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Vaccination is among the most effective means of preventing and controlling infectious
disease outbreaks. Mathematical models can be used to identify the optimal allocation
of vaccine among various groups when host populations are heterogeneous. Population
heterogeneity may affect individual decision-making and government policy. We show
that mixing among sub-populations can profoundly influence the optimal vaccination
allocation. Centralized and decentralized programs are examined, accounting for indi-
vidual behavior and economic constraints. We also compare approaches to modeling
transitions between epidemiological classes by epidemiological and economic modelers,
and identify key differences.
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1. Introduction

When mathematical models are used to evaluate vaccination strategies, results have
been sensitive to population heterogeneity.'™ A quantity that is commonly used
to design disease control policies is the basic reproduction number, denoted by
Ro, which has the property that outbreaks are possible if and only if Ry > 1. If
programs for disease control are implemented, the corresponding quantity is the
effective reproduction number, denoted by R.. Typically R. < Ry, as we consider
only effective disease control strategies.

1.1. Epidemsiology

The meta-population model presented in this section was studied by Feng et al.,'
who demonstrated how population heterogeneity may affect vaccination strategies.
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This is an susceptible-infected-recovered (SIR) type of compartmental model for
the transmission of pathogens causing infectious diseases when immunity by virtue
of either infection or immunization is permanent (but the same framework can
be applied to other models including SEIR, SIS, etc.). The meta-population (a
population of populations) consists of n subgroups or sub-populations connected
by a mixing matrix or network, which describes person-to-person contacts within
and between subgroups.

Let S;(t), I;(t), Ri(t) denote the numbers of susceptible, infectious, recov-
ered/immune individuals in group i at time ¢. Then N; = S; + I; + R; is the
total population size of group i, and p; represents the proportion of group 4 that is

immunized, ¢ = 1, 2,...,n. The model reads:
D~ N1 = ) — Oul0) + S
U N5~ (L1)
% = uNipi +vI; —pR;, i=1,2,...,n,

with initial conditions S;(0) > 0, I;(0) > 0 and > 0 for some ¢, R;(0) > 0. The
parameter « is the per capita recovery rate, p is the per capita birth and death
rates, which are assumed to be equal (so that the total population in group i
remains constant). The function \;(t) represents the force of infection for susceptible
members of group ¢ given by

n 1.
/\l‘:O'ai Ci'—j, 1.2

where a; denotes the average number of contacts an individual in sub-population @
has per unit of time (which represents the activity level of group ), and o is the
probability of infection per contact with an infectious individual. The parameter
ci; is the proportion of the contacts that members of the ith sub-population have
with members of the jth, defined by

cij = €0 + (1 — &) f, (1.3)

where ¢; is the fraction of their contacts that members of the ith sub-population
reserve for others in their own sub-population (called preference), ¢;; is the
Kronecker data,

_ (A —¢)a;N;
Ek(l — ek)aka’

is the contribution of members of the jth sub-population to the pool of unreserved

contacts, and a; is the per capita contact rate (called activity). The function c¢;;

allows mixing to range from proportionate (all ¢; = 0) to preferential (some 0 <
€ < 1).1247

I

(1.4)
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A fundamental difference between models with and without heterogeneity in
terms of optimal immunization strategy is illustrated in Feng et al.! For example,
consider the case of n = 2 groups. In the absence of heterogeneity (i.e., parameters
for the two groups are identical), p; = p (i = 1,2), and the basic and effective
reproduction numbers for both groups and the meta-population are

oa

ROi:ROZ s Rei:RE:Rol_p7 Z:1,2 15
—— (1-») (15)
The threshold population immunity is
1
ic — Pec — 1-— e 1.6
Pic =P R (1.6)

such that R, < 1if and only if p > p., which eventually leads to disease elimination.
That is, for disease elimination, the optimal immunization proportions in the two
sub-populations are p; > p;. with p;. being given in (1.6).

When heterogeneity is considered, however, pi. and po. can differ. In fact, the
basic reproduction number for group i is Ro; = oa;/(y + u), and the effective
reproduction number for group ¢ is Re; = Roi(1 — p;), @ = 1,2. But, for the meta-
population, the effective reproduction number is given by

R, = %[A+D+\/(A—D)2+4BC}, (1.7)

where

A=TRoic11(1 —p1), B=TRoiciz(l —p1), 18)
C = Ro2ca1(1 —p2), D = Roac2(1l —p2).
Any combination of vaccine coverage (p1,p2) for which R.(p1,p2) < 1 can lead to
elimination of disease. Feng et al.' showed that there are infinitely many critical
combinations (pi¢, p2.) that have the property that Re(p1,p2) < 1 for all p1 > pi.
and ps > pa., including the homogeneous allocation
1
Ro

The minimum number of vaccine doses required to achieve disease elimination

Pie = P3. =1 (1.9)

depends on the mixing matrix (¢;;). Most interestingly, the homogeneous allocation
given in (1.9) may not be the optimal strategy.

The thick (red) curve in Fig. 1 corresponds to Re(pic, pec) = 1. This is for the
case of N1 = Na, so the total vaccine doses p1 N1 +paNo = (p1 +p2) N7 is minimized
if and only if p; + py is minimized. All points (p1, p2) on the dotted line (tangent to
the R. = 1 curve at the star) correspond to same doses, including the homogeneous
allocation (pi.,ps.) (intersection of the dotted and dashed lines). Note that all
points on a line perpendicular to the dashed line correspond to equal-dose strategies,
and that a line closer to the origin corresponds to a smaller number of doses. Clearly,
there is a point (p1,p2), marked by a solid dot, at which R. = (p1,p2) = 0.85 < 1
so it provides a more effective strategy than (pj.,p5.) (equal number of doses but
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Fig. 1. Contour curves of Re(p1,p2). At the point marked by a solid dot, Re = 0.85 < 1. At the
point marked by a star, Re = 1 but the required vaccine doses is smaller than the homogeneous
coverage (pj.,ps.) (the intersection of the dashed and the dot-dashed lines).

a smaller R.). At the point (p1,p2) marked by the star, R, = 1, but the sum
D1+ D2 < pi. + ps.. Thus, (p1,P2) is also a more effective allocation than (pi., ps.)
(equal R, but a smaller p; 4+ p2). Other parameter values used for this figure are:
B=0.05,y=1/7,1=1/(365 x 70),a1 = 8, a2 = 12, Ny = Ny = 500, €1 = €2 = 0.6.
The time unit is in days.

1.2. Economics

Similar studies on the role of mixing in vaccination strategies have been conducted
with a focus on Economics, in which non-random mixing is referred to as assortative
interactions. For example, Galeotti and Rogers® studied vaccination strategies when
interactions are positive or negative (i.e., assortative or dis-assortative). In this
study, two scenarios are discussed, one centralized and other decentralized. The
authors aimed to answer the following questions:

(Q1) What information does the government need to efficiently decide the optimal
vaccination policy to eliminate an infection?

(Q2) Should vaccination be allocated randomly or concentrated in one group?

(Q3) How should the planner’s action depend on the structure of interactions?

The model considered by Galeotti and Rogers? is a system of ODEs for a network
consisting of two groups indexed by g € {A, B}. Denote the proportion of the non-
immunized and infected agents in group g by py(t). Assume that a proportion 7,
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of group g has immunity. The ODE system for p,(t) has the following form:

dpg

dt
where v denotes the per-contact rate of infection, & denotes the number of neighbors
that each individual has, § is the per capita rate at which individuals in the infected
state I transition to the susceptible state S, and 0, denotes the probability that a
randomly contacted individual in group ¢ is infected, defined by

04 =P —ma)pa+(1—pB)(1—7B)ps,
O =pB(1—7mp)pp+ (1 —B)(1 —7ma)pa.

The parameter 3 denotes the proportion of interactions that are with individuals in
the same group while the remaining interactions are with individuals in the other
group. It measures the extent of positively (6 > 1/2) or negatively (8 < 1/2)
assortative interactions. This parameter plays a similar role as ¢; in the mixing
matrix (¢;;) for model (1.1).

It is shown in Galeotti and Rogers® that elimination of disease depends on the
quantity

=(1—pg)vkby — pgd, g=A,B, (1.10)

(1.11)

which they define as the intensity of infection. It plays the same role as the basic
reproduction number R in model (1.1). They also show that immunization strate-
gies can differ dramatically in the case of positively versus negatively assortative
interactions. Note that A are the same for the two groups.

We point out that the main results presented in Galeotti and Rogers? are for
the special case when heterogeneity between the two groups in the transmission
rate (), connectivity or activity (k), assortativity (), and group size is ignored. In
this paper, we study a more general model by incorporating heterogeneity in these
factors.

Our paper is organized as follows. In Sec. 2, we present the generalized model
of (1.10) and derive the effective reproduction number R,,. We show that R, = 1 is
a threshold for the elimination of disease by considering model equilibria and their
stability. Section 2.1 focuses on identification of the optimal vaccine allocation. We
discuss the results and compare those from the two frameworks (using assortativity
or preferential mixing for interactions between groups).

2. A Generalization of the Model (1.10) and (1.11)

To incorporate heterogeneity, whose importance for disease transmission and con-
trol Feng et al.! demonstrated in model (1.10) and (1.11), we allow group-specific
transmission rate (1), connectivity/activity (kg), assortativity (8,), and popula-
tion size (Ny), g = A, B. Because of the added heterogeneity, model analysis and
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the identification of optimal immunization strategies is more challenging. But it
is important to compare results from simpler (1.10) and (1.11) and more general
models, and to determine if the more general model provides any new insights in
answering the questions Q1-Q3 mentioned in Sec. 1. As the epidemiologic model
includes heterogeneity, this generalization will also permit us to compare these par-
allel literatures.

In models (1.10) and (1.11), it is assumed that the two groups have identical
transmission rates v, activities k, and assortativities 8. If we allow these parameters
to differ between groups, the model can be written as

dd% = (1= pg)vgbsky — pgd, g=A,B, (2.1)
where
0a = Ba(l —=ma)pa+ (1= Ba)(l —75)ps, 22)
Op =Pl —mp)pp + (1 —B)(1 —ma)pa.
Define
)\g:Vg(sﬁ7 g=A,DB, (2.3)

which represents the intensity of infection for group ¢g and can differ between groups
if kg or v, are different. All parameters and variables are listed in Table 1.

The pathogen can be eliminated if the disease-free equilibrium, denoted by Ey =
(0,0), is stable. Let J(Ep) denote the Jacobian matrix of (2.1) at Ey. Then,

J(Eo) = B - D, (2.4)
where
[ I/AkAﬂA(l—ﬂ'A) VAkA(l—ﬁA)(l—ﬂB)
B— and
vpkp(1 — fp)(1 —ma) vekpfBp(l —7p)

o[

Table 1. Definition of variables and parameters used in Egs. (1.10) and (1.11), where g = A, B.

Symbol Description

pg(t) Proportion of the unimmunized people in group g that are infected

Ty Proportion of group g immunized (assumed to be independent of t)

kg Number of neighbors per person in group g has (or contact number)
Vg Infection rate per contact for individuals in group g

04 Probability that a person in group g contacts an infected person

Ag = vgykg /4. Intensity of infection for group g

4 per capita recovery rate

Ny Population size of group g

I4(t) = (1 —mg)Ngpg(t). Number of infected at time ¢ in group g
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Defining H = BD~!,

lhn hul . [ AafBa(l —ma) Aa(l = Ba)(1 —7p)
H= = . (2.6)
hat  hao Ap(1—pp)(1 —ma) ApBp(1—7p)

Then H is a non-negative matrix (all elements are non-negative). From the Perron—
Frobenius theorem, all eigenvalues of J(Fy) have negative real parts if and only if
the dominant eigenvalue of H is less than 1. Let R, = r(H) denote the larger
eigenvalue of H. Then

Re = (h11 + hos + \/(hll — ha2)? + 4h12h21)7 (2.7)

N =

where h;; is defined in (2.6) as functions of model parameters including vaccine
coverage Tg.

Note that R. < 1 if and only if the disease-free steady-state Ey is locally
asymptotically stable; and thus, the pathogen will die out. Using the approach
of Reluga et al.,* we can show that R, < 1 implies global stability of Ej.

In addition, because all entries of H decrease with m4 and wp, we know from
Perron-Frobenius Theorem that r(H) (i.e., R.) will be reduced when 74 or g
is increased. Therefore, we can determine the optimal immunization strategy by
identifying the combination of (7%, 7};) for which R. (7%, 7}) = 1 with the smallest
number of vaccine doses.

2.1. Disease dynamics and optimal immunization strategy

Let N, denote the population size of group g. Then the total number of immunized
people, a function of 7y, is

M(ma,mg) =maNas+7pNp. (2.8)

Thus, an optimal vaccine allocation (7%, 7};) is a solution to the following opti-
mization problem:

Minimize M(7wa,75) = maNas +75Np, subject to R.(ma,75) =1, (2.9)

with 0 <7y < 1.

Let VF = (gTIj, gTi) denote the gradient vector of a scalar function F(z1,z2).
Note that VM = (Na,Np). An optimal solution (7%,7}) can be obtained by
solving jointly the equations

(NA,NB) + wV'Re(WA,ﬂ'B) =0,
(2.10)
Re(ﬂ-Aaﬂ—B) = 1»

where w is a constant (Lagrange multiplier).
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2.1.1. The case of No = Np

System (2.10) can be used to obtain the optimal solution, 7% and 7}, numerically.
Figure 2 illustrates optimal vaccine allocations for several values of S4 and (Gp.
The values of (A4, Ap) are: (2,2.5) in (a), (e) and (f), (3.5,2) in (b) and (c), (2.5,3)
in (d). Population sizes are N4 = Np = 500. Six sets of 84 and [p values (as
indicated in the figures) are used to capture various types of optimal immunization
strategies.

Graphically, a solution to the equations in (2.10) is an intersection of the
constraint curve Re(ma,mp) = 1 (represented by the thick curve) with a con-
tour line given by maNa + mpNp = ¢, which is equivalent to a contour line of
B = —%—i’ﬂ'A + 5 (in the unit square), with the smallest ¢ (the blue dashed line).
The dot marks the point representing the optimal vaccine allocation (i.e., propor-
tions 7% and 7} of groups A and B immunized to attain R, = 1 using the least
amount of vaccine).

We observe in Fig. 2 that, depending on the relative strength of transmission
in the two groups (A4 and Ap) and values for assortativity (64 and 8g), the opti-
mal immunization strategy (7%, 7}), marked by the dot, can appear either on
the boundary of the unit square (wa,75) € [0,1]? or as an interior point with
0 <, < 1. For example, in (a) and (b), we have 77 = 0 and 7 = 0, respectively.
In (c) and (d), we have 7% = 1 and 75 = 1, respectively. These four cases cover vari-
ous combinations of 34 and [p including both positively and negatively assortative
interactions. In (e) and (f), both 84 and (p are greater than 1/2, and 0 < 77 < 1
for g = A, B. Other parameter values are: k; = 5,ks = 3,d=1/5, N4 = N = 500.
From )\, = v4k,/d, the values of v, g = A, B, can be determined.

Remark. Unlike the homogeneous case, 54 = 3, studied by Galeotti and Rogers,?
there is no longer a single threshold 5 = 1/2 to separate optimal immunization
strategies for positively or negatively assortative interactions. Also, the optimal
allocation for the case 3 > 1/2 need not be 7% = 7. Thus, heterogeneity substan-
tially complicates the answer to question Q2.

2.1.2. The case of Nao # Np

In Fig. 2, the population sizes for the two groups are equal (N4 = Np = 500).
Figure 3 illustrates the role of heterogeneous sub-population sizes (Na # Npg)
using the same values for other parameters as in Fig. 2(e). Because Ay < Ap and
B4 < BB, the vaccine coverage is lower in group A than group B. However, when
Np > Ny, the optimal solution has a higher coverage in group A.

2.1.3. Numerical exploration of model solutions

Optimal immunization strategies based on solving the optimization problem (2.9),
represented graphically in Fig. 2, identify combinations of immunization proportions
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Ba=0.6 and B5=0.65
1.0 ; ; ‘ ;

0.8 1.0000
0.6/

g 0.8366
0.4
02l 0.5000
0.0/

TTA

Fig. 3. Similar to Fig. 2(e), but for the case when N4 and Np differ: Ny = 500 < N = 1000.
However, this figure shows that 7% = 0.65 > w5 = 0.51. Other parameter values are the same as
in Fig. 2(e).

(7%, m}) that reduce R, to 1 with minimal vaccine doses. Additional insights can be
obtained by examining the numerical solutions of system (2.1). But note first that
the effect of immunization coverage 7, on disease prevalence cannot be assessed
using the quantity pg, which is the fraction infected among unimmunized people.
Consequently, even if p, is large, the number of infected (I,) could be very small
when if the proportion unimmunized was small. The prevalence can be represented
by Iy/Ng = (1 —mg)pg, g = A, B.

Figure 4 illustrates numerical solutions of system (2.1) to compare the effect
of various immunization programs on disease prevalence. Other parameter values
are chosen to correspond with those in Fig. 2(e). In this case, the optimal strategy
to eliminate the pathogen corresponds to the threshold immunization proportions
7 = 0.37 and 7}; = 0.71. That is, for all 7, with R, (7a,75) =1, 7% + 75 is the
smallest, and that Re(ma,7p) < Re(m),7p) for all my > 72, g = A, B.

For the top panel A, we fix 1p = 7 = 0.71 and vary m4. We change the plots in
the fractions infected in group A (I4/Na, dot-dashed), group B (I5/Np, dotted),
and their average (solid) over time. The plots in this panel show that, for 74 < 77,
prevalence stabilizes at a positive level, which decreases with 74 (see (A1-A3)), and
the pathogen is eliminated when 74 exceeds 7% = 0.37 (see A4). The plots (B1-
B3) show solutions for the same values of R. as those in (A1-A3), respectively, but
with different combinations of 7,. We observe that, while the average prevalence
is similar between panels A and B, the endemic levels in the two groups differ
considerably.
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Fig. 4. Numerical solutions of the system (2.1) with parameter values corresponding to Fig. 2(e).
The vertical axis represents the proportion of infections I4/Ny = (1 — 7g)pg, g = A, B.

2.2. Comparison of models with and without heterogeneity

We include in this section immunization strategies deduced from the simpler model
(1.10) and (1.11) using the same analysis; that is, solution of problem (2.9).
First, because groups A and B have identical parameter values except m,, we
can simplify the equation R¢(ma,7p) = 1, which from (2.7) yields:
V/(h11 — ha2)2 + 4hiohot = 2 — (hyy + hay).

By squaring both sides of the above equation and simplifying further, we obtain
the following equation (note that this may introduce an additional solution):

1 — (h11 + ha2) = —hi1hos + hi2han, (2.12)

which, in the original notation, is

G=[MafBa(l =7ma)+ApBp(1 —7p)] + (1 —ma)(1 —7B)AarB(l — Ba — Bp) = L.

(2.11)

Using Aa = Ap = A and 84 = Bp = (3, condition (2.13) reduces to
1-282—-—7ma—75)=(10—-ma)(1 —TFB)/\2(1 —20),
which is Eq. (9) in Galeotti and Rogers.?



2 Reading

August 8, 2019 9:57 WSPC/S0218-3390 129-JBS 1940001

12 Zhao & Feng
Then, replacing R(wa,75) =1 by G(7a,75) = 1 in (2.10), where G is defined
in (2.13), we can determine the optimal solution by solving the system:
(N,N)+wVG(ra,mp) =0,
(2.15)
G(ra,mg) =1,
with A4 = Agp = X\ and §4 = B = (. Note that, in this case,
VG = (A8 — (1 —7p)N[1 = 28], - A8 — (1 —wa)A*[1 - 20]).  (2.16)

Using the first equation in (2.15) and eliminating w, we arrive at the following
system, equivalent to (2.15):

N (1 —26)(ma —75) =0,

(2.17)
G(ma,mg) = 1.
Because A > 0, the first equation in (2.17) implies that for all 5 # 1/2,
T =T = T. (2.18)

Thus, all optimal solutions satisfying 0 < 7* < 1 can be determined by solving the
following equation for x:

M(1— ) + A3(1 — ) + (1 —2)(1 —2)\*(1 - 283) = 1, (2.19)
which can be written as
asx® + a1z +ag =0, (2.20)

where

ap = N (1—28), a1 = —2\3—2)\*(1 —2p),
(2.21)
as =223 + A\?(1 —26) — 1.

It can be verified that a? — 4asag = 4A\*(1 — 8)? > 0. Thus, the quadratic equation
(2.20) has two real solutions given by

U R TP R et 1) VA RS

r+ =

2a5 A1 —20)
After simplification, we obtain
1 1
_=1-— =1—-—— . 2.2
v N N1 - 20) (223)

Recall that x4 = 7% = 7} given in (2.23) are possible solutions only for 5 # 1/2.
In addition, we need to ensure that xx € [0,1].

It is easy to show that, when m4 = 7 = 0, R = . This implies that, if A < 1,
E)y is stable, so there is no need to vaccinate. Thus, we assume that A > 1. Then,
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it is clear from (2.23) that

1
O<z_<1 forall §# 3 (2.24)
It can also be verified that
1 1
0<zy <1 ifandonlyif§<1+x><ﬂ<1. (2.25)

Therefore, for %(1 + %) < 8 < 1, both _ and z are possible solutions. We then
need to determine which is smaller. Note that

28 -1) 1 1

That is, 4 < x_. It follows that . is the optimal solution.

Ty —T—

1.5

n n n

0.0 0.2 0.4 0.6 0.8 1.0

A A
(a) B=0.25 (b) B=0.45

T T

T T

n n n n

0.0 0.2 0.4 0.6 0.8 1.0

A A

(c) B=0.6 (d) B=0.75

Fig. 5. The optimal solutions (the dots) for 3 in different intervals are separated by thresholds:
(a) and (b) are for 8 < 1/2, (c) is for 1/2 < 8 < (1 4+1/X)/2, and (d) is for 8 > (1 4+ 1/X)/2.
Contour lines of the function 74 4+ wp are also plotted. We assumed that 74 < wg. Note the
symmetry in all curves and lines due to the lack of heterogeneity.
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Figure 5 illustrates the solutions under various conditions. The scenarios pre-

sented are based on values of 3 separated by the following thresholds:
1 1 1

= =-(1+<).

ﬁl 2a 52 2 ( + )\)

The thick curve corresponds to G(ra,75) = 1 and the straight lines are contour

lines m4 +mp = ¢ for different ¢ values. In (a) and (b), 8 < 1, and for the optimal

solution, we have either 7% = 0 (see (a)) or 75 = 1 (see (b)). Recall that we

assumed that 74 < 7p. In (¢), f1 < < B2, in which case 7y = 7 = x_ is

the only solution. In (d), both z_ and x4 are solutions (thus there are two curves

corresponding to G = 1), but the optimal solution is 7% = 75 = .

3. Decentralized Games

The previous sections covered the optimal solution for a central government wishing
to vaccinate. However, in the absence of such an authority, people will make their
own individually optimal choices. This would almost certainly result in societally
suboptimal levels of vaccination, because people do not internalize the negative
externalities that they impose on others.

Following Galeotti and Rogers,? people choose whether or not to be vaccinated
before interacting with others. Individuals derive a flow utility of one when healthy
and zero when sick. Assuming that people do not have preferences about when
they are sick, the utility for each person can be measured by the proportion of
time that they are sick. Thus, with cost ¢ > 0 of being immunized, individuals
who choose to be vaccinated will ensure themselves a utility of 1 — ¢, because —
assuming vaccination is 100% efficacious — they never get sick, but must pay the
cost. Alternatively, unvaccinated individuals in group g who spend p, proportion
of their time sick will have a utility of 1 — p,.

3.1. Characterization of a stable interior game equilibrium

We show in this section that, depending on parameter values, there can be a unique
stable interior equilibrium with 0 < 7, < 1, ¢ = A, B, or boundary equilibrium
points including w4 € (0,1), 75 =1 and 74 = 1, 75 € (0, 1). For vaccination to be
necessary in group g, assume that

A(l—cg,)>1, g=A,B. (3.1)

Let IT* = (7%, 75;) denote an interior equilibrium (i.e., 0 < 7; < 1 for g = A, B).
Similar to Galeotti and Rogers,>

g >0 = py<cg and 7y <1 = py>cy. (3.2)

Thus, for 7, to be an interior game equilibrium, the endemic equilibrium (p%, p};)

satisfies

*_

Py =Cy 9=ADB. (3.3)
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3.1.1. Ezistence of an interior game equilibrium IT*

For general values of 7, a disease equilibrium pj € (0,1) of the extended system
(2.1) is obtained by setting the right-hand sides of the equations equal to zero,
which is equivalent to a positive solution of the following system:

F(pa,;pp) = (1 = pa)Aa(Ba(l —7wa)pa + (1 — Ba)(1 —7B)pB) — pa =0,
G(pa,pp) = (1 = p)As(Be(1 —7B)ps + (1 — BB)(1 — 7a)pa) — p5 = 0.

(3.4)

> € (0,1), we can solve a similar set of

equations as in (3.4) but with p; = ¢, for ¢ = A, B, and with F(ma,7p5) and
G(ma, ) being functions of my:

To find an interior game equilibrium 7

F(7TA,7TB) = (1 — CA))\A(ﬁA(l — WA)CA + (1 — ﬂA)(l — WB)CB) —ca =0,

Glrna,m5) = (1 — cp) (Bl — 7p)e + (1 — B)(1 — ma)ca) — i = 0. (39)
For ease of presentation, introduce the notation
Ag=XN(1—¢,), g=ADB, (3.6)
and let
et mef e

Lemma 3.1. Let Hy be as defined in (3.7). Assume that 5\9 = N1 —¢g) >1
and Ba + B # 1. Then a unique interior game equilibrium (7%, 7},) exists if the
following conditions hold:

(i)

1-— A
5A<CAB< Ba

= , if Ba+ > 1; 3.8
7 eoda 1= 55 f Ba + Bp (3.8)

Ba cadp _1—Ba
< /< . if Ba+ B <1 3.9
T— 05 “opha  Ba  UOATE (39)

(i)
H,
— <1, = A, B. 3.10
Ba+0Bp—1 g (8.10)
Moreover, the game equilibrium is given by:
HA HB

=l F=1l—-—. 3.11
M ST AT T T B (311

Proof. Note that (7%,7}) is a solution of system (3.5), which is linear in
1—7m4 and 1 — wp. The condition Sa + B # 1 implies that the matrix
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Baca (1 —Ba)es
(1—=BB)ca Brecr
1 — 7% and 1 — 7}, from which we obtain:

dot [CA/XA (1- ﬁA)CB‘|

is non-singular. Thus, system (3.5) has a unique solution,

] cs/M\p BBcr o Ha
4 | tl Baca (1 mm] Ba+Bp—1
e
(1-p3B)ca Bece
i (3.12)
det[ Baca CA/{\A‘|
=1 — (1_ﬂB)CA CB/)‘B —1_ HB
" ot l Baca  (1- ﬂA)CB] Ba+tBp—1
e
(1-73B)ca Bece

It can be checked that m; < 1 if and only if Hy/(8a+ g —1) > 0 for g = A, B,
which is true if and only if (3.8) or (3.9) holds. It can also be verified that 7; > 0
if and only if H,/(8a + fp — 1) < 1, which is true if and only if (3.10) holds.

This completes the proof. O

Note that conditions (3.8)—(3.10) only define implicitly regions in the (84, 85)
plane where the game equilibrium IT* exists. These conditions can be described by
the following four lines:

Linel. Bp=1—Q18a;
Line 2. B =1-Q1Q284;

(3.13)
Line 3. fp = Q1(1— (a);
Line 4. ﬂB = Q1Q3(1 — ﬂA)7
where @; (1 < < 3) denote the following constants:
Aa(1=ca)ep Ap(1—cp)—1 Ap(1—cp)ea —
Q=1TF——— Q2= s ) 3=
A(1—cp)ca /\A(l—CA)a—l Aa(l —caq)—1
(3.14)

More specifically, the region where IT* exists is the intersection of the regions above
(below) the four lines if B4 + 8 —1 > 0 (Ba + OB — 1 < 0). To get a better
idea what these regions look like, consider the case when the two groups have the
same parameter values except ¢, and 3,. In this case, it can be verified that, when
Ba + B — 1> 0, the following relations hold:

(a) if ca >cpthen Q1 <1,Q2>1,Q3 > 1, Q1Q2 > 1, Q:1Q3 > 1;
(b) ifca <cpthen Q1 >1,Q2<1,Q3<1,Q:1Q2<1,Q1Q3 < 1.
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Bs Bs
(a)ca>ca Q1 (b) ca<cs

Q1Q3

(7t ,71g) exists

(775,775 ) exists

Qq . :
Q1Q3
0.5¢ 0.5
.
N AN
. N
0 —— —— fa 0 — S ba
0 0.5 1 - 0 0.5 - 1
Qq Qy Qq Q Q1 Q@
Line1 -=-—- = Line2 — — — Line3 Line4

Fig. 6. Depiction of the regions in the (84, pg) plane in which the game equilibrium (7%, 77})
exists. The two plots are for the case of (a) ca > c¢p and (b) ca < c¢p with all other parameters
having the same values in the two groups. The four lines are defined in (3.13).

When G4 + B — 1 > 0, the directions of inequalities involving @; are reversed
(Fig. 6).

We observed in Fig. 6 that II* does not exist for all 34, and that the size of the
region for existence increases as c4 and cp become similar. The parameter values
used are the same as before except that vy = v = 0.12, ka = kg = 4. In (a)
ca=012>¢p=0.1,and in (b) c4 = 0.1 < ¢ = 0.13.

Remark. In the special case, when all parameters are identical in the two groups
(except mg), as in the model of Galeotti and Rogers,? Q; = 1 for i = 1,2,3. Thus,
all four lines defined in (3.13) are the same as 84 + fp = 1 (i.e., 20 = 1 when
Ba = fBp). Therefore, IT* exists for all parameter values except 8 = 1/2.

3.1.2. Stability of IT*

For the stability of game equilibrium IT*, we can examine the derivative of the
best response of group B with respect to group A’s immunization rate, as done by
Galeotti and Rogers, and identify conditions under which

L drp(ma)

- dma e

Ps > 1. (3.15)

Lemma 3.2. A necessary condition for the interior game equilibrium II* =
(7%, m5) to be stable is the following inequality:
(1+Aa04)(1 = Ba)(1 = 7p)ep((1 — Bp)ca — Bres)

< (1=p8B)(1 —=ma)ea((1 = Ba)ecp — Baca). (3.16)
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Proof. For ease of notation, let pa(ma) and dpa(wa)/dra denote the following
quantities:

pa(ma) = pa(ma,mp(Ta)),

dpa(ma) _ Opa(ma, mh(ma)) N Opa(ma, mh(ma)) dﬂE(ﬁA). (3.17)

dma orma org dma

Differentiating the equation G(pa, pp) = 0 in (3.5), evaluating at p¥ = pa(7}),
and noting that pp(ma, 75 (ma)) = cp when 74 is sufficiently close to 7%, we have

dpa(ma)

—BpepPp — (1 —Pp)pis + (1 —Bp)(1 —7%) 4 =0. (3.18)
TA |-
Using pa = Aaf0a/(1 + Aa64) and the 64 equation in (2.2), we have
dp(ma) Aa )
= 0
A e (14 2Aaba)? ama) I
AA dpa(ma)
S — 1- . waATA)
T | s +0a —ma)Pe — (1= a)es LA
(3.19)
Using (3.18) to eliminate d"#(zf’) 17> We obtain:
 —(1=BB)A —ma)Baca — (1 - Bp)ea(LE2AL — 84(1 — 74))
B = 5 .
(1= Ba)(1 = B5)(1 = ma)cn + Brep (ML — B4(1— 7))
(3.20)

To use the condition Pg > —1, we show first that the denominator in (3.20) is
positive. It suffices to note that

ﬂﬂ — 24 = Ba(l =) + (1= Ba)(1 = 73) 2, (3.21)
A PA ca
and thus,
2
(1"";\\7149‘4) —Ba(l —ma) = (14+ Xa04)(1 — Ba)(1 _TFB)C_B
A )
+A40484(1 —74) > 0. (3.22)

From (3.20), using P > —1 and the fact that the denominator of (3.20) is positive,
we know that a necessary condition for IT* to be stable is the following inequality:

WA (0= )] (1= Bo)en — Boen)
A
< (1=8p)(1 —7a)((1 — Ba)cp — Baca). (3.23)

From (3.22) and (3.23), we arrive at the inequality (3.16).
This completes the proof. O
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Remark. The necessary condition (3.16) for the stability of the interior game
equilibrium is much simpler in the model considered in Galeotti and Rogers.? This
is because, when A\ = A, ¢y = ¢, B, = 3, (3.16) simplifies to:

(1+20)(1—28) < (1-23), (3.24)

which can be true if and only if 1 — 28 < 0 (i.e., § > 1/2). Thus, a stable interior
game equilibrium can be stable only for positive assortative interactions. However,
this may not be the case in the extended model (2.1).

Although inequality (3.16) does not provide a simple condition in terms of assor-
tativity, we can examine it numerically (Fig. 7). The contour curve of the function
L(Ba, BB), which has the property that L > 0 is equivalent to the inequality (3.16),
where

L(Ba,B5) =1 —p0)(1 —ma)ca((l1 —Ba)es — Baca)
(14 2Aa04)(1 = Ba)(1 = 7)en((1— Br)ea — Buen). (3.25)

The plots in (a) and (b) use the same parameter values as in Figs. 6(a) and 6(b),
respectively, and the plot in (c) is for the case of c4 = ¢p.

3.1.3. Effect of immunization on disease equilibrium pg

When the ¢, change, the game equilibrium II* may change. Figure 8 shows the
dependence of 7% and 7} on costs ¢,. All other parameter values are the same as
in Fig. 2(e).

We observe from Figs. 8(a) and 8(b) that, for given cp, 7% decreases with ca
(this is intuitive inasmuch as a higher cost would lead to lower proportion immu-
nized) while 7} increases with c4. Symmetric properties can also be observed (i.e.,

1.0 1.0 1.0
(7T4,7tg) is stable if exists (7t4,7tg) is stable if exists (7t4,7tg) is stable if exists
081 0.8 0.8
L(Ba >0 L(Bai >0 L(Bai >0
o6l (BaBs) sl (BaPs) o6l (BaPs)

& & &

0.4} 0.4+ 041
0.2} 0.2 / 02}
0oL . ! . . . 0.0bs n . . . 0.0l

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Ba Ba Ba

(a) Ca>Cp (b) Ca <Cp (c) Ca=Cp

Fig. 7. Plot of the function L(84,08p) given in (3.25) (the lighter surface) and the constant 1
(the darker plane). The interior game equilibrium IT* is stable in the region where L > 0. The
parameter values in (a) are the same as in Fig. 2(e) with ¢4 = 0.1, ¢g = 0.12. Those in plot (b)
are the same except that c4 = 0.13, ¢cg = 0.1 and v1 = vo = 0.12. In (c¢), parameter values are
the same as in (a) except that v4 =vp =0.12, k4 = kp = 5.
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(a) (b)

SR — v 1.0} = m
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S 0.6} 35 06}

o o
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o 04r o 04}

£ £

G 02} & o2}

0.07 008 009 01 0.1 007 008 009 01 011
cA cA
(¢) ¢g =0.1 (d) ¢g =0.12

Fig. 8. Plots in (a) and (b) illustrate the stable game equilibrium of immunization 7 as a
continuous function of the costs ¢4 and cp. Plots in (c) and (d) list the values of 7% and 7}, for
fixed pairs of (ca,cp). Values of other parameters are the same as in Fig. 2(e).

for given c4, 7% increases with ¢ while 7}, decreases with ¢p). Plots in (¢) and (d)
make it easier to compare the relative magnitudes of 7% and 7 for a fixed pair of
(ca,cp). For example, plot (c) shows that, for (c4,cp) = (0.1,0.1), 7% = 0.27 while
75 = 0.71. Similarly, plot (d) shows that, for (c4,cp) = (0.08,0.12), 7% = 0.68
while 75 = 0.42.

4. Discussion

We extend the model of Galeotti and Rogers® (1.10), who considered two sub-
populations that may have different vaccination coverages. Simplifying assumptions
in their model include the following: (i) the two sub-populations have the same con-
tact rates (k) and probability of transmission on contact (); and (ii) the same level
of assortative interactions () or preference in mixing with others in the same group.
Because of these assumptions, their model is capable of proving only the homoge-
neous solution for the interior optimal vaccination strategy (7%, 75); i.e., 7 = 75.
We extend their model by incorporating heterogeneity in several characteristics
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known to influence disease transmission and control via immunization, and analyze
the resulting model using an approach devised for epidemiological models.

Our model (2.1) is capable of generating heterogeneous interior optimal vac-
cination strategies, and can produce qualitative and quantitative outcomes very
different from the simpler model (1.10). For example, Galeotti and Rogers® pointed
out that an interior equilibrium solution (7%, 75) of model (1.10) can only happen
in symmetric form; ie., 7% = 75 € (0,1), and that any asymmetric equilibrium
will occur on a boundary; i.e., either m4 = 0 or 75 = 1 (assuming that 74 < 7p).
In our extended model (2.1), however, there are asymmetric interior equilibria (see
Figs. 2(e) and 2(f)).

We show that optimal strategies in the new model are no longer determined
solely by the nature (positive or negative) of assortative interactions. Consequently,
the answers to questions Q1-Q3 are complicated by additional threshold condi-
tions. Both analytic and numerical analyses of the new model are conducted to
investigate how vaccination strategies may depend on both disease transmission
parameters and costs associated with vaccination and illness. Optimal vaccination
strategies under both centralized vaccination programs and decentralized games are
discussed.

An interesting question is how are the models formulated by economical model-
ers (such as the model (1.10) in Galeotti and Rogers®) and the model formulated by
epidemiological modelers (such as model the simplest SIS or SIR model) related? If
they are significantly different, what are the underlying assumptions in addition to
those already pointed out? In Appendix A.1, we tried to recover from the equations
for proportions (p,) in (1.10) the equations in terms of the numbers of susceptible
(Sq), infected (I,), and immune (R,). The result seems to suggest that some biolog-
ically unreasonable assumptions have been made in model (1.10) (see the remarks
at the end of Appendix A.1). One of the key assumptions is that people do not gain
immunity from infections while the immunity induced from vaccination does not
wane. However, for almost all vaccine preventable infectious diseases, if vaccination
induces an immune response, so must infection. If we allow vaccine-induced and
naturally-acquired immunity differ (e.g., in the degree or duration of protection),
there should be two separate classes, e.g., V (for vaccinated and immune) and R
(for recovered with temporary immunity). This is demonstrated in Appendix A.2.
Clearly the modified model (A.8) based on a SIR model is more biologically reason-
able than model (2.1) based on a SIS model. One of the main differences between
the two systems will be in the analysis that involves the endemic equilibrium, such
as the effect of vaccination on disease prevalence or the game equilibrium for the
decentralized game. More detailed analyses for system (A.8) or a more general
model will be presented in future work.

Analysis of System (2.1) suggests that the optimal vaccination strategies
(7%, mp) under centralized and decentralized cases may depend on the cost function.
If so, this will illustrate the importance of melding Economics and Epidemiology.
We have begun studying this and will publish results elsewhere.
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Appendix A. Comparison of Modeling Approaches

Epidemiological modelers primarily use the modeling framework represented in
model (1.1) whereas economic modelers use the one represented in model (1.10).
We illustrate here how models formulated using these approaches may be related.

A.1. An SIS model with immunized proportions my fixed at t = 0

Note that the proportion of unimmunized individuals that are infectious and sus-
ceptible at time ¢ can be written as

Iy(t) Sy(t)
pt) = —L4—  1—p,(t)= —L+—, g=ADB, Al
g() (1—7T9)Ng 9() (l—Tl'g)Ng ( )
with 7, and N, being independent of ¢. Then from the p, and 6, equations in (1.10)
and (1.11), we have
r, Sa < Ia Ip ) Ia
= vk(f—+1—-p)— | -6 +——. A2
(1—7a)Na (1 —=ma)Na ﬂNA ( ﬁ)NB (1 —=7a)Na (A-2)
Using (A.1), we can simplify (A.2) to get

i~ s (o5 + (1= )22 ) (A3)

dt Np
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Using the pp and 05 equations in (1.10) and (1.11), we can get a similar equation
for Iz. Thus, the model in terms of number of individuals consists of the following

equations:
dl 4 Iy Ip
A _ A La-pE) -1
7t Savk <ﬂNA + ( ﬂ)NB> 014,
dlp Ip I (A.4)
=B _ Boia-pA) 61
7t Sprk (ﬂNB—F( ﬁ)NA) 6lp,
I,+8,=(0-m)N, g=AB.
Because 7, and N, are constants, system (A.4) implies the initial condition:
$4(0)+ ,(0) = (1 = 7,)Ny, 9= A,B. (A.5)

That is, the immunization proportion 7, is set at the initial time.

Remarks. These remarks are based on (A.4) and (A.5). (i) When vaccination is
considered, epidemiological models generally include a vaccinated or immune class,
typically denoted by V or R. Depending on how vaccination is implemented (e.g.,
at birth or susceptible individuals at all time), the V' equation may not be needed.
In any event, there must be at least two differential equations for the three variables
S, I, and V plus a constraint (e.g., the total population is constant) for each group.
In the case of two groups, at least four differential equations plus two constraints are
needed. However, system (A.4) for two groups has only two differential equations
and two constraints. The reason is that, in addition to a constant total population
size for each group, it is also assumed that 7, and thus S, + I, remain constant for
each group. Consequently, the proportions immune, Vj, also remain constant. (ii)
The model assumes that new infections are only from the S class and that infected
people will return to the susceptible class after recovery. If vaccinated people can
gain permanent immunity, should people gain any immunity from an infection? (iii)
Note that Sy + I, = (1 —my)Ny. Thus, S = —1I;. Therefore, System (A.4) does not
include birth or death terms. This suggests that the model is appropriate only for
dynamics in the short-term.

A.2. An SIR type model with temporary immunity from infection

In model (A.4), all infected people will return to the susceptible class after recovery.
If we assume that infections can induce some temporary immunity after recovery,
we need to introduce another class, denoted by R, (different from V), and consider
a SIR model describing the disease dynamics among unimmunized people. Because
Sg+ 1y + Ry, = (1 —7my)N, is constant, we can ignore the R, equation by using
Ry, =(1—my)Ny— Sy —I,. Let 7 denote the per capita rate of immunity loss, then
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the model reads:

% = —Savaka (ﬁAJ{]_i + (- ﬁA)%) +TRa,

% = Savaka <5A]{/-_i +(1- ﬁA)%) —0la,

dj_f = —Spvpkp (ﬂB]{[—Z +(1 - @)é—‘i) +7Rg, (A6
% = Spvpkp (53]{,—1 + (1 - 53)%) —0lp,

Sg+Iy+Ry=(1—my)N,, g=A,B.

We now need to introduce a new notation for the proportion of unimmunized people
who are susceptible, which we denote by 7y, g = A, B. Then

ng(t)=%, pg@):%, 4= AB. (A7)

From the equations in (A.6), we obtain the following system for p, and 74:

dn
d_tg = —ngVgkgly + (1 =g — py),
p (A.8)
0
d_tg = ngvgkely — dpg, g=A4A,B,
where 6, denote the same expressions as in (2.2), i.e.,
0a=pa(l —ma)pa+ (1 —PBa)(l —75)ps,
(A.9)

O =0(l—mp)pe+ (1 —0p)(1—ma)pa.



