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ABSTRACT
Despite the large share of energy consumption, current HVAC sys-
tems in buildings fail to meet their primary purpose of maintaining
comfortable indoor conditions. Current “one size fits all” approach
to control the thermal conditions in an environment lead to a high
degree of occupant dissatisfaction. Advancements in Internet of
Things andMachine Learning have opened the possibility of deploy-
ing different sensors at a wide scale to monitor environmental and
physiological information and using collected sensor data to model
individual comfort requirements. Thermal imaging has recently
gained interest as one of the possible ways to monitor physiological
information (skin temperature) for thermal comfort assessment.
Previous studies have shown that skin temperatures from different
regions of the face, such as forehead, nose, cheeks and ears can
provide useful information for predicting thermal sensation at an
individual level. However, existing approaches to process thermal
images either rely on manual temperature extraction or use meth-
ods that are less reliable in accurately identifying different facial
regions. One of the major challenges of using thermal imaging
for monitoring skin temperatures in actual buildings is that occu-
pants may move relative to the camera. It is not practical to expect
building occupants to be oriented facing the cameras at all times,
therefore, it is important to be able to extract as much information
as possible from instances where it is feasible to extract relevant
information. In this paper, we describe an approach to extract skin
temperature by locating specific regions of the face in thermal im-
ages. The approach involves combining data from RGB images with
thermal images and leveraging facial landmark detection in RGB
images. We also evaluate our approach with existing approach of
face detection used in previous studies. Our study demonstrates
that facial landmark detection provides a more accurate calculation
of different locations in the face compared to previous studies. We
show an improvement in overall quantity and quality of temper-
ature measurements extracted from thermal images compared to
previous studies. More accurate temperature measurements from
thermal images can improve the accuracy of thermal imaging for
modeling and predicting thermal comfort.
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1 INTRODUCTION
Majority of energy consumed in buildings can be attributed to
Heating, Ventilation and Air Conditioning (HVAC) systems. HVAC
systems’ primary purpose is to maintain comfortable indoor envi-
ronments, however these systems are energy intensive and consume
around 43% of total building energy in the U.S. [32]. Current stan-
dards such as ASHRAE 55 [5] and ISO 7730 [15] provide guidelines
on the design and evaluation of indoor environments to maintain
comfortable thermal conditions. Despite consuming a large share
of total building energy, current HVAC systems fail to meet the
ASHRAE 55 requirement of satisfying at least 80% of the occupants
[19]. A large scale survey showed that only 38% of building occu-
pants are satisfied with their thermal environments and only 11%
of buildings meet the ASHRAE requirement of satisfying 80% or
more occupants [19]. The poor performance of HVAC systems in
terms of occupant satisfaction results from “one size fits all” control
approaches, and the inability of current HVAC systems to provide
personalized control [2].

Current standards such as ASHRAE 55 [5] and ISO 7730 [15] rec-
ommend the use of the Predicted Mean Vote and Predicted Percent
Dissatisfied (PMV/PPD) model for evaluating thermal conditions
in air conditioned buildings. The PMV/PPD model was developed
in the 1970s by P.O. Fanger based on a series of climate cham-
ber studies that evaluated heat balance of the human body [28].
The PMV/PPD model ignores the behavioral, psychological and
physiological (other than metabolic rate) factors that influence ther-
mal comfort. A major improvement to the PMV/PPD model was
suggested by de Dear and Brager in 1998 by introducing the adap-
tive comfort model [12]. The adaptive model considers different
physiological (acclimatization), psychological (changing thermal
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expectations) and behavioral (e.g., operating windows, fans) oppor-
tunities that are available to occupants to adapt in order to maintain
thermal comfort. Because the PMV/PPD model is based on a heat
balance model, it recommends a narrow range of temperatures
as comfortable. The adaptive model considers other factors and
suggests that occupants can be comfortable over a wider range of
temperatures if they have different adaptive options available. The
adaptive model was included in the ASHRAE 55 as a method to
determine acceptable thermal conditions for naturally ventilated
buildings [5, 12]. The major limitation of both the PMV/PPD and
adaptive models is that they were developed based on averaged
response from a large population and do not accommodate for in-
dividual differences in occupants thermal comfort requirements.
Because the traditional models are based on averaged responses,
the PMV model is only about 34% accurate in predicting actual
thermal sensations of occupants [8].

Recent advancements in Internet of Things (IoT) and Machine
Learning (ML) have opened the possibility of using distributed
sensors integrated into everyday objects to collect data at a granular
level and to develop individualized models [4]. To overcome the
limitations of averaged comfort models, there has been a growing
interest in creating comfort models that are personalized to each
individual [21]. Such models can utilize data from different sensors
that monitor environmental parameters such as air temperature,
humidity, radiant temperature, air speed; different sensors that
monitor physiological parameters such as skin temperature, heart
rate, skin conductance etc. and use different ML algorithms to
build personalized comfort models. The goal of such methods is to
use the personal comfort models to control the HVAC system or
other comfort devices (e.g. fans, heaters etc.) to improve occupant
satisfaction with thermal environments [21].

Earlier approaches to building personal comfort models relied
mostly on the measurement of environmental parameters such as
air temperature and humidity, and utilized different ML algorithms
to map the environmental measurements to individual thermal
sensations [3, 11, 16]. However, some environmental parameters
such as mean radiant temperature and air speed, which influence
thermal comfort, are difficult to measure accurately due to lack of
inexpensive and easy to use sensors. Therefore, many researchers
have utilized wearable devices to monitor physiological parame-
ters that might be more indicative of different thermal sensations.
Some of the physiological parameters used in previous studies in-
clude skin temperatures from different locations, heart rate, blood
pressure, skin conductance, blood oxygen saturation and so on.
[7, 25, 31]. However, wearable devices may be considered intru-
sive, and some occupants might not be willing to wear monitor-
ing devices. To address this issue, recent studies have focused on
developing non-intrusive techniques to monitor physiological pa-
rameters. Different techniques such as thermal imaging to monitor
skin temperature, Doppler radar sensors to monitor cardiovascular
parameters, and photoplethysmography (PPG) using RGB cameras
to monitor changes in skin blood flow have been investigated in
previous studies [18, 22, 23]. Among the non-intrusive techniques,
thermal imaging has been more widely studied. Results from pre-
vious studies show that thermal imaging can provide useful in-
formation towards predicting thermal sensations [10, 23, 27, 29].
However, previous studies have either manually extracted skin

temperatures from different regions of interest (ROI) or utilized
automated methods that are not very accurate in extracting skin
temperatures from different ROIs using a thermal camera.

In this paper, we describe a method to automatically extract skin
temperatures from different ROIs in the face. The approach involves
combining data from RGB images with thermal images and leverag-
ing facial landmark detection in RGB images. We also evaluate our
approach with existing approach of face detection used in previous
studies. The rest of the paper is organized as follows: section 2
gives a brief overview of relevant literature, section 3 describes
our process of extracting temperatures from different ROIs and
section 4 describes the evaluation of our approach against previous
approaches. In section 5 we discuss different aspects around real
life deployment, current limitations and highlight directions for
future research. We conclude the paper in section 6.

2 LITERATURE REVIEW
The thermoregulation process in humans maintains the core body
temperature within a narrow range of 36◦C to 38◦C by regulation
of skin blood flow, shivering and sweating [1]. Shivering occurs
in cold environments to increase heat generation, and sweating
occurs in hot environments to increase heat loss from the body.
Under cool environments, the skin blood vessels constrict (vasocon-
striction) which reduces skin blood flow and results in lower skin
temperature. Under warm environments, the skin blood vessels
dilate (vasodilation) which increases skin blood flow and results in
increased skin temperature [1]. Several researchers have investi-
gated the changes in skin blood flow at different locations of the
body and its correlations with thermal comfort sensations [9, 14, 34–
36]. In particular, temperatures from different locations in the face,
arms, wrist, trunk, legs and hands are useful in predicting thermal
sensations [1, 9, 14, 30, 36]. Many of the previous studies relied
on different wearable devices to monitor changes in skin tempera-
ture from different locations. However, due to its intrusive nature,
wearable devices might not be acceptable by many occupants.

Previous studies show that temperatures from different regions
of the face such as forehead, nose, ears, cheeks can be utilized for
predicting thermal sensations [1, 9, 14]. Because face is usually
not covered by items of clothing and temperatures from different
regions of the face can be used to predict thermal sensations, recent
studies have utilized infrared thermography as an alternative to
monitor skin temperatures non-intrusively. For example, Ghahra-
mani et al. fitted non-contact infrared temperature sensors in an
eyeglass frame to collect temperatures from forehead, nose, ear
and cheek, and used a hidden Markov model to build models that
achieved 83% accuracy in predicting uncomfortable conditions [14].
Ranjan et. al. captured thermal images of the face and hands twice
per day from 30 participants using a high resolution thermal camera
(FLIR A655sc), manually extracted temperatures from the thermal
images, and showed that temperatures from the face and hands
can be used to predict individual thermal sensations [29]. In an-
other study, Burzo et. al. used FLIR A40, a high resolution thermal
camera to acquire thermal videos, extracted several features from
each frame without specifying different ROIs, and showed that
significant correlations existed between the extracted features and
thermal sensations [6]. Although the studies showed the usefulness
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of using infrared thermography, manual segmentation of thermal
images or locating different ROIs manually is cumbersome and not
feasible for implementation in actual buildings. Automatedmethods
for extracting skin temperatures from different ROIs can support
the deployment of infrared thermography on a larger scale.

Several approaches have been developed to automatically extract
useful information from thermal images. Pavlin et. al. utilized a
low resolution thermal camera (FLIR Lepton) to extract temper-
atures from the forehead region and showed that the extracted
temperatures were well correlated with thermal sensations [27].
The approach utilized a low-resolution thermal camera however,
it was only able to extract crude measurements from the forehead.
Li et. al. used the Haar-Cascade classifier using the Viola-Jones
algorithm [33] to identify a bounding box surrounding the face in
an RGB image, and identified different ROIs such as forehead, nose
and cheeks based on relative location to the bounding box, and
mapped the corresponding points to the thermal image to extract
temperatures from different ROIs [23]. Using RGB data provides
the opportunity to leverage advanced computer vision algorithms
that fail to detect faces directly on the thermal images. In another
study, Burzo et. al. also used the Haar-Cascades classifier using the
Viola-Jones algorithm to detect face bounding boxes in the RGB
image and mapped it to the thermal image to extract temperature
from the entire face region [6]. The limitation of the approach by
both Li et. al. [23] and Burzo et. al. [6] is that the Haar-Cascade
classifier does not detect faces in an image when the head has some
rotation or tilt relative to the camera. Furthermore, the location of
different ROIs relative to the bounding box changes when the face
orientation changes which can result in very noisy measurements.
Although these previous approaches [6, 23] can detect occupant’s
faces and roughly locate the ROIs when the person is directly fac-
ing the camera in a frontal orientation, it is not practical to expect
occupants to always be facing the camera in a frontal orientation.
Some natural head tilt and rotation can lead to failure in detecting
faces and inaccurate calculation of different ROI locations with pre-
viously studied approach of using Haar-Cascade classifiers. When
occupants are outside the field of view of the cameras, no measure-
ments can be made, and it is not practical to expect occupants to
always be in the field of view of the cameras. However, having a
better method to detect faces and locate different ROIs under some
head tilt and orientation can help to improve thermal comfort pre-
dictions by extracting more and better temperature measurements
from the thermal images when the occupants are in the camera’s
field of view.

To improve the detection of the face and locating different ROIs,
Cosma et. al. used RGB-D (color and depth) data from a Kinect
camera to recognize different body segments (head, torso, hand,
shoulder etc.), and combined the information from FLIR Lepton
thermal camera to extract skin and clothing temperatures from
different segments [10]. The study showed that the variance in
extracted skin and clothing temperatures could be used to predict
thermal sensations. Metzmacher et. al. developed an approach to
combine RGB-D data from a Kinect camera and thermal images
from a high resolution FLIRA35 camera to extract skin temperatures
from different facial ROIs [26]. The approach involved identifying
a facemask in the Kinect data and overlaying it over the thermal
image to extract skin temperatures. The facemask from the Kinect

data can be detected even when the person is not directly facing
the camera and addresses the issue of an occupant having different
orientations relative to the camera. In another study, Li et. al. de-
veloped an approach to use a network of multiple Kinect cameras
and FLIR lepton cameras to capture images from different angles
for the same occupant and extract overall temperature of the face
[24]. However, adding an RGB-D camera increases the deployment
costs. The low-resolution thermal camera, FLIR Lepton costs about
$200 and a Kinect camera costs over $200. High resolution thermal
cameras used in other studies cost around $5000. A higher deploy-
ment cost can reduce the scalability of using thermal imaging for
thermal comfort prediction.

In this study, we try to improve the extraction of skin temper-
atures from different ROIs in the face by combining data from a
FLIR Lepton thermal camera and an inexpensive RGB camera. We
leverage an algorithm for facial landmark detection, which can
detect different locations in the face even when face is not oriented
directly in front of the camera and provides a more robust way to
calculate location of different ROIs on the face under different head
tilt and rotation. The goal is to improve the quantity and quality
of skin temperature extraction from different ROIs compared to
previous studies by increasing the range of head tilt and rotation
where different faces can be successfully detected, and improving
the calculation of ROI locations in the face to reduce the noise in
temperature measurements. We also compare our approach with
ROIs detected using the Haar-Cascade classifier using the Viola-
Jones algorithm used in previous studies.

3 ROI TEMPERATURE EXTRACTION
The overall process of extracting skin temperature from different
ROIs involves image registration between the RGB and thermal
images, facial landmark detection and calculation of ROI locations
in the RGB image, mapping of ROI locations to the thermal image,
and extracting temperatures from the thermal image. The images
are collected using a regular RGB camera and a FLIR Lepton thermal
camera shown in Figure1. FLIR Lepton is a low-cost thermal camera
which is capable of taking 80 × 60 pixel thermal images and has
an accuracy of ±5◦C and a resolution of 0.1◦C for temperature
measurements. Although higher resolution thermal cameras are
available, FLIR Lepton was selected due to its low cost and thus
its potential to be deployed at a larger scale. FLIR Lepton was
previously validated by Li et. al. [23] against the FLIR T450SC
camera, which is capable of capturing 320×240 pixel thermal images
with an accuracy of ±2◦C. The authors showed that the FLIR Lepton
camera was adequate for monitoring changes in skin temperature
for thermal comfort assessment. The FLIR lepton camera is factory
calibrated to provide accurate measurements and automatically
performs recalibration when the sensor temperature changes [13],
therefore, sensor calibration was not performed in this study.

3.1 Image Registration
As seen in Figure 1, there is a small gap between the RGB camera
and the thermal camera. The RGB camera and the thermal camera
capture the face from slightly different angles and resolution. The
FLIR lepton is a low resolution thermal camera that captures 60
× 80 pixel images, and the RGB camera captures 600 × 800 pixel

73



BuildSys ’19, November 13–14, 2019, New York, NY, USA Aryal and Becerik-Gerber

Figure 1: Camera setup showing the RGB and thermal cam-
eras

images. To help the image registration process the thermal images
are scaled up by a factor of 10 to 600 × 800 pixels using bicubic
interpolation where the output pixel value is a weighted average of
pixels in the nearest 4 × 4 neighborhood. It is important to note that
the resized thermal images are only used for image registration and
not for taking temperature measurements because the interpolation
might lead to an incorrect scaling of temperature values. In order
to map the RGB image with the thermal image, the RGB image is
transformed to match the thermal image coordinates. Depending on
the gap and orientation of the RGB and thermal cameras, the RGB
image might need some scaling, rotation and translation to match
the thermal image. In order to compute the relevant transformation
matrix, some corresponding control points are manually defined for
the setup. Figure 2 shows an example of the control points defined
for our camera setup. The control points are defined manually by
identifying the same point in two images. Although this is a manual
process, it only needs to be performed once for the camera setup as
long as the physical angles and distances between the two cameras
do not change. A larger number of control points can reduce the
human error resulting from the manual identification of the control
points. The transformation matrix is computed using the following
equation:

[
u v

]
=

[
x y 1

]
×


sc −ss
ss sc
tx ty


sc = scale * cos (anдle)
ss = scale * sin (anдle)

Where u,v are the coordinates of the transformed point, x,y are
the coordinates of original point before transformation. The scaling
factors and rotation between the two images is captured by two vari-
ables sc and ss. The translation between the two images is captured
by the variables tx and ty. The image registration process requires
input of several (u,v) and (x,y) pairs of control points, and calculates
sc, ss, tx and ty to find the transformation matrix. Although four
control points are sufficient to calculate the four variables, it is
generally recommended to provide more control points to account
for human error during the control points selection shown in Figure
2.

Figure 2: Manual selection of control points for image regis-
tration

3.2 ROI Location and Temperature Extraction
After the image registration, we run the facial landmark detection
algorithm by Kazemi et. al. [20] using the dlib library. Dlib is an open
source general purpose software library implemented in C++ and
contains software components spanning various domains. Other off
the shelf implementations of facial landmark detection are available
in the openCV library, which is a library of components dedicated
to computer vision. However, the dlib implementation was used
in this study because it has a higher accuracy of facial landmark
detection compared to the implementations available in the openCV
library [17]. The algorithm detects 68 different points in the face
shown in Figure 3. The desired ROIs can then be calculated based on
their relative location to the 68 detected landmarks. Due to the high
level of detail in the locations of 68 points in the face, this approach
can provide a more robust identification of different ROIs compared
to previous methods. Because of the level of detail achieved using
facial landmarks, it has been used in different applications such as
pose estimation, expression analysis, face identification [17].

Once the facial landmarks are identified, the location of ROIs
in this study is calculated as follows. The nose center is calculated
by averaging the location of points in the nose, points 28 to 31 in
Figure 3. The x coordinate of the forehead center is calculated by
averaging x coordinates of points 22 and 23 on the left and right
eyebrows, and y coordinate of the forehead center is calculated by
adding the vertical distance between the eyebrows points 22 and
23 and the nose center to the y coordinate of the eyebrows in the
upward direction. The resulting location of the forehead center is
slightly above the midpoint of the two eyebrows. The left cheek
point is located by averaging points 15 and 34, which finds a point
between the center of the nose and boundary of the left cheek.
Similarly, the right cheek is located by averaging points 3 and 34
which finds a point between the center of the nose and boundary
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Figure 3: Points identified by the facial landmark detector
[20]

of the right cheek. The facial landmark detection is performed on
the RGB images that are in the same coordinates as the enlarged
thermal image. The calculated location of ROIs is scaled down by
a factor of 10 to match the original thermal image. The original
thermal image of 60 × 80 pixels consists of direct temperature
measurements, hence the temperatures of the located ROIs are
extracted from the original thermal image.

4 EVALUATION
We directly compare our approach of using facial landmarks to
locate different ROIs against using Haar-Cascade classifier used in
previous studies to evaluate the quantity and quality of the extracted
data. We first conducted a preliminary evaluation to investigate the
range of facial orientations where different ROIs can be identified
using the facial landmark detection algorithm and by the Haar-
Cascade classifier. We then evaluate the two approaches on data
collected from 20 participants in an experiment where the room
temperature was gradually changed between 19◦C and 29◦C to
explore the feasibility of extracting skin temperature from the ROIs
under different thermal conditions while performing activities on
a computer. The ROIs used in this study are forehead, nose, left
cheek and right cheek because they were identified as useful sites
to monitor skin temperature in previous studies [14, 23].

4.1 Preliminary Evaluation
In order to explore the range of face orientations where facial
landmark detection and the Haar-Cascade classifier are able to
detect faces, we first collected images from the RGB camera and the
thermal camera for about 6 minutes. A frame was simultaneously
captured from both cameras every second resulting in a total of
363 sets of images. In this preliminary evaluation, the participant
gradually moved his head from left to right, up to down, and along
two diagonal directions relative to the camera. We then ran the pre
trained facial landmark detection [20] from the dlib library, and a

Figure 4: Illustration of facial landmarks (left: green
crosses), bounding boxes from the Haar-Cascade classifier
(right: yellow boxes) and calculatedROI points (both images:
blue circles)

pre-trained Haar-Cascade classifier using the Viola-Jones algorithm
[33] on the collected RGB images. The facial landmark detection
algorithm detects boundary points along the face, as well as eyes,
nose and mouth. The calculation of ROIs from facial landmarks is
explained in section 3.2. The Haar-Cascade classifier only identifies
a bounding box surrounding a particular region. Because the goal
is to achieve accurate identification of different ROIs, we run the
Haar-Cascade classifier three times to detect the face, eyes and
nose. We then calculate the ROIs based on their relative locations
to the detected points. For the Haar-Cascade classifier, the nose
is calculated as the center of the bounding box surrounding the
nose. The two cheeks are calculated by taking half of the width of
the bounding box surrounding the eyes on either side of the nose
center point. The forehead is calculated by taking a point aligned
to the nose center that is above the eyes bounding box by half of
the width of the nose bounding box. Figure 4 shows the detected
facial landmarks, bounding boxes and calculated ROI locations for
the two algorithms.

As seen in Figure 4, both approaches can be used to locate differ-
ent ROIs when the face is oriented directly in front of the camera.
We then evaluated both approaches under different face orienta-
tions. Facial landmarks detection algorithm successfully detected
the landmarks in 313 out of 363 images, whereas the Haar-Cascade
classifier only detected faces in 159 out of 363 images. Figure 5
provides a visual comparison of the two algorithms and their capa-
bilities to detect faces under different orientations. The central im-
ages in Figure 5 (shown inside a black boundary) show the blended
images of the frames where the algorithms successfully detected
the face in the image. The eight images on the sides of the center
images in Figure 5 show the blended images of frames where the
algorithms failed to detect faces in each side orientation. A lighter
image indicates lower number of frames and a darker image in-
dicates a larger number of frames. A white image indicates that
faces were detected for all of the frames in that orientation. As seen
from the eight side images, the Haar-Cascade algorithm fails to
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Table 1: Anthropometric details of study participants

Gender Count Age(years) Height(cm) Weight(kg)

Male 12 23.9 ± 4.6 178.6 ± 6.8 80.0 ± 13.0
Female 8 29.5 ± 14.8 161.6 ± 7.2 64.5 ± 16.5

Overall 20 26.2 ± 10.1 171.8 ± 10.9 73.8 ± 16.1

detect faces in a lot more frames compared to the facial landmark
detection algorithm.

4.2 Data Collection
From our preliminary evaluation, we see that Facial Landmarks
algorithm can successfully detect faces in more orientations com-
pared to the Haar-Cascade classifier. For a more comprehensive
evaluation, we collected data from 20 participants in a realistic
office setting while they were using their computers. The data were
collected in a research office at the University of Southern Califor-
nia (USC) in Los Angeles during the summer months of June 2018
to August 2018. All of the participants were asked to wear pants and
t-shirts during the experiment to keep the clothing levels consistent.
The experiment procedure was explained to the participants and
informed consent was obtained before starting the experiment. The
study was approved by the Institutional Review Board (IRB) at USC.
Twenty healthy subjects, 12 males and 8 females, participated in
the study. Table 1 shows the anthropometric details of the study
participants.

The experiment was conducted in two separate segments: cold
segment and hot segment. Each segment lasted between 1 to 1.5
hours. In the cold segment the temperature was gradually decreased
from roughly 24◦C to 19◦C, and in the hot segment the temperature
was gradually increased from roughly 22◦C to 29◦C. There was
at least 1-hour gap between the segments where the room was
adjusted to the new starting point and participants were transferred
to another location with a neutral temperature during this period
for the participants to re-acclimate to the neutral environment. The
room temperature was gradually changed at the rate of roughly
1◦C/10 mins to avoid sudden changes in the thermal environment
during both segments. The room temperature was monitored every
second using a DHT22 sensor connected to an Arduino Uno placed
on the desk roughly 0.5m from the participant. The minimum air
temperature and its standard deviation for the participants during
the experiment was 19.3 ± 1◦C. The maximum air temperature and
its standard deviation was 28.7 ± 0.6 ◦C. A regular webcam was
used to capture RGB images of the participants’ faces and a FLIR
Lepton thermal camera was used to capture thermal images of the
participant’s faces every second. The camera setup is shown in
Figure 1.

The participants were working on their computer during the
study, and they were not asked to stay upright facing the camera.
The dataset provides a realistic reflection of a person’s movement
while working on their computer compared to the previous studies
where participants were asked to maintain specific poses [23, 29].
In order to understand how the two algorithms may perform in
real life, we use the dataset collected from 20 participants during
our experiment to evaluate the percentage of images where each

algorithm successfully detects different regions of the face to indi-
cate the quantity of useful information extracted by each algorithm.
We then evaluate the noise in skin temperature measurements ex-
tracted from the two algorithms to indicate the quality of useful
information obtained from the two algorithms.

4.3 Results
Overall, 7700 sets of RGB and thermal images were collected on
average from each participant, resulting in over 154,000 sets of
images. For each participant, we evaluated the percentage of images
where different sites in the face were successfully detected. The
results for each participant is shown in Figure 7. The facial landmark
algorithm was able to detect faces in 85% of images on average. The
Haar-Cascade classifier was able to detect faces in 60% of images on
average. In Figure 7, we see that both algorithms have low detection
rates for some participants. This is caused by the downward head
tilt of the participants because they were hunching while using
their computers. The downward head tilt is a weak point for both
algorithms as seen in our preliminary investigation shown in Figure
5.

Figure 7 shows the quantity of images successfully processed
by the algorithms. The quality of the extracted temperatures is
also important to consider. It is difficult to quantify the quality
of temperature measurements without having a reference sensor
attached to participants’ faces. However, having a reference sensor
attached to participant’s faces would interfere with the temperature
extraction from the thermal images. In this study, we assume that a
signal smoothed using a moving average filter with a large window
can be used as a reference signal. A moving average filter of size
M calculates an output point by taking average of M neighboring
points for every data point. In our case, the moving average filter
removes the noise that is caused by small movements in partic-
ipants’ faces that can cause errors in the calculation of different
ROIs. We then calculate the residual error by subtracting the raw
temperature measurements from the moving average.

An example of raw temperaturemeasurements and the smoothed
temperature measurements using moving average filter of size 200
from the forehead of a participant is shown in Figure 6. We then
compute the average and standard deviation of the residual error in
all four ROIs for each participant to get a general idea of the level of
noise in the temperature measurements. The distribution of residual
errors is shown in Figure 8 where the whiskers of the box plots in-
dicate average ± 1.5 standard deviation. The outliers are not shown
in Figure 8 to improve the clarity of the figure. It is important to
note that because we are using a moving average smoothed signal
as reference, the residual average errors are close to 0. The standard
deviation as seen from the length of the whiskers in the boxplots
gives an indication of the fluctuation in temperature measurements
resulting from the errors in the ROI calculation. In Figure 8 we
see that the noise in temperature measurements extracted using
the Haar-Cascade classifier is higher than in temperature measure-
ments extracted using the facial landmarks detection. In general,
the noise is higher for the participants who moved more during
the data collection and who had a hunched posture. The noise in
temperature measurements for the four ROIs is quite similar when
the ROIs are calculated using facial landmark. This is because the
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Figure 5: Blended images of frames with failed detection in each orientation (8 sides) and successful detection (center) for each
algorithm

Figure 6: Comparison of forehead temperatures extracted
from two algorithms

facial landmark can provide a more granular location of different
points in the face. The noise in temperature measurements in the
four ROIs calculated using the Haar-Cascade bounding boxes is
quite different between the left cheek and the right cheek because
the bounding boxes do not provide a good estimation of the face
orientations. On average, the standard deviation in the residual er-
ror was about 1◦C for the facial landmarks approach and about 2◦C
for the Haar-Cascade approach. This indicates that our approach
can extract more accurate measurements from the thermal images
compared to previous methods.

5 DISCUSSION
Thermal imaging has recently gained interest as a non-intrusive
method to monitor physiological data for thermal comfort assess-
ment. Several studies have shown the usefulness of thermal imaging
for predicting thermal sensations. In this study, we focused on a
new method to leverage facial landmark detection to accurately
calculate different ROIs in the face and extract corresponding skin
temperatures from thermal images. Our results indicate that facial
landmark detection can more accurately locate different ROIs in
the face compared to the Haar-Cascade classifier used in previous
studies. If such system is to be used in real buildings, it is not rea-
sonable to expect occupants to always be facing the camera. Our
approach enables us to extract more information from the frames
where occupants are facing the camera. Although better than the
previous approaches, our approach still has some limitations. Facial
landmark detection works well when the faces are directly facing
the camera and head tilt, or head rotation is relatively small. How-
ever, Better ways to locate different ROIs in non-frontal faces can
help to improve the extraction of skin temperatures from thermal
images. Furthermore, ways to handle missing measurements should
be incorporated into a system that is designed for practical imple-
mentation. In our study, we noticed that some of the participants
were naturally hunched while using their computer, which resulted
in a high number of images with downward head tilt where facial
landmarks were not detected. For occupants who have a naturally
hunched posture, a better placement of the camera that accounts
for the head tilt can help address the issue.
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Figure 7: Percentage of frames with successful ROI detection for each participant

Figure 8: Difference between each data point and moving average (residual error) for each participant

78



Facial Landmark Thermal Imaging BuildSys ’19, November 13–14, 2019, New York, NY, USA

One of the challenges during this study was to quantify the noise
or errors in the temperature measurements. In this study, we used
a moving average signal with a large window as the reference mea-
surement. A better way to quantify the errors can provide a better
understanding of the quality of measurements. For example, some
markers could be placed near the desired ROIs and temperature
near the markers could be extracted for validation. However, be-
cause the comparison of both algorithms is performed on the same
exact frames, and the dataset is relatively large consisting people of
different age, gender and body compositions, we can expect facial
landmark detection to provide data with lower noise in a real world
implementation as well.

In this study, we utilized a low cost thermal camera and a RGB
camera. Because both the facial landmark detection and Haar-
Cascade algorithms utilize RGB images, the results related to detec-
tion and location of ROIs in the face is independent of the thermal
camera used. Using a higher accuracy thermal camera can lead to
more accurate temperature measurements but will increase the de-
ployment costs. Some of the previous studies also leveraged RGB-D
data from a Kinect camera, which also provides depth information
in addition to the RGB information. The inclusion of depth informa-
tion can help in a more robust identification of different locations
on face. However, including depth information requires additional
deployment costs. The Kinect camera, which is the most widely
used depth camera costs around $200. The FLIR Lepton, a low-cost
thermal camera used in this study also costs around $200. Including
a depth camera could double the deployment costs of the system.
Furthermore, a future study to directly compare the accuracy trade-
offs between using RGB-D data vs RGB data for calculating ROIs
is needed to understand the accuracy tradeoffs between the two
approaches.

The RGB and thermal cameras were registered in this study
by manually defining control points between the two images. Al-
though this registration only needs to be performed once for each
camera setup, it is subject to human errors. Defining a larger num-
ber of control points manually can reduce human errors. Several
automatic camera registration techniques also exist in literature
and can be used to reduce errors in the camera registration process
[24, 26]. The automatic camera registration process involves using
checkerboards, circular grids, or other repeated patterns where
the boundaries can be automatically detected and used as control
points. The additional requirements are: the checkerboard patterns
need to have different thermal emissivity and temperatures for the
thermal image to clearly capture the control points.

This study focused on the evaluation of the actual temperature
measurements because previous studies have shown the usefulness
of skin temperature measurements from different ROIs on face for
predicting thermal sensations with 75%-85% accuracy [3, 6, 23].
For the dataset used in this study, the accuracy of predicting ther-
mal sensations from facial skin temperatures extracted using facial
landmark detection resulted in an accuracy of 76%. The accuracy
improved to 85% when ambient air temperature was used in ad-
dition to facial skin temperature. Readers are referred to another
paper by the authors [3] which focuses on predicting thermal sen-
sations using the same dataset as this paper. One of the limitations
of this study is that we did not compare the impact of the noise
in temperature measurements on predicting thermal sensations.

Future studies are necessary to quantify the quality of temperature
measurements automatically extracted from the thermal images
and the impact of noise in the measurements on modeling of ther-
mal comfort sensations. Furthermore, the actual performance of
personal comfort models when used to control the thermal environ-
ment, and its influence on occupant comfort has not been explored
well in the literature. Extensive studies are required to evaluate
the performance of personalized comfort models in controlling the
thermal environment and improving occupant satisfaction.

From a practical perspective, although thermal imaging is non-
intrusive, there are still privacy concerns surrounding the use of
cameras. Clear disclosure of what data is collected and how it is
used might help alleviate some of the privacy concerns. Further-
more, processing the camera data in real time to extract relevant
information and not storing the images or video feed might help to
alleviate some of the privacy concerns.

6 CONCLUSION
Infrared thermography or thermal imaging provides a non-intrusive
way to monitor changes in skin temperature for thermal comfort as-
sessment. Previous studies have shown the usefulness of extracting
skin temperatures from different ROIs in the face to predict thermal
sensations. One of the major challenges of using thermal imaging
for monitoring skin temperatures in actual buildings is that occu-
pants may move relative to the camera. It is not practical to expect
building occupants to be oriented facing the cameras at all times,
therefore, it is important to be able to extract as much information
as possible from instances where it is feasible to extract relevant
information. In this paper we described a novel approach to locate
different ROIs in the face by leveraging recent advancements in
computer vision in RGB images, and to extract temperatures of
those ROIs from thermal images. We compared our approach of
using facial landmark detection to locate different ROIs against
detecting bounding boxes around different sections of the face with
Haar-Cascade classifiers used in previous studies. In this study, we
used a dataset of over 154,000 RGB and thermal images and evalu-
ated our approach against previous approach used in the literature.
The facial landmark algorithm was successful in identifying 85% of
the faces in our dataset compared to 60% successful detection with
the Haar-Cascade classifiers. We also evaluated the level of noise
in the temperature measurements from the two approaches. Our
approach was able to reduce the level of noise by a factor of 2 com-
pared to previous approach. Our results show that facial landmark
detection can provide more accurate temperature extraction from
different ROIs in the thermal image compared to the Haar-Cascade
classifiers. Our approach has the potential to improve the accuracy
of thermal comfort prediction using physiological measurements.
One of the major limitations of this study is that the facial landmark
detection algorithm does not perform well when the head is tilted
or rotated far away from the frontal position. Future studies are
needed to improve the calculation of ROI locations under different
face orientations.
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