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a b s t r a c t

Because demographic realism complicates analysis, mathematical modelers either ignore demography
or make simplifying assumptions (e.g., births and deaths equal). But human populations differ
demographically, perhaps most notably in their mortality schedules. We developed an age-stratified
population model with births, deaths, aging and mixing between age groups. The model includes types
I and II mortality as special cases. We used the gradient approach (Feng et al., 2015, 2017) to explore
the impact of mortality patterns on optimal strategies for mitigating vaccine-preventable diseases such
as measles and rubella, which the international community has targeted for eradication. Identification
of optimal vaccine allocations to reduce the effective reproduction number Rv under various scenarios
is presented. Numerical simulations of the model with various types of mortality are carried out to
ascertain the long-term effects of vaccination on disease incidence. We conclude that both optimal
vaccination strategies and long-term effects of vaccination may depend on demographic assumptions.

Published by Elsevier Inc.

1. Introduction

Meta-population models of heterogeneous host populations,
especially ones whose members mix non-randomly, have basic
reproduction numbers, R0, that may be much larger than those
from homogeneous host population models (Glasser et al., 2016).
Similar discrepancies can also be present in effective reproduc-
tion numbers, Rv , derived from these models. When a control
measure such as vaccination is considered, Rv is a function of pa-
rameters representing effort levels in the several sub-populations.
Feng et al. (2015) and Feng et al. (2017) showed that the opti-
mal vaccine allocation among sub-populations can be identified
by the gradient of Rv (its multivariate partial derivative) with
respect to the vaccination rates.

The meta-population model of Feng et al. (2017) consid-
ers demographic heterogeneity, but does not distinguish births/
immigration/aging and deaths/emigration/aging, in which resp-
ects age groups may differ. The model considered in this paper in-
cludes births, deaths and aging, but not immigration/emigration,
which may be implicitly modeled via a mixing function. More-
over, we consider models with types I and II mortality (i.e., death
occurs only in the last age group or at a constant rate in all
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groups), which may be more appropriate for developed and de-
veloping countries, respectively. This flexibility may be needed
to evaluate vaccination programs to eliminate pathogens from
countries with different mortality schedules en route to global
eradication.

The effective reproduction number for the model with general
mortality is derived using the next-generation matrix (NGM)
approach. Because of complexities such as preferential mixing,
aging, and heterogeneous vaccination coverage, the elements of
the NGM involve long expressions. To ensure that they make
biological sense, we provide intuitive interpretations of their
constituent quantities that facilitate understanding how various
complexities affect the magnitude of Rv . We explore the influ-
ence of mortality schedules on optimal vaccination strategies and
long-term impact of vaccination on incidence. Results suggest
that, in some cases, mortality schedules may be influential.

This paper is organized as follows. In Section 2, we formulate
a SEIR type age-structured meta-population model with age-
dependent fertility and mortality rates, which include types I and
II mortality as special cases. Derivation of the effective repro-
duction number is included in Section 3. Intuitive explanations
for elements of the next-generation matrix, which are compli-
cated by demographic processes, are also provided. In Section 4,
we present optimal vaccination strategies derived via the gradi-
ent method for measles with various mortality schedules. This
section also includes comparisons, in terms of optimal vaccine
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Fig. 1. Transition diagram for this demographically-realistic transmission model.
Each epidemiological class has n sub-groups (horizontal flows) with transition
rates θi due to aging.

allocations, of models with types I and II mortality and the long-
term effect of vaccination on incidence ascertained via numerical
simulations. We discuss the findings in Section 5.

2. Formulation of the model

The meta-population model considered in this paper com-
prises n sub-populations (or groups) whose members are suscep-
tible Si, exposed (infected, but not yet infectious) Ei, infectious
Ii, or removed Ri from the infection process (by virtue of immu-
nization or naturally acquired immunity). The population size of
group i is denoted by Ni = Si+Ei+ Ii+Ri and the total population
size is

N = N1 + N2 + · · · + Nn.

For demographic dynamics in the absence of disease and vac-
cination, we adopt the framework of Hethcote (2000), in which
an ordinary differential equation model of an age-structured pop-
ulation with aging is derived from a partial differential equation
system with continuous age (u). In his derivation, the n age
groups are defined by the intervals [ui−1, ui), where 0 = u0 <
u1 < u2 < · · · < un−1 < un = ∞, and the per capita rates of
fertility and mortality within age groups i are constants denoted
by fi and µi, respectively. Let θi denote the rates at which people
exit age groups i due to aging (i.e., age from group i to i + 1)
with θn = 0. Assume that the population has reached its stable
age-distribution with constant growth rate ρ. Then Ni(t) = eρtPi,
where the Pi are constants satisfying

Pi+1 =
θiPi

θi+1 + µi+1 + ρ
, for 1 ≤ i ≤ n. (1)

The constant P1 is equal to N1(0) under the assumption that
n∑

i=1

fiNi = (θ1 + µ1 + ρ)N1,

as it leads to the equation N ′

1 = ρN1. Because N1(t) = eρtN1(0),
P1 = N1(0).

For the stable age distribution Pi to exist, the fertility (fi),
mortality (µi), aging (θi), and growth (ρ) rates must satisfy the
following constraint (Hethcote, 2000):

f1 + f2
θ1

θ2 + µ2 + ρ
+ · · · + fn

θn−1 · · · θ1

(θn + µn + ρ) · · · (θ2 + µ2 + ρ)
θ1 + µ1 + ρ

= 1.

(2)

Thus, for given fertility, mortality, and aging rates, Eq. (2) can
be used to determine the growth rate ρ. If ρ is negative, 0, or
positive, the population is decreasing, constant, or increasing in
size, respectively, with time. The exact formula for θi is θi =

(µi + ρ)/(exp[(µi + ρ)(ui − ui−1)] − 1), but when µi and ρ are
small, the approximation θi = 1/(ui − ui−1) for the aging rates
can be used.

For the corresponding SEIR model, suppose that all newborn
individuals are susceptible and that a proportion σ is immunized.
Then the system of equations is

S ′

1 = (1 − σ )
(
θ1 + µ1 + ρ

)
eρtP1 − (λ1 + θ1 + µ1 + χ1)S1,

S ′

i = θi−1Si−1 − (λi + θi + µi + χi)Si, 1 < i ≤ n,

E ′

1 = λ1S1 −
(
α + θ1 + µ1

)
E1,

E ′

i = θi−1Ei−1 + λiSi −
(
α + θi + µi

)
Ei, 1 < i ≤ n,

I ′1 = αE1 −
(
γ + θ1 + µ1

)
I1,

I ′i = θi−1Ii−1 + αEi −
(
γ + θi + µi

)
Ii, 1 < i ≤ n,

R′

1 = σ
(
θ1 + µ1 + ρ

)
eρtP1 + γ I1 + χ1S1 − (θ1 + µ1)R1,

R′

i = θi−1Ri−1 + γ Ii + χiSi − (θi + µi)Ri, 1 < i ≤ n,

(3)

where α is the reciprocal of the latent (pre-infectious) period, γ
is the recovery rate, and χi is the vaccination rate for susceptible
individuals in group i. The forces or hazard rates of infection
among susceptible people are

λi = aiβi

n∑
j=1

cij
Ij
Nj
, 1 ≤ i ≤ n, (4)

where ai is the per capita contact rate, βi is the probability of in-
fection upon contacting an infectious person, cij is the proportion
of the contacts of members of the ith sub-population that is with
members of the jth, and Ij/Nj is the probability that a randomly
encountered member of sub-population j is infectious. In this
paper, we will consider the function of Jacquez et al. (1988), who
modified that of Nold (Nold, 1980), defined as

cij = ϵiδij + (1 − ϵi)gj, gj =
(1 − ϵj)ajPj∑
k(1 − ϵk)akPk

, (5)

where the ϵi are fractions of contacts reserved for one’s own
group (termed preferences), and δij is the Kronecker delta (1 when
i = j and 0 otherwise). The function gj describes mixing that is
random (i.e., proportional to unreserved contacts, [1 − ϵj]ajPj).
A transition diagram corresponding to this model is depicted in
Fig. 1.

The generality in choice of birth fi and death rates µi allows
the demographic model to cover age-dependent fertility and mor-
tality rates, including types I and II mortality. For type I mortality,
it is assumed that the lifespan is fixed at a maximum age umax
after which everyone dies; i.e., µi = 0 for all i < n and µn = ∞

(or a large value). For type II mortality, it is assumed that all age
groups have the same constant per capita death rate µi = µ,
where 1/µ corresponds to the mean lifespan.

The constraint (2) can be expressed using biologically relevant
quantities. Let τi denote the mean sojourn in age group i and φi
denote the probability of aging from group i to i + 1; i.e.,

τi(ρ) =
1

θi + µi + ρ
, φi(ρ) =

θi

θi + µi + ρ
, 1 ≤ i ≤ n.

Note that Φj(ρ) =
∏j−1

i=1 φi(ρ) (with Φ1 = 1) represents the
probability that a person ages from group 1 to group j. Thus,
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Fig. 2. A transition diagram showing the multiple paths that a person, who was infected while in group j, can take before recovering in group s (1 ≤ j ≤ s ≤ n).
The probability of taking the path indicated by red (thick) arrows is

∏r−1
m=j qmξr

∏s−1
i=r pi , where pi , qi , ξi are defined in (9).

Eq. (2) can be rewritten as
n∑

j=1

fjΦj(ρ)τj(ρ) = 1. (6)

Expression (6) makes the condition more biologically transparent.
When ρ = 0, the left-hand side is the population reproduction
number

Rpop =

n∑
j=1

fjΦj(0)τj(0).

Clearly, Rpop is equal to 1 if and only if the population remains
constant (i.e., growth rate ρ = 0), and Rpop > 1 (< 1) if ρ > 0
(< 0).

Consider the fractions xi(t) =
Si(t)
eρtPi

, yi(t) =
Ei(t)
eρtPi

, zi(t) =

Ii(t)
eρtPi

, and let rij = Pi/Pj denote the ratio of the sub-populations i

and j. Then the system of equations (3) becomes

x′

1 = (1 − σ )
(
θ1 + µ1 + ρ

)
− (λ1 + θ1 + µ1 + ρ + χ1)x1,

x′

i = r(i−1)iθi−1xi−1 − (λi + θi + µi + ρ + χi)xi, 1 < i ≤ n,

y′

1 = λ1x1 −
(
α + θ1 + µ1 + ρ

)
y1,

y′

i = r(i−1)iθi−1yi−1 + λixi −
(
α + θi + µi + ρ

)
yi, 1 < i ≤ n,

z ′

1 = αy1 −
(
γ + θ1 + µ1 + ρ

)
z1,

z ′

i = r(i−1)iθi−1zi−1 + αyi −
(
γ + θi + µi + ρ

)
zi, 1 < i ≤ n.

(7)

The fraction recovered is 1 − xi − yi − zi for i = 1, 2, . . . , n.

3. Effective reproduction numbers

We derive the effective reproduction numbers using system
(7), and provide a biological interpretation of the elements of the
next-generation matrix (NGM). Let wi denote the probabilities of
susceptible people in group i being vaccinated before aging or
dying; i.e., wi = χi/(µi+θi+ρ+χi). The disease-free equilibrium
is
x∗

1 = (1 − σ )(1 − w1),

x∗

i = r(i−1)i
θi−1

θi + µi + ρ + χi
x∗

i−1, 2 ≤ i ≤ n,

y∗

i = z∗

i = 0, 1 ≤ i ≤ n,

or equivalently,

x∗

i = (1 − σ )
i∏

j=1

(1 − wj), y∗

i = z∗

i = 0, 1 ≤ i ≤ n. (8)

Proceeding via the NGM method (Diekmann and Heesterbeek,
2000; Van den Driessche and Watmough, 2002), the Jacobian

(considering only the disease variables) is J =

(
J11 J12
J21 J22

)
, where

J11, J12, J21 and J22 are given in Box I.
For ease of presentation and interpretation, introduce the fol-

lowing biologically relevant quantities for group i (i = 1, 2, . . . ,
n):

ξi =
α

α + θi + µi + ρ
Probabilities that latent people in
age-group i become infectious
before aging or dying,

pi =
θi

γ + θi + µi + ρ
Probabilities that infectious people
in age-group i age before
recovering or dying,

qi =
θi

α + θi + µi + ρ
Probabilities that latent people in
age-group i age before becoming
infectious or dying,

τ Ei =
1

α + θi + µi + ρ
Death- and aging-adjusted latent
periods in group i,

τ Ii =
1

γ + θi + µi + ρ
Death- and aging-adjusted
infectious periods in group i.

(9)

These symbols and definition are also listed in Table 1. Note that
an infected person can take multiple routes, depending on the
order of these events: aging, becoming infectious, and recovering.
The diagram in Fig. 2 illustrates the scenario in which a person is
infected while in group j and recovers while in group s.

To facilitate description of the probabilities corresponding to
various routes, which simplifies presentation of the elements of
the NGM, we introduce the following quantities:

Qjr =

r−1∏
m=j

qm Probabilities that a person who was infected
while in age-group j aged to group r ≥ j before
becoming infectious or dying (for ease of
notation, define Qjj =

∏j−1
m=j qm = 1).

Prs =

s−1∏
i=r

pi Probabilities that a person who became infectious
while in age-group r aged to group s ≥ r before
recovering or dying (for ease of notation, define
Prr =

∏r−1
i=r pi = 1).

Using these notations, the probability that a person who was
infected while in group j, became infectious while in group r ≥ j,
and recovered while in group s ≥ r (i.e., the path illustrated in
Fig. 2) is

r−1∏
m=j

qmξr
s−1∏
i=r

pi = QjrξrPrs.
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J11 =

⎛⎜⎜⎝
−(α + θ1 + µ1 + ρ) 0 · · · 0 0

r12θ1 −(α + θ2 + µ2 + ρ) · · · 0 0
...

...
. . .

...
...

0 0 · · · r(n−1)nθn−1 −(α + θn + µn + ρ)

⎞⎟⎟⎠ ,

J12 =

⎛⎜⎜⎝
a1β1x∗

1c11 a1β1x∗

1c12 · · · a1β1x∗

1c1n
a2β2x∗

2c21 a2β2x∗

2c22 · · · a2β2x∗

2c2n
...

...
. . .

...

anβnx∗
ncn1 anβnx∗

ncn2 · · · anβnx∗
ncnn

⎞⎟⎟⎠ ,

J21 = αIn×n, and

J22 =

⎛⎜⎜⎝
−(γ + θ1 + µ1 + ρ) 0 · · · 0 0

r12θ1 −(γ + θ2 + µ2 + ρ) · · · 0 0
...

...
. . .

...
...

0 0 · · · r(n−1)nθn−1 −(γ + θn + µn + ρ)

⎞⎟⎟⎠ .

Box I.

Let J = F − V , where F =

(
0 J12
0 0

)
and V =

(
−J11 0
−J21 −J22

)
. It

is easy to verify that V−1
=

(
−J−1

11 0
−J−1

22 J21J−1
11 −J22

)
, where

J−1
11 =

⎛⎜⎜⎜⎝
τ E1 0 · · · 0 0

r12q1τ E2 τ E2 · · · 0 0
...

...
. . .

...
...

r1nQ1nτ
E
n r2nQ2nτ

E
n · · · r(n−1)nqn−1τ

E
n τ En

⎞⎟⎟⎟⎠ ,

J−1
22 =

⎛⎜⎜⎜⎝
τ I1 0 · · · 0 0

r12p1τ I2 τ I2 · · · 0 0
...

...
. . .

...
...

r1nP1nτ In r2nP2nτ In · · · r(n−1)npn−1τ
I
n τ In

⎞⎟⎟⎟⎠ ,

and the matrix J−1
22 J21J−1

11 is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ1τ
I
1 0 · · · 0 0

r12
2∑

j=1

Q1jξjPj1τ I2 ξ2τ
I
2 · · · 0 0

.

.

.

.

.

.
. . .

.

.

.

.

.

.

r1n
n∑

j=1

Q1jξjPjnτ In r2n
n∑

j=2

Q2jξjPjnτ In · · · r(n−1)n

n∑
j=n−1

Q(n−1)jξjPjnτ In ξnτ
I
n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The next-generation matrix is K = FV−1
=

(
K11 ∗

0 0

)
, where

K11 = F12J−1
22 J21J−1

11 . The ‘*’ denotes a block matrix that does
not affect the eigenvalues of K . The meta-population Rv is the
dominant eigenvalue of K11. Let

Aij = cijτ Inξj + rj(j+1)ci(j+1)τ
I
j+1(ξjpi + qjξj+1) + · · ·

+rjscisτ Is

s∑
r=j

QjrξrPrs + · · · + rjncinτ In

n∑
r=j

QjrξrPrn

=

n∑
s=j

rjscisτ Is

s∑
r=j

QjrξrPrs, 1 ≤ i, j ≤ n.

(10)

Biological interpretations of the expressions Aij are provided in
the next section. The elements in the expression of Aij for types
I and II mortality are listed in Table 1. The matrix K11 can be
written as

K11 =
(
aiβix∗

i Aij
)

= diag
(
a1β1x∗

1, a2β2x∗

2, . . . , anβnx∗

n

)(
Aij

)
, (11)

where the x∗

i are steady-state numbers of susceptible people
given in Eq. (8), (Aij) is the matrix with elements Aij, and the dom-
inant eigenvalue of K11 gives the effective reproduction number
Rv .

Notice that the influence of mixing on Rv is represented by
Aij. For the general mixing function described in Eq. (5) with
n > 3, explicit formulae for the dominant eigenvalue of the
matrix K11 can be very difficult to derive, and Rv is usually
computed numerically. However, in the case of proportionate
mixing (i.e., ϵi = 0 for all i), K11 has rank 1 and the Rv is given
by the trace.

3.1. Interpretation of Aij in K11

All entries in K11 have the form aiβix∗

i Aij. The factor Aij repre-
sents the proportion of effective contacts with people in group i
of one person who was infected while in group j during his/her
infectious period. As mentioned, this infected person can take
various routes depending on the order of three events: aging,
disease progression (becoming infectious), and recovery. For ex-
ample, if the person became infectious while in group j, the total
number of contacts with people in group i would be Aij. Each
path corresponds to one term in Aij, as depicted in Fig. 2. More
specifically, the first term corresponds to the path of disease
progression (with probability ξi) and recovery before aging, in
which case the infectious period is τ Ij and proportion of contacts
with group i is cij.

The second term in Aij corresponds to the person recovering
while in group j+ 1, in which case s/he either became infectious
in group j (with probability ξj) and then aged to group j + 1
before recovery (with probability pj), or aged to group j+1 before
becoming infectious (with probability qj) and became infectious
while in group j + 1 (with probability ξj). For both cases, the
infectious period is τ Ij+1 and the proportion of contacts with group
i is ci(j+1). The ratio rj(j+1) = Pj/Pj+1 represents the relative sizes of
the sub-populations to which the infected and infectious people
belong. This term is needed because of aging in the model.

The generic term in Aij involving τ Is , 1 < s < n, describes
the case when recovery occurred while in group s. This includes
several paths. The infected person can (i) become infectious while
in group j (with probability ξj) and then age through all groups
before recovering in group s (with probability Pjs =

∏s−1
k=j pk);

(ii) age to group j + 1 (with probability qj), become infectious
within group j + 1 (with probability ξj), and then age through
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Table 1
Definition of the symbols used in the expression for Rv and in analyses.
Symbol Description Type I mortality Type II mortality

ξi Probability of becoming infectious while in age group i α/(α + θi + ρ) α/(α + θi + µi + ρ)

pi Probability of aging while infectious from age group i to group i + 1 θi/(γ + θi + ρ) θi/(γ + θi + µi + ρ)

qi Probability of aging while incubating (in the latent or exposed class) from θi/(α + θi + ρ) θi/(α + θi + µi + ρ)

age group i to group i + 1

τ Ei Aging and/or death adjusted mean latent period in age group i 1/(α + θi + ρ) 1/(α + θi + µi + ρ)

τ Ii Aging and/or death adjusted mean infectious period in age group i 1/(γ + θi + ρ) 1/(γ + θi + µi + ρ)

Pks Probability of aging from group k to s while infectious (Pkk = 1)
∏s−1

j=k pj , s > k Same

Qks Probability of aging from group k to s while incubating (in the latent
∏s−1

j=k qj , s > k Same

or exposed class) (Qkk = 1)

Aij Proportion of effective contacts with group i by an infectious person See (10) Same

infected while in group j

Note: i, j, k, s = 1, 2, . . . , n.

all groups before recovering in group s (with probability P(j+1)s =∏s−1
k=j+1 pk), etc.; and finally (iii) age to group s (with probability

Qjs =
∏s−1

k=j qk) and become infectious within group s (with
probability ξs). For all such cases, the infectious period is τ Is and
the proportion of contacts with group i is cis.

It follows that aiβix∗

i Aij represents the average number of new
infections generated among susceptible people in group i by one
person who was infected while in group j.

3.2. Rv in special cases

Consider first the case where mixing is proportionate (i.e., the
cij are given by Eq. (5) with ϵi = 0). Note that c1j = c2j = · · · = cnj
for all j, which leads to A1j = A2j = · · · = Anj for all j. In this case,
K11 has rank 1 and its dominant eigenvalue is the trace. Hence,

Rv =

n∑
i=1

aiβix∗

i Aii, (12)

where the Aii are given in Eq. (10)
For general mixing, consider the case where n = 2 sub-

populations. The matrix K11 has the form K11 =

[
A B
C D

]
, where

A = a1β1x∗

1A11, B = a1β1x∗

1A12, C = a2β2x∗

2A21, D = a2β2x∗

2A22,

and

Ai1 = τ I1ξ1ci1 + τ I2c12
N1

N2
(ξ1p1 + q1ξ2), Ai2 = τ I2ξ2ci2, i = 1, 2.

In this case, for any mixing matrix (cij),

Rv =
1
2

[
A + D +

√
(A − D)2 + 4BC

]
.

4. Optimal vaccination strategy

Assume that Rv > 1 and some number of additional vaccine
doses is available. Let χ = (χ1, χ2, . . . , χn) ≥ 0 denote the
vector of vaccination rates and let Rv(χ ) denote the effective
reproduction number corresponding to χ . The optimal vaccine
allocation can be obtained by solving the following Lagrange
optimization problem:

Minimize Rv(χ ), subject to
n∑

i=1

χix∗

i Pi = c. (13)

The constant c represents the available vaccine doses and the x∗

i Pi
denote the number of susceptible people in group i, where x∗

i is
given by Eq. (8) with χi = 0.

The solution to (13) can be determined by solving simultane-
ously the equations

∇Rv + λ(x∗

1P1, x
∗

2P2, . . . , x
∗

nPn) = 0 and
n∑

i=1

χix∗

i Pi = c, (14)

where λ is a Lagrange multiplier. Let X̂ = (χ̂1, χ̂2, . . . , χ̂n) denote
the optimal solution to problem (13) and let Rvmin = Rv(X̂). It
can be shown (Feng et al., 2015) that the gradient ∇Rv(X̂) is or-
thogonal to the hyperplane

∑n
i=1 χix∗

i Pi = c at the point X̂ , where
the hypersurface Rv(χ̂ ) = Rvmin intersects this hyperplane.

Another optimization problem aims at finding the minimum
doses required to achieve a prescribed reduction in Rv . Let δ
be the reduction; i.e., δ = Rv − Rv(χ ). To find the vaccination
strategy that requires the least doses, we solve the following
optimization problem:

Minimize
n∑

i=1

χix∗

i Pi, subject to Rv(χ ) ≤ Rv − δ. (15)

Using a similar approach, Feng et al. (2015) showed that the
solution to problem (15) is given by the gradient ∇Rv .

4.1. Effect of mortality on the optimal strategy

Consider the case of n = 15 age groups: 0, 1–4, 5–9, . . . ,
65+ years. Assume that the time unit is months. We adopt the
parameters for measles in China (Hao et al., 2019): 1/α = 0.5
(month), 1/γ = 0.25 (month), and several vectors whose age-
dependent values are listed in Table 2, including contact rates,
(ai), probabilities of infection per contact, (βi), aging rates, (θi),
2014 fertility, (fi) and mortality rates, (µi), and types I, (µIi ), and
II mortality with longer and shorter lifespans, (µIIi )a and (µIIi )b,
1 ≤ i ≤ n. Using these parameter values, the population growth
rate determined by condition (2) is ρ = 0.00067. For types I and II
mortality, the fi are scaled to satisfy equation (2) while preserving
their age distribution.

Fig. 3 illustrates the corresponding survivorship curves. One
corresponds to the mortality schedule (µi) given in Table 2. The
others represent two extremes, type I mortality with µi = 0
for 1 ≤ i ≤ 14 and 1/µ15 = 5 × 12 (months) and type
II mortality with different lifespans; i.e., a lifespan of 70 years
(µi = 1/(70 × 12) for all i, labeled as Type IIa) or 40 years
(µi = 1/(40 × 12) for all i, labeled as Type IIb).

To demonstrate the influence of mortality, suppose that the
existing vaccination program applies σ = 0.5 coverage to the
infant group and consider the case when 5k additional doses per
year are available for children aged 5–19 years (groups 3–5). We
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Fig. 3. Survivorship curves based on the 2014 Chinese death rates (µi) and
three alternative scenarios labeled as type I, type IIa, and type IIb mortality as
described in Table 2.

Table 2
Parameter values used in analyses of the optimal vaccine allocation for reducing
Rv and numerical simulations of model (3).
Par Values

(βi) (1, 0.29, 0.093, 0.1, 0.13, 0.22, 0.24, 0.24, 0.23, 0.21, 0.18, 0.14,
0.11, 0.064, 0.2)

(ai) (9.2, 11, 15.3, 18.7, 18.2, 14, 14.3, 14.4, 14.9, 14.8, 13.4, 13,
11.9,10, 7.8)×30

(fi) (0, 0, 0, 0, 0.98, 6.85, 7.61, 4.08, 1.44, 0.33, 0.09, 0, 0, 0, 0)×10−3

(µi) (3.8, 0.4, 0.2, 0.2, 0.3, 0.3, 0.5, 0.7, 0.9, 1.5, 1.9, 3.6, 4.7, 8.4,
38.1)×10−4

(θi) (1/12, 1/48, 1/60, 1/60, 1/60, 1/60, 1/60, 1/60, 1/60, 1/60, 1/60,
1/60, 1/60, 1/60, 0)

1/α 0.5
1/γ 0.25

For other types of mortality

(µIi ) 0 for 1 ≤ i ≤ 14 and 1/(10 × 12) for i = 15 (Type I mortality)

(µIIi )a 1/(70 × 12) for 1 ≤ i ≤ 15 (Type IIa mortality with a lifespan of
70 years)

(µIIi )b 1/(40 × 12) for 1 ≤ i ≤ 15 (Type IIb mortality, a shorter lifespan
than type IIa)

Note: i = 1, 2, . . . , 15 for 15 age groups. Time unit is months. The multiple 30
in the (ai) vector converts daily rates to monthly ones.

Table 3
Comparison of the minimized Rv under four mortality schedules and different
vaccine doses.
Mortality 5k doses 10k doses

Rv Vaccination
rates (×10−3)

Rv Vaccination
rates (×10−2)

(a) Actual 4.38 8.2, 6.6, 4.5 2.74 1.7, 1.3, 0.98
(b) Type I 4.53 7.8, 6.2, 4.2 2.86 1.6, 1.3, 0.92
(c) Type IIa 5.61 5.2, 4.9, 4.2 3.97 1.1, 0.96, 0.75
(d) Type IIb 6.16 4.2, 4.4, 3.5 4.64 0.94, 0.85, 0.68

identify their optimal allocation from the model under four types
of mortality. For comparability, we scale the β vector so that
all four basic reproduction numbers are equal to 18. The scaling
constants are 0.95 (type I), 1.05 (type IIa), and 0.97 (type IIb). We
assume that mixing is proportionate for analyses in this section
and simulations in the next. The results are illustrated in Fig. 4.

For the actual mortality schedule (Table 3(a)), the repro-
duction number, given routine vaccine coverage of σ = 0.5,
is reduced from R0 = 18 to Rv = 9. With 5k additional
vaccine doses per year, the optimal solution is (χ̂3, χ̂4, χ̂5) =

(0.0082, 0.0066, 0.0045) and the corresponding reproduction
number is Rvmin = 4.38. Results for other three mortality types
are also listed in Table 3.

The contour surface of Rv corresponding to the optimal solu-
tion is illustrated in Fig. 4(a). The light plane is the constraint
corresponding to the additional 5k doses per year, which is
tangent to the surface with their intersection corresponding to
the optimal strategy. Notice that the gradient of the function
Rv(χ3, χ4, χ5) at the intersection point is normal to the con-
straint. Fig. 4(b)–(d) show the optimal solutions based on types
I, IIa, and IIb mortality as shown in Table 3. In these cases,
the reproduction numbers were all equal to 9 before additional
vaccine doses were administered. With the additional 5k doses
per year, the minimized values of Rvmin in these three cases are
4.53, 5.61, and 6.16, respectively.

With 10k additional vaccine doses per year, the optimal so-
lutions (χ̂3, χ̂4, χ̂5) for the four mortality types are also listed in
Table 3, and the corresponding minimized values of the reproduc-
tion numbers Rvmin are 2.74, 2.86, 3.97, and 4.64, respectively.

4.2. Effect of mortality on the impact of control efforts

The comparisons in Section 4.1 are based on reductions in
the effective reproduction number. Vaccination programs can
also be evaluated by reductions in incidence. In this section,
we present numerical simulations of model (3) with different
mortality schedules.

To ensure that these models are comparable, we fix several
parameter values. We choose the growth rate ρ and population
size at the beginning of simulations. We consider the model with
actual birth and death rates as the baseline. Using the values of
βi, θi, fi, and µi in the top panel of Table 2, we determine the
growth rate ρ using the formula (2), which is ρ = 0.00067.
Choosing P1 = 10 000, we compute Pi (2 ≤ i ≤ 15) using the
formula (1) to get the stable age distribution:

(P1, P2, . . . , P15) = (10000, 38681, 46429, 44584, 42787,
41062, 39362, 37688, 36045, 34354, 32669,
30767, 28797, 26405, 98234)

(16)

with total population size Ptotal =
∑15

i=1 Pi = 587 864. For initial
conditions, we use disease surveillance and serological observa-
tions (Hao et al., 2019) to calculate the vectors of proportions
pS, pI and pR where

(pS)i =
Si
Pi
, (pI )i =

Ii
Pi
, (pR)i =

Ri

Pi
, i = 1, 2, . . . , 15,

from which we obtain the initial conditions for S, I and R. In the
absence of information about the exposed class, we assume that
E = 0 and determine new initial conditions after a burn-in period
T . For example, choosing T = 117, the initial conditions are

S0i = Si(T ), E0i = Ei(T ), I0i = Ii(T ), R0i = Ri(T ),

1 ≤ i ≤ 15. (17)

We remark that e−ρT ∑15
i=1(S0i + E0i + I0i + R0i) = Pi.

The solution of system (3) with initial condition (17) for the
actual birth and death rates is shown in Fig. 5(a), which plots
total incidence (new infections from all groups per 106) scaled
by e−ρt . Scaling (i.e., multiplying by the factor e−ρt ) corrects for
the solution increasing with positive growth rate ρ > 0.

We scaled the actual fertility schedule by the factors 0.984,
1.457, and 1.923 for mortality types I, IIa, and IIb, respectively, to
achieve the same ρ = 0.00067. And we chose P1 = 10 520, 16 500,
21 200, respectively, so that the population sizes Ptotal were sim-
ilar. Then we repeated the procedure described above for the
actual birth and death rates. That is, using the same proportions
for vectors pS, pI , and pR together with Ptotal, we obtained the
preliminary initial conditions. The burn-in periods T for mortality
types I, IIa, and IIb are T = 117, 75, and 55, respectively. These T
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Fig. 4. Comparison of results from model (3) with the four mortality schedules described in Fig. 3. Plots (a)–(d) show both the corresponding contour surfaces of
the minimized value for Rvmin and optimal vaccination rates (χ̂1, χ̂2, χ̂3).

Table 4
Initial conditions used for plots (a)–(d) in Fig. 5.
(a) S(0) = (4509, 9821, 7384, 3910, 1820, 869, 503, 374, 320, 315, 363, 453, 508, 563, 2924)

E(0) = (49, 40, 13, 9, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2)
I(0) = (23, 20, 6, 4, 3, 2, 1, 1, 1, 1, 1, 0, 1, 0, 1)
R(0) = (6234, 31955, 42812, 44296, 44448, 43537, 42065, 40386, 38662, 36839, 34968, 32822, 30636, 27994, 103317)

(b) S(0) = (4737, 10231, 7709, 4082, 1881, 878, 495, 360, 306, 303, 357, 462, 539, 636, 1603)
E(0) = (52, 42, 14, 10, 6, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1)
I(0) = (24, 20, 7, 5, 3, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0)
R(0) = (6565, 33799, 45257, 46842, 47080, 46194, 44760, 43146, 41519, 39906, 38298, 36699, 35186, 33708, 61975)

(c) S(0) = (6143, 10272, 5960, 2430, 1105, 607, 394, 307, 260, 255, 302, 378, 396, 433, 535)
E(0) = (69, 44, 11, 6, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0)
I(0) = (33, 22, 6, 3, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0)
R(0) = (11105, 53373, 65665, 62009, 56865, 51543, 46520, 41896, 37705, 33898, 30421, 27260, 24467, 21933, 20966)

(d) S(0) = (5950, 8756, 4412, 1722, 934, 558, 365, 287, 237, 228, 268, 319, 305, 317, 395)
E(0) = (93, 54, 12, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 0)
I(0) = (46, 28, 6, 3, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0)
R(0) = (15907, 68875, 78938, 69818, 60464, 52135, 44859, 38526, 33073, 28359, 24266, 20736, 17765, 15191, 14514)

values were chosen to obtain similar total incidence values. Then
we chose the solution values at T to be the new initial conditions
(Table 4 in the Appendix A).

To facilitate comparison, equal vaccination rates were applied
to children aged 5-19 years (groups 3–5). The simulation re-
sults with initial conditions described above, other parameter
values the same as in Section 4.1, and vaccination coverage c =

0, 0.1, 0.2 and 0.4 are illustrated in Fig. 5. The corresponding
immunization rates are χ = −

1
12 ln(1−0.95c) per month, where

0.95 is vaccine efficacy.
We observe from Fig. 5 that, under equal vaccination coverage

c , the model with type IIb mortality has the highest long-term in-
cidence and vaccination has the least effect (see (d)). The endemic
levels corresponding to types I and IIa mortality are similar, while
that with type IIb mortality is higher. The effect of increasing c is

most apparent for type I and least for IIb (see (b) and (d)), with
type IIa intermediate. For example, the endemic levels for c = 0.4
are decreased by about 60% and 20%, respectively, in comparison
with that for c = 0. We also observe that, for the model with
actual fertility and mortality rates, the endemic level and effects
of increasing c are closer to those for type I than II mortality (see
(a)–(c)).

5. Discussion

John (1990) compared age-specific transmission models with
the same mortality, but different fertility schedules. She showed
that time to equilibrium, age-specific incidence and proportions
susceptible at equilibrium, and effectiveness of immunization all
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Fig. 5. Results of simulating model (3) with four types of mortality when ages 5-19 years (age groups 3–5) are vaccinated at equal rates corresponding to coverage
c = 0, 0.1, 0.2 and 0.4.

depended on fertility. Using actual and model mortality sched-
ules, we investigated whether or not mortality affects optimal
vaccination programs.

We developed a SEIR model with multiple age groups, ag-
ing and age-dependent fertility and mortality rates (system (3)).
Using the method of Lagrange optimization with constraint, we
identified the optimal allocation of supplemental vaccine doses
to reduce the effective reproduction number Rv of the meta-
population. And we carried out numerical simulations to examine
the effect of supplemental vaccination at equal age-specific rates
on long-term incidence. Comparisons were made under various
demographic schedules and vaccination scenarios, including ac-
tual fertility and mortality rates and mortality types I and II
with fertility scaled to yield the same growth rate ρ. For ease
of presentation, we refer to system (3) with mortality of types
(a)–(d) in Table 3 as models (a)–(d).

Our main findings include the following regarding the in-
fluence of mortality schedules on the impact of supplemental
immunization activities.

1. The impact of 5 or 10k supplementary vaccine doses is
greatest in models with actual mortality and least in ones
with type IIb mortality (see Fig. 4 and Table 3).

2. When models with mortality types I and II are compared,
more dramatic differences are observed when type II mor-
tality is combined with a shorter lifespan (model (d)), in
terms of both Rvmin and long-term incidence (see Table 3
and Fig. 5).

3. When models (a) and (b) are compared, outcomes are sim-
ilar, presumably because their survival curves are similar
(see Fig. 3).

These results are limited by our assumptions that mixing is pro-
portionate and populations are at their stable age distributions,
neither of which is true in nature. Insofar as many infectious
disease modelers assume homogeneous mixing and either ignore
demography or assume that births equal deaths, whereupon pop-
ulation sizes are constant, our analyses are more realistic even

with these assumptions. And, while both could be relaxed in
simulations, we retained them for consistency.

These limitations notwithstanding, our findings suggest that
demographic details may affect the impact of measles vaccina-
tion. In our analyses and simulations, vaccination of children aged
5 to 19 years has more impact when mortality is type I (or actual
in China during 2014) than type II simply because there are more
people in those age groups (see Fig. 3). In turn, this suggests that
vaccination may have less impact in countries where mortality
from infectious diseases including measles is greatest. And, even
if children survive, measles may compromise their immune sys-
tems such that they succumb to another pathogen (Mina et al.,
2019).

A different approach to optimal vaccination strategies for age-
structured models was taken by Hadeler and Müller (1996a,b)
and by Castillo-Chavez and Feng (1998). Those authors studied
a PDE model with an age-dependent vaccination function ψ(a).
Their cost function C(ψ(a)) and effective reproduction number
Re(ψ(a)) were functions of ψ(a) and the density of susceptible
people at the steady-state under ψ(a). Thus, their optimal strat-
egy informs ‘‘long-term’’ policymaking (e.g., vaccination sched-
ules). Our optimal solutions are based on the ‘‘gradient.’’ That is,
given a current state, find a vaccine allocation among different
age groups that provides the largest reduction in Rv . When the
system has reached steady-state with these vaccination rates
(after a short time), a new gradient direction can be computed.
This answers the policy question, ‘‘On which age groups should
supplementary immunization activities (SIAs) focus?’’

A similar study, on optimal vaccination strategies for meta-
populations with preferential mixing formulated as a Lagrange
optimization problem, was presented by Poghotanyan et al.
(2018), who provided a rigorous proof for the existence of the
optimal solution. They showed also that the optimal solution
matches that obtained using the gradient approach.
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Appendix A. Initial conditions for simulations

The initial conditions used in Fig. 5 are shown in Table 4.
They are based on measles in China at the beginning of 2014. See
Section 4.2 for a description of the manner by which these initial
conditions were chosen.

Appendix B. Stable age distribution

To confirm that system (3) indeed satisfies the assumption
of stable age distribution, Fig. 6 illustrates simulations without
infections; i.e., the following system for the demographics:

N ′

1 =
(
θ1 + µ1 + ρ

)
eρtP1 − (λ1 + θ1 + µ1)N1,

N ′

i = θi−1Ni−1 − (λi + θi + µi)Ni, 2 ≤ i ≤ 15.
(18)

This figure is for the actual birth and death rates, with all other
parameter values the same as in Fig. 5(a). The plot on the left
shows solutions of (18) for the first four age groups, whereas that
on the right shows e−ρtNi(t), which are constant. This demon-
strates that the population is at its stable age distribution.
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