
Journal of Dynamics and Differential Equations
https://doi.org/10.1007/s10884-020-09863-2

AMosquito-Borne Disease Model with Non-exponentially
Distributed Infection and Treatment Stages

Z. Feng1,2 · K. F. Gurski3 ·O. Prosper4 ·M. I. Teboh-Ewungkem5 ·M. Grogan4

Received: 5 August 2019 / Revised: 22 May 2020
© The Author(s) 2020

Abstract
Most epidemiological models for mosquito-borne disease assume exponentially distributed
residence times in disease stages in order to simplify the model formulation and analysis.
However, these models do not allow for accurate description of the interaction between drug
concentration and pathogen load within hosts. To improve this, we formulate a model by con-
sidering arbitrarily distributed sojourn for various disease stages. The model formulation is
presented using two proven equivalent approaches: integral equations and partial differential
equations. Analysis of themodel includes the existence of equilibrium solutions and stability,
which are shown to be dependent on whether the control reproduction number Rc is less or
greater than 1. It is also shown that, when the general distributions are replaced by gamma
distributions, the system of integral equations can be reduced to a system of ODEs, which
has some non-trivial characteristics which are only captured by non-exponential distributions
for disease stages.

Keywords Partial differential equations · Integral equations · Ordinary differential
equations · Mosquito-Borne · Arbitrarily distributed disease stages · Non-exponential
waiting times

1 Introduction

Historically, mathematical modeling of mosquito-borne disease (VBD) has focused on either
within-host pathogen dynamics, or population-level (i.e., between-host) transmission dynam-
ics, with fewmodels linking the two [1,2,4,6,7,13,17,24,25,38]. Only in very recent years has
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the topic of immuno-epidemiological models begun to grow [1,12,20,22,23,26,31,36,37],
addressing a critical gap in infectious disease modeling. An underdeveloped topic is the
effect of within-human host drug pharmacokinetics (PK) and pharmacodynamics (PD) on
population-level transmission dynamics and, in particular, their impact on the spread of drug
resistant pathogens [27,33]. PK is the study of drug dynamics and movement through an
organism; PD is the study of the effects of the drug on an organism. Within-human host
mathematical models integrated with PK/PD data have been used to evaluate the efficacy of
different drugs and dosing protocols [32]. However, the role of PK/PD in population-level
disease transmission has not been well studied and seems poorly understood. To date and to
the best of our knowledge, only one such model linking PK/PD dynamics to within-human
and between-hosts transmission interactions exists [28].

While interest in linking within-human host pathogen dynamics to between human-vector
hosts transmission dynamics has increased over the last decade, there are opportunities for
exploration of new approaches in creating this link naturally, and as dictated by the natural
progression of the diseasewithin a human. Consideringmore realistic distributions of sojourn
times (compared with the usual assumption of exponentially distributed waiting times) is
particularly important for these immuno-epidemiological models. For example, how long a
human host has been infected is likely to influence their pathogen load and, subsequently,
their ability to transmit the pathogen to another host, especially among the immunologically
naive individuals in a population and for a disease like malaria. Additionally, the onset of
clinical symptoms, if any, is likely to dictate when treatment commences. Likewise, how
long an individual has been undergoing treatment for an infection will dictate their current
blood-drug concentration and pathogen load, and therefore, their susceptibility to re-infection
or superinfection with likely a different pathogen strain, along with their ability to transmit.
Extending the ideas developed in [9], incorporating general distributions of sojourn times,
we introduce a mosquito-borne disease framework that can be easily extended to incorporate
the link between within-human host PK/PD and pathogen load dynamics to population-level
disease transmission.

In our previous modeling studies [21,34] for similar biological questions related to the
effect of treatment on malaria dynamics, we used relatively simpler systems of ordinary
differential equations (ODEs), simple in the context of this manuscript. Like in most ODE
models for infectious diseases, we made the assumption that the disease stages (e.g., latent
and infectious stages) were exponentially distributed. Although such an assumption may not
be critical when the model is used to address certain biological questions, it is unrealistic and
may not be appropriate for use when answering other types of questions. For example, for a
PK/PDmodel, if the timing of treatment after infection and/or if the interaction between drug
concentration and pathogen load during treatment are important factors for consideration,
which typically are, then more realistic distributions for the waiting times in the different
epidemiological stagesmust be considered in order to provide amore informative intervention
strategy. In fact, it was shown in [8] that models which assume exponentially distributed
waiting times can produce misleading assessment of control or intervention strategies when
compared to those from corresponding models which assume gamma distributed waiting
times.

In this paper, we formulate amodel which allows arbitrary distributions for several disease
stages. We present formulations using multiple approaches that can lead to either integral
equations or partial differential equations (PDEs). We illustrate that the models derived from
these two approaches are equivalent. We also show that, when these arbitrary distributions
are replaced by gamma or exponential distributions, the model equations reduce to ordinary
differential equations. One of the important observations is that the reduced ODE system
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can be very different from that when writing the ODEs without going through the derivation
based on arbitrary stage distributions. Non-exponential distributions have been considered
in epidemiological models (see, for example, [8–10,15,16,18,19,30,38]). However, none of
these studies focus on mosquito-borne diseases. For mosquito-borne diseases like malaria in
which the use of antimalarial drugs is a critical component of malaria control, particularly
for reducing childhood mortality, understanding the role of arbitrary stage distributions on
population-level disease dynamics is critical.

This paper is organized as follows.Amodel based on general survival functions for various
disease stages is formulated in Sect. 2. Themodel consists of ordinary differential and integral
equations. The reduction of this system to a system of ODEs is also presented in this section.
In Sect. 3, we present an alternative formulation of the model using PDEs. In Appendix A,
we show that this PDE model is equivalent to the integral equation model derived in Sect. 2.
Analysis of themodel is included in Sect. 4, and a discussion of the results included in Sect. 5.

2 Model Formulation with General Disease Stage Distributions

As will be illustrated later in this section, when arbitrarily distributed waiting times are
considered for the infected, treated and recovered stages, the reduction of the resulting system
of integral equations to ODEs can be very complicated. For demonstration purposes, the
model derived in this section includes only drug-sensitive strains of a generic mosquito-
borne disease.

2.1 Assumptions on Disease Stage Distributions

We are considering a Susceptible-Infected-Treated-Recovered-Susceptible (SITRS) model
for the host population, where S = S(t) denotes the number of susceptible individuals at
time t , who can be infected if bitten by infectious mosquitoes. I = I (t) denotes the number
of infected individuals. This class contains humans who are newly infected or those that have
progressed in their infection status but not yet infectious and could be either symptomatic
or asymptomatic, as well as those that are infectious. Individuals in this class could die as
a result of the disease, or due to natural causes, or may survive to progress to one of two
possible classes. They may either be treated with a drug at some time point during their
infection, or recover to join the partially immune class. T = T (t) denotes the number of
individuals being treated, and R = R(t) denotes the number of recovered individuals who
may become susceptible again. The definition of these variables is also listed in Table 1.

For themosquito population,we consider a simple case inwhich the total vector population
size (denoted byM) remains constant, and themodel is an SI type with Sv and Iv representing
the numbers of susceptible and infectious mosquitoes, respectively.

Because our focus in this paper is on the effect of treatment and the interaction between
drug concentration and parasite load during treatment, we consider arbitrary distributions
for only the transitions associated with the I and T stages. For other processes, including
mortality and immunity loss, exponential distribution will be used. Let PX (x) denote a
general survival function for a probability distribution, which represents the probability that
an individuals is still in the class x time units after entering the class.Wewill use the following
definition for the corresponding survival functions:

– PI R(x): Probability of an infected human not recovering without treatment x time units
after infection
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Table 1 Symbol and definition of
state variables used in the model

State variable Description

S Number of susceptible humans

I Number of infected/infectious humans

T Number of treated humans

R Number of temporarily immune humans

N = S + I + T + R. Total number of humans

Sv Number of susceptible mosquitoes

Iv Number of infectious mosquitoes

M = Sv + Iv. Total number of mosquitoes

S I

T

R
λ(t) − dPIR

dt

− dP
ITdt

−
d
P
T

R
d
t

w

Λ

μ

μ+δ

μ

μ

Fig. 1 Transfer diagram for the human host

– PT R(x): Probability of an infected human not recovering with treatment x time units
after receiving treatment.

– PIT (x): Probability of an infected individual not being treated x time units after becoming
infected.

– PRS(x): Probability of a recovered individual not becoming susceptible x time units after
recovery.

– PD(x): Probability of an individual not dying from natural cause at stage age x .
– PI D(x): Probability of a human that is infected not dying from natural or disease related

causes x time units after become infected.

Particularly, we assume exponentially distributed deaths and loss of partial immunity so that

PRS(x) = e−wx , PD(x) = e−μx , PI D(x) = e−(μ+δ)x , (1)

wherew is the per capita rate of immunity loss, andμ and δ are the per capita rates of natural
and disease-induced death, respectively. These probabilities define the transition rate from
each category of hosts as shown in Fig. 1.

The equation for susceptible humans is given by

dS

dt
= Λ − λ(t)S − μS + wR, (2)
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where λ(t) denotes the rate of infection from mosquitoes to humans given by

λ = βr
Iv
M

= β
Iv
N

. (3)

The parameter β denotes the transmission rate from infectious mosquitoes to susceptible
humans S, Iv is the number of infected mosquitoes, M is the total number of mosquitoes,
and r = M/N is the ratio of mosquitoes to humans.

For host individuals in other epidemiological classes, we will keep track of their status
changes with stage age by using integral equations that allow us to incorporate arbitrary
probability distributions for the time spent in each of these epidemiological stages, especially
in the infected (I ) and treatment (T ) stages.

All of the survival functions mentioned above have the following properties:

PX (0) = 1, P ′
X (x) ≤ 0, lim

x→∞ PX (x) = 0,
∫ ∞

0
PX (x) < ∞. (4)

2.2 Derivation of Equations with General Distributions

Given initial conditions at t = 0, we can keep track of the changes of the number I (t) at
time t as follows. For ease of presentation, we use either the notation PX (x) for transition
probabilities (including death and immunity loss) or the rates μ, δ and w. Assume that an
individual was infected at a time u where 0 < u < t . Then the individual is still in the I
class at time t only if she/he has not recovered, nor been treated, nor died, for which the
probabilities are each PI R(t − u), PIT (t − u), and PI D(t − u), respectively. Thus, the total
number of infected people at time t is given by

I (t) =
∫ t

0
λ(u)S(u)PI R(t − u)PIT (t − u)PI D(t − u) du + I0(t), (5)

where

I0(t) = I0PI R(t)PIT (t)PI D(t) (6)

denotes the remaining number of people in the I stage who were in I at t = 0 with initial
number I0. The initial age distribution is ignored here as I0(t) → 0 as t → ∞.

Assume that an individual who was infected at time u received treatment at time τ , where
u < τ < t (see the time line illustrated in Fig. 2), then the rate of becoming treated at τ is
− dPIT

dτ
(τ − u), and the probabilities that the individual has not recovered and still alive at

time t are PT R(t − τ) and PD(t − τ), respectively. Then the total number of people in the T
class at time t is

T (t) =
∫ t

0

∫ τ

0
λ(u)S(u)PI R(τ − u)

[−dPIT
dτ

(τ − u)
]
PI D(τ − u)

×PT R(t − τ)PD(t − τ)du dτ + T0(t), (7)

where T0(t) denotes the number of people in T class at time t due to the infected people who
were present at time t = 0. For example,

T0(t) =
∫ t

0
I0PI R(u)

[
− dPIT

du
(u)

]
PI D(u)PT R(t − u)PD(t − u)du.

For the recovered class R, there are two inflows, one from the I class and the other from
T (see the time line diagram in Fig. 2). For the inflow from I , assume that an individual who
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Fig. 2 Depiction of transition times from infection to recovery. The top and bottom diagrams are for the cases
with and without treatment, respectively

was infected at time u recovered at time σ , where u < σ < t) before receiving treatment.
Then the rate of recovery is − dPI R

dσ
(σ − u) and the probability the individual is still in R at

time t is PRS(t − σ). Thus, the total number in R from I is
∫ t

0

∫ σ

0
λ(u)S(u)

[
− dPI R

dσ
(σ − u)

]
PIT (σ − u)PI D(σ − u)PRS(t − σ)PD(t − σ)du dσ.

For the flow from T , assume that an individual who received treatment at time τ recovers at
time ρ where τ < ρ < t , then the recovery rate is − dPT R

dρ
(ρ − τ). The probabilities that the

person has not lost immunity (i.e. has not transitioned from R to S) and is still alive at time
t are PRS(t − ρ) and PD(t − ρ), respectively. Then the number of recovered from T at time
t is ∫ t

0

∫ ρ

0

∫ τ

0
λ(u)S(u)PI R(τ − u)

[
− dPIT

dτ
(τ − u)

]
PI D(τ − u)

×
[−dPT R

dρ
(ρ − τ)

]
PD(ρ − τ)PRS(t − ρ)PD(t − ρ)du dτ dρ.

Thus, the total number of people in the R class at time t is

R(t) =
∫ t

0

∫ σ

0
λ(u)S(u)

[
− dPI R

dσ
(σ − u)

]
PIT (σ − u)PI D(σ − u)PRS(t − σ)

×PD(t − σ)du dσ

+
∫ t

0

∫ ρ

0

∫ τ

0
λ(u)S(u)PI R(τ − u)

[
− dPIT

dτ
(τ − u)

]
PI D(τ − u)

×
[−dPT R

dρ
(ρ − τ)

]
PD(ρ − τ)PRS(t − ρ)PD(t − ρ)du dτ dρ + R0(t), (8)

where R0(t) denotes the number of people in the R class at time t due to the infected people
who were present at time t = 0. The detailed expression for R0(t) can be written but is much
longer than that for T0(t) so we ignored it here (as it is not essential for the main results).

If we differentiate the R(t) equation, the term involving dPRS(t)/dt will provide the flow
going from R back to S, which is wR(t) when PRS is exponential. From the equations in
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(5)–(8), we obtain the following system for the human population with general distributions:

dS

dt
= Λ − λ(t)S − μS + wR, S(0) = S0,

I (t) =
∫ t

0
λ(u)S(u)PI R(t − u)PIT (t − u)PI D(t − u) du + I0(t),

T (t) =
∫ t

0

∫ τ

0
λ(u)S(u)PI R(τ − u)

[−dPIT
dτ

(τ − u)
]
PI D(τ − u)

×PT R(t − τ)PD(t − τ)du dτ + T0(t),

R(t) =
∫ t

0

∫ σ

0
λ(u)S(u)

[
− dPI R

dσ
(σ − u)

]
PIT (σ − u)PI D(σ − u)PRS(t − σ)

×PD(t − σ)du dσ

+
∫ t

0

∫ ρ

0

∫ τ

0
λ(u)S(u)PI R(τ − u)

[
− dPIT

dτ
(τ − u)

]
PI D(τ − u)

×
[−dPT R

dρ
(ρ − τ)

]
PD(ρ − τ)PRS(t − ρ)PD(t − ρ)du dτ dρ + R0(t), (9)

where λ(t) is given in (3) and S0 > 0 is the initial number of susceptible humans.
For the mosquito population, under the assumption that M = Sv + Iv is a constant, we

can replace Sv by M − Iv and include only the following Iv equation in the model:

d Iv
dt

= βv

I + θT

N
(M − Iv) − ν Iv, Iv(0) = Iv0, (10)

where βv is the constant transmission rate from infected hosts to mosquitoes, θ ∈ [0, 1]
represents a constant reduction of infectivity by individuals in the T class, and ν is the per
capita birth and death rate of mosquitoes Iv0 is the initial number of infected mosquitoes.
We can assume, for simplicity, that Iv0 = 0 (recall that I0 > 0). The full model includes
the equations in systems (9) and (10). To incorporate different pathogen loads based on bites
from infectious mosquitoes at different time points, or to consider drug concentrations that
depend on the time since the onset of an infection or treatment, equation (10) may be replaced
by an integral equation for the vector population Iv(t); this extension is the subject of future
work and will be discussed in Sect. 5.

2.3 Reduction of the Integral Equations in (9) to ODEs

In this section, we demonstrate that the integral equations can be reduced to ODEs when
the arbitrary distributions are replaced by gamma distributions with the following survival
functions:

PI R(x) =
J∑

j=1

(JaJ x)( j−1)

( j − 1)! e−JaJ x ,

PIT (x) =
K∑

k=1

(KaK x)(k−1)

(k − 1)! e−KaK x ,

PT R(x) =
L∑

�=1

(LaL x)(�−1)

(� − 1)! e−LaL x . (11)
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In the survival functions PI R, PIT , and PT R , the integers J , K , L are the shape parameters
and 1/am (m = J , K , L) represents the mean of the corresponding distribution. Other
survival functions are exponential as given in (1).

Assume that the survival functions satisfy the following natural conditions:

PX(m)(0) = 1,
dPX(m)(x)

dx
≤ 0, lim

x→∞ PX(m)(x) = 0, (12)

for m = J , K , L and correspondingly X(J ) = I R, X(K ) = I T , and X(L) = T R.
The following expression will be used frequently:

−dPX(m)(x)

dx
= mam

(
m∑
i=1

(mamx)(i−1)e−mamx

(i − 1)! −
m−1∑
i=1

(mamx)(i−1)e−mamx

(i − 1)!

)

= mam(mamx)(m−1)

(m − 1)! e−mamx .

2.3.1 Derivation of Equations for Infected Sub-classes

When a gamma distribution with mean α and shape parameter n is considered for a disease
stage, a common understanding is that it is equivalent to dividing the stage into n sub-stages
with α/n being the mean residence time within each sub-stage. This does not work in the
current model. Because treatment may alter the remaining sojourn in the infected status, and
the recovery process is described by a different gamma distribution (PT R) after receiving
treatment, the number of sub-stages for the I class depends not only on PI R but also on the
shape parameter of PIT , as shown below.

Note that

I (t) =
∫ t

0
λ(u)S(u)PI R(t − u)PIT (t − u)PI D(t − u)du + I (0)PI R(t)PIT (t)PI D(t),

=
∫ t

0
λ(u)S(u)

J∑
j=1

(JaJ (t − u))( j−1)e−JaJ (t−u)

( j − 1)!

×
K∑

k=1

(KaK (t − u))(k−1)e−KaK (t−u)

(k − 1)! e−(μ+δ)(t−u) du

+I (0)
J∑

j=1

(JaJ t)( j−1)e−JaJ t

( j − 1)! ·
K∑

k=1

(KaK t)(k−1)e−KaK t

(k − 1)! e−(μ+δ)t

.=
J∑

j=1

K∑
k=1

I j,k(t),

where

I j,k(t) =
∫ t

0
λ(u)S(u)

(JaJ (t − u))( j−1)e−JaJ (t−u)

( j − 1)! × (KaK (t − u))(k−1)e−KaK (t−u)

(k − 1)!
×e−(μ+δ)(t−u) du
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+I (0)
(JaJ t)( j−1)e−JaJ t

( j − 1)!
· (KaK t)(k−1)e−KaK t

(k − 1)! e−(μ+δ)t , 1 ≤ j ≤ J , 1 ≤ k ≤ K .

Because the terms corresponding to j = 1 and k = 1 in the functions in (11) have much
simpler and have very different properties than other terms with larger j or k, we present the
derivation of these equations separately. For j = 1 and k ≤ 2, or j ≤ 2 and k = 1, note that

I1,1 =
∫ t

0
λ(u)S(u)e−(JaJ+KaK+μ+δ)(t−u) du + I (0)e−(JaJ+KaK+μ+δ)t ,

I1,2 =
∫ t

0
λ(u)S(u)KaK (t − u)e−(JaJ+KaK+μ+δ)(t−u) du + I (0)KaK te

−(JaJ+KaK+μ+δ)t ,

I2,1 =
∫ t

0
λ(u)S(u)JaJ (t − u)e−(JaJ+KaK+μ+δ)(t−u) du + I (0)JaJ te

−(JaJ+KaK+μ+δ)t .

Differentiating these equations we obtain:

d I1,1
dt

= λ(t)S(t) − (JaJ + KaK + μ + δ)I1,1,

d I1,2
dt

= KaK I1,1 − (JaJ + KaK + μ + δ)I1,2,

d I2,1
dt

= JaJ I1,1 − (JaJ + KaK + μ + δ)I2,1. (13)

For all j, k �= 1, the equations have similar patterns and are given by

d I j,k
dt

= JaJ I j−1,k + KaK I j,k−1 − (JaJ + KaK + μ + δ)I j,k . (14)

If we adopt the Kronecker delta notation where δi j = 1 if i = j and δi j = 0 otherwise, then
we can write the d I/dt equation succinctly as follows:

d I

dt
=

J∑
j=1

K∑
k=1

d I j,k
dt

=
J∑

j=1

K∑
k=1

[
δ j,1δk,1λ(t)S(t) + (1 − δ j,1)JaJ I j−1,k

+(1 − δk,1)KaK I j,k−1 − (JaJ + KaK + μ + δ)I j,k

]
.

These sub-classes of the infected stage have different biological interpretations. Figure 3 is a
depiction of the transitions between sub-classes I j,k . Particularly, two paths can be observed,
one leads to the treated stage and the other leads to recovery. Apparently, among those
individuals who were infected at the same time, some may recover faster before receiving
treatment while others may receive treatment sooner before recovery.

2.3.2 Derivation of Equations for Treated Sub-classes

For the derivation of equations for sub-classes of T , we need to divide the class into J × L
sub-classes, where L is the shape parameter of the gamma distribution described by the
survival function PIT . Note that

T (t) =
∫ t

0

[ ∫ τ

0
λ(u)S(u)PI R(τ − u)

(−dPIT
dτ

(τ − u)
)
PI D(τ − u)du
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Fig. 3 Depiction of the transitions between classes for the ODE system (18). In this example the values of J ,
K , and L have been arbitrarily chosen for illustrative purposes. The green dashed arrow indicates transition
from an infection state to a treated state while the blue illustrate transitions from an infection state to the
recovered state and the red, transition from the treated state to the recovered state. Only individuals in class
Iblue(J ),k , where J = 6, can transition from the infected state to the recovered state. Individuals in class
I j,green(K ) where, K = 4, can transition from the infected state to the treated state meanwhile individuals in
class Tj,red(L) (for L = 3) can transition from the treated state to the recovered state. Notice that individuals
in class Iblue(6),green(4) have two possible pathways to follow, either directly to the recovered state or to the
treated state, depending on the symptomatic prompt requiring treatment (Color figure online)

+I (0)PI R(τ )
(−dPIT

dτ
(τ )

)
PI D(τ )

]
PT R(t − τ)PD(t − τ)dτ

.=
J∑

j=1

L∑
l=1

Tj,l ,

where

Tj,l(t) =
∫ t

0

[ ∫ τ

0
λ(u)S(u)

[JaJ (τ − u)]( j−1)e−JaJ (τ−u)

( j − 1)!
×KaK [KaK (τ − u)](K−1)e−KaK (τ−u)

(K − 1)! e−(μ+δ)(τ−u)du

+I (0)
[JaJ τ ]( j−1)e−(JaJ+μ+δ)τ

( j − 1)! · KaK [KaK τ ](K−1)e−KaK τ

(K − 1)!
]

×[LaL(t − τ)](l−1)e−LaL (t−τ)

(l − 1)! e−μ(t−τ)dτ, 1 ≤ j ≤ J , 1 ≤ l ≤ L.
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We first derive equations for the case of l = 1. For ( j, l) = (1, 1),

T1,1 =
∫ t

0

[ ∫ τ

0
λ(u)S(u)e−(JaJ+KaK+μ+δ)(τ−u) KaK [KaK (τ − u)](K−1)

(K − 1)! du + T 0
1,1(τ )

]

×e−(LaL+μ)(t−τ)dτ,

where T 0
1,1(τ ) represents the treated individuals from those infected who were presented at

t = 0 given by

T 0
1,1(τ ) = I (0)e−(JaJ+KaK+μ+δ)τ KaK [KaK τ ](K−1)

(K − 1)! .

For ( j, l) = (2, 1),

T2,1 =
∫ t

0

[ ∫ τ

0
λ(u)S(u)JaJ (τ − u)e−(JaJ+KaK+μ+δ)(τ−u) KaK [KaK (τ − u)](K−1)

(K − 1)! du

+T 0
2,1(τ )

]
e−(LaL+μ)(t−τ)dτ,

where

T 0
2,1(τ ) = I (0)JaJ τe

−(JaJ+KaK+μ+δ)τ KaK [KaK τ ](K−1)

(K − 1)! .

Thus,

dT1,1
dt

=
∫ t

0
λ(u)S(u)e−(JaJ+KaK+μ+δ)(t−u) KaK [KaK (t − u)](K−1)

(K − 1)! du + T 0
1,1(t)

−
∫ t

0

[∫ τ

0
λ(u)S(u)e−(JaJ+KaK+μ+δ)(τ−u) KaK [KaK (τ − u)](K−1)

(K − 1)! du

+T 0
1,1(τ )

]
×(LaL + μ)e−(LaL+μ)(t−τ)dτ,

= KaK I1,K − (LaL + μ)T1,1,

dT2,1
dt

=
∫ t

0
λ(u)S(u)JaJ (t − u)e−(JaJ+KaK+μ+δ)(t−u) KaK [KaK (t − u)](K−1)

(K − 1)! du

+T 0
2,1(t)

−
∫ t

0

[ ∫ τ

0
λ(u)S(u)JaJ (τ − u)e−(JaJ+KaK+μ+δ)(τ−u)

×KaK [KaK (τ − u)](K−1)

(K − 1)! du + T 0
2,1(τ )

]
(LaL + μ)e−(LaL+μ)(t−τ)dτ,

= KaK I2,K − (LaL + μ)T2,1.

Following similar patterns, we can derive equations for all 1 ≤ j ≤ J and l = 1 and obtain:

dTj,1

dt
= KaK I j,K − (LaL + μ)Tj,1, 1 ≤ j ≤ J .

For l ≥ 2, from

Tj,l(t) =
∫ t

0

[ ∫ τ

0
λ(u)S(u)

[JaJ (τ − u)]( j−1)e−JaJ (τ−u)

( j − 1)!
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×KaK [KaK (τ − u)](K−1)e−KaK (τ−u)

(K − 1)! e−(μ+δ)(τ−u)du + T 0
j,l(τ )

]

×[LaL(t − τ)](l−1)

(l − 1)! e−(LaL+μ)(t−τ)dτ, 1 ≤ j ≤ J , 2 ≤ l ≤ L,

we know that, in dTj,l(t)/dt , the term corresponding to the derivative of Tj,l(t) with respect
to the upper bound of the integral is zero. Thus,

dTj,l

dt
= LaLTj,l−1 − (LaL + μ)Tj,l , 1 ≤ j ≤ J , 2 ≤ l ≤ L.

The transitions between sub-classes of I j,k and Tj,l as well as with treated classes are
illustrated in Fig. 3.We observe that some infected people canmovemore quickly through the
infected and treated stages to recover, while othersmay takemuch longer time or even recover
before being treated. Such detailed division of sub-classes provides a possible approach to
investigate the interaction between parasite load and drug concentration during the treatment
period. Model applications to such problems will be considered in future studies.

2.3.3 Derivation of the Equations for the Recovered Class

From the derivations for d I j,k/dt and dTj,l/dt equations we observe that the extra terms due
to initial conditions do not affect the results. We will ignore the terms X0(t) (X = I , T , R)
in the following derivation. Recall that

IJ ,k(t) =
∫ t

0
λ(u)S(u)

(JaJ (t − u))(J−1)e−JaJ (t−u)

(J − 1)! · (KaK (t − u))(k−1)e−KaK (t−u)

(k − 1)!
×e−(μ+δ)(t−u) du,

and

−dPI R(x)

dx
= JaJ

(JaJ x)J−1

(J − 1)! e−JaJ x .

Thus,

∫ t

0
λ(u)S(u)

[
− dPI R

dt
(t − u)

]
PIT (t − u)PI D(t − u)du = JaJ

K∑
k=1

IJ ,k . (15)

Note that

Tj,l(t) =
∫ t

0

∫ τ

0
λ(u)S(u)

[JaJ (τ − u)]( j−1)e−JaJ (τ−u)

( j − 1)!
×KaK [KaK (τ − u)](K−1)e−KaK (τ−u)

(K − 1)! e−(μ+δ)(τ−u)

×[LaL(t − τ)](l−1)e−LaL (t−τ)

(l − 1)! e−μ(t−τ)dudτ, 1 ≤ j ≤ J , 1 ≤ l ≤ L,

and that

−dPIT (x)

dx
= KaK

(KaK x)K−1

(K − 1)! e−KaK x ,

−dPT R(x)

dx
= LaL

(LaLx)L−1

(L − 1)! e−LaL x .
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Thus,
∫ t

0

∫ τ

0
λ(u)S(u)PI R(τ − u)

[−dPIT
dτ

(τ − u)
]
PI D(τ − u)

[−dPT R

dt
(t − τ)

]

×PD(t − τ)dudτ = LaL

J∑
j=1

Tj,L . (16)

From the R equation in (9) and using (15) and (16), we obtain the following differential
equation:

dR

dt
= JaJ

K∑
k=1

IJ ,k + LaL

J∑
j=1

Tj,L − (w + μ)R. (17)

The transitions from sub-classes of I and T are shown in Fig. 3. Particularly, we observe
that not all sub-classes of I or T can enter the recovered class directly. The reason that the R
stage does not need to be divided into sub-classes is because of the assumption that immunity
loss follows an exponential distribution, i.e., PRS(x) = e−wx . If the immunity loss is also
dependent on time since recovery, then the equations for recovered sub-classes will be much
more complicated.

2.3.4 The System of ODEs

Using the ODE equations for sub-classes of I , T , and R derived in the previous sections, we
obtained the reduced ODE system of the integral equations in (9) when the stage distributions
are either gamma or exponential (which is the special case when the shape parameter of the
gamma distribution is 1). The ODE system of the full model reads:

dS

dt
= Λ − λ(t)S − μS + wR,

d I1,1
dt

= λ(t)S − (JaJ + KaK + μ + δ)I1,1,

d I1,2
dt

= KaK I1,1 − (JaJ + KaK + μ + δ)I1,2,

d I2,1
dt

= JaJ I1,1 − (JaJ + KaK + μ + δ)I2,1,

d I j,k
dt

= JaJ I j−1,k + KaK I j,k−1 − (JaJ + KaK + μ + δ)I j,k,

2 ≤ j ≤ J , 2 ≤ k ≤ K ,

dTj,1

dt
= KaK I j,K − (LaL + μ)Tj,1, 1 ≤ j ≤ J ,

dTj,l

dt
= LaLTj,l−1 − (LaL + μ)Tj,l , 1 ≤ j ≤ J , 2 ≤ l ≤ L,

dR

dt
= JaJ

K∑
k=1

IJ ,k + LaL

J∑
j=1

Tj,L − (w + μ)R,

d Iv
dt

= βv

I + θT

N
(M − Iv) − ν Iv, (18)
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with the appropriate initial conditions given as S(0) = S0, I j,k(0) = (I j,k)0 for 1 ≤ j ≤ J
and 1 ≤ k ≤ K , Tj,l(0) = (Tj,l)

0 for 1 ≤ j ≤ J and 1 ≤ l ≤ L , R(0) = R0 = 0 and
Iv(0) = (Iv)0, with S0 + ∑

j,k(I j,k)
0 + ∑

j,l(Tj,l)
0 = 1 and 0 ≤ (Iv)0 ≤ 1.

Remark We observe from the system (18) and more clearly from the transition diagram in
Fig. 3 some unusual characteristics of this system. Particularly, it is not quite straightforward
to capture the intermediary transition patterns between sub-classes of I j,k , Tj,l , and R, since
the transition rate from I j,k to I j+1,k is different from the transition rate from I j,k to I j,k+1

and from I j,k to I j,l . However, individuals that can transition to R are only those that are in the
last infected column compartments (IJ ,k, k = 1, 2, · · · , K ) or last treated row compartments
(Tj,L , j = 1, 2, · · · , J ). In most ODE models using gamma distribution for a disease stage,
e.g., the I stage, the number n of sub-stages Ii with I = ∑n

i=1 Ii is the same as the shape
parameter in the gamma distribution. However, in our model, the number of sub-stages is
J × K where J and K are the shape parameters for the gamma distributions for I and T
stages, respectively. The more detailed separation of sub-stages is beneficial for the need of
considering interaction of drug concentration and parasite load during treatment to study the
effect of treatment. Results of these applications will be published elsewhere.

3 An Equivalent Model Formulation Using PDEs

To simplify notation,we assume in this section that the survival function formortality is a neg-
ative exponential with μ and δ being the natural and disease-related death rates, respectively,
just as was done in reducing model (9) to ODEs.

Let x(t, a), y(t, a) and z(t, a) denote the age densities of infected, treated, and recovered
individuals, respectively. Then

I (t) =
∫ ∞

0
x(t, a)da, T (t) =

∫ ∞

0
y(t, a)da, R(t) =

∫ ∞

0
z(t, a)da.

Let x0(a) = x(0, a), y0(a) = y(0, a), z0(a) = z(0, a) denote the age densities at t = 0, and
assume that y0(a) = z0(a) = 0. Let BI (t) denote the number of new infections in humans
at time t , i.e.,

BI (t) = λ(t)S(t). (19)

Then the equation for x(t, a) is given by

x(t, a) =
⎧⎨
⎩

BI (t − a)PI R(a)PIT (a)e−(μ+δ)a; 0 ≤ a < t,
x0(a − t) PI R(a)PIT (a)

PI R(a−t)PIT (a−t)e
−(μ+δ)t ; 0 < t ≤ a,

x0(a); t = 0 ≤ a,

(20)

where x0(a) is the density distribution of infected at time t = 0. The fraction Pj (a)/Pj (a−t)
(a > t , j = I R, I T ) represents the conditional probability that the person is still in the
respective stage at stage age a given that the person was in the stage at stage age a − t . From
(20) we know that for a < t ,

∂x

∂t
= B ′

I (t − a)PI R(a)PIT (a)e−(μ+δ)a

and

∂

∂a

( x(t, a)

PI R(a)PIT (a)

)
= −

∂
∂t x(t, a)

PI R(a)PIT (a)
− (μ + δ)

x(t, a)

PI R(a)PIT (a)
.
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It follows that

∂

∂t
x(t, a) + PI R(a)PIT (a)

∂

∂a

( x(t, a)

PI R(a)PIT (a)

)
= −(μ + δ)x(t, a). (21)

For a ≥ t > 0,

∂

∂t
x(t, a) =

[
− x ′

0(a − t)

PI R(a − t)PIT (a − t)
+ x0(a − t)

(
PI R(a − t)PIT (a − t)

)′

P2
I R(a − t)P2

I T (a − t)

]

×PI R(a)PIT (a)e−(μ+δ)t − (μ + δ)x(t, a)

and

PI R(a)PIT (a)
∂

∂a

( x(t, a)

PI R(a)PIT (a)

)
= − ∂

∂t
x(t, a) − (μ + δ)x(t, a),

which is identical to (21). Therefore, the PDE for x(t, a) is given by (21).
Note that the instantaneous per capita rate of leaving the I stage at stage age a due to

treatment is P ′
I T (a)/PIT (a). Let BT (t) denote the flux from I to T at time t , then

BT (t) = −
∫ ∞

0
x(t, a)

P ′
I T (a)

PIT (a)
da, (22)

and

y(t, a) =
{
BT (t − a)PT R(a)e−μa; 0 ≤ a < t,
0; 0 ≤ t ≤ a.

(23)

Similarly to the derivation of the PDE for x(t, a) we have

∂

∂t
y(t, a) + PT R(a)

∂

∂a

( y(t, a)

PT R(a)

)
= −μy(t, a). (24)

Let BI R(t) and BT R(t) denote the flux from I to R and from T to R, respectively, at time
t , then

BI R(t) = −
∫ ∞

0
x(t, a)

P ′
I R(a)

PI R(a)
da, BT R(t) = −

∫ ∞

0
y(t, a)

P ′
T R(a)

PT R(a)
da. (25)

Thus,

z(t, a) =
{[

BI R(t − a) + BT R(t − a)
]
PRS(a)e−μa; 0 ≤ a < t,

0; 0 ≤ t ≤ a.
(26)

and the PDE for z(t, a) is

∂

∂t
z(t, a) + PRS(a)

∂

∂a

( z(t, a)

PRS(a)

)
= −μz(t, a). (27)

Therefore, we obtain the following PDE equations for the I , T and R classes:

∂

∂t
x(t, a) + PI R(a)PIT (a)

∂

∂a

( x(t, a)

PI R(a)PIT (a)

)
= −(μ + δ)x(t, a),

∂

∂t
y(t, a) + PT R(a)

∂

∂a

( y(t, a)

PT R(a)

)
= −μy(t, a),

∂

∂t
z(t, a) + PRS(a)

∂

∂a

( z(t, a)

PRS(a)

)
= −μz(t, a), (28)
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Table 2 List of symbols used in the PDE systems (28) and (32)

Symbol Description

x(t, a) Stage age density of infected humans at time t

y(t, a) Stage age density of treated humans at time t

z(t, a) Stage age density of recovered/immune humans at time t

x0(a) Stage age density of infected humans at time t = 0

BI (t) Number of new infections at time t

BT (t) Number of newly treated humans at time t

BR(t) Number of newly recovered humans at time t

BI R(t) Number of newly recovered humans from I class at time t

BT R(t) Number of newly recovered humans from treated class at time t

x̃(t, a) = x(t, a)/[PI R(a)PIT (a)]
ỹ(t, a) = y(t, a)/PT R(a)

z̃(t, a) = z(t, a)/PRS(a)

with initial conditions

x(0, a) = x0(a), y(0, a) = z(0, a) = 0, (29)

and boundary conditions

x(t, 0) = BI (t), y(t, 0) = BT (t), z(t, 0) = BI R(t) + BT R(t), (30)

where (see (19), (22) and (25))

BI (t) = λ(t)S(t),

BT (t) = −
∫ ∞

0
x(t, a)

P ′
I T (a)

PIT (a)
da,

BI R(t) = −
∫ ∞

0
x(t, a)

P ′
I R(a)

PI R(a)
da,

BT R(t) = −
∫ ∞

0
y(t, a)

P ′
T R(a)

PT R(a)
da. (31)

Most of the symbols used in the PDE model (28)–(31) are listed in Table 2.

3.1 An Alternative Notation for the PDE Formulation

Let

x̃(t, a) = x(t, a)

PI R(a)PIT (a)
, ỹ(t, a) = y(t, a)

PT R(a)
, z̃(t, a) = z(t, a)

PRS(a)

and t > a. Then

x̃(t, a) = BI (t − a)e−(μ+δ)a,

ỹ(t, a) = BT (t − a)e−μa,

z̃(t, a) =
[
BI R(t − a) + BT R(t − a)

]
e−μa,
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and the equations in (28) can be written as
(

∂

∂t
+ ∂

∂a

)
x̃(t, a) = −(μ + δ)x̃(t, a),

(
∂

∂t
+ ∂

∂a

)
ỹ(t, a) = −μỹ(t, a),

(
∂

∂t
+ ∂

∂a

)
z̃(t, a) = −μz̃(t, a), (32)

with initial conditions

x̃(0, a) = x0(a)

PI R(a)PIT (a)
, ỹ(0, a) = z̃(0, a) = 0,

and boundary conditions

x̃(t, 0) = BI (t), ỹ(t, 0) = BT (t), z̃(t, 0) = BI R(t) + BT R(t).

To demonstrate that the PDE system is equivalent to the system of integral equations (9),
we provide in 1 a derivation of the integral equations from the PDE setting.

4 Model Analysis

The model analysis presented in this section uses the system including equations in (9) and
(10), which consists of differential and integral equations. We will focus on the case when
PI D, PD and PRS are given in (1). That is, only PI R(τ ), PT R(τ ) and PIT (τ ) are arbitrary. To
simplify the analysis, we consider the case of no disease-induced host mortality (i.e., δ = 0).
In this case, by differentiating the I , T and R equations we can show that dN/dt = Λ−μN
(a proof of this can be found in Appendix B). Thus, N (t) → Λ/μ as t → ∞. We assume
that the total population has already reached the equilibrium and replace the birth rate Λ

by the constant μN . We include a numerical comparison of these results for the case with
disease-induced death, δ �= 0 in Sect. 4.4.

4.1 The Basic and Control Reproduction Numbers

For ease of presentation, we introduce the following notation:

TI R =
∫ ∞

0

[ − d

du
PI R(u)

]
PIT (u)e−μudu,

TI T =
∫ ∞

0
PI R(u)

[ − d

du
PIT (u)

]
e−μudu,

TT R =
∫ ∞

0

[ − d

du
PT R(u)

]
e−μudu, (33)

and

DI =
∫ ∞

0
PI R(u)PIT (u)PI D(u)du =

∫ ∞

0
PI R(u)PIT (u)e−μudu,

DT =
∫ ∞

0
PT R(u)PD(u)du =

∫ ∞

0
PT R(u)e−μudu,
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DR =
∫ ∞

0
PRS(u)PD(u)du =

∫ ∞

0
e−wue−μudu = 1

w + μ
. (34)

These quantities have clear biological interpretations:TI R is the treatment- anddeath-adjusted
probability of recovery (i.e., probability of recovery without being treated or dead), TT R is
the death-adjusted probability of recovery after being treated, TI T is the recovery- and death-
adjusted probability of being treated,DX represents the mean residence time in stage X with
X = I , T , R.

Let R0 and Rc denote the basic and control reproduction numbers, respectively. Then

R0 =
(
βvDI

)(βr

ν

)
, Rc =

[
βv

(
DI + θTI TDT

)](βr

ν

)
, (35)

In the expression ofR0, the first factor (βvDI ) describes the average number of mosquitoes
infected by one infected host who was not treated during the whole infectious period (DI ),
and the second factor (βr/ν) describes the average number of hosts infected by one infected
mosquito during its entire period of infection (1/ν). Similarly, in the expression of Rc, the
term βvθTI TDT gives the average number of mosquitoes infected by an infected individual
who received treatment (with probability TI T ) during the time before recovery (DT ).

4.2 Equilibria

Consider the order of variables (S, I , T , R, Iv). The system always has the disease-free
equilibrium

U0 = (N , 0, 0, 0, 0).

LetU∗ = (S∗, I ∗, T ∗, R∗, I ∗
v ) denote a positive equilibrium (i.e., I ∗ > 0). Note thatU∗ can

be obtained by solving the following equations:

μN − λ∗S∗ − μS∗ + wR∗ = 0,

I ∗ = λ∗S∗DI ,

T ∗ = λ∗S∗TI TDT ,

R∗ = λ∗S∗(TI R + TI T TT R

)
DR, (36)

and

βv

I ∗ + θT ∗

N
(M − I ∗

v ) − ν I ∗
v = 0, (37)

where λ∗ = βr I ∗
v /M . Note that

T ∗ = TI TDT

DI
I ∗, R∗ = (TI R + TI T TT R)DR

DI
I ∗. (38)

From (37) we have:

I ∗
v

M
= βvC I ∗/N

ν + βvC I ∗/N
,

where C = 1 + θTI TDT /DI . Using the second equation in (36) and noting that I ∗ �= 0 we
have:

ββvr(DI + θTI TDT )S∗/N
ν + βvC I ∗/N

= 1,
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from which we obtain

S∗

N
= ν + βvC I ∗/N

ββvr(DI + σTI TDT )
. (39)

Using the first equation in (36) and (39), and noticing that λ∗S∗ = I ∗/DI , we have

I ∗

N
= μβrDI

μ + βr
[
1 − w(TI R + TI T TT R)DR

](
1 − 1

Rc

)
. (40)

Substituting (40) into (39) we also get

S∗

N
= 1 − βr

[
1 − w(TI R + TI T TT R)DR

]
μ + βr

[
1 − w(TI R + TI T TT R)DR

]
(
1 − 1

Rc

)
.

In the case of no immunity loss (i.e., w = 0), it is clear that I ∗ > 0 if and only if Rc > 1.
When w > 0, notice that wDR = w/(w + μ) ≤ 1 and that

TI R + TI T TT R ≤ TI R + TI T

=
∫ ∞

0

[ − d

du
PI R(u)

]
PIT (u)e−(μ+δ)udu

+
∫ ∞

0
PI R(u)

[ − d

du
PIT (u)

]
e−(μ+δ)udu

≤ −
∫ ∞

0

(
d

du
PI R(u)PIT (u) + PI R(u)

d

du
PIT (u)

)
du

= −
∫ ∞

0

d

du

(
PI R(u)PIT (u)

)
du = 1.

Thus, 1 − w(TI R + TI T TT R)DR ≥ 0. It follows that I ∗ > 0 when Rc > 1, in which
case, S∗, T ∗, R∗ and I ∗

v are also positive. We can also show that solutions of (36) satisfy
S∗ + I ∗ + T ∗ + R∗ = N (see Appendix C). It follows that 0 < S∗, I ∗, T ∗, R∗ < N . We
have proved that, U∗ exists and is unique if and only if Rc > 1.

4.3 Stability

For ease of presentation, introduce the following notation:

a1(τ ) = PI R(τ )PIT (τ )PI D(τ ),

a2(τ ) =
∫ τ

0
PI R(τ − s)

[ − d

dτ
PIT (τ − s)

]
PI D(τ − s)PT R(s)PD(s)ds. (41)

Then,

Rc = βrβv

ν

∫ ∞

0

[
a1(u) + θa2(u)

]
du.

Consider the I and T equations in system (9). When t is sufficiently large, the terms Ĩ0(t)
and T̃0(t) are close to zero and can be ignored when considering solution behaviors as t tends
to infinity. Then, we can rewrite the I equation in system (9) as

I (t) =
∫ t

0
λ(u)S(u)a1(t − u)du. (42)
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By changing the order of integration we can rewrite the T equation as

T (t) =
∫ t

0
λ(u)S(u)a2(t − u)du (43)

Because Iv(t) ≥ 0 for t ≥ 0 and all parameters are non-negative, from (10) we have

d Iv
dt

≤ βv

I + θT

N
M − ν Iv = βvr(I + θT ) − ν Iv.

Assume that Iv(0) = 0. Then

Iv(t) ≤ e−νt
∫ t

0
eνsβvr

[
I (s) + θT (s)

]
ds

≤ βvre
−νt

∫ t

0
eνs

∫ s

0
λ(u)S(u)

[
a1(s − u) + θa2(s − u)

]
duds.

Let A(τ ) = a1(τ ) + θa2(τ ). Multiplying both sides of the the above inequality by βr/M
and noticing that S ≤ N , we have

λ(t) ≤ ββvre
−νt

∫ t

0
eνs

∫ s

0
λ(u)A(s − u)duds.

Integrating by parts:

λ(t) ≤ βvβr

ν

∫ t

0
λ(u)A(t − u)du. (44)

Let tn be a sequence with the property that

tn+1 − tn → ∞, λ(tn) → λ∞, as n → ∞.

Then,

λ(tn+1) ≤ βvβr

ν

∫ tn

0
λ(u)A(tn+1 − u)du + βvβr

ν

∫ tn+1

tn
λ(u)A(tn+1 − u)du.

Note that λ(u) = βr Iv(u)/M ≤ βr . Then∫ tn

0
λ(u)A(tn+1 − u)du ≤ βr

∫ tn+1

tn
A(τ )dτ → 0 as n → ∞,

and∫ tn+1

tn
λ(u)A(tn+1 − u)du ≤ sup

t≥tn
λ(t)

∫ ∞

0
A(τ )dτ → λ∞

∫ ∞

0
A(τ )dτ as n → ∞.

It follows that

λ∞ ≤ βvβr

ν
λ∞

∫ ∞

0
A(τ )dτ = λ∞Rc.

Therefore, if Rc < 1 then λ∞ = 0, i.e.,

lim
t→∞ λ(t) = 0, (45)

and equivalently, limt→∞ Iv(t) = 0. From this and the fact that Iv(t) ≥ 0, we know that
I ′
v(t) → 0 as t → 0. From the Iv equation (10) we have

lim
t→∞ βv

I (t) + θT (t)

N

(
M − Iv(t)

) − ν Iv(t) = 0,
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Fig. 4 Difference between Rc
from PDE Analysis with δ = 0 in
Eq. 35 andRc from next
generation matrix from ODE
system Eq. 18 with δ �= 0, using
parameters in Table 3

from which we obtain

lim
t→∞

[
I (t) + θT (t)

] = 0.

It follows that

lim
t→∞ I (t) = lim

t→∞ T (t) = lim
t→∞ R(t) = 0, lim

t→∞ S(t) = Λ

μ
.

This shows that the disease-free equilibrium is globally asymptotically stable if Rc < 1.
Using a similar approach as in [8] we can show that U∗ is locally asymptotically stable if
Rc > 1.

4.4 Numerical Comparison with Nonzero Disease-Induced Death

To simplify our model analysis in the previous subsections, we assumed a zero disease-
induced death, δ = 0. In this section we present numerical comparisons between the control
reproduction number, Rc calculated in Eq. 35 to the value calculated for the ODE system
given by Eq. 18 using the next generation method. The parameter values, shown in Table 3,
used in the numerical comparison are for malaria in a high transmission region. The shape
parameters J , K , and L are chosen to match the illustration of stages in Fig. 3. To model
a particular situation these shape parameters would be determined by a fitting a gamma
distribution to data. In Table 3, we see that the malaria induced death rate for adults is
small compared to the natural death rate, δ ≈ μ/40. Figure 4 illustrates that the difference
between the control reproduction numbers as a function of ββv is very small. Note that if
ββv = 1 every mosquito bite would transmit the malaria parasite from an infected human to
a mosquito. In high transmission regions with endemic malaria, ββv < 0.2.

In Fig. 5 we use the host integral equation system described by Eq. 9 and mosquito
differential equation in Eq. 10 to plot the infection status of the hosts and vectors versus
time for Rc > 1 and Rc < 1. The numerical algorithm used to solve Eqs. 9, 10 and to
produce Fig. 5 is described in [14]. The parameter values chosen are from Table 3, including
disease-induced death. The values for all the parameters, including βV and β at endemic
equilibrium (EE) are for a high transmission region with endemic malaria. The values for
βV and β at disease-free equilibrium (DFE) are artificial. We see that as our analysis shows
for Rc > 1, shown in Fig. 5a, the system reaches an endemic equilibrium and for Rc < 1
shown in Fig. 5b, the system reaches the disease-free equilibrium after 200 days. In Fig. 5
both the EE and DFE situations include disease-induced death, the equilibrium values will
change whether or not disease-induced death is included. In both situations, δ = 0 or δ �= 0,
forRc > 1 the host and vector populations move to an endemic equilibrium and forRc < 1
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Fig. 5 Infection status of hosts and vectors versus time in days for the integral and differential equation system
in Eqs. 9 and 10 showing the approach to equilibrium. aRc > 1 with endemic equilibrium values from Table
3. bRc < 1 with DFE values from Table 3

the host and vector populations move to the disease-free equilibrium. We do not include the
figures for δ = 0, as they are not markedly different than Fig. 5.

5 Discussion

The main contribution of this modeling study is the incorporation of general distributions of
disease stages into models for host-vector diseases such as malaria to investigate effects of
drug treatment. Because of the realistic description of the stage duration from time since infec-
tion and from treatment, such models are capable of describing the dynamic changes in drug
concentration and parasite load during treatment, which is impossible if stage distributions
are assumed to be exponential as commonly done in most ODE models for mosquito-borne
diseases.

We present two approaches for the derivation of the model with general distributions: one
uses integral equations and the other uses partial differential equations. We showed that the
models derived from these two approaches lead to the same system. Depending on goals of
model analysis and available mathematical tools, one form might be easier to use than the
other. In this paper, the model analysis is based on the formulation of integral equations. This
formulation is also used to obtain the corresponding system of ODEs when the distributions
are gamma or exponential.

Another important finding in this study is that it highlights the shortcoming of writing
models of ODE equations (assuming exponentially distributed stage durations) without using
the model with arbitrary sojourn distributions (see Sect. 2.3). For example, when a gamma
distribution is used for a disease stage, the resulting ODE equations usually includes n sub-
stages, where n is the shape parameter in the gamma distribution. However, this method
does not work for the model studied in this paper. As illustrated in Fig. 3, the I class in the
integral equation (9) actually needs to be divided into J × K sub-classes (denoted by I j,k ,
1 ≤ j ≤ J , 1 ≤ k ≤ K ), where J and K are the shape parameters of the gamma distributions
for the I and T classes, the two classes representing the twopathways from the infected human
class. This, in fact, highlights the heterogeneous nature of the pathways infected humans take
and how a pathogen manifests within each individual, even when the humans are infected at
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the same time. This is even more true and important for a disease like malaria where because
of the role of acquired (adaptive) immunity (which is positively correlated to how often an
individual may have been exposed to infectious mosquito bites), the parasite manifestation
within each individual will differ. Some individuals may be asymptomatic with a lower
severity of the diseases and likely to recover without treatment, while others may exhibit
symptoms early and may seek treatment early. The progression then of a malaria-infected
individual to either the recovered class without treatment or to the treated class, based on the
severity of symptoms will differ among individuals. Some infected individuals may recover
faster before seeking treatment, if they do seek treatment (likely as a result of having a better
developed adaptive immune response), while others may receive treatment sooner before
recovery due to early symptoms or the severity of the symptoms and disease. The latter is
likely to occur among the immunologically naive populations. Thus, the path to recovery
without treatment for an individual will require a minimum of J steps traversed horizontally
on I as in Fig. 3, or K + L traversed vertically on I and T or K + J traversed vertically and
then horizontally on I . Our modeling approach sets the stage for us to model these different
cases as the waiting times for an infected human before recovery or before treatment are no
longer assumed to be exponentially distributed.

Since the goal of this manuscript was to demonstrate the modeling approach, the model
studied includes only drug-sensitive strains. One of the serious public health concerns is
the development of drug-resistant strains due to inappropriate treatment schedules. We have
considered ODE models with both sensitive- and resistant strains in previous studies (see
[21,34]). We did not include resistance strains in the current model because, as seen in
Sect. 2.3, the derivation for the reduction of equations from the integral equations to ODEs
is already very complicated. We will extend the general model in this paper to include a
drug-resistant strain in future studies. Furthermore, to extend the general model in this paper
to capture the interaction between vectors and humans for a mosquito-borne disease, and
address the feedback between within-human host PK/PD and between-hosts transmission,
we must replace the ODE vector equation d Iv(t)/dt with an integral equation for Iv(t) of
the following form:

Iv(t) = Iv(0)e
−νt +

∫ t

0

∫ η

0
βv(η − u)(M − Iv(η))

λ(u)S(u)PI R(η − u)PIT (η − u)PI D(η − u)

N (u)
e−ν(t−η)dudη

+
∫ t

0

∫ τ

0

∫ η

0
βv(τ − u)θ(τ − η)(M − Iv(τ ))

×
λ(u)S(u)PI R(η − u)

[
− dPIT (η−u)

dη

]
PI D(η − u)PT R(τ − η)PT D(τ − η)

N (u)

× e−ν(t−η)dudηdτ,

where η denotes the time at which a susceptible mosquito takes a bloodmeal from an infected
human, and u the time the human was infected by an infectious vector. This formulation
incorporates the transmission potential as a function that depends on how long the infected
human has been in stage I or T at the time of transmission. This can be linked to the pathogen
load and drug concentration in the infected human. For example, a newly infected individual
will have a βv value that is close to zero, but increases with time, with a sharp rise, as
the time the transmissible forms of the pathogens to appear approaches (thus capturing the
incubation period of the infection).We remark that in the above integral equation for Iv(t), the
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infection of a mosquito by a human host in the treatment class T depends on the transmission
rate βv(τ − u) (which depends on the age-since-infection (τ − u) and the reduction factor
θ(τ −η), which depends on the age-since-treatment (τ −η)). Because the age-since-infection
can be associated to parasite load whereas the age-since-treatment is associated with drug
concentration, the product βv(τ −u)θ(τ −η) allows for the possibility to describe and model
the interaction between parasite load and drug concentration.

The differential equation that corresponds to the above integral equation is

d Iv(t)

dt
=

∫ t

0
βv(t − u)(M − Iv(t))

λ(t)S(t)PI R(t − u)PIT (t − u)PI D(t − u)

N (t)
du

+
∫ t

0

∫ η

0
βv(t − u)θ(t − η)(M − Iv(t))

×
λ(u)S(u)PI R(η − u)

[
− dPIT (η−u)

dη

]
PI D(η − u)PT R(t − η)PT D(t − η)

N (u)
dudη

− ν Iv(t),

Notice that when we assume constant transmission rate βv , and constant reduction parameter
θ ∈ [0, 1] , we can show using the forms of I (t) and T (t) defined in (9), that the above
differential equation reverts to the form

d Iv(t)

dt
= βv

I (t) + θT (t)

N
(M − Iv(t)) − ν Iv(t), (46)

as was obtained in (10).

Acknowledgements The authors acknowledge the support of anAmerican Institute ofMathematics SQuaREs
grant. ZF was supported by NSF grant 1814545, KG was supported by NSF grant 1814659, OP and MG
were supported by NSF grant 1816075, and MIT-E was supported by NSF grant 1815912. The findings and
conclusions in this report are those of the authors and do not necessarily represent the official views of the
National Science Foundation.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Derivation of Integral Equations from the PDE Formulation

To illustrate the equivalence of the two formulations of the model: PDEs and integral equa-
tions, we can also derive the integral equations in (9) based on the PDE equations in (28).
Note that the solution x(t, a) is given by (20), from which we have

I (t) =
∫ ∞

0
x(t, a)da =

∫ t

0
BI (t − a)PI R(a)PIT (a)e−(μ+δ)ada

+
∫ ∞

t
x0(a − t)

PI R(a)PIT (a)

PI R(a − t)PIT (a − t)
e−(μ+δ)t da.
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Note also from (31) that

BI (t) = λ(t)S(t),

BT (t) = −
∫ t

0
λ(t − a)S(t − a)PI R(a)P ′

I T (a)PI D(a)da,

BI R(t) = −
∫ t

0
λ(t − a)S(t − a)P ′

I R(a)PIT (a)PI D(a)da,

BT R(t) = −
∫ t

0

∫ t−a

0
λ(t − a − s)S(t − a − s)PI R(s)P ′

I T (s)PI D(s)dsP ′
T R(a)PD(a)da.

Thus,

I (t) =
∫ ∞

0
λ(u)S(u)PI R(t − u)PIT (t − u)e−(μ+δ)(t−u)du

+
∫ ∞

t
x0(a − t)

PI R(a)PIT (a)

PI R(a − t)PIT (a − t)
e−(μ+δ)t da, (u = t − a)

which is identical to the I equation in (9) except the term for initially presented infected
people. The term involving x0(a − t) above includes a more detailed description as it takes
into consideration of the age density at time t = 0 and the time already spent in the infected
class at time t > 0 (the denominator), whereas the term I0(t) in (6) ignores the initial age
distribution by assuming a constant number of infected I0. This does not affect the analysis
for equilibrium and stability (because the term tend to zero as t → ∞) but it makes the
derivation of reduction to ODEs much more tractable analytically.

From the solution expressions for y(t, a) given in (23) and using the expression for BT

given above, we have

T (t) =
∫ ∞

0
y(t, a)da

=
∫ t

0
BT (t − a)PT R(a)e−μada

=
∫ t

0

∫ t−a

0
λ(t − a − s)S(t − a − s)PI R(s)

(
− P ′

I T (s)
)
e−(μ+δ)sdsPT R(a)e−μada

=
∫ t

0

∫ τ

0
λ(τ − s)S(τ − s)PI R(s)

(
− P ′

I T (s)
)
e−(μ+δ)sds

×PT R(t − τ)e−μ(t−τ)dτ (τ = t − a)

=
∫ t

0

∫ τ

0
λ(u)S(u)PI R(τ − u)

(
− P ′

I T (τ − u)
)
e−(μ+δ)(τ−u)du

×PT R(t − τ)e−μ(t−τ)dτ. (u = τ − s)

Using the z equation givein in (26) and the expressions for BI R and BT R above, we have

R(t) =
∫ ∞

0
z(t, a)da =

∫ t

0

[
BI R(t − a) + BT R(t − a)

]
PRS(a)e−μada

.= RI R + RT R,

where RI R is the number of recovered from the I class given by

RI R(t) =
∫ t

0
BI R(t − a)PRS(a)e−μads
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=
∫ t

0

∫ t−a

0
λ(t − a − s)S(t − a − s)

(
− P ′

I R(s)
)
PIT (s)e−(μ+δ)sdsPRS(a)e−μada

=
∫ t

0

∫ σ

0
λ(σ − s)S(σ − s)

(
− P ′

I R(s)
)
PIT (s)e−(μ+δ)sds

×PRS(t − σ)e−μ(t−σ)dσ (σ = t − a)

=
∫ t

0

∫ σ

0
λ(u)S(u)

(
− P ′

I R(σ − u)
)
PIT (σ − u)e−(μ+δ)(σ−u)du

×PRS(t − σ)e−μ(t−σ)dσ (u = σ − s)

and RT R is the number of recovered from T class given by

RT R(t) =
∫ t

0
BT R(t − a)PRS(a)e−μada

=
∫ t

0

∫ t−a

0
BT (t − a − s)e−μs

(
− P ′

T R(s)
)
dsPRS(a)e−μada

=
∫ t

0

∫ t−a

0

[ ∫ t−a−s

0
λ(t − a − s − k)S(t − a − s − k)PI R(k)

×
(

− P ′
I T (k)

)
e−(μ+δ)kdk

](
− P ′

T R(s)
)
e−μs PRS(a)e−μadsda.

Changing variables by letting

ρ = t − a, τ = t − a − s = ρ − s, u = t − a − s − k = τ − k,

we have

RT R(t) =
∫ t

0

∫ ρ

0

[ ∫ τ

0
λ(u)S(u)PI R(τ − u)

(
− P ′

I T (τ − u)
)
e−(μ+δ)(τ−u)du

]

×
(

− P ′
T R(ρ − τ)

)
e−μ(ρ−τ)PRS(t − ρ)e−μ(t−ρ)dτdρ.

Hence, the total number of recovered/immune individuals at time t is

R(t) =
∫ t

0

∫ σ

0
λ(u)S(u)

(
− P ′

I R(σ − u)
)
PIT (σ − u)e−(μ+δ)(σ−u)du

×PRS(t − σ)e−μ(t−σ)dσ

+
∫ t

0

∫ ρ

0

[ ∫ τ

0
λ(u)S(u)PI R(τ − u)

(
− P ′

I T (τ − u)
)
e−(μ+δ)(τ−u)du

]

×
(

− P ′
T R(ρ − τ)

)
e−μ(ρ−τ)PRS(t − ρ)e−μ(t−ρ)dτdρ.

Appendix B: Proof of dN(t)
dt = 3 − �N for General Distributions

This proof is for the system (9) with general distributions for PI R , PIT , and PT R in the case
of δ = 0. Other distributions are exponential as given in (1). We ignore the X0(t) terms
(X = I , T , R) as they follow the same argument as for the main part of the corresponding
variables.
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Differentiating the I equation in (9), we have

d I (t)

dt
= λ(t)S(t)︸ ︷︷ ︸

Incidence

+
∫ t

0
λ(u)S(u)

[
dPI R
dt

(t − u)PIT (t − u)e−μ(t−u)

]
du

︸ ︷︷ ︸
Number recovered per unit time

+
∫ t

0
λ(u)S(u)

[
PI R(t − u)

dPIT
dt

(t − u)e−μ(t−u)

]
du

︸ ︷︷ ︸
Number treated per unit time

−μI (t).

Similarly, from the T and R equations in (9), we obtain

dT (t)

dt
= −

∫ t

0
λ(u)S(u)

[
PI R(t − u)

dPIT
dt

(t − u)e−μ(t−u)

]
du

+
∫ t

0

∫ τ

0
λ(u)S(u)

[
PI R(τ − u)

dPIT
dτ

(τ − u)e−μ(τ−u) dPT R

dt
(t − τ)e−μ(t−τ)

]
dudτ

︸ ︷︷ ︸
Number recovered per unit time

−μT (t),

and

dR(t)

dt
= −

∫ t

0
λ(u)S(u)

[
dPI R
dt

(t − u)PIT (t − u)e−μ(t−u)

]
du

︸ ︷︷ ︸
Number recovered per time from the I stage

−
∫ t

0

∫ τ

0
λ(u)S(u)

[
PI R(τ − u)

dPIT
dτ

(τ − u)e−μ(τ−u) dPT R

dt
(t − τ)e−μ(t−τ)

]
dudτ

︸ ︷︷ ︸
Number recovered per time from the T stage

−(μ + w)R(t)

It follows that

d

dt
N (t) = d

dt

(
S(t) + I (t) + T (t) + R(t)

)
= Λ − μN .

Appendix C: Proof of S∗ + I∗ + T∗ + R∗ = N for the Equilibrium U∗

We show first the simpler case when w = 0 (no immunity loss). Notice from (36) that

I ∗ + T ∗ + R∗ = λ∗S∗(DI + TI TDT + (TI R + TI T TT R)DR

)
. (47)

From the definition of TX and DX in (33) and (34) we have

TI T TT RDR =
∫ ∞

0
PI R(u)

[
− P ′

I T (u)
]
e−μudu

∫ ∞

0

[
− P ′

T R(u)
]
e−μudu

( 1

μ

)

=
∫ ∞

0
PI R(u)

[
− P ′

I T (u)
]
e−μudu

(
1

μ
−

∫ ∞

0
PT R(u)e−μudu

)

= 1

μ

∫ ∞

0
PI R(u)

[
− P ′

I T (u)
]
e−μudu − TI TDT (48)
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Then,

TI TDT + (TI R + TI T TT R)DR = TI RDR + 1

μ

∫ ∞

0
PI R(u)

[
− P ′

I T (u)
]
e−μudu

= − 1

μ

∫ ∞

0

(
PI R(u)PIT (u)

)′
e−μudu

= 1

μ
− DI . (49)

It follows that

DI + TI TDT + (TI R + TI T TT R)DR = 1

μ
. (50)

From the first equation in (36) and using (47) and (50),

μ(N − S∗) = λ∗S∗ = I ∗ + T ∗ + R∗

DI + TI TDT + (TI R + TI T TT R)DR
= μ(I ∗ + T ∗ + R∗).

It follows that

S∗ + I ∗ + T ∗ + R∗ = N .

For the case of w > 0, from the first and last equations in (36) we have

μ(N − S∗) = λ∗S∗ − wR∗ = λ∗S∗[1 − w(TI R + TI T TT R)DR

]
.

Note also that

I ∗ + T ∗ + R∗ = λ∗S∗[DI + TI TDT + (TI R + TI T TT R)DR

]
.

It suffices to show that

1 − w(TI R + TI T TT R)DR = μ
[
DI + TI TDT + (TI R + TI T TT R)DR

]
. (51)

From DR = 1/(w + μ) we know that (51) is equivalent to

μ
[
DI + TI TDT

]
+ TI R + TI T TT R = 1. (52)

It is easy to check that

μTI TDT + TI R + TI T TT R = −
∫ ∞

0

(
PI R(u)PIT (u)

)′
e−μudu = 1 − μDI ,

from which we obtain (52), and hence (51). This completes the proof.
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