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The Capacity of Private Computation

Hua Sun , Member, IEEE, and Syed Ali Jafar , Fellow, IEEE

Abstract— We introduce the problem of private computation,
comprised of N distributed and non-colluding servers, K indepen-
dent datasets, and a user who wants to compute a function of the
datasets privately, i.e., without revealing which function he wants
to compute, to any individual server. This private computation
problem is a strict generalization of the private information
retrieval (PIR) problem, obtained by expanding the PIR message
set (which consists of only independent messages) to also include
functions of those messages. The capacity of private computation,
C, is defined as the maximum number of bits of the desired
function that can be retrieved per bit of total download from
all servers. We characterize the capacity of private computation,
for N servers and K independent datasets that are replicated at
each server, when the functions to be computed are arbitrary
linear combinations of the datasets. Surprisingly, the capacity,

C =
�
1 + 1/N + · · · + 1/N

K−1
�

−1

, matches the capacity of
PIR with N servers and K messages. Thus, allowing arbitrary
linear computations does not reduce the communication rate
compared to pure dataset retrieval. The same insight is shown
to hold even for arbitrary non-linear computations when the
number of datasets K → ∞.

Index Terms— Capacity, private computation, private
information retrieval.

I. INTRODUCTION

D ISTRIBUTED computing arises as a promising solu-

tion for massive data processing. Much recent effort

is devoted to various computation tasks, such as search

[1], [2], matrix multiplication [3], [4] and shuffling [3], [5]

etc. Privacy is a concern when sensitive data sets are involved.

For example, retrieving statistical information from remotely

stored patient records for medical research is a representative

application for private computation over distributed systems.

In this work, motivated by privacy concerns in distributed

computing applications, we introduce the private computa-

tion (PC) problem, where a user wishes to privately compute

a function of datasets that are stored at distributed servers.

Specifically, K datasets are stored at N non-colluding servers,

and a user wishes to compute a function of these datasets.
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A private computation scheme allows the user to compute

his desired function, while revealing no information to any

individual server about the identity of the desired function. The

achievable rate of a private computation scheme is the ratio of

the number of bits of the desired function that the user is able

to retrieve, to the total number of bits downloaded from all

servers. The capacity of private computation is the supremum

of achievable rates.

The private computation problem is a strict generalization

of the private information retrieval (PIR) problem, where one

of the K datasets is desired by the user, i.e., the function to

be computed simply returns the desired dataset. The capacity

was characterized recently for PIR in [6] and for several of

its variants in [7]–[19]. In the PIR setting, the datasets are

called messages and all messages are independent. Private

computation may also be viewed as PIR with dependent

messages, where each possible function that may be desired

by a user is interpreted as a dependent message, i.e., a message

whose value depends on other messages.

Our main result is the characterization of the capacity of

private computation, where a user wishes to compute arbitrary

linear combinations of K independent datasets (messages),

replicated at N servers. Note that if the user can only choose

one of M = K independent linear combinations, then the

setting is equivalent to the PIR problem with K messages

and N servers. From [6], we know that the capacity of

PIR in this setting is equal to
(
1 + 1/N + · · · + 1/NK−1

)−1
.

Surprisingly, we show that even if the user wishes to compute

arbitrary linear combinations of the K datasets, the capacity of

private computation remains
(
1 + 1/N + · · · + 1/NK−1

)−1
,

i.e., in terms of capacity, arbitrary linear computation incurs

no additional penalty.

The capacity achieving scheme for private computation that

is presented in this work is a highly structured adaptation of

the capacity achieving scheme for PIR that was introduced

in [6]. Specifically, the private computation scheme utilizes

an optimized symbol index structure, and a sophisticated

assignment of signs (‘+’ or ‘−’) to each symbol in order

to optimally exploit the linear dependencies. A surprising

feature of the optimal private computation scheme is that the

query construction does not depend on the linear combining

coefficients that define the set of possible functions that may

be computed by the user.

Finally, we note that following the ArXiv posting of our

capacity results for the elemental setting of private compu-

tation with N = 2, K = 2, arbitrary M (first version of this

paper, posted October 30, 2017), an independent work on ‘pri-

vate function retrieval’ was posted on ArXiv by Mirmohseni

and Maddah-Ali (reference [20], posted November 13, 2017).
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Since the private function retrieval problem is identical to

the private computation problem, it is worthwhile to compare

and contrast the two works. To this end, we note that while

there is no overlap in the achievable schemes proposed in

the two works, the general capacity result presented in this

paper subsumes and strictly improves upon the results of [20].

In particular, [20] presents two results. The first result

of [20] is a capacity characterization of private computation

when N = 2, K is arbitrary, and the set of functions

that may be computed is comprised of all possible linear

combinations of the K message sets — albeit limited to binary

coefficients. This result is recovered as a special case of our

general capacity result in this paper. In this case, although

the achievable schemes of [20] and this work are different,

they both achieve capacity. The second result of [20] is an

extension of their achievable scheme to general N, K and

non-binary combining coefficients, although the optimality of

the achievable scheme is left open. For this general case, our

capacity characterization implies that the achievable scheme

of [20] is strictly suboptimal.

Notation: For integers Z1, Z2, Z1 ≤ Z2, we use the compact

notation [Z1 : Z2] = {Z1, Z1 + 1, · · · , Z2}. For an index

set I = {i1, i2 · · · , ik}, the notation AI represents the set

{Ai, i ∈ I}. The notation X ∼ Y is used to indicate that

X and Y are identically distributed. For a matrix A, AT

represents its transpose and |A| represents its determinant.

For a set S, |S| represents its cardinality. For sets S1, S2,

we define S1/S2 as the set of elements that are in S1 and not

in S2. A list of notations used is presented below.

II. PROBLEM STATEMENT AND DEFINITIONS

Consider the private computation problem with N servers

and K datasets. We will assume that the datasets are replicated

at all servers, that the servers do not collude, and that the func-

tions to be computed are linear combinations of the messages.

We will focus primarily on this basic setting which opens the

door to numerous other open problems through various gener-

alizations (some of which have appeared recently [21]–[24]),

e.g., coded storage instead of replication, colluding servers,

symmetric privacy requirements, non-linear functions, etc.

The K datasets, denoted by Wd1 , · · · , WdK
∈ F

L×1
p , are

each comprised1 of L i.i.d. uniform symbols from a finite

1As usual for an information theoretic formulation, the actual size of each
message is allowed to approach infinity. The parameter L partitions the data
into blocks and may be chosen freely by the coding scheme to match the
code dimensions. Since the coding scheme for a block can be repeated for
each successive block of data with no impact on rate, it suffices to consider
one block of data.

field Fp. In p-ary units,

H(Wd1) = · · · = H(WdK
) = L, (1)

H(Wd1 , · · · , WdK
) = H(Wd1) + · · · + H(WdK

). (2)

A linear combination of these datasets is represented as a

dependent message,2

Wm = vm[Wd1 , · · · , WdK
]T

= vm(1)Wd1 + · · · + vm(K)WdK
, m ∈ [1 : M ] (3)

where vm = [vm(1), · · · , vm(K)] consists of K constants

from Fp, and ‘+’ represents element-wise addition over

Fp. Without loss of generality, we assume M ≥ K and

[v1;v2; · · · ;vK ] = IK , where IK is the K × K identity

matrix. Thus, (W1, W2, · · · , WK) = (Wd1 , Wd2 , · · · , WdK
).

There are N servers and each server stores all datasets

Wd1 , · · · , WdK
. A user privately generates θ ∈ [1 : M ] and

wishes to compute (retrieve) Wθ while keeping θ a secret

from each server. Depending on θ, there are M strategies

that the user could employ to privately compute his desired

function. For example, if θ = m, then in order to compute

Wm, the user employs N queries, Q
[m]
1 , · · · , Q

[m]
N . Since the

queries are determined by the user with no knowledge of the

realizations of the messages, the queries must be independent

of the messages,3

∀m ∈ [1 : M ], I(W1, · · · , WM ; Q
[m]
1 , · · · , Q

[m]
N ) = 0. (4)

The user sends Q
[m]
n , n ∈ [1 : N ] to the nth server. Upon

receiving Q
[m]
n , the nth server generates an answering string

A
[m]
n , which is a function of Q

[m]
n and the data stored (i.e., all

the messages),

∀m∈ [1 : M ], n∈ [1 : N ], H(A[m]
n |Q[m]

n , W1, · · · , WM)=0.

Each server returns to the user its answer A
[m]
n . From

all the information that is now available to the user

(A
[m]
1 , · · · , A

[m]
N , Q

[m]
1 , · · · , Q

[m]
N ), the user decodes the

desired message Wm according to a decoding rule that is

specified by the private computation scheme. Let Pe denote

the probability of error achieved with the specified decoding

rule.

To protect the user’s privacy, the M strategies must be

indistinguishable (identically distributed) from the perspective

of each server, i.e., the following privacy constraint must be

satisfied ∀n ∈ [1 : N ], ∀m ∈ [1 : M ],

[Privacy] (Q[1]
n , A[1]

n , W1, · · · , WM )

∼ (Q[m]
n , A[m]

n , W1, · · · , WM ). (5)

The PC rate characterizes how many symbols of desired

information are computed per downloaded symbol, and is

defined as follows.

R �
L

D
(6)

2We have
pK

−1
p−1

distinct non-zero linear combinations of K messages over

Fp, so the maximum value of M is
pK

−1
p−1

.
3The message sets (Wd1

, · · · , WdK
) and (W1, W2, · · · , WM ) are invert-

ible functions of each other, so, e.g., conditioning on one is the same as
conditioning on the other.
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where D is the expected value (over random queries) of the

total number of symbols downloaded by the user from all

servers.

A rate R is said to be ε-error achievable if there exists

a sequence of private computation schemes, indexed by L,

each of rate greater than or equal to R, for which Pe → 0 as

L → ∞. Note that for such a sequence of private computation

schemes, from Fano’s inequality, we have

[Correctness] H(Wm|A
[m]
1 , · · · , A

[m]
N , Q

[m]
1 , · · · , Q

[m]
N )

= o(L) (7)

where any function of L, say f(L), is said to be o(L) if

limL→∞ f(L)/L = 0. The supremum of ε-error achievable

rates is called the capacity C.

III. CAPACITY OF PRIVATE COMPUTATION

Theorem 1 states our main result.

Theorem 1: For the private computation problem where a

user wishes to privately retrieve one of M arbitrary4 linear

combinations of K independent datasets from N servers,

the capacity is C =
(
1 + 1/N + · · · + 1/NK−1

)−1
.

When M = K , the problem reduces to the PIR problem

with N servers and K messages, for which the capacity is(
1 + 1/N + · · · + 1/NK−1

)−1
[6]. Adding more computa-

tion requirements M > K can not help (surprisingly it does

not hurt either), so the converse of Theorem 1 is implied.

We only need to prove the achievability, which is presented

in Section IV.

It is quite surprising that increasing the number of messages

by including arbitrary linear combinations of K datasets

does not reduce capacity for all linear computation settings.

A natural question then is whether this insight holds more

broadly. Remarkably, the insight is also true for arbitrary non-

linear computations, when the number of datasets is large

(K → ∞). It turns out that in this case, again the capacity

of private computation is equal to the capacity of PIR. This

supplemental result is rather straightforward and is stated in

the following theorem.

Theorem 2: For the private computation problem with K
independent datasets, Wk, k ∈ [1 : K], H(Wk) = L,

arbitrary N servers and M −K arbitrary (possibly non-linear)

dependent messages, Wm, m ∈ [K + 1 : M ], H(Wm |
Wk, k ∈ [1 : K]) = 0, H(Wm) ≤ L, if K → ∞, then

the capacity of private computation C → 1 − 1/N , which is

the capacity of PIR with K → ∞ messages and N servers.

Proof: For Theorem 2, the achievability is identical to

the symmetric PIR5 scheme of [8, Th. 1] (see also [25],

[26]), where the M functions are viewed as the messages in

the symmetric PIR problem and common randomness is not

used. Specifically, the scheme is as follows. Suppose Wk is

desired and each message has L = N − 1 symbols. Denote

4Note that M ≥ K and the M linear combinations con-
tain K linearly independent ones, so that H(W1, W2, · · · , WM ) =
H(Wd1

, Wd2
, · · · , WdK

) = KL.
5Theorem 2 extends immediately to the symmetric private computation

problem, where the user is prohibited from learning anything beyond the
desired function.

W as the M(N − 1) × 1 vector that is comprised of all the

message symbols (from the first symbol of W1 to the last

symbol of WM ) and let Q represent a random vector of length

M(N − 1), where each element is uniformly distributed over

{0, 1}. Denote ei as a unit vector of length M(N − 1) where

only the ith element is 1 and all other elements are 0. The

queries and answers are generated as follows.

Q
[k]
1 = Q, Q[k]

n = Q + e(k−1)(N−1)+(n−1), ∀n ∈ [2 : N ]

A[k]
n = Inner product(Q[k]

n ,W)

=

{
Inner product(Q,W) n = 1

Inner product(Q,W) + Wk,n−1 n ∈ [2 : N ]

⇒ Wk = (A
[k]
2 − A

[k]
1 , · · · , A

[k]
N − A

[k]
1 )

Therefore the scheme is both correct and private (for any k,

the query Q
[k]
n is comprised of i.i.d. uniformly random bits).

The rate achieved is L/D = (N − 1)/N = 1 − 1/N as the

message size is L = N − 1 and we download N symbols in

total (one from each server). The converse follows from the

converse of regular PIR [6] because restricting the message

set to Wk, k ∈ [1 : K] cannot reduce capacity. The proof is

thus complete.

IV. THE ACHIEVABLE SCHEME

The private computation scheme needed for Theorem 1

builds upon and significantly generalizes the capacity achiev-

ing PIR scheme presented in [6] and [15]. If we ignore

the dependence of the messages in the private computa-

tion problem and directly use the PIR scheme (capacity

achieving for independent messages) in [6], the rate achieved

is
(
1 + 1/N + · · · + 1/NM−1

)−1
, which is strictly less

than
(
1 + 1/N + · · · + 1/NK−1

)−1
(independent of M ),

the capacity of private computation. To optimally exploit the

dependence of the messages, we start with the original PIR

scheme of [6] and incorporate two new ideas.

For ease of reference, let us denote the original PIR scheme

of [6] as PIR1 . Recall that in PIR1 , starting from the

retrieval of one random desired message symbol from the

first database, the queries are generated based on iterative

application of three principles: 1) enforcing symmetry across

servers, 2) enforcing message symmetry within the query to

each server, and 3) exploiting side information of undesired

messages to retrieve new desired information. In particular,

when message symmetry is enforced, the indices of new

symbols to be retrieved are structureless (random), and only

addition is used in constructing queries from both symmetry

and side information exploitation. Both of these aspects are

specialized in the new scheme.

(1) Index assignment: Additional structure is required from

symbol indices within the queries because dependence

only exists across message symbols associated with the

same index. This requirement yields a new PIR scheme,

that we will denote as PIR2 . If the messages are

independent, then in terms of downloads PIR2 is as

efficient as PIR1 , i.e., they are both capacity achieving

schemes.
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(2) Sign assignment: The index structure of PIR2 seems

essential to accommodate dependent messages. By itself,

however, it is not sufficient.6 For example, the queries

in both PIR1 and PIR2 are comprised of sums of

symbols. Depending on the form of message dependen-

cies, more sophisticated forms of combining symbols

within queries may be needed. For our present purpose,

with linear message dependencies, we will need both

sums and differences. To this end, we need to carefully

assign a ‘sign’ (‘+’ or ‘−’) to each symbol. The sign

assignment produces the optimal private computation

scheme, denoted PC , for Theorem 1.

To present these schemes, we need to introduce the follow-

ing notation. Let π represent a permutation over [1 : L]. For

all m ∈ [1 : M ], i ∈ [1 : L] let

um(i) = σiWm(π(i)) (8)

Thus, Wm(π(i)) are the symbols from message Wm, per-

muted by π, and um(i) are the corresponding signed versions

obtained by scaling with σi ∈ {+1,−1}. Since both m and

i are indices in um(i), if there is a potential for confusion,

we will refer to m as the ‘message index’ and i as the

‘symbol index’. Note that the same permutation is applied

to all messages, and the same sign variable σi is applied to

symbols from different messages that have the same symbol

index. Both π and σi are generated privately, independently

and uniformly by the user such that they are not known to the

servers.

We will refer to the message Wm equivalently as the

message um. To illustrate the key ideas we will use the special

K = 2, M = 4, N = 2 setting as our running example in this

work.

Example A: Suppose the M = 4 functions on the K = 2
datasets that we wish to compute over N = 2 servers are the

following.

W1 = Wd1

W2 = Wd2

W3 = v3Wd1 + v′3Wd2

W4 = v4Wd1 + v′4Wd2 (9)

Each message consists of L = NM = 16 symbols from Fp.

The specialized setting allows us to use a simpler notation as

follows.

(ai, bi, ci, di) = (u1(i), u2(i), u3(i), u4(i))

The notation is simpler because we only have symbol indices.

Message indices are not necessary in this toy setting because

a different letter is used for each message.

We will start with the query structure of the PIR scheme,

which we will modify using the two principles outlined earlier,

to obtain the private computation scheme. First we explain the

index assignment step.

6Remarkably, if the field Fp in (3) is restricted to F2 then PIR2 is
sufficient to achieve the capacity of private computation. This is because sign-
assignments are redundant over F2, i.e., +x and −x are equivalent over F2.

A. Index Assignment: PIR2

In this section, we introduce the PIR2 scheme, built upon

PIR1 by an index assignment process. The index assign-

ments are necessary because unlike PIR1 where independent

permutations are applied to symbols from each message,

in PIR2 the same permutation is applied to symbols from

every message. For ease of exposition, we will first illustrate

the index assignment process through Example A, and then

present the general algorithm for arbitrary K, M, N . Since we

do not use sign assignments in PIR2 , the σi are redundant

for this scheme. Without loss of generality, the reader may

assume σi = 1 for all i for PIR2 .

1) Example A: Suppose the desired message is W1, i.e.,

θ = 1. Recall the query structure of PIR1 , where we have

left some of the indices of undesired symbols undetermined.

Note that the first row of the query to Server n, n ∈ {1, 2},

is an, bn, cn, dn, just as in PIR1 . In PIR1 , the permutations

are chosen independently for each message, so that cn, dn are

not necessarily functions of an, bn. However, here, because we

apply the same permutation to every message, and because the

same sign σn is applied to an, bn, cn, dn, the dependence of

messages is preserved in these symbols. In particular, cn =
v3an + v′3bn, dn = v4an + v′4bn, and H(an, bn, cn, dn) = 2
p-ary units.

The next three rows of the queries to each server are 2-sums

(i.e., sums of two symbols) that are also identical to PIR1 ,

because these queries exploit the side-information from the

other server to retrieve new desired symbols. However, notice

that because permutations of message symbols are identical,

there is a special property that holds here that is evident to

each server. For example, Server 1 notes that the 2-sums that

contain ai symbols, i.e., a3+b2, a4+c2, a5+d2 have the same

index for the other symbol, in this case the index 2. Since

we do not wish to expose the identity of the desired message,

the same property must hold for all messages. This observation

forces the index assignments of all remaining 2-sums.

For example, let us consider the next query term, b∗ + c∗,

from, say, Server 1. Since b2 was mixed with a3 in the query

a3 + b2, all 2-sums that include some bi must have index 3
for the other symbol. Similarly, since c2 was mixed with a4,

all 2-sums that include some cj must have index 4 for the

other symbol. Thus, for Server 1, the only index assignment
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possible for query b∗ + c∗ is b4 + c3. Similarly, the b∗ + d∗
must be b5 + d3 and c∗ + d∗ must be c5 + d4. All indices for

2-sums are similarly assigned for Server 2 as well. Thus all

indices for 2-sums are settled.

Now let us consider 3-sums. The index assignments for

the first three rows for the 3-sums are again straightforward,

because as in [6], these are side-information exploitation

terms, i.e., new desired message symbols must be mixed with

the side-information symbols (2-sums) downloaded from the

other server that do not contain desired message symbols. This

gives us the following query structure.

Now, again there is a special property that is evident to each

server based on the 3-sums that contain symbols from message

a. Suppose we choose any two messages, one of which is a.

For example, suppose we choose a, b and consider Server 1.

Then there are 2 instances of 3-sums that contain a, b, namely,

a9 + b7 + c6 and a10 + b8 + d6. Note that the third symbol

in each case has the same index (6 in this case). The same is

true if for example, we choose a, c or a, d instead. The two

3-sums that contain a, c are a9 + b7 + c6 and a11 + c8 + d7,

and in each case the third symbol has the same index (7 in

this case). The two 3-sums that contain a, d are a10 + b8 + d6

and a11 + c8 + d7, and in each case the third symbol has the

same index (8 in this case). Again, because we do not wish to

expose a as the desired message, the same property must be

true for all messages. This observation fixes the indices of the

remaining 3-sum, b∗ + c∗ + d∗ as follows. The index of d in

this term must be 9 because the two 3-sums that contain b, c
must have the same index for the third symbol, and according

to a9 + b7 + c6 this index must be 9. Similarly, the index of

c in b∗ + c∗ + d∗ must be 10 because the two 3-sums that

contain b, d must have the same index for the third term, and

according to a10 + b8 + d6 it has to be 10. The index of b in

b∗ + c∗ +d∗ is similarly determined by the term a11 + c8 +d7

to be 11. Thus, the query b∗ + c∗ + d∗ from Server 1 must be

b11 + c10 +d9. Similarly, the query b∗+ c∗+d∗ from Server 2
must be b14 + c13 + d12.

The last step is again a side-information exploitation step,

for which index assignment is trivial (new desired symbol

must be combined with the 3-sums queried from the other

server that do not contain the desired symbol). Thus, the index

assignment is complete, giving us the queries for PIR2 .

For the sake of comparison, here are the queries generated

with PIR2 when θ = 3, i.e., when message W3 (symbols c)

is desired.

To see why the queries for θ = 1 are indistinguishable from

the queries for θ = 3 under PIR2 , say from the perspective

of Server 1, note that the former is mapped to latter under the

permutation on [1 : L] that maps

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16)

−→ (1, 3, 4, 2, 5, 9, 6, 10, 7, 11, 8, 12, 15, 13, 14, 16)

The permutation π is chosen privately and uniformly by the

user independent of θ, so both queries are equally likely

whether θ = 1 or θ = 3.

2) Arbitrary K, M, N : The extension to arbitrary M, N is

formally presented7 in the query generation algorithm, Q-Gen,

that appears at the end of this section. Let us summarize

the main ideas behind the generalization with the aid of the

illustration in Figure 1 for M = 4, N = 3.

The construction of queries for arbitrary N servers is

essentially a tree-like expansion of the N = 2 construction.

Therefore, the main insights all come from the N = 2 setting.

7Both PIR2 and PC may be viewed as PIR schemes for N servers
with M independent messages, so that K is not directly needed for the
query construction. Linear dependencies, if they are present, make some of
the queries redundant, and allow a reduction in the number of downloaded
symbols. K only matters because it determines the number of redundant
queries. The specific linear combinations involved in the M functions are
also not needed for the query construction. Thus the query construction has
an intriguing ‘universal’ character that exploits linear dependencies while
remaining oblivious to the specifics of those dependencies.
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Fig. 1. Query generation tree according to PIR2 for M = 4 messages and N = 3 servers. Red arrows indicate the use of the Exploit-SI algorithm, and
blue arrows indicate the use of the M-Sym algorithm. Note that the symbol index assignments in any I partition are uniquely determined by the indices in
the corresponding M partition.

In fact, the index assignment process for K messages is

comprised of localized operations within the sets of queries

that form the vertices of this tree, that operate exactly as in

the N = 2 setting. Let us use the tree terminology to explain

the query construction for arbitrary K, M, N .

The root node (not shown because it carries no information)

branches into N vertices at depth 1. These vertices, denoted

Q(n1), n1 ∈ [1 : N ], represent the first set of queries from

each server. For our example, Q(n1) = (an1 , bn1 , cn1 , dn1).
The queries associated with a vertex are internally partitioned

into two parts. Queries that include a desired message symbol

have the identifier M, and queries that do not include any

desired message symbol have the identifier I. For our example

we assume θ = 1, so that the an1 symbols are the desired

message symbols. Thus, Q(n1,M) = an1 and Q(n1, I) =
(bn1 , cn1 , dn1).

Each level 1 vertex, Q(n1), n1 ∈ [1 : N ], branches into

N −1 vertices,8 Q(n2, n1), n2 ∈ [1 : N ], n2 
= n1, to produce

level 2 of the tree. The query vertex Q(n2, n1) is assigned to

Server n2. Thus, level 1 vertices at Server n1 generate level 2
vertices associated with every server other than Server n1. As a

result each Server n2, n2 ∈ [1 : N ], has N − 1 level 2 query

vertices, denoted Q(n2, n1) for all n1 ∈ [1 : N ], n1 
= n2.

Level 2 query vertices are all comprised of 2-sums, i.e., sums

of two symbols, and are internally partitioned into M and I

8A query vertex at level m refers to the set of queries Q(nm, · · · , n1) =
Q(nm, · · · , n1,M) ∪ Q(nm, · · · , n1,I).
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based on whether or not they contain desired message symbols.

The queries in Q(n2, n1,M) are generated by exploiting the

side-information (cf. the Exploit-SI algorithm [15]) contained

in the level 1 queries Q(n1, I), i.e., these queries are generated

by adding a new desired message symbol to each of the sym-

bols in Q(n1, I). Thus, the query set Q(n2, n1,M) contains

M − 1 elements. For our example, these M − 1 = 3 elements

are Q(n2, n1,M) = {ai + bn1 , aj + cn1 , ak + dn1}, where

i, j, k are new symbol indices that have not appeared in any

queries so far. Next, the queries in Q(n2, n1, I) are generated

to enforce message symmetry (cf. the M-Sym algorithm [15]),

and contain a 2-sum of every type that does not include

the desired message, for a total of
(
M−1

2

)
elements. For our

example, these
(
3
2

)
= 3 queries are b∗ + c∗, b∗ + d∗, c∗ + d∗.

The symbol indices ‘*’ are assigned based on the query

set Q(n2, n1,M) as described in our previous example.

Since Q(n2, n1,M) = {ai + bn1 , aj + cn1 , ak + dn1} the

index assignment produces Q(n2, n1, I) = {bj + ci, bk + di,
ck + dj}.

The query tree grows similarly to a total of M levels.

A level m query vertex assigned to Server nm, nm ∈ [1 :
N ], is denoted as Q(nm, nm−1, · · · , n1) and is comprised

of m-sums that include desired message symbols, denoted

Q(nm, nm−1, · · · , n1,M), and m-sums that do not include

desired message symbols, denoted Q(nm, nm−1, · · · , n1, I).
The queries in Q(nm, nm−1, · · · , n1,M) are m-sums gener-

ated by adding a new desired message symbol to each query

contained in Q(nm−1, · · · , n1, I). This is formalized in the

Exploit-SI algorithm. The queries in Q(nm, nm−1, · · · , n1, I)
are generated by the M-Sym algorithm to force message

symmetry, and contain an m-sum of every type that does

not include the desired message, for a total of
(
M−1

m

)
ele-

ments.9 The index assignment for these queries takes place

as follows. Consider a query q ∈ Q(nm, nm−1, · · · , n1, I),
q = ui1(∗) + ui2(∗) + · · · + uim

(∗), where ∗ symbols

represent indices that need to be assigned. Note that since

this query is in the I partition, θ /∈ {i1, i2, · · · , im}. The

index ∗ for uil
(∗), l ∈ [1 : m], comes from the m-sum

query in Q(nm, nm−1, · · · , n1,M) that contains symbols

from ui1 , ui2 , · · · , uil−1
, uθ, uil+1

, · · ·uim
. If the symbol index

for uθ in this query is jl, i.e., the query contains uθ(jl) then the

index jl is assigned to uil
. In this way, the M-Sym algorithm

assigns all indices to generate the query q = ui1(j1) +
ui2(j2) + · · · + uim

(jm). This completes the description of

PIR2 .

The following observations follow immediately from the

query construction described above.

1) |Q(nm, nm−1, · · · , n1, I)| =
(
M−1

m

)

2) |Q(nm, nm−1, · · · , n1,M)| = |Q(nm−1, · · · , n1, I)| =(
M−1
m−1

)

3) The number of level m query vertices

Q(nm, nm−1, · · · , n1) assigned to Server i, (such

that nm = i), is (N − 1)m−1. This is because there

are N − 1 valid values for nm−1 that are not equal to

9If m = M , then Q(nm, nm−1, · · · , n1,I) is the empty set.

nm = i, there are N − 1 values for nm−2 that are not

equal to nm−1, and so on.

4) The total number of queries assigned to Server i is∑M
m=1(N − 1)m−1

((
M−1

m

)
+

(
M−1
m−1

))
.

5) If Q and Q′ are two query vertices assigned to the

same server, then the symbol indices that appear in

Q are distinct from the symbol indices that appear

in Q′.

The proof of privacy for PIR2 is similar to that for PIR1

in [6]. We note that once the labels M, I are suppressed, and

the queries sorted in lexicographic order, the structure of the

queries from any individual server is fixed regardless of the

desired message index θ. For our M = 4, N = 3 example,

this is illustrated in Figure 2.

Note that only distinct symbol indices are shown. All the

remaining indices can be inferred uniquely from the ones

shown based on the index assignment rule. Thus, the particular

query realization (depending on θ) to Server n, n ∈ [1 : N ],
depends only on the realization of these distinct indices.

However, the indices depend on the permutation π which is

chosen uniformly and privately by the user. Thus, all distinct

choices for these indices are equally likely, regardless of θ,

and the scheme is private.

The correctness of PIR2 follows directly from the cor-

rectness of PIR1 . By the same token, if the messages are

independent then PIR1 and PIR2 have the same rate. Thus,

the index assignment process produces a new PIR scheme,

PIR2 , that for independent messages, is equally efficient as

PIR1 in terms of download, i.e., PIR2 is capacity achieving

for independent messages. However, depending upon the form

of the message dependencies, it turns out that the ‘sums’ may

not be sufficient and more sophisticated mixing of message

symbols may be required. For the linear dependencies10 that

we consider in this paper, we will need sign assignments, that

are explained next.

B. Sign Assignment: PC

In this section, we present the sign assignment proce-

dure that produces the private computation scheme PC from

PIR2 for arbitrary K, M, N . We will use Example A to

illustrate its steps. The sign assignment procedure depends

on θ. Let us choose θ = 3 to illustrate the process.

Note that σi are now generated uniformly and independently

from {+1,−1}.

To explain the sign assignment, it is convenient to express

each query in lexicographic order. For example, the query

ui1(j1) + ui2(j2) + · · · + uim
(jm) is in lexicographic order

if i1 < i2 < · · · < im regardless of the values of the

indices j. For our M = 4 example, the query c9 + a7 + b6

is expressed as a7 + b6 + c9 under lexicographic ordering.

Note that the lexicographic order for the M = 4 example is

10If we use PIR2 for dependent messages (not necessarily linearly depen-
dent), we can save M − K downloaded symbols because of the redundancy
among the 1-sum symbols. However, to achieve the capacity of private
computation with linearly dependent messages, we require redundancy in the
m-sum symbols for all m ∈ [1 : M − K]. Such redundancy does not exist
for PIR2 over non-binary fields.
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Fig. 2. Structure of queries generated by PIR2 when M = 4 and N = 3.

simply the ordering a < b < c < d and the indices do not

matter. The position of the c∗ symbol within this lexicographic

ordering of query q will be denoted as ∆c(q), i.e., for the query

q = a7 + b6 + c9, we have ∆a(q) = 1, ∆b(q) = 2, ∆c(q) = 3
and ∆d(q) = 0 where the 0 value indicates that a symbol from

that message is not present in the query.

Next, the queries are sorted in increasing order of blocks, B,

so that the mth block B = m, contains only m-sums. Each

block is partitioned into sub-blocks, S, such that all the queries

q in the same sub-block have the same value of ∆Wθ
(q).

The sub-blocks are sorted within a block in descending order

of ∆Wθ
(q) and numbered S = 1, 2, · · · . With this sorting,

the query structure is represented as follows.

The sign assignment algorithm for arbitrary M is comprised

of 4 steps.

Algorithm: SignAssign

(Step 1) Consider queries for which ∆Wθ
(q) = 0,

i.e., queries that do not contain desired message symbols. The

terms in these queries that occupy even positions (in lexico-

graphic order within each query) are assigned the ‘−’ sign.

Thus, for example the query q = a11 + b10 + d9 changes to

q → q′ = a11 − b10 + d9 after the sign assignment. Notice

that the signs are alternating in the lexicographic ordering of

symbols within the query. The sign assignments for the queries

with ∆Wθ
(q) = 0 are now settled.

(Step 2) If a symbol is assigned a negative sign in Step 1
then in Step 2 it is assigned a negative sign everywhere it

appears. Note that any undesired symbol that appears in the

query from one server, appears exactly once within the query

to each server.

For our M = 4 example, at this point we have,

(Step 3) Every query such that ∆Wθ
(q) > 0, i.e., every

query that contains a desired message symbol is multiplied by

(−1)S+1(θ �=1), where S is the sub-block index and 1(θ 
= 1)
is the indicator function that takes the value 1 if θ 
= 1 and 0
if θ = 1.

(Step 4) Finally, in Step 4, for each query q that contains

a desired symbol, i.e., ∆Wθ
(q) > 0, the desired symbol is

assigned the negative sign if it occupies an even numbered

position, i.e., if ∆Wθ
(q) is an even number, and a positive

sign if it occupies an odd numbered position, i.e., if ∆Wθ
(q)

is an odd number.
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Following this procedure for our running example, we have

the final form of the queries as follows.

To complete the illustration for our M = 4 example, let us

also present the final queries for θ = 1, 2, 4.

Algorithm 1 Q-Gen Algorithm

1: Input: θ
2: Output: Q(1, ‘θ’), · · · , Q(N, ‘θ’)
3: Initialize: All query sets are initialized as null sets. Also

initialize Block = 1;

4: for DB1 = 1 : N do

5:

Q(DB1, ‘θ’, Block,M) ← {uθ(DB1)}

Q(DB1, ‘θ’, Block, I) ←

{u1(DB1), · · · , uM (DB1)}/{uθ(DB1)}

6: end for(DB1)
7: for Block = 2 : M do

8: for DBBlock = 1 : N do

9: for each (DBBlock−1, DBBlock−2, · · · , DB1), where

DBBlock−1 
= DBBlock, DBBlock−2 
= DBBlock−1, · · · ,
DB1 
= DB2 do

10:

Q(DBBlock, DBBlock−1, · · · , DB1, ‘θ’, Block,M) ←

Exploit-SI(Q(DBBlock−1, DBBlock−2, · · · , DB1, ‘θ’,

Block − 1, I))

Q(DBBlock, DBBlock−1, · · · , DB1, ‘θ’, Block, I) ←

M-Sym(Q(DBBlock, DBBlock−1, · · · , DB1, ‘θ’, Block,M))

11: end for (DBBlock−1, DBBlock−2, · · · , DB1)
12: end for(DBBlock)
13: end for (Block)

14: for DBBlock = 1 : N do

15:

Q(DBBlock, ‘θ’) ←
⋃

Block∈[1:M ]

⋃

DBBlock−1 �=DBBlock,
··· ,DB1 �=DB2(

Q(DBBlock, DBBlock−1, · · · , DB1, ‘θ’, Block, I)∪

Q(DBBlock, DBBlock−1, · · · , DB1, ‘θ’, Block,M)
)

16: end for(DBBlock)
17: SignAssign(Q(1, ‘θ’), · · · , Q(N, ‘θ’))

We include the full algorithm here for completeness.

Q(n, ‘θ’) denotes the queries for Server n ∈ [1 : N ] when Wθ

is desired. For any ordered tuple u, let new(u) be a function

that, starting with u(1), returns the “next” element in u each

time it is called with the same tuple u as its argument.

The sub-routines are as follows. θ, Block are assumed to be

available to the sub-routines as global variables. Tm represents

the set of all possible choices of m distinct indices in [1 : M ].
−→
T indicates that the elements of T are to be accessed in the

natural lexicographic increasing order.

This completes the description of the scheme PC . The

correctness of PC follows from that of PIR2 . Remarkably,

if the messages are independent, then PC may be seen as

another PIR scheme that achieves the same rate as PIR1 ,
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Algorithm 2 M-Sym Algorithm

1: Input: Q = Q(DBBlock, DBBlock−1, · · · , DB1, ‘θ’,
Block,M)

2: Output: Q∗ = Q(DBBlock, DBBlock−1, · · · , DB1, ‘θ’,
Block, I)

3: Initialize: Q∗ ← ∅.

4: for each i[1:Block] ∈
−−−→
TBlock, θ /∈ i[1:Block] do

5:

Q∗ ←Q∗ ∪ {ui1(j1) + ui2(j2) + · · · + uiBlock
(jBlock)}

such that ∀l ∈ [1 : Block]

∃ uθ(jl) +
∑

r∈[1:Block],r �=l

uir
(∗) ∈ Q

6: end for (i[1:Block])

Algorithm 3 Exploit-SI Algorithm

1: Input: Q = Q(DBBlock−1, DBBlock−2, · · · , DB1, ‘θ’,
Block − 1, I)

2: Output: Q′ = Q(DBBlock, DBBlock−1, · · · , DB1, ‘θ’,
Block,M)

3: Initialize: Q′ ← ∅.

4: for each q ∈
−→
Q do

5:

Q′ ← Q′ ∪ {new(uθ) + q}

6: end for (q)

PIR2 , i.e., all three are capacity achieving schemes. The proof

of privacy of PC is deferred to Section VI-A for Example A
and to Section VI-B for arbitrary K, M, N .

The main advantage of PC is that for the dependent

message setting of Theorem 1, it is the optimal private

computation scheme. Its proof of optimality is presented next.

V. PROOF OF OPTIMALITY OF PC

In this section, we show how PC achieves the capacity of

private computation when the messages are dependent. The

key idea is that the message dependencies combined with

the special index and sign structure of PC create redundant

queries, which reduces the download requirement, according

to Slepian Wolf source coding with side information [27]. For

example, suppose the answer from Server n includes i.i.d.

uniformly random symbols X, Y, Z ∈ Fq, H(X, Y, Z) =
3 log(q). If the user already knows side information U from

the answers from other servers, which introduces redundancy,

i.e., H(X, Y, Z|U) ≤ 2 log(q), then the answer X, Y, Z can

be compressed into no more than 2 log(q) bits per (X, Y, Z)-
symbol, without knowledge of U at Server n.

A. Proof of Optimality for Example A

To prove optimality, we need to show that the scheme

achieves a rate that matches the capacity of private com-

putation according to Theorem 1. Specifically, let us prove

that the rate achieved is 8/12 = 2/3. For this, we will

show that the user downloads only 12 symbols from each

server. Note that ostensibly there are 15 symbols that are

queried from each server. However, it turns out that based

on the information available from the other server, 3 of these

symbols are redundant. Thus, 12 generic combinations of these

15 symbols are sufficient.

Let us see why this is the case for the queries from Server 1.

c1, d1 are clearly redundant symbols because according to (9)

they are functions of a1, b1. So we need one more redundant

symbol. Suppose a is desired (θ = 1). Then, consider the

2-sum queries that do not involve the desired message, a.

There are 3 such queries. However, the key is that from any 2
we can construct the 3rd. In this case from Server 1 we have:

b4 − c3, b5 − d3, c5 − d4. But note that

v′3(b5 − d3) − v′4(b4 − c3) − (v3v
′
4 − v4v

′
3)a3 − v4 a4 + v3 a5

= (c5 − d4)

Verify:

LHS = v′3(b5 − d3) − v′4(b4 − c3) − (v3v
′
4 − v4v

′
3)a3

− v4 a4 + v3 a5

(9)
= v′3(b5 − v4a3 − v′4b3) − v′4(b4 − v3a3 − v′3b3)

− (v3v
′
4 − v4v

′
3)a3 − v4 a4 + v3 a5

= v3 a5 + v′3 b5 − v4 a4 − v′4 b4
(9)
= (c5 − d4) = RHS

Since the user knows a3, a4, a5 due to the side information

available from the other server, out of these 3 equations, 1 is

redundant. Thus, one more symbol is saved, giving us 12
effective downloaded symbols, and the rate 8/12 is achieved.

Since this is also the outer bound, this scheme achieves

capacity. It can similarly be verified for Example A that the

redundancy exists no matter which message is desired.

As another example, suppose c is desired (θ = 3). Referring

to the scheme, from Server 1, the three queries (that are

2-sums) not involving c are a4 − b3, a5 − d3, b5 − d4. But

note that

(v3v
′
4 − v4v

′
3)(a4 − b3) − v3(a5 − d3) − v4c3 − v′4 c4 + c5

= v′3(b5 − d4)

Verify

LHS = (v3v
′
4 − v4v

′
3)(a4 − b3) − v3(a5 − d3) − v4c3

− v′4 c4 + c5

(9)
= (v3v

′
4 − v4v

′
3)(a4 − b3) − v3(a5 − v4 a3 − v′4 b3)

− v4(v3a3 + v′3b3) − v′4(v3a4 + v′3b4)

+ (v3a5 + v′3b5)

= v′3(b5 − v4 a4 − v′4 b4)
(9)
= v′3(b5 − d4) = RHS

Note that the scheme is designed to satisfy server symmetry,

so redundancy exists for Server 2 as well. Note also that

the redundant symbols are created in the message symmetry

step so that regardless of the value of θ, the sign structure

(alternating) is maintained and the symbol index structure

is guaranteed to be symmetric. So for all θ ∈ [1 : 4],
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we always have 3 redundant symbols from each server, and

downloading 12 symbols per server suffices. The rate achieved

is L/D = 16/24 = 2/3 = C.

B. Proof of Optimality for Arbitrary K, M and N = 2

To prove optimality, we need to show that the scheme

achieves a rate of
(
1 + 1/2 + · · · + 1/2K−1

)−1
= 2K

2(2K−1) .

For this, we will show that the user downloads only∑M
m=1

((
M
m

)
−

(
M−K

m

))
= 2M − 2M−K symbols from each

server. Note that the message size is L = 2M , then the rate

achieved is 2M

2(2M−2M−K)
= 2K

2(2K−1)
, as desired. Note that

there are
(
M
m

)
symbols queried in Block m, m ∈ [1 : M ] from

each server. However, it turns out that based on information

available from the other sever,
(
M−K

m

)
of these symbols are

redundant. Thus,
(
M
m

)
−

(
M−K

m

)
generic combinations of these(

M
m

)
symbols are sufficient.

Next we prove why this is the case in the following lemma.

Lemma 1: For all θ ∈ [1 : M ], for each server, in Block

m ∈ [1 : M −K],
(
M−K

m

)
of the

(
M
m

)
symbols are redundant,

based on the information available from the other server.

Proof: Let us start with the case where θ = 1. Consider

the m-sum queries that do not involve the desired message u1.

There are
(
M−1

m

)
such queries, divided into two groups:

1)
(
M−1

m

)
−

(
M−K

m

)
queries that involve at least one element

in {u2, · · · , uK},

2)
(
M−K

m

)
queries that do not involve any element in

{u2, · · · , uK}.

The key is that the symbols in Group 2 are redundant.

Specifically, we show that they are functions of the symbols

in Group 1 when u1 is known.11

Example 1: We accompany the general proof with a concrete

example to explain the idea. For this example, assume K = 3
datasets, M = 6 messages, and denote symbols u1, u2, · · · , u6

by distinct letters a, b, · · · , f , respectively, for simplicity. Con-

sider Block m = 3. The queries that do not involve the desired

message u1 are shown below. For this example, we will see

that the only symbol in Group 2 is a function of the 9 symbols

in Group 1.

To simplify the notation, define

q(ui[1:m]
) = q({ui1 , ui2 , · · · , uim

})

�

m∑

l=1

(−1)l−1uil
(10)

11This is guaranteed because the desired variable u1 in Block k is mixed
with side information in Block k − 1 available from the other server.

where the message indices i1 < i2 · · · < im, and the symbol

indices are suppressed. Consider an arbitrary query in Group 2:

q0 = q(ui[1:m]
)

where K < i1 < i2 · · · < im. We show that when u1 is

known, the query q0 is a function of
(
m+K−1

m

)
− 1 queries in

Group 1. These
(
m+K−1

m

)
− 1 queries contain an m-sum of

every type12 in I � [2 : K] ∪ i[1:m] (except i[1:m]).

Q �

{
q(uj[1:m]

) : j[1:m] ⊂ T
}

(11)

where the set of all possible m distinct indices (types of m-

sums) in I except i[1:m] is denoted as T . Without loss of

generality, we assume j1 < j2 < · · · < jm. The indices of

these queries are assigned by the index assignment process.

From the linear dependence of the messages (3), we have

uil
(∗)=vil(1)u1(∗)+· · ·+vil(K)uK(∗), l ∈ [1 : m] (12)

Note that u1(∗) are assumed known, so u1(∗) could be

canceled (equivalently, we may set u1(∗) to zero). Now we

show that q0 is a linear function of the queries in Q.

q0 =
∑

j[1:m]∈T

h(uj[1:m]
)q(uj[1:m]

) (13)

where the linear combining coefficients h(uj[1:m]
) are func-

tions of vi1 , · · · ,vim
. The elements of the matrix V∗ �

(vT
i1

vT
i2

· · · vT
im

) are shown below (the rows and columns

are labelled by corresponding messages).

V∗ =
(
vT

i1
vT

i2
· · · vT

im

)

=

ui1 ui2 · · · uim⎛
⎜⎜⎝

⎞
⎟⎟⎠

u2 vi1(2) vi2(2) · · · vim(2)

u3 vi1(3) vi2(3) · · · vim(3)

...
...

...
. . .

...

uK vi1(K) vi2(K) · · · vim(K)

In particular, h(uj[1:m]
) are specified as follows. Suppose

|j[1:m] ∩ [2 : K]| = t, where t ∈ [1 : m] and denote these t

elements as j̄[1:t] � j[1:m]∩[2 : K]. Then |j[1:m]∩i[1:m]| = m−
t and denote these m− t elements as ī[1:m−t] � j[1:m]∩ i[1:m].

We further define ĩ[1:t] � i[1:m]/ī[1:m−t], where ĩ1 < · · · < ĩt.
For example, suppose K = 5, m = 4, i[1:m] = {6, 7, 9, 11}
and j[1:m] = {2, 4, 6, 11}. Then t = 2 because j[1:m] and

[2 : K] have 2 common elements, i.e., j̄[1:t] = {2, 4}. The

common elements of j[1:m] and i[1:m] are ī[1:m−t] = {6, 11}

and the remaining elements in i[1:m] are ĩ[1:t] = {7, 9}.

We are now ready to give h(uj[1:m]
). h(uj[1:m]

) is equal to

the determinant of the t×t square matrix obtained as the sub-

matrix of V∗ where the rows correspond to messages uj̄[1:t]
and the columns correspond to messages u�i[1:t] .

h(uj[1:m]
) = (−1)

�t
r=1 Ω(�ir)+t(t−1)/2+1

×

∣∣∣∣∣∣∣∣∣

v�i1(j̄1) v�i2(j̄1) · · · v�it(j̄1)

v�i1(j̄2) v�i2(j̄2) · · · v�it(j̄2)

...
...

. . .
...

v�i1(j̄t)
v�i2(j̄t)

· · · v�it(j̄t)

∣∣∣∣∣∣∣∣∣

(14)

12Type refers to the set of message indices that appear in a query. For
example, the type of q(ui[1:m]

) is {i1, i2, · · · , im}.
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where Ω(̃ir) is defined as the position13 of ĩr in the lexi-

cographic ordering of the elements of i[1:m]. For example,

suppose i[1:m] = {4, 6, 7, 9}. Then if ĩr = 6, then Ω(̃ir) = 2.

Similarly, if ĩr = 9, then Ω(̃ir) = 4.

Let us verify that (13) holds. In (13),
(
m+K−1

m−1

)
distinct

symbol indices appear, and each of those symbol indices is

assigned to K message variables. Pick any m − 1 messages

from the m +K − 1 messages uI , say uα[1:m−1]
, where α1 <

· · · < αt ≤ K < αt+1 < · · · < αm−1, t ∈ [0 : K − 1]. The

same index (denoted by #) is assigned to the variables

uI/uα[1:m−1]
� uβ[1:K]

(15)

where β1 < · · · < βK−1−t ≤ K < βK−t < · · · < βK . From

(15), we have

α[1:t] ∪ β[1:K−1−t] = [2 : K] (16)

α[t+1:m−1] ∪ β[K−t:K] = i[1:m] (17)

The K variables uβ[1:K]
(#) appear in the following K queries.

ql � q(uα[1:m−1]∪βl
), l ∈ [1 : K]. (18)

We show that for any m− 1 distinct indices α[1:m−1] in I,

(13) holds for the K variables uβ[1:K]
(#). Using (12), we write

uβ[1:K]
(#) as linear combinations of u[2:K](#). Next we prove

that (13) holds for uη(#), ∀η ∈ [2 : K]. Define

V = [Vi,j ](t+1)×(t+1)

�

⎛
⎜⎜⎜⎜⎜⎝

vβK−t(η) vβK−t+1(η) · · · vβK(η)

vβK−t(α1) vβK−t+1(α1) · · · vβK(α1)

vβK−t(α2) vβK−t+1(α2) · · · vβK(α2)

...
...

. . .
...

vβK−t(αt) vβK−t+1(αt) · · · vβK(αt)

⎞
⎟⎟⎟⎟⎟⎠

(19)

and the minor of V (the determinant of the submatrix formed

by deleting the i-th row and j-column) is denoted by Mi,j .

Note that α[t+1:m−1] ∪ β[K−t:K] = i[1:K], so

{Ω(αt+1) ∪ · · · ∪ Ω(αm−1) ∪ Ω(βK−t) ∪ · · ·Ω(βK)}

= {Ω(i1) ∪ · · · ∪ Ω(iK)} = [1 : K] (20)

and

∆uβr
(qr)= t+Ω(βγ)−(r−(K−t)), ∀r ∈ [K−t : K]

(21)

We now consider two cases for η.

Case 1: η ∈ α[1:t]. In this case, uη(#) variables come from

uβ[K−t:K]
(#). (13) boils down to

13The variable Ω is introduced to specify the signs of h(uj[1:m]
) (refer to

(14)) so that the signs match the terms from the expansion of the determinant
of sub-matrices of V

∗ (e.g., refer to (23) and (38)), which is required for the
proof of redundancy.

(
K∑

r=K−t

h(uα[1:m−1]∪βr
) × (−1)∆uβr

(qr)+1vβr(η)

)

× uη(#) = 0 (22)

⇐= vβK−t(η)(−1)
∆uβK−t

(qK−t)+1

× (−1)
�K

s=K−t Ω(βs)−Ω(βK−t)+t(t−1)/2+1M1,1

+ vβK−t+1(η)(−1)
∆uβK−t+1

(qK−t+1)+1

× (−1)
�K

s=K−t Ω(βs)−Ω(βK−t+1)+t(t−1)/2+1M1,2 + · · ·

+ vβK(η)(−1)
∆uβK

(qK)+1

× (−1)
�K

s=K−t Ω(βs)−Ω(βK)+t(t−1)/2+1M1,t+1 = 0

(23)

⇐= vβK−t(η)M1,1 − vβK−t+1(η)M1,2 · · ·

+ (−1)t+2vβK(η)M1,t+1 = 0 (24)

⇐= V1,1M1,1 − V1,2M1,2 · · · + (−1)t+2V1,t+1M1,t+1

= |V| = 0 (25)

where (24) follows from the observation that consecutive terms

in (23) have alternating signs, proved as follows. For any

r ∈ [K − t : K − 1],

(−1)∆uβr
(qr)+1(−1)

�K
s=K−t Ω(βs)−Ω(βr)+t(t−1)/2+1

(21)
= (−1)t+Ωβr−(r−(K−t))+1

× (−1)
�K

s=K−t Ω(βs)−Ω(βr)+t(t−1)/2+1

= (−1)t−(r−(K−t))+1(−1)
�K

s=K−t Ω(βs)+t(t−1)/2+1

= (−1) × (−1)t+Ω(βr+1)−(r+1−(K−t))+1

× (−1)
�K

s=K−t Ω(βs)−Ω(βr+1)+t(t−1)/2+1

(21)
= (−1) × (−1)

∆uβr+1
(qr+1)+1

× (−1)
�K

s=K−t Ω(βs)−Ω(βr+1)+t(t−1)/2+1 (26)

(25) is due to the fact that η ∈ α[1:t], so V has two identical

rows and its determinant is 0.

Case 2: η ∈ β[1:K−1−t]. In this case, uη(#) variables come

from uβ[K−t:K]∪η(#). If α[1:m−1] ∩ [2 : K] 
= ∅, (13) boils

down to(
h(uη∪α[1:m−1]

)(−1)
∆uη (q(uα[1:m−1]∪η))+1

+

K∑

r=K−t

h(uα[1:m−1]∪βr
) × (−1)∆uβr

(qr)+1vβr(η)

)

× uη(#) = 0 (27)

⇐= |V| − |V| = 0 (28)

where the second term of (28) follows from (25) and the ‘−’

sign in (28) is due to the fact that in (27), the sign of the first

term is different from the sign of the second term, proved as

follows.

(−1)
∆uη (q(uα[1:m−1]∪η))+1

(−1)
∆uη (q(uα[1:m−1]∪η))+1

× (−1)
�K

s=K−t Ω(βs)+t(t+1)/2+1

= (−1) × (−1)t+Ω(βK−t)+1

× (−1)
�K

s=K−t+1 Ω(βs)+t(t−1)/2+1

(21)
= (−1) × (−1)

∆uβK−t
(qK−t)+1
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× (−1)
�K

s=K−t+1 Ω(βs)+t(t−1)/2+1 (29)

Note that in the first line, the first (−1)
∆uη (q(uα[1:m−1]∪η))+1

term is to account for the different ordering of the vectors in

V that appear in defining h(uη∪α[1:m−1]
).

Otherwise, if α[1:m−1]∩ [2 : K] = ∅, i.e., α[1:m−1] ⊂ i[1:m],

we have t = 0 and (13) boils down to

(−1)
∆uβK

(qK)+1
vβK(η)

= h(uη∪α[1:m−1]
)(−1)

∆uη (q(uα[1:m−1]∪η))+1
(30)

⇐= (−1)ω(βK)+1vβK(η)
= h(uη∪α[1:m−1]

) (31)

where (31) follows from ∆uβK
(qK) = ω(βK) as in

qK , the messages are uβK
∪ uα[1:m−1]

= ui[1:m]
, and

∆uη
(q(uα[1:m−1]∪η)) = 1 as η ≤ K < α1. Note that (31)

is the definition of h(uη∪α[1:m−1]
) (see (14)). Therefore the

proof is complete.

Example 1 (Continued): Consider the query in Group 2,

dj10 − ej9 + fj8 . We show that it is a function of the 9 queries

in Group 1, when the desired variables (a∗) are set to zero.

dj10 − ej9 + fj8

= −

∣∣∣∣
v5(2) v6(2)

v5(3) v6(3)

∣∣∣∣ (bj5 − cj2 + dj1)

+

∣∣∣∣
v4(2) v6(2)

v4(3) v6(3)

∣∣∣∣ (bj6 − cj3 + ej1)

−

∣∣∣∣
v4(2) v5(2)

v4(3) v5(3)

∣∣∣∣ (bj7 − cj4 + fj1)

+ v6(2) (bj8 − dj3 + ej2) − v5(2) (bj9 − dj4 + fj2)

+ v4(2) (bj10 − ej4 + fj3) + v6(3) (cj8 − dj6 + ej5)

− v5(3) (cj9 − dj7 + fj5) + v4(3) (cj10 − ej7 + fj6)

Example 2: Let us include another example, where K = 4,

M = 8. Consider Block m = 3 and the desired message index

θ = 1. The queries that do not involve u1 are divided into

Group 1 (where u2, u3 or u4 appears) and Group 2 (where

none of u2, u3, u4 appears). Consider a query in Group 2,

q0 = q(u5,6,8), i.e., i1 = 5, i2 = 6, i3 = 8. When u1 is known,

q0 is a function of the following
(
3+4−1

3

)
− 1 = 19 queries.

Here I = {2, 3, 4, 5, 6, 8}.

Q =
{
q(u2,3,4), q(u2,3,5), q(u2,3,6), q(u2,3,8), q(u2,4,5),

q(u2,4,6), q(u2,4,8), q(u2,5,6), q(u2,5,8), q(u2,6,8),

q(u3,4,5), q(u3,4,6), q(u3,4,8), q(u3,5,6), q(u3,5,8),

q(u3,6,8), q(u4,5,6), q(u4,5,8), q(u4,6,8)
}

(32)

The linear combining coefficients in (13) are designed follow-

ing (14). Let us verify (13) for the symbols with a particular

index value, #. To this end, let us pick the m − 1 = 2
message indices α1 = 3, α2 = 4 (note that {3, 4} ⊂ I).

As α2 = 4 ≤ K = 4, we have t = 2. The variables with index

# are from u2, u5, u6, u8 (from the difference set of I and

{α1, α2}), so that we have β1 = 2, β2 = 5, β3 = 6, β4 = 8.

These 4 variables appear in queries

q1 = q(u2,3,4), q2 = q(u3,4,5),

q3 = q(u3,4,6), q4 = q(u3,4,8). (33)

We can write u5(#), u6(#), u8(#) as a linear combination

of u2(#), u3(#), u4(#) after u1(#) is eliminated, or equiv-

alently, set to zero. Next we show that (13) holds for u3(#).
In this case, η = 3 and η ⊂ {α1, α2} = {3, 4}, so we are in

Case 1. We want to show the following.
(
h(u3,4,5) × (−1)∆u5(q(u3,4,5))+1v5(3)

+ h(u3,4,6) × (−1)∆u6(q(u3,4,6))+1v6(3)

+ h(u3,4,8) × (−1)∆u8(q(u3,4,8))+1v8(3)

)
u3(#)

= 0 (34)

⇐⇒ h(u3,4,5)v5(3) + h(u3,4,6)v6(3) + h(u3,4,8)v8(3)

= 0 (35)

Note that ∆u5(q(u3,4,5)) is related to Ω(5). We now find

h(u3,4,5). Referring to (14), we have

j1 = 3, j2 = 4, j3 = 5, j̄1 = 3, j̄2 = 4 (36)

ī = 5, ĩ1 = 6, ĩ2 = 8, Ω(6) = 2, Ω(8) = 3

(37)

h(u3,4,5) = (−1)Ω(6)+Ω(8)+2×1/2+1

∣∣∣∣
v6(3) v8(3)

v6(4) v8(4)

∣∣∣∣

= −

∣∣∣∣
v6(3) v8(3)

v6(4) v8(4)

∣∣∣∣ (38)

Similarly,

h(u3,4,6) =

∣∣∣∣
v5(3) v8(3)

v5(4) v8(4)

∣∣∣∣,

h(u3,4,6) = −

∣∣∣∣
v5(3) v6(3)

v5(4) v6(4)

∣∣∣∣. (39)

Therefore (35) is equivalent to

−

∣∣∣∣
v6(3) v8(3)

v6(4) v8(4)

∣∣∣∣ v5(3) +

∣∣∣∣
v5(3) v8(3)

v5(4) v8(4)

∣∣∣∣ v6(3)

−

∣∣∣∣
v5(3) v6(3)

v5(4) v6(4)

∣∣∣∣ v8(3)

= −

∣∣∣∣∣∣

v5(3) v6(3) v8(3)

v5(3) v6(3) v8(3)

v5(4) v6(4) v8(4)

∣∣∣∣∣∣
= 0 (40)

and thus (35) holds. For the other case (Case 2), we show

that (13) holds for u2(#), i.e., η = 2 and η = β1 = 2. In this

case, we want to show(
h(u2,3,4) × (−1)∆u2(q(u2,3,4))+1

+ h(u3,4,5) × (−1)∆u5(q(u3,4,5))+1v5(2)

+ h(u3,4,6) × (−1)∆u6(q(u3,4,6))+1v6(2)

+ h(u3,4,8) × (−1)∆u8(q(u3,4,8))+1v8(2)

)
× u2(#)

= 0 (41)

⇐⇒ h(u2,3,4) + h(u3,4,5)v5(2) + h(u3,4,6)v6(2)

+ h(u3,4,8)v8(2) = 0 (42)

Following the definition of h(u2,3,4) (refer to (14)), we find

that

h(u2,3,4) =

∣∣∣∣∣∣

v5(2) v6(2) v8(2)

v5(3) v6(3) v8(3)

v5(4) v6(4) v8(4)

∣∣∣∣∣∣
(43)
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Then (42) is equivalent to

∣∣∣∣∣∣

v5(2) v6(2) v8(2)

v5(3) v6(3) v8(3)

v5(4) v6(4) v8(4)

∣∣∣∣∣∣
−

∣∣∣∣∣∣

v5(2) v6(2) v8(2)

v5(3) v6(3) v8(3)

v5(4) v6(4) v8(4)

∣∣∣∣∣∣
= 0 (44)

and thus (42) holds. Let us consider another index (#′) where

α1 = 5, α2 = 6, i.e., α1 > K = 4 and t = 0. The index #′

is assigned to variables from u2, u3, u4, u7 (β1 = 2, β2 =
3, β3 = 4, β4 = 7) in queries

q1 = q(u2,5,6), q2 = q(u3,5,6),

q3 = q(u4,5,6), q4 = q(u5,6,7). (45)

After writing every variable in terms of u2, u3, u4 (u1 terms

are set to zero because they are known and can be removed),

we show that (13) holds for u2(#
′), u3(#

′), u4(#
′). Note that

no matter which variable we pick, say u4(#
′), i.e., η = 4,

η ∈ {2, 3, 4} = {β1, β2, β3}. Further {α1, α2}∩{2, 3, 4} = ∅.

In this case, we want to show

(−1)∆u7(q5,6,7)+1v7(4)u4(#
′)

= h(u4,5,6)(−1)∆u4(q(u4,5,6)+1u4(#
′) (46)

⇐⇒ v7(4) = h(u4,5,6) (47)

which matches the definition of h(u4,5,6) (see (14)) thus

holds.

The proof for arbitrary θ 
= 1 follows similarly. Since the

first K of the M linear combinations are linearly independent

(in fact, they are the K independent datasets), there exist K−1
messages from u[1:K] (denoted as ur[2:K]

, r[2:K] ⊂ [1 : K])
such that uθ ∪ ur[2:K]

are independent. Similarly, consider

the m-sum queries that do not involve the desired message

uθ, which are further divided into two groups, depending

on whether at least one element from ur[2:K]
is involved

(Group 1) or not (Group 2). We show that any query q0 =
q(ui[1:m]

), i[1:m] ∩ (θ ∪ r[2:K]) = ∅ in Group 2 is a function of

the queries in Group 1. q0 exists as m ≤ M −K . The symbol

indices in q0 are assigned by the index assignment process.

By a change of basis, we express each variable as a linear

combination of uθ ∪ ur[2:K]
. Then we show that q0 is a linear

combination of the queries q(uj[1:m]
), where j[1:m] ∈ T ′, and

T ′ is the set of all possible m distinct indices in r[2:K]∪ i[1:m]

except i[1:m]. The rest of the proof, where we design the

linear combining coefficients and show the linear combination

holds, is identical to the case of θ = 1 (by an invertible

mapping from r[2:K] to [2 : K], and between i[1:m] of the two

cases).

Example 3: We give an example where θ 
= 1. Assume

K = 3 datasets, M = 6 messages, θ = 5, and denote

symbols u1, u2, · · · , u6 by distinct letters a, b, · · · , f , respec-

tively. Consider Block m = 2. There exists two messages in

a, b, c (assume without loss of generality, a, b) such that a, b, e
are independent. The queries that do not involve the desired

message e are shown below. The queries are divided into

Group 1 (where a or b appears) and Group 2 (where none

of a, b appears).

We express c, d, f as a linear combination of a, b, e (note that

a, b, e are linearly independent). Assume

c = vc(a)a + vc(b)b + vc(e)e (48)

d = vd(a)a + vd(b)b + vd(e)e (49)

f = vf(a)a + vf(b)b + vf(e)e (50)

The queries in Group 2 are functions of the queries in Group

1. For example, consider cj5 − fj3 . When e∗ are set to zero,

we have

cj5 − fj3 = −

∣∣∣∣
vc(a) vf(a)

vc(b) vf(b)

∣∣∣∣ (aj2 − bj1)

− vf(a) (aj3 − cj1) + vc(a) (aj5 − fj1)

− vf(b) (bj3 − cj2) + vc(b) (bj5 − fj2) (51)

where the linear combining coefficients are determined by the

following matrix.

c f( )
a vc(a) vf(a)

b vc(b) vf(b)

For example, for aj3 − cj1 , from (14), the linear coefficient is

(−1)2+0+1vf(a) = −vf(a).

C. Proof of Optimality for Arbitrary K, M, N

The proof of optimality when N > 2 follows from that

when N = 2. The query structure of any query vertex at level

m for arbitrary N is identical to the structure of a query vertex

at level m for the N = 2 setting. From the observations listed

in Section IV-A.2, recall that for any N > 2, the queries

from each server in block m are made up of (N − 1)m−1

query vertices. Also let us recall from Lemma 1 that when

N = 2, for each server there are
(
M−K

m

)
redundant symbols

within each level m query vertex, m ∈ [1 : M − K].
Therefore, when N > 2, there are (N − 1)m−1

(
M−K

m

)

redundant symbols in block m, and it suffices to download

only N
(∑M

m=1(N − 1)m−1
((

M
m

)
−

(
M−K

m

)))
symbols in

total from all N servers. The rate achieved is14

R =
NM

N
(∑M

m=1(N − 1)m−1
((

M
m

)
−

(
M−K

m

))) (52)

14The message size L for our capacity achieving scheme is NM , which
increases with M (note that this is in contrast to the capacity, which does not
depend on M ). Generalizations of the private computation problem to include
finite message size constraints along the lines of [15] remain an interesting
direction for future work.
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=
NM

N × 1
N−1 (NM − NM−K)

=
N − 1

N

NK

NK − 1
(53)

=

(
1 +

1

N
+ · · · +

1

NK−1

)−1

(54)

which matches the capacity of private computation. The opti-

mality proof is therefore complete.

VI. PROOF OF PRIVACY OF PC

A. Proof of Privacy for Example A

To see why this scheme is private, we show that the queries

are identically distributed, regardless of the value of θ. To this

end, we show that the query for θ = 2, 3, 4 has a one-to-one

mapping to the query for θ = 1, respectively, through a choice

of permutation π and signs σi which is made privately and

uniformly by the user.

For example, for Server 1 and Server 2, the query for θ = 2
can be converted into the query for θ = 1 by the following

mapping:

Server 1: (3, 2, 7, 9, 10, 8, 15, 14,−σ6,−σ12,−σ13)

−→ (2, 3, 9, 7, 8, 10, 14, 15, σ6, σ12, σ13)

Server 2: (6, 1, 12, 4, 13, 5, 16, 11,−σ3,−σ9,−σ10)

−→ (1, 6, 4, 12, 5, 13, 11, 16, σ3, σ9, σ10)

However, these mappings are privately generated by the user

and both alternatives are equally likely regardless of desired

message. Hence, these queries are indistinguishable.

We can similarly verify that the other remaining queries

for θ = 3, 4, are indistinguishable as well. For Server 1 and

Server 2, the query for θ = 3 can be converted into the query

for θ = 1 by the following mapping:

Server 1: (3, 4, 2, 7, 6, 9, 10, 11, 8,−σ8, 14, 13, 15,−σ12)

−→ (2, 3, 4, 9, 7, 6, 8, 10, 11, σ11, 15, 14, 13, σ12)

Server 2: (7, 6, 1, 4, 3, 12, 14, 13, 5,−σ5, 11, 10, 16,−σ9)

−→ (6, 1, 7, 12, 4, 3, 13, 5, 14, σ14, 16, 11, 10, σ9)

The last case is when θ = 4. The mapping from that to θ = 1
is as follows.

Server 1: (3, 4, 5, 2, 6, 7, 8, 9, 10, 11, 14, 13, 12, 15)

−→ (2, 3, 4, 5, 8, 10, 11, 6, 7, 9, 15, 14, 13, 12)

Server 2: (6, 7, 8, 1, 3, 4, 5, 12, 13, 14, 11, 10, 9, 16)

−→ (1, 6, 7, 8, 5, 13, 14, 3, 4, 12, 16, 11, 10, 9)

Again, since these mappings are privately generated by the

user and both alternatives are equally likely regardless of

desired message, these queries are indistinguishable. Thus all

queries are indistinguishable and the scheme is private.

B. Proof of Privacy for Arbitrary K, M, N

We prove that PC is private. We know that PIR2 is private

and PC is obtained from PIR2 by the sign assignment.

Therefore it suffices to show that the sign assignment does not

destroy privacy, i.e., Q(n, ‘θ’) still has a one-to-one mapping

to Q(n, ‘1’) by a choice of permutation π and signs σi which

is made by the user privately and uniformly.

The one-to-one mapping is quite simple. Note that each

query in Q(n, ‘1’) has alternating signs. Consider Q(n, ‘θ’).
We only need to consider the non-desired symbols in queries

introduced by Exploit-SI (so uθ is involved). The reason is

that the signs of the desired symbols introduced by Exploit-

SI and the other queries introduced by M-Sym are the same

as the signs of the queries in Q(n, ‘1’).15 These queries all

satisfy that ∆Wθ
> 0. Now to map Q(n, ‘θ’) to Q(n, ‘1’), for

each block, we flip the signs (i.e., replace σi with −σi) of

variables to the right of uθ in queries from sub-blocks S if S
is odd, and the signs of variables to the left of uθ in queries

from sub-blocks S if S is even.

Example 4: We accompany the general proof with a concrete

example to explain the idea. Consider M = 6 (messages),

block m = 4, desired message index θ = 4. For simplicity,

we denote u1, u2, · · · , u6 by a, b, · · · , f . In Block B = m =
4, we have

(
6−1
4−1

)
= 10 queries introduced by Exploit-SI

(contains d) as follows. The signs that need to be flipped are

colored in red.

Note that σi appears in all message variables with symbol

index i, so σi might be flipped multiple times and we need to

make sure that σi is flipped consistently, i.e., the sign flipping

rule either changes or does not change the signs of all variables

with the same index. This is indeed true, proved as follows.

Note that we flip the signs depending on whether the sub-block

index is even or odd and if the variables are to the left or right

of uθ . This means, for variables in two consecutive sub-blocks,

the variables to the left of uθ in one sub-block and the variables

to the right of uθ in the other sub-block are simultaneously

flipped or unflipped. So it suffices to show that all variables

with the same index are

• either in the same sub-block, and all are on the same side

of uθ,

• or in two consecutive sub-blocks, but are on different

sides of uθ.

15Note that the indices of the non-desired symbols introduced by Exploit-
SI do not appear in the queries introduced by M-Sym. The reason is seen as
follows. Consider a symbol ui, i �= θ that appears in a query introduced by
Exploit-SI (denote the query by q, so uθ appears in q) and suppose the index
of ui is j (i.e., we have ui(j)). Now from index assignment, symbols with
index j all appear in terms that contain uθ (thus these terms are all generated
by Exploit-SI).
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Example 4 (Continued): Referring to the table above, con-

sider all variables with index j1, i.e., cj1 , ej1 , fj1 . cj1 is in

sub-block 1 and is to the left of d. ej1 , fj1 are in sub-block 2

and are to the right of d. Further, the signs of cj1 , ej1 , fj1 are

all unflipped. As another example, consider all variables with

index j10, i.e., aj10 , bj10 , cj10 . They are all in sub-block 3 and

their signs are all unflipped. One more example: all variables

with index j6, aj6 , cj6 , fj6 . aj6 , cj6 are in sub-block 2 and are

to the left of d. fj6 is in sub-block 3 and is to the right of d.

The signs of aj6 , cj6 , fj6 all need to be flipped.

We now find variables with the same symbol index, say #.

From index assignment, we know that all occurrences of

symbol index # are in queries that contain the same m − 1
(distinct) variables (uθ included). Suppose the message indices

of these m−1 variables are i[1:m−2]∪θ, and let the remaining

M − (m − 1) message indices be denoted by r[1:M−(m−1)].

Assume that i1 < i2 · · · < ij < uθ < uj+1 · · · < uim−2 . Then

the symbol index # appears in queries

±ur1(#) ± ui1() ± · · · ± uij
() ± uθ() ± uij+1()

± · · · ± uim−2()

...

±ui1() ± · · · ± uij
() ± uθ() ± uij+1() ± · · · ± uim−2()

± urM−(m−1)
(#) (55)

where ± represents either ‘+’ or ‘−’, determined by sign

assignment. These M − (m − 1) variables url
, l ∈ [1 :

M − (m − 1)] can be divided into two sets (one set could

be empty), where

• the first set are those url
where rl < θ

• and the second set are those url
where rl > θ

So the variables in the first set are to the left of uθ and the

variables in the second set are to the right of uθ. Further,

the two sets are in consecutive sub-blocks because ∆uθ
only

differs by 1. Therefore the sign flipping rule is consistent and

the privacy proof is complete.

Example 4 (Continued): Suppose we want to find all vari-

ables with index # = j1. They appear in queries that contain

a, b, d. The queries in (55) are

aj5 − bj2 + cj1 − d∗
−aj6+bj3 + d∗ − ej1

−aj7+bj4 + d∗ − fj1

The 3 variables with index # = j1 are cj1 , ej1 , fj1 (colored

in blue). The first set contains cj1(< d) (in sub-block 1) and

the second set contains ej1 , fj1(> d) (in sub-block 2). As

another example, suppose we want to find all variables with

index # = j10. The queries in (55) are

aj10 − d∗−ej4+fj3

bj10 − d∗−ej7+fj6

cj10 − d∗−ej9+fj8

The 3 variables with index # = j10 are aj10 , bj10 , cj10(< d).
They all belong to the first set (sub-block 3). One more

example: find all variables with index # = j6. The queries

in (55) are

−aj6+bj3 + d∗ − ej1

−bj8+cj6 + d∗ − ej5

bj10 − d∗−ej7+fj6

The 3 variables with index # = j6 are aj6 , cj6 , fj6 . The first

set contains aj6 , cj6(< d) (in sub-block 2) and the second set

contains fj6(> d) (in sub-block 3).

VII. CONCLUSION

Motivated by privacy concerns in distributed computing,

we introduce the private computation problem where a user

wishes to compute a desired function of datasets stored at

distributed servers without disclosing any information about

the function that he wishes to compute to any individual

server. The private computation problem may be seen as a

generalization of the PIR problem by allowing dependencies

among messages. We characterize in Theorem 1 the capacity

of private computation for arbitrary N servers, arbitrary K
independent datasets, and arbitrary M linear combinations

of the K independent datasets as the possible functions.

Surprisingly, this capacity turns out to be identical to the

capacity of PIR with N servers and K independent messages.

Thus, there is no loss in capacity from the expansion of

possible messages to include arbitrary linear combinations.

Going beyond linear-combinations, we show in Theorem 2

that in the asymptotic limit where the number of independent

datasets K → ∞, the capacity of private computation is

not affected by allowing non-linear functions into the set of

functions that may be computed by the user, provided the

symbol-wise entropy of each of these functions is no more

than the entropy of a symbol from a dataset.

In the non-asymptotic regime, the capacity of private com-

putation with arbitrary (non-linear) functions is an interesting

direction for future work. Along these lines, let us conclude

with the following two observations. The first observation

is a general achievability argument for private computation.

Consider the most general setting, where we allow the M
messages to be arbitrarily dependent and even the entropies of

the message symbols are allowed to be different for different

messages. Suppose each message Wm, m ∈ [1 : M ] is made

of L symbols Wm = (Wm,1, Wm,2, · · · , Wm,L). While the

messages may have arbitrary dependencies, the sequence of

symbols is generated i.i.d. in l, i.e., for all l ∈ [1 : L],
the symbols (W1,l, W2,l, · · · , WM,l) ∼ (w1, w2, · · · , wM ).
We have

H(W1, · · · , WM ) = LH(w1, · · · , wM ) (56)

H(Wm) = LH(wm), m ∈ [1 : M ] (57)

Symbols from different messages may not have the same

entropy, i.e., we allow the possibility that H(wi) 
= H(wj).
In this general setting, the private computation rate of R =
Hmin

Hmax
(1 − 1

N ) is always achievable, (although not optimal in

general) where Hmax = max(H(w1), H(w2), · · · , H(wM ))
and Hmin = min(H(w1), H(w2), · · · , H(wM )). Just like the

achievability argument for Theorem 2, the general achievabil-

ity claim follows essentially from [8]. For example, suppose
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N = 2. First we compress each message separately into Hmax

bits per message symbol. This is possible because ∀m ∈ [1 :
M ], H(wm) ≤ Hmax. Then, in order to retrieve the ith bit of

the compressed desired message, Wθ,i, the user requests from

Server 1, the linear combination
∑M

m=1 cmWm,i and from

Server 2, the linear combination
∑M

m=1 cmWm,i+Wθ,i, where

cm are i.i.d. uniform binary coefficients generated privately by

the user and all operations are over F2. Adding the answers

received from the two servers, allows the user to recover Wθ,i.

The total number of bits downloaded is 2Hmax, while the

number of desired bits retrieved is at least Hmin. Thus, the rate

achieved is at least Hmin

2Hmax
= Hmin

Hmax
(1 − 1

N ) for N = 2.

Similarly, following the approach of [8], the rate Hmin

Hmax
(1− 1

N )
is achieved for arbitrary N .

The second observation is the capacity characterization for

an elemental case where we have M = 2 arbitrarily correlated

messages and N servers. Again consider the general setting

with arbitrary dependencies and without loss of generality,

suppose H(w1) ≥ H(w2). In this case, the capacity is C =
NH(w2)

H(w1,w2)+(N−1)H(w1) .

The converse is proved as follows. From Fano’s inequality,

we have

LH(w1)
(57)
= H(W1) (58)

(7)
= I(W1; A

[1]
1 , Q

[1]
1 , · · · , A

[1]
N , Q

[1]
N ) + o(L) (59)

(4)
= I(W1; A

[1]
1 , · · · , A

[1]
N |Q

[1]
1 , · · · , Q

[1]
N ) + o(L) (60)

= H(A
[1]
1 , · · · , A

[1]
N |Q

[1]
1 , · · · , Q

[1]
N )

−H(A
[1]
1 , · · · , A

[1]
N |W1, Q

[1]
1 , · · · , Q

[1]
N ) + o(L)

(61)
(6)

≤ D − H(A
[1]
1 |W1, Q

[1]
1 , · · · , Q

[1]
N ) + o(L) (62)

= D − H(A
[1]
1 |W1, Q

[1]
1 ) + o(L) (63)

(5)
= D − H(A

[2]
1 |W1, Q

[2]
1 ) + o(L) (64)

where (63) follows from that H(A
[1]
1 |W1, Q

[1]
1 , · · · , Q

[1]
N ) =

H(A
[1]
1 |W1, Q

[1]
1 ), proved as follows.

I(A
[1]
1 ; Q

[1]
2 , · · · , Q

[1]
N |W1, Q

[1]
1 )

≤ I(A
[1]
1 , W2; Q

[1]
2 , · · · , Q

[1]
N |W1, Q

[1]
1 ) (65)

= I(W2; Q
[1]
2 , · · · , Q

[1]
N |W1, Q

[1]
1 )

+ I(A
[1]
1 ; Q

[1]
2 , · · · , Q

[1]
N |W1, W2, Q

[1]
1 ) (66)

(5)
= I(W2; Q

[1]
2 , · · · , Q

[1]
N |W1, Q

[1]
1 ) (67)

≤ I(W2, W1; Q
[1]
2 , · · · , Q

[1]
N |Q

[1]
1 ) (68)

≤ I(W2, W1; Q
[1]
1 , · · · , Q

[1]
N ) (69)

(4)
= 0 (70)

By a similar argument, we have

I(A
[2]
1 ; Q

[2]
2 , · · · , Q

[2]
N |W1, Q

[2]
1 ) = 0

(71)

I(A[2]
n ; Q

[2]
1 , · · · , Q

[2]
n−1, Q

[2]
n+1, · · · , Q

[2]
N |W1, Q

[2]
n ) = 0

(72)

Next, from (64), by symmetry, we have

LH(w1) ≤ D − H(A[2]
n |W1, Q

[2]
n ) + o(L), ∀n ∈ [2 : N ]

(73)

Adding (64) and (73) for all n ∈ [2 : N ], we have

NLH(w1) + o(L)

≤ ND −
N∑

n=1

H(A[2]
n |W1, Q

[2]
n ) (74)

(71)(72)
= ND −

N∑

n=1

H(A[2]
n |W1, Q

[2]
1 , · · · , Q

[2]
N ) (75)

≤ ND − H(A
[2]
1 , · · · , A

[2]
N |W1, Q

[2]
1 , · · · , Q

[2]
N ) (76)

(7)
= ND − H(A

[2]
1 , · · · , A

[2]
N , W2|W1, Q

[2]
1 , · · · , Q

[2]
N )

(77)

≤ ND − H(W2|W1, Q
[2]
1 , · · · , Q

[2]
N ) (78)

(4)
= ND − H(W2|W1) (79)
(56)(57)

= ND − LH(w2|w1) (80)

=⇒ R =
H(W2)

D

≤ lim
L→∞

LH(w2)
1
N (NLH(w1) + LH(w2|w1) + o(L))

(81)

=
NH(w2)

H(w1, w2) + (N − 1)H(w1)
(82)

The converse proof is thus complete.

The achievability is based on PIR2 . Consider N2 symbols

of each message at a time. The user privately generates a

random permutation over [1 : N2], and applies the same

permutation to both messages, taken N2 symbols at a time.

Denote this random permutation of the N2 symbols from

W1 as a1, a2, · · · , aN2 . Similarly, the corresponding ran-

dom permutation of the N2 symbols from W2 is denoted

as b1, b2. · · · , bN2 . Note that only symbols with the same

index are correlated. Without loss of generality, suppose

W2 is desired, and consider the queries generated according

to PIR2 .

In order to send (a1, b1), Server 1 needs only H(w1, w2) bits.

Note that optimal compression requires long sequences, so the

scheme operates over LN2 symbols each of W1 and W2, for

large L, so that a1 is a sequence of L symbols from W1, and

b1 is the corresponding sequence of L symbols from W2, and

optimal compression is possible as L → ∞. Thus, for (a1, b1)
the server sends LH(w1, w2) + o(L) bits. For a2 + bN+1,

the key is that the server first compresses the L symbols of a2,

and the L symbols of bN+1, separately, each into LH(w1) +
o(L) bits. This is possible because H(w1) ≥ H(w2). And then

the server sends the sum of the compressed bits, for a total of
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LH(w1)+o(L) bits. Each 2-sum a+b is compressed similarly.

Thus, the total download from Server 1 is LH(w1, w2) +
L(N − 1)H(w1) + o(L) bits. The total download from all

servers is N times that number of bits. The total number

of desired bits retrieved is LN2H(w2). Therefore, the rate

achieved is limL→∞ LN2H(w2)/N(LH(w1, w2) + L(N −
1)H(w1)+o(L)) = NH(w2)/(H(w1, w2)+(N −1)H(w1)),
and the capacity for this case is settled. Finding the capacity

for 3 or more dependent messages with arbitrary dependencies

is the next immediate open problem for future work.
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