1‖2 · (1 + o(1)). (4.3)

Let us assume that Theorem 4.1 is proved and derive the assertion of Theorem 1.2.
Indeed, since L encircles all eigenvalues of Am ⊗ K∗ξ,l (see Lemma 3.1), according to

the Cauchy theorem we get

− 1

2π i

∫

L
zn−1(G0

ξ (z)( f1,± ⊗ 1), ( f̄1,± ⊗ 1))dz = (
(Am ⊗ K∗ξ,l)

n−1( f1,± ⊗ 1), ( f̄1,± ⊗ 1)
)

= (An−1
m f1,±, f̄1,±) · (Kn−1

∗ξ,l 1, 1).

Now let us prove

Lemma 4.1 Given (2.24), if n = C∗W 2, l = [logW ] we have
(Kn−1

∗ξ,l 1, 1) → (e−C∗�U−iξπν̂1, 1), n,W → ∞,

with C∗ = C∗/t∗ and ν̂ as in Theorem 1.2.
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Proof of Lemma 4.1 Recall that according to (2.30)

K∗ξ,l = Ql
(
1 − n−1(C∗�U + iξπν

) + O(l2n−2))Ql = Qle
−n−1Ql (C∗�U+iξπν+O(l2n−2))Ql Ql .

Here O(l2n−2) means an operator whose norm is bounded by Cl2n−2. Thus

Kn−1
∗ξ,l = Qle

−Ql (C∗�U+iξπν+O(l2n−1))Ql Ql = Qle
−Ql (C∗�U+iξπν)Ql (1 + O(l2/n))Ql ,

ans so

(Kn−1
∗ξ,l 1, 1) = (e−Ql (C∗�U+iξπν)Ql1, 1) + O(l2/n).

Consider the basis {φ j } of (2.19). In this basis Laplace operator�U is diagonal, and operator
ν̂ is three diagonal (since it corresponds to the multiplication by x in the space of Legendre
polynomials). To simplify notations, let F be an operator of multiplication by (iπξν) and
� = C∗�U . Set

D = � + F,

D(l) = � + F (l), (4.4)

where F (l) be the matrix F where we put Fl,l+1 = Fl+1,l = 0. It is evident that (recall
φ0 = 1)

(e−D(l)
φ0, φ0) =

(
e−Ql DQlφ0, φ0

)
= (e−Ql (C∗�U+iξπν)Ql1, 1).

Thus we are left to prove that
((
e−D − e−D(l))

φ0, φ0

)
→ 0. (4.5)

Notice that both e−D , e−D(l)
are bounded operators, and |F | ≤ C , |F (l)| ≤ C . We will use

the well-known Duhamel formula

e−t A1 − e−t A2 =
t∫

0

e−(t−s)A2(A1 − A2)e
−s A1ds. (4.6)

For A1 = D, A2 = D(l) and t = 1 it gives

∣∣∣
(
e−D − e−D(l))

φ0

∣∣∣ =
∣∣∣
∫ 1

0
e−(1−s)D(l)

(F − F (l))e−sDφ0 ds
∣∣∣

=
∣∣∣
∫ 1

0
e−(1−s)D(l)

(Fl · El,l+1 + Fl+1 · El+1,l)e
−sDφ0 ds

∣∣∣

=
∣∣∣
∫ 1

0
e−(1−s)D(l)

(
Fl+1φl+1

(
e−sDφ0, φl

) + Flφl
(
e−sDφ0, φl+1

))
ds

∣∣∣

≤ C
(∣∣(e−sDφ0, φl

)∣∣ + ∣∣(e−sDφ0, φl+1
)∣∣

)
.

Here El,l+1 is an operator whose matrix in the basis {φ j } has 1 at (l, l + 1) place and zeros
everywhere else, and El+1,l is defined in a similar way. Fl , Fl+1 are (l, l + 1) and (l + 1, l)
elements of the matrix F in the same basis.
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Now let us bound
∣∣(e−sDφ0, φl

)∣∣. To this end apply Duhamel’s formula (4.6) p = [l/2]
times with A1 = D and A2 = �. We obtain

(
e−sDφ0, φl

) =
p∑

j=1

∫

s1+..+s j≤s

(
e−s1�Fe−s2�F . . . e−s j�φ0, φl) ds1..ds j

+
∫

s1+···+sp≤s

(
e−s1DFe−s2�F . . . e−sp�φ0, φl) ds1..dsp.

Since e−s� is diagonal in the basis {φ j }, and F is only three diagonal, the expression

e−s1�Fe−s2�F . . . e−s j�φ0 is in the linear span of {φk} jk=0, and thus the sum above is 0.
Hence

∣∣∣
(
e−sDφ0, φl

)∣∣∣ ≤
∣∣∣
∫

s1+···+sp≤s

(
e−s1DFe−s2�F . . . e−sp�φ0, φl) ds1..dsp

∣∣∣

≤ Cl
∣∣∣
∫

s1+···+sp≤s
ds1..dsp

∣∣∣ = Clsl

l! ≤ C1e
−l log l → 0,

which finishes the proof of (4.5). ��

Lemmas 4.1 and (4.3) imply that

− 1

2π i

∫

L
zn−1(G0

ξ (z)( f1,± ⊗ 1), ( f̄1,± ⊗ 1))dz

is of order

|λ0(K )|n−1 · ‖ f1,±‖2,
and so (4.1) can be rewritten as

− 1

2π i

∫

L
zn−1(Gξ (z) fξ , f̄ξ )dz = (An−1

m f1,±, f̄1,±) · (Kn−1
∗ξ,l 1, 1)(1 + o(1)), n → ∞.

This, a similar relation with ξ = 0, (2.6), and (2.7), yield

D−1
2 F2

(
E + ξ

2nρ(E)
, E − ξ

2nρ(E)

)

= (An−1
m f1,±, f̄1,±) · (Kn−1

∗ξ,l 1, 1)

(An−1
m f1,±, f̄1,±) · (Kn−1

∗0,l 1, 1)
(1 + o(1)) = (Kn−1

∗ξ,l 1, 1)(1 + o(1)).

Here we used (2.26). This relation and Lemma 4.1 complete the proof of Theorem 1.2.

4.1 Proof of Theorem 4.1

We are left to prove Theorem 4.1.
First we decompose f = ( f1, f2) with respect to decomposition (3.11). Observe that

since

|F(X)| ≤ 1,
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938 T. Shcherbina

and F(X) exponentially decreases at ∞ (in eigenvalues a, b), we have ‖ f ‖ = const ≤ 1.
Moreover it is easy to see that

‖ f1‖2 ≥ ‖ f1,±‖2 ≥ ‖F(X)�0̄,0‖2 =
∣∣∣(2W�α±)1/2

( ∫
e− f (a)/2e−α±W (a−a+)2da

)2∣∣∣
2 ≥ C

W
,

with �0̄,0 of (3.10). Therefore

‖ f1‖ ≥ ‖ f1,±‖ ≥ C/W 1/2. (4.7)

We start with the following simple lemma

Lemma 4.2 The main contribution to the integral in (2.7) is given by the integral over the
contour L1 of (3.18), i.e.

∫

L
zn−1(Gξ (z) fξ , f̄ξ )dz =

∫

L1

zn−1(Gξ (z) f , f̄ )dz + |λ0(K )|n−1 · ‖ f1‖2 · O
( logW

W

)
,

where f is defined in (2.1). In addition,
∫

L2

zn−1(G0
ξ (z)( f1,± ⊗ 1), ( f̄1,± ⊗ 1))dz = |λ0(K )|n−1 · ‖ f1‖2 · o

(
e−C log2 W

)
, (4.8)

where L2 is defined in (3.17), and G0
ξ (z) is defined in (3.23).

Proof of Lemma 4.2 Since for z ∈ L2 we have

|z|n−1 ≤ |λ0(K )|n−1 · e−C log2 W ,

we get using ‖Gξ (z)‖ ≤ CW 2 (see part (i) of Theorem 3.1 for Kξ ) that
∣∣∣
∫

L2

zn−1(Gξ (z) fξ , f̄ξ )dz
∣∣∣ ≤ C1|λ0(K )|n−1 · e−C2 log2 W · W 2

= |λ0(K )|n−1 · ‖ f1‖2 · o
(
e−C log2 W

)
.

Here we used (4.7). Similarly one can obtain (4.8) from (3.24).
Besides,

|L1| ≤ C logW/W 2, (4.9)

and for z ∈ L1

|z|n−1 ≤ C |λ0(K )|n−1. (4.10)

Thus, since ‖ f − fξ‖ ≤ C/n, we get according to (4.7)
∣∣∣
∫

L1

zn−1(Gξ (z)( fξ − f ), f̄ξ )dz
∣∣∣ ≤ C |λ0(K )|n−1 · W 2 · ‖ f − fξ‖ · |L1|

≤ |λ0(K )|n−1 · logW
W 2 ≤ |λ0(K )|n−1 · ‖ f1‖2 · O

( logW
W

)
,

which gives the lemma. ��
Lemma 4.2 yields that we can prove (4.1) for L1 instead of L.
The next step is to prove that we can consider only the upper-left block K (11)

ξ of Kξ (see
(3.13)). More precisely, we are going to prove
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Lemma 4.3 Given (3.34) and (4.2), we have

∫

L1

zn−1(Gξ (z) f , f̄ )dz =
∫

L1

zn−1(G1,ξ (z) f1, f̄1)dz + |λ0(K )|n−1 · ‖ f1‖2 · O
( logp W

W 1/2

)
.

Proof of Lemma 4.3 According to (3.35) we have

∫

L1

zn−1((Kξ − z)−1 f , f̄ )dz =
∫

L1

zn−1(G(11)
ξ f1, f̄1)dz

−
∫

L1

zn−1(G(11)
ξ K (12)

ξ G2,ξ f2, f̄1)dz

−
∫

L1

zn−1(G2,ξ K
(21)
ξ G(11)

ξ f1, f̄2)dz

+
∫

L1

zn−1((G2,ξ + G2,ξ K
(21)
ξ G(11)

ξ K (12)
ξ G2,ξ ) f2, f̄2)dz.

Thus, we get using (3.44)–(3.45), (4.9)–(4.10), ‖ f2‖ ≤ C , and (4.7)

∣∣∣
∫

L1

zn−1(G(11)
ξ K (12)

ξ G2,ξ f2, f̄1)dz
∣∣∣ ≤ ‖G(11)

ξ K (12)
ξ G2,ξ‖ · ‖ f1‖ · ‖ f2‖ ·

∫

L1

|z|n−1|dz|

≤ C logp W · W
W 2 · |λ0(K )|n−1 · ‖ f1‖ ≤ O

(C logp W

W 1/2

)
· ‖ f1‖2 · |λ0(K )|n−1,

∣∣∣
∫

L1

zn−1(G2,ξ K
(21)
ξ G(11)

ξ f1, f̄2)dz
∣∣∣ ≤ ‖G2,ξ K

(21)
ξ G(11)

ξ ‖ · ‖ f1‖ · ‖ f2‖ ·
∫

L1

|z|n−1|dz|

≤ C logp W · W
W 2 · |λ0(K )|n−1 · ‖ f1‖ ≤ O

(C logp W

W 1/2

)
· ‖ f1‖2 · |λ0(K )|n−1.

Notice that G2,ξ of (3.34) is analytic outside of L2 (see (3.31)), and so

∫

L1

zn−1(G2,ξ f2, f̄2)dz = 0.

Hence
∫

L1

zn−1((G2,ξ + G2,ξ K
(21)
ξ G(11)

ξ K (12)
ξ G2,ξ ) f2, f̄2)dz

=
∫

L1

zn−1(G2,ξ K
(21)
ξ G(11)

ξ K (12)
ξ G2,ξ f2, f̄2)dz.

Thus (3.46) and (4.7) yield

∣∣∣
∫

L1

zn−1(G2,ξ K
(21)
ξ G(11)

ξ K (12)
ξ G2,ξ f2, f̄2)dz

∣∣∣

≤ ‖G2,ξ K
(21)
ξ G(11)

ξ K (12)
ξ G2,ξ‖ · ‖ f2‖2 ·

∫

L1

|z|n−1|dz|

≤ C logp W · W 1/2

W 2 · |λ0(K )|n−1 ≤ O
(C logp W

W 1/2

)
· ‖ f1‖2 · |λ0(K )|n−1.
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Besides, according to (3.37) and (3.42)
∣∣∣
∫

L1

zn−1((G(11)
ξ − G1,ξ ) f1, f̄1)dz

∣∣∣ ≤ ‖1 − R‖ · ‖G1,ξ‖ · ‖ f1‖2 ·
∫

L1

|z|n−1|dz|

≤ C logp W · W 2

W 1/2 · W 2 · ‖ f1‖2 · |λ0(K )|n−1 = O
(C logp W

W 1/2

)
· ‖ f1‖2 · |λ0(K )|n−1.

These bounds imply Lemma 4.3. ��
Now write K (11)

ξ − z, K (11) − z in the block form

K (11) − z =
(

M1 M12

M21 M2

)
, K (11)

ξ − z =
(

M1,ξ M12,ξ

M21,ξ M2,ξ

)
(4.11)

according to decomposition

H1 = M1 ⊕ M2,

where M1 is a linear span of {� j,k,δ, j ≤ logW , |k| ≤ m} (see (3.9)). Then (see (3.13),
(3.14))

M1 =
logW∑

j=0

K ( j)
± , K ( j)

± = P j P±K P±P j ,

M2 = K+ + K− +
(mW )1/2∑

j=logW+1

K ( j)
± ,

M12 = O(e−cW ), M21 = O(e−cW ), (4.12)

where P j is the projection on {�k̄(a, b)φ j (U )}.
Set

G1,l,ξ (z) = (Km,l,ξ − z)−1 = (M1,ξ )
−1, (4.13)

where Km,l,ξ is defined in (2.22). Notice also that, since f1 does not depend on {Uj }, the
part of f1 corresponding to M1 is f1,± ⊗ 1.

The next step is to show

Lemma 4.4 The operator K (11)
ξ of (3.13) can be replaced by Km,l,ξ of (2.22), i.e. we can

write
∫

L1

zn−1(G1,ξ (z) f1, f̄1)dz

=
∫

L1

zn−1(G1,l,ξ (z)( f1,± ⊗ 1), ( f̄1,± ⊗ 1))dz + |λ0(K )|n−1 · ‖ f1‖2 · O
( 1

logW

)
.

Proof of Lemma 4.5 Denote

Dξ = M1,ξ − M12,ξ M
−1
2,ξ M21,ξ , D0,ξ = 1 − M12,ξ M

−1
2,ξ M21,ξ M

−1
1,ξ

and write f1 = ( f± ⊗ 1, f12) according to the decomposition (4.11).
Using Schur’s formula we get

G1,ξ =
(

D−1
ξ −D−1

ξ M12,ξ M
−1
2,ξ

−M−1
2,ξ M21,ξ D

−1
ξ M−1

2,ξ + M−1
2,ξ M21,ξ D

−1
ξ M12,ξ M

−1
2,ξ

)

(4.14)
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Notice that according to (ii) of Theorem 3.1 M−1
2,ξ is analytic inside of L1, and so

∫

L1

zn−1(M−1
2,ξ f12, f̄12)dz = 0,

thus
∫

L1

zn−1(G1,ξ (z) f1, f̄1)dz =
∫

L1

zn−1(D−1
ξ ( f1,± ⊗ 1), ( f̄1,± ⊗ 1))dz

−
∫

L1

zn−1(D−1
ξ M12,ξ M

−1
2,ξ f12, ( f̄1,± ⊗ 1))dz

−
∫

L1

zn−1(M−1
2,ξ M21,ξ D

−1
ξ ( f1,± ⊗ 1), f̄12)dz

+
∫

L1

zn−1(M−1
2,ξ M21,ξ D

−1
ξ M12,ξ M

−1
2,ξ f12, f̄12)dz (4.15)

Let z ∈ L1. Then using (3.14) and (3.21) we can write (recall that logW ∼ log n)

‖M−1
2 ‖ ≤ Cn/ log n.

In addition,

‖K (11)
ξ − K (11)‖ ≤ C/n,

‖M−1
2,ξ‖ = ‖M−1

2 (1 + (M2,ξ − M2)M
−1
2 )−1‖ ≤ C1n

log n
· (
1 − C2

log n

)−1 ≤ Cn/ log n,

‖M12,ξ‖ ≤ C/n, ‖M21,ξ‖ ≤ C/n. (4.16)

Here we used (2.16). Part (ii) of Theorem 3.1 also gives (recall n = C∗W 2)

‖M−1
1,ξ ‖ ≤ Cn. (4.17)

In addition, using the resolvent identity we obtain

D−1
ξ − M−1

1,ξ = M−1
1,ξ M12,ξ M

−1
2,ξ M21,ξ M

−1
1,ξ D

−1
0,ξ . (4.18)

According to (4.16)–(4.17) we get

‖M12,ξ M
−1
2,ξ M21,ξ M

−1
1,ξ ‖ ≤ C/ log n,

thus
‖D−1

0,ξ‖ ≤ C . (4.19)

In view of (4.18)

‖D−1
ξ − M−1

1,ξ ‖ ≤ Cn

log n
.

Therefore, since according to (3.15), we have for z ∈ L j of (3.18)

|z|n−1 ≤ C1|λ0(K )|n−1 · e−C2 j( j+1),
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and |L j | = 2πγ/W 2, we get

∣∣∣
∫

L1

zn−1((D−1
ξ − M−1

1,ξ )( f1,± ⊗ 1), ( f1,± ⊗ 1)dz
∣∣∣

≤ Cn

log n
‖ f1,±‖2 · |λ0(K )|n−1 ·

l∑

j=D

|L j | · e−C2 j( j+1)

≤ C

log n
· ‖ f1‖2 · |λ0(K )|n−1 ·

l∑

j=D

e−C2 j( j+1) ≤ C

log n
· ‖ f1‖2 · |λ0(K )|n−1.

Now consider another integrals in (4.15). Using Dξ = D−1
0,ξ M

−1
1,ξ , we obtain similarly

∣∣∣
∫

L1

zn−1(D−1
ξ M12,ξ M

−1
2,ξ f12, ( f̄1,± ⊗ 1))dz

∣∣∣

≤ Cn

log n
· ‖ f1,±‖ · ‖ f12‖ · |λ0(K )|n−1 ·

l∑

j=D

|L j | · e−C2 j( j+1)

≤ C

log n
· ‖ f1‖2 · |λ0(K )|n−1,

and by the same argument

∣∣∣
∫

L1

zn−1(M−1
2,ξ M21,ξ D

−1
ξ ( f1,± ⊗ 1), f̄12)dz

∣∣∣ ≤ C

log n
· ‖ f1‖2 · |λ0(K )|n−1,

∣∣∣
∫

L1

zn−1(M−1
2,ξ M21,ξ D

−1
ξ M12,ξ M

−1
2,ξ f12, f̄12)dz

∣∣∣ ≤ C

log2 n
· ‖ f1‖2 · |λ0(K )|n−1.

This implies the lemma. ��

Now we have the integral
∫

L1

zn−1(G1,l(z)( f1,± ⊗ 1), ( f̄1,± ⊗ 1))dz.

The last step is to show

Lemma 4.5 The operator Km,l,ξ of (2.22) can be replaced byAm ⊗K∗ξ,l (see (2.24)–(2.25)),
i.e. we have

∫

L1

zn−1(G1,l(z)( f1,± ⊗ 1), ( f̄1,± ⊗ 1))dz

=
∫

L1

zn−1(G0
ξ (z)( f1,± ⊗ 1), ( f̄1,± ⊗ 1))dz + |λ0(K )|n−1 · ‖ f1‖2 · O

( logp W
W 1/2

)
,

where G0
ξ is defined in (3.23).
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Proof of Lemma 4.5 Using the resolvent identity we can write

G1,l(z) − G0
ξ (z) = −G0

ξ (z)(M1,ξ − Am ⊗ K∗ξ,l)G1,l(z)

Since for (3.5)

ψα
k (x) = O(e−c log2 W ), |x | ≥ 2W−1/2 logW , k ≤ m,

we get that both Km,l,ξ ,Am ⊗ K∗ξ,l are concentrated in the logW/W 1/2-neighbourhoods of
a± (see [18], for details). In this neighbourhood

a1 − b1 = a+ − a− + O
( logW
W 1/2

)
, a2 − b2 = a+ − a− + O

( logW
W 1/2

)
,

t = (a+ − a−)2 + O
( logW
W 1/2

)
= t∗ + O

( logW
W 1/2

)
.

Thus according to (2.20)

‖Km,l,0 − Am ⊗ K∗0,l‖ ≤ C logW

W 5/2
,

where Km,l,0,Am ⊗ K∗0,l are Km,l,ξ ,Am ⊗ K∗ξ,l with ξ = 0. In addition, in this neighbour-
hood

‖K̃ξ (X , Y ) − K̃ξ (X , Y )
∣∣
X=Y=X±‖ ≤ C logW

n
√
W

.

Hence, since n ∼ W 2, we get

‖Km,l,ξ − Am ⊗ K∗ξ,l‖ ≤ C logW

W 5/2
,

and so
∣∣∣
∫

L1

zn−1
(
(G1,l(z)( f1,± ⊗ 1), ( f̄1,± ⊗ 1)) − (G0

ξ (z)( f1,± ⊗ 1), ( f̄1,± ⊗ 1))
)
dz

∣∣∣

≤ C |L1| · CW 4 · logp W
W 5/2

· ‖ f1‖2 · |λ0(K )|n−1 ≤ C logp W

W 1/2 · ‖ f1‖2 · |λ0(K )|n−1

��
We are left to prove (4.3).
It follows from (3.25)–(3.27) that

(An−1
m f1,±, f̄1,±) = λ0(K )n−1 · |( f1, �0̄,0)|2(1 + o(1)),

where we used that ( f1,±, �0̄,0) = ( f1, �0̄,0).
According to the definition of {�k̄}|k̄|≤m it is also easy to see that

‖ f1‖2 = |( f1, �0̄,0)|2(1 + O(1/W )).

Thus

(An−1
m f1,±, f1,±) = λ0(K )n−1 · ‖ f1‖2(1 + o(1)),

which completes the proof of Theorem 4.1.
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