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The Capacity of Private Computation

Hua Sun™, Member, IEEE, and Syed Ali Jafar™, Fellow, IEEE

Abstract— We introduce the problem of private computation,
comprised of N distributed and non-colluding servers, K indepen-
dent datasets, and a user who wants to compute a function of the
datasets privately, i.e., without revealing which function he wants
to compute, to any individual server. This private computation
problem is a strict generalization of the private information
retrieval (PIR) problem, obtained by expanding the PIR message
set (which consists of only independent messages) to also include
functions of those messages. The capacity of private computation,
C, is defined as the maximum number of bits of the desired
function that can be retrieved per bit of total download from
all servers. We characterize the capacity of private computation,
for N servers and K independent datasets that are replicated at
each server, when the functions to be computed are arbitrary
linear combinations of the datasets. Surprisingly, the capacity,
C=14+1/N+---+ 1/NK’1)71, matches the capacity of
PIR with N servers and K messages. Thus, allowing arbitrary
linear computations does not reduce the communication rate
compared to pure dataset retrieval. The same insight is shown
to hold even for arbitrary non-linear computations when the
number of datasets K — oo.

Index Terms— Capacity,
information retrieval.

private computation, private

I. INTRODUCTION

ISTRIBUTED computing arises as a promising solu-

tion for massive data processing. Much recent effort

is devoted to various computation tasks, such as search
[1], [2], matrix multiplication [3], [4] and shuffling [3], [5]
etc. Privacy is a concern when sensitive data sets are involved.
For example, retrieving statistical information from remotely
stored patient records for medical research is a representative
application for private computation over distributed systems.
In this work, motivated by privacy concerns in distributed
computing applications, we introduce the private computa-
tion (PC) problem, where a user wishes to privately compute
a function of datasets that are stored at distributed servers.
Specifically, K datasets are stored at N non-colluding servers,
and a user wishes to compute a function of these datasets.
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A private computation scheme allows the user to compute
his desired function, while revealing no information to any
individual server about the identity of the desired function. The
achievable rate of a private computation scheme is the ratio of
the number of bits of the desired function that the user is able
to retrieve, to the total number of bits downloaded from all
servers. The capacity of private computation is the supremum
of achievable rates.

The private computation problem is a strict generalization
of the private information retrieval (PIR) problem, where one
of the K datasets is desired by the user, i.e., the function to
be computed simply returns the desired dataset. The capacity
was characterized recently for PIR in [6] and for several of
its variants in [7]-[19]. In the PIR setting, the datasets are
called messages and all messages are independent. Private
computation may also be viewed as PIR with dependent
messages, where each possible function that may be desired
by a user is interpreted as a dependent message, i.e., a message
whose value depends on other messages.

Our main result is the characterization of the capacity of
private computation, where a user wishes to compute arbitrary
linear combinations of K independent datasets (messages),
replicated at IV servers. Note that if the user can only choose
one of M = K independent linear combinations, then the
setting is equivalent to the PIR problem with K messages
and N servers. From [6], we know that the capacity of
PIR in this setting is equal to (1 +1/N +---+ 1/NK’1)71.
Surprisingly, we show that even if the user wishes to compute
arbitrary linear combinations of the K datasets, the capacity of
private computation remains (1+1/N +---+ 1/NK*1)_1,
i.e., in terms of capacity, arbitrary linear computation incurs
no additional penalty.

The capacity achieving scheme for private computation that
is presented in this work is a highly structured adaptation of
the capacity achieving scheme for PIR that was introduced
in [6]. Specifically, the private computation scheme utilizes
an optimized symbol index structure, and a sophisticated
assignment of signs (‘+” or ‘—’) to each symbol in order
to optimally exploit the linear dependencies. A surprising
feature of the optimal private computation scheme is that the
query construction does not depend on the linear combining
coefficients that define the set of possible functions that may
be computed by the user.

Finally, we note that following the ArXiv posting of our
capacity results for the elemental setting of private compu-
tation with N = 2, K = 2, arbitrary M (first version of this
paper, posted October 30, 2017), an independent work on ‘pri-
vate function retrieval’ was posted on ArXiv by Mirmohseni
and Maddah-Ali (reference [20], posted November 13, 2017).
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Since the private function retrieval problem is identical to
the private computation problem, it is worthwhile to compare
and contrast the two works. To this end, we note that while
there is no overlap in the achievable schemes proposed in
the two works, the general capacity result presented in this
paper subsumes and strictly improves upon the results of [20].
In particular, [20] presents two results. The first result
of [20] is a capacity characterization of private computation
when N = 2, K is arbitrary, and the set of functions
that may be computed is comprised of all possible linear
combinations of the K message sets — albeit limited to binary
coefficients. This result is recovered as a special case of our
general capacity result in this paper. In this case, although
the achievable schemes of [20] and this work are different,
they both achieve capacity. The second result of [20] is an
extension of their achievable scheme to general N, K and
non-binary combining coefficients, although the optimality of
the achievable scheme is left open. For this general case, our
capacity characterization implies that the achievable scheme
of [20] is strictly suboptimal.

Notation: For integers Z1, Za, Z1 < Zs, we use the compact
notation [Zy : Zo) = {Z1,Z1 + 1,--- ,Zs}. For an index
set T = {iy,ia--+ ,ix}, the notation A represents the set
{A;,i € I}. The notation X ~'Y is used to indicate that
X and Y are identically distributed. For a matrix A, AT
represents its transpose and |A| represents its determinant.
For a set S, |S| represents its cardinality. For sets Si,Sa,
we define S1/Ss as the set of elements that are in Sy and not
in Sa. A list of notations used is presented below.

Notation  Description

N The number of servers
K The number of datasets
M The number of messages
L The message size
Wi The m*" message
W The query to Server n when W, is desired
AL:” ] The answer from Server n in response to an ]

II. PROBLEM STATEMENT AND DEFINITIONS

Consider the private computation problem with N servers
and K datasets. We will assume that the datasets are replicated
at all servers, that the servers do not collude, and that the func-
tions to be computed are linear combinations of the messages.
We will focus primarily on this basic setting which opens the
door to numerous other open problems through various gener-
alizations (some of which have appeared recently [21]-[24]),
e.g., coded storage instead of replication, colluding servers,
symmetric privacy requirements, non-linear functions, etc.

The K datasets, denoted by Wy, , -, Wy, € IFZ%“, are
each comprised' of L ii.d. uniform symbols from a finite

I As usual for an information theoretic formulation, the actual size of each
message is allowed to approach infinity. The parameter L partitions the data
into blocks and may be chosen freely by the coding scheme to match the
code dimensions. Since the coding scheme for a block can be repeated for
each successive block of data with no impact on rate, it suffices to consider
one block of data.
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field ;. In p-ary units,

H(Wdl):"':H(WdK):Lv (1)

H(Wd17"'aWdK):H(Wd1)+"'+H(WdK)' (2

A linear combination of these datasets is represented as a
dependent message,’

Wm = Vm[Wd17 e 7WdK]T
:Um(l)Wd1+"'+Um(K)WdK7 me[l: M (3)
where v, [Um(1), " s Um(k)] consists of K constants

from F,, and ‘+’ represents element-wise addition over
F,. Without loss of generality, we assume M > K and
[vi;ve;---;vk] = Ik, where Ix is the K x K identity
matrix. Thus, (Wy, Wa, -, Wk) = (W, Wa,, -+, Way ).

There are N servers and each server stores all datasets
Wiy, Wa,. A user privately generates § € [1 : M] and
wishes to compute (retrieve) Wy while keeping 6 a secret
from each server. Depending on 6, there are M strategies
that the user could employ to privately compute his desired
function. For example, if § = m, then in order to compute
W, the user employs N queries, Q[lm], . ,QE?]. Since the
queries are determined by the user with no knowledge of the
realizations of the messages, the queries must be independent
of the messages,3

Wy, W Q™ QM =0, @)

The user sends Q™. n € [1 : N] to the n'" server. Upon
receiving QI the n'" server generates an answering string
Ag”], which is a function of Q[nm] and the data stored (i.e., all
the messages),

Vme[l: M], ne[l:N], HAM|QI wy, ... Wy)=0.
]

Each server returns to the user its answer A[f Y. From
all the information that is now available to the user
(A[lm],--- ,AE(,’L],Q[lm],--- ,QB?]), the user decodes the
desired message W,, according to a decoding rule that is
specified by the private computation scheme. Let P, denote
the probability of error achieved with the specified decoding
rule.

To protect the user’s privacy, the M strategies must be
indistinguishable (identically distributed) from the perspective
of each server, i.e., the following privacy constraint must be
satisfied Vn € [1 : N],Vm € [1 : M|,

[Privacy] (QI, AN Wy, - W)
-~ (Q[Y:n,],A[:L], Wi, -+, Wa). (5)

Ym € [1: M],

The PC rate characterizes how many symbols of desired
information are computed per downloaded symbol, and is
defined as follows.

L

RE = (6)
D
2 X1 i i inati
We have =T distinct non-zero linear combinations of K messages over
K —
Fp, so the maximum value of M is pp_ll.

3The message sets (Way -+, Wqy ) and (W1, Wa,--- , Wyy) are invert-
ible functions of each other, so, e.g., conditioning on one is the same as
conditioning on the other.
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where D is the expected value (over random queries) of the
total number of symbols downloaded by the user from all
servers.

A rate R is said to be e-error achievable if there exists
a sequence of private computation schemes, indexed by L,
each of rate greater than or equal to R, for which P, — 0 as
L — oo. Note that for such a sequence of private computation
schemes, from Fano’s inequality, we have

Qb
=o(L) (7)

[Correctness] H(VVm|A[1m]7 - ,Akfn], [1m]7 o

where any function of L, say f(L), is said to be o(L) if
limy_,o f(L)/L = 0. The supremum of e-error achievable
rates is called the capacity C.

III. CAPACITY OF PRIVATE COMPUTATION

Theorem 1 states our main result.

Theorem 1: For the private computation problem where a
user wishes to privately retrieve one of M arbitrary* linear
combinations of K independent datasets from NN servers,
the capacity is C'= (1 +1/N +--- + 1/NK_1)_1.

When M = K, the problem reduces to the PIR problem
with NV servers and K messages, for which the capacity is
(1+1/N+---+ 1/NK*1)71 [6]. Adding more computa-
tion requirements M > K can not help (surprisingly it does
not hurt either), so the converse of Theorem 1 is implied.
We only need to prove the achievability, which is presented
in Section IV.

It is quite surprising that increasing the number of messages
by including arbitrary linear combinations of K datasets
does not reduce capacity for all linear computation settings.
A natural question then is whether this insight holds more
broadly. Remarkably, the insight is also true for arbitrary non-
linear computations, when the number of datasets is large
(K — o00). It turns out that in this case, again the capacity
of private computation is equal to the capacity of PIR. This
supplemental result is rather straightforward and is stated in
the following theorem.

Theorem 2: For the private computation problem with K
independent datasets, Wy, k € [1 K], HW,) = L,
arbitrary N servers and M — K arbitrary (possibly non-linear)
dependent messages, W,,,, m € [K +1 : M|, HW,, |
Wi,k € 1 : K]) =0, HW,,) < L, if K — oo, then
the capacity of private computation C' — 1 — 1/N, which is
the capacity of PIR with K — co messages and IV servers.

Proof: For Theorem 2, the achievability is identical to
the symmetric PIR? scheme of [8, Th. 1] (see also [25],
[26]), where the M functions are viewed as the messages in
the symmetric PIR problem and common randomness is not
used. Specifically, the scheme is as follows. Suppose W}, is
desired and each message has L = N — 1 symbols. Denote

4Note that M > K and the M linear combinations con-
tain K linearly independent ones, so that H(Wy,Wa,--- , Wyy) =
H(Wd17Wd27"'7WdK):KL‘

STheorem 2 extends immediately to the symmetric private computation
problem, where the user is prohibited from learning anything beyond the
desired function.
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W as the M (N — 1) x 1 vector that is comprised of all the
message symbols (from the first symbol of W; to the last
symbol of Wj) and let Q represent a random vector of length
M(N — 1), where each element is uniformly distributed over
{0,1}. Denote e; as a unit vector of length M (N — 1) where
only the i*" element is 1 and all other elements are 0. The

queries and answers are generated as follows.

Q[1k] = Q. QM =qQ+ €(k—1)(N—1)+(n—1)s VN € [2: N]
= Inner product(Q*, W)

) Inner product(Q, W) n=1

| Inner product(Q, W) + Wy ,,_1 n€[2: N]

= Wi = (Al — aM Al gl

Therefore the scheme is both correct and private (for any k,
the query Q%] is comprised of i.i.d. uniformly random bits).
The rate achieved is L/D = (N —1)/N =1 —1/N as the
message size is L = N — 1 and we download N symbols in
total (one from each server). The converse follows from the
converse of regular PIR [6] because restricting the message
set to Wi,k € [1 : K] cannot reduce capacity. The proof is
thus complete. [ ]

IV. THE ACHIEVABLE SCHEME

The private computation scheme needed for Theorem 1
builds upon and significantly generalizes the capacity achiev-
ing PIR scheme presented in [6] and [15]. If we ignore
the dependence of the messages in the private computa-
tion problem and directly use the PIR scheme (capacity
achieving for independent messages) in [6], the rate achieved
is (14+1/N+---+1/NM"17" which is strictly less
than (1+1/N+---+ 1/NK_1)_1 (independent of M),
the capacity of private computation. To optimally exploit the
dependence of the messages, we start with the original PIR
scheme of [6] and incorporate two new ideas.

For ease of reference, let us denote the original PIR scheme
of [6] as PIRI. Recall that in PIR1, starting from the
retrieval of one random desired message symbol from the
first database, the queries are generated based on iterative
application of three principles: 1) enforcing symmetry across
servers, 2) enforcing message symmetry within the query to
each server, and 3) exploiting side information of undesired
messages to retrieve new desired information. In particular,
when message symmetry is enforced, the indices of new
symbols to be retrieved are structureless (random), and only
addition is used in constructing queries from both symmetry
and side information exploitation. Both of these aspects are
specialized in the new scheme.

(1) Index assignment: Additional structure is required from
symbol indices within the queries because dependence
only exists across message symbols associated with the
same index. This requirement yields a new PIR scheme,
that we will denote as PIR2. If the messages are
independent, then in terms of downloads PIRZ2 is as
efficient as PIR1, i.e., they are both capacity achieving
schemes.
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(2) Sign assignment: The index structure of PIR2 seems
essential to accommodate dependent messages. By itself,
however, it is not sufficient.® For example, the queries
in both PIRI1 and PIR2 are comprised of sums of
symbols. Depending on the form of message dependen-
cies, more sophisticated forms of combining symbols
within queries may be needed. For our present purpose,
with linear message dependencies, we will need both
sums and differences. To this end, we need to carefully
assign a ‘sign’ (‘+’ or ‘—’) to each symbol. The sign
assignment produces the optimal private computation
scheme, denoted PC, for Theorem 1.

To present these schemes, we need to introduce the follow-
ing notation. Let 7 represent a permutation over [1 : L|. For
alme[l: M],ie[l:L]let

Um (1) = oW, (7(3)) ®)

Thus, W, (7 (i)) are the symbols from message W,,, per-
muted by , and u,,, (%) are the corresponding signed versions
obtained by scaling with o; € {+1,—1}. Since both m and
¢ are indices in wu,,(4), if there is a potential for confusion,
we will refer to m as the ‘message index’ and ¢ as the
‘symbol index’. Note that the same permutation is applied
to all messages, and the same sign variable o; is applied to
symbols from different messages that have the same symbol
index. Both 7 and o; are generated privately, independently
and uniformly by the user such that they are not known to the
servers.

We will refer to the message W,, equivalently as the
message u,,. To illustrate the key ideas we will use the special
K =2 M =4, N = 2 setting as our running example in this
work.

Example A: Suppose the M = 4 functions on the K = 2
datasets that we wish to compute over N = 2 servers are the
following.

Wy = Wy,
Wy = Wy,
W3 = 1)3Wd1 + véWdz

Wy = vaWyq, + UQWdz 9)

Each message consists of L = N™ = 16 symbols from F,,.
The specialized setting allows us to use a simpler notation as
follows.

(Cli, bi, Ci, dz) = (’U,l(i), Ug(i),Ug(i), U4(Z))

The notation is simpler because we only have symbol indices.
Message indices are not necessary in this toy setting because
a different letter is used for each message.

We will start with the query structure of the PIR scheme,
which we will modify using the two principles outlined earlier,
to obtain the private computation scheme. First we explain the
index assignment step.

6Remarkably, if the field Fp in (3) is restricted to Fo then PIR2 is
sufficient to achieve the capacity of private computation. This is because sign-
assignments are redundant over g, i.e., +x and —x are equivalent over Fa.
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A. Index Assignment: PIR2

In this section, we introduce the PIR2 scheme, built upon
PIR1 by an index assignment process. The index assign-
ments are necessary because unlike PIRI where independent
permutations are applied to symbols from each message,
in PIR2 the same permutation is applied to symbols from
every message. For ease of exposition, we will first illustrate
the index assignment process through Example A, and then
present the general algorithm for arbitrary K, M, N. Since we
do not use sign assignments in PIR2, the o; are redundant
for this scheme. Without loss of generality, the reader may
assume o; = 1 for all ¢ for PIR2.

1) Example A: Suppose the desired message is W1, i.e.,
0 = 1. Recall the query structure of PIR1, where we have
left some of the indices of undesired symbols undetermined.

=1

Server 1 Server 2
alablacladl a2ab23023d2

as + bo as + b1

a4 + c2 a7 + ¢
as + do as + dy

by + ¢ by + cx

by + d. by + d.

Cx +dy Cyx +dy
ag + b + ¢ a2+ b. +c.
a10 + by + d. a1z + by + d.
a11 + ¢« + d. a14 + ¢ + d.
by + ¢ +dy by + ¢y +dy

a5 + by +co +dy | a16 + by +ci +d,

Note that the first row of the query to Server n, n € {1,2},
iS Gn, by, Cn, dp, just as in PIR1. In PIR1, the permutations
are chosen independently for each message, so that ¢,,, d,, are
not necessarily functions of a,,, b,,. However, here, because we
apply the same permutation to every message, and because the
same sign o, is applied to a,, by, ¢,, d,, the dependence of
messages is preserved in these symbols. In particular, ¢, =
3Gy + V5by, dn = vaan + Viby, and H(an, by, cp,dy) = 2
p-ary units.

The next three rows of the queries to each server are 2-sums
(i.e., sums of two symbols) that are also identical to PIR1,
because these queries exploit the side-information from the
other server to retrieve new desired symbols. However, notice
that because permutations of message symbols are identical,
there is a special property that holds here that is evident to
each server. For example, Server 1 notes that the 2-sums that
contain a; symbols, i.e., az+ba, ag+ca, a5+ ds have the same
index for the other symbol, in this case the index 2. Since
we do not wish to expose the identity of the desired message,
the same property must hold for all messages. This observation
forces the index assignments of all remaining 2-sums.

For example, let us consider the next query term, b, + c,,
from, say, Server 1. Since by was mixed with a3 in the query
as + bs, all 2-sums that include some b; must have index 3
for the other symbol. Similarly, since co was mixed with aq4,
all 2-sums that include some c¢; must have index 4 for the
other symbol. Thus, for Server 1, the only index assignment
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possible for query b, + c. is by + c3. Similarly, the b, + d.
must be b5 + d3 and ¢, + d, must be c5 + d4. All indices for
2-sums are similarly assigned for Server 2 as well. Thus all
indices for 2-sums are settled.

Now let us consider 3-sums. The index assignments for
the first three rows for the 3-sums are again straightforward,
because as in [6], these are side-information exploitation
terms, i.e., new desired message symbols must be mixed with
the side-information symbols (2-sums) downloaded from the
other server that do not contain desired message symbols. This
gives us the following query structure.

=1

Server 1 Server 2
ay,b1,c1,dy az,ba, ca, do

as + by ag + by

a4+ C2 a7 +c1

as + da ag + dy

by + c3 b7 + cg

bs + d3 bs + dg

cs5 + dy cg + dy
ag + by + cg ajz +by+c3
a10+b8+d6 a13+b5+d3
a11 + cg +dy a14 +c5 +dy
by + ¢ + ds by + ¢y +ds

a15 + by + ¢ +di | a16 + bi + i + d,

Now, again there is a special property that is evident to each
server based on the 3-sums that contain symbols from message
a. Suppose we choose any two messages, one of which is a.
For example, suppose we choose a,b and consider Server 1.
Then there are 2 instances of 3-sums that contain a, b, namely,
ag + b7 + cg and a1g + bg + dg. Note that the third symbol
in each case has the same index (6 in this case). The same is
true if for example, we choose a,c or a,d instead. The two
3-sums that contain a, c are ag + b7 + ¢g and a1 + cg + d7,
and in each case the third symbol has the same index (7 in
this case). The two 3-sums that contain a, d are a1 + bg + dg
and aq1 + cg + d7, and in each case the third symbol has the
same index (8 in this case). Again, because we do not wish to
expose a as the desired message, the same property must be
true for all messages. This observation fixes the indices of the
remaining 3-sum, b, + c. + d. as follows. The index of d in
this term must be 9 because the two 3-sums that contain b, ¢
must have the same index for the third symbol, and according
to ag + b7 + cg this index must be 9. Similarly, the index of
c in by + ¢4 + ds must be 10 because the two 3-sums that
contain b, d must have the same index for the third term, and
according to ajg + bg + dg it has to be 10. The index of b in
by + c. + d, is similarly determined by the term a1 + cg + d7
to be 11. Thus, the query b, + ¢, + d, from Server 1 must be
b11 + c10 +dy. Similarly, the query b, + ¢, + d, from Server 2
must be bi4 + ¢13 + dy2.

The last step is again a side-information exploitation step,
for which index assignment is trivial (new desired symbol
must be combined with the 3-sums queried from the other
server that do not contain the desired symbol). Thus, the index
assignment is complete, giving us the queries for PIR2.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 6, JUNE 2019

=1
Server 1 Server 2
ay,by,c1,dy a2, bs, ca, do
az + by ag + by
a4+ C2 ar +c¢1
as + da ag + dp
by + c3 b7 + ¢
bs + d3 bs + dg
cs +dy cg +dr
ag + by + cg aj2 +by +c3
a10+bg+d6 a13+b5+d3
ail +cg +dy a14 +cs5 +dy
b11 + c10 + do bi4 + c13 + di2
a15 + b1y +c13 +dia | a6 + b1 + cio0 + do

For the sake of comparison, here are the queries generated
with PIR2 when 6 = 3, i.e., when message W3 (symbols c¢)
is desired.

0=3
Server 1 Server 2
ay,by,c1,dy a2, bs, ca, do
c3 + az Cce + a1
cq + bo cr+ b1
cs + do cg +dp
a4 + b3 a7 + bg
as + ds as + dg
bs + dy4 bs + dr
cg + ar + bg c12 +ay + b3
c10 + ag + dg c13 +as +d3
c11 +bg +dy c1a +bs +dy
a1 + bio + dy a4 + b1z + dio
c15 + aig + b1z +dia | c16 + a1 + bio +do

To see why the queries for # = 1 are indistinguishable from
the queries for § = 3 under PIR2, say from the perspective
of Server 1, note that the former is mapped to latter under the
permutation on [1 : L] that maps

(1,2,3,4,5,6,7,8,9,10,11,12,13, 14, 15, 16)
—(1,3,4,2,5,9,6,10,7,11,8,12,15, 13, 14, 16)

The permutation 7 is chosen privately and uniformly by the
user independent of 6, so both queries are equally likely
whether # =1 or 6 = 3.

2) Arbitrary K, M, N: The extension to arbitrary M, N is
formally presented’ in the query generation algorithm, Q-Gen,
that appears at the end of this section. Let us summarize
the main ideas behind the generalization with the aid of the
illustration in Figure 1 for M =4, N = 3.

The construction of queries for arbitrary N servers is
essentially a tree-like expansion of the N = 2 construction.
Therefore, the main insights all come from the N = 2 setting.

7Both PIR2 and PC may be viewed as PIR schemes for N servers
with M independent messages, so that K is not directly needed for the
query construction. Linear dependencies, if they are present, make some of
the queries redundant, and allow a reduction in the number of downloaded
symbols. K only matters because it determines the number of redundant
queries. The specific linear combinations involved in the M functions are
also not needed for the query construction. Thus the query construction has
an intriguing ‘universal’ character that exploits linear dependencies while
remaining oblivious to the specifics of those dependencies.
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=1
B Server 1 Server 2 Server 3
1 ai, by, c1,dy az, — ba,ca,dy as, bs, c3, d3
ayg + by ayo + by aye + by
2 Q(1727M) toas tc2 Q(2717M) tanta Q(3717M) a7 +c
,,,,,,,,,,,,, agtdy \ | _________aetd N _|___________a@std_____|
bs + c4 b11 + cio bi7 + c16
Q(1,2,I) : b6 +d4 Q(Q,ll) b12 +d10 Q(3,1,I) 618+d16
ce + ds ci2 +dyy c1g + dir
a7 + b3 a3 + b3 a9 + by
Q(1,3,M) ag + c3 Q(2,3,M) a4 + C3 Q(3,2,M) a20 + Co
ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ ag+ds | ais+dy az +dy
bg + c7 bis + c13 bao + c19
Q(1,3,I) bg + d7 Q(2,3,Z) bis + di3 Q(3,2,I) 1 b1 + dig
cg + dg ci5 +dig c21 + dag
azz + b1 + cio a3q +bs + ¢4 / a46 + bs + ¢4
3 Q(1,2,1, M) 1 ags + b2 +dio ass + bg + dy (3,1,2, M) : ayr +bs +dy
o ____eatecptdn | aggtes+ds, 7 | ) agst e +ds |
Q(l, 2, l,I) 2 bog + co3 + doo Q(3, 1, Q,I) s byg + cy7 + dys
ags + b1y + c13 a9 + bg + 7
Q(1,2,3,M) aoe + bis + di3 Q(3,1,3,M) : aso + by + dy
o _eytostda | Mytoetd |/ asteotds |
Q(1,2,3,7) : by + co6 + dos “b3g + c38 + d37 Q(3,1,3,Z) : bs1 + c50 + dug
asg + bi7 + ci6 aso + bi7 + cis asz + b11 + cio
Q(1,371,M) asg + big + dig aq1 + big + dig Q(3,2,1,M) as3 + bia + dig
L. _@otastdz / _____eetoastdy /| auteoptdn |
Q(1,3,1,Z) : b3p + c29 + dos :bya + cq1 + dyo Q(3,2,1,7) : bsg + c53 + ds2
az1 + bag + c19 a43 + bag + c19 ass + b1y + c13
Q(1,3,2, M) : asz + bay + dig ag4 + by + dig Q(3,2,3, M) : ase + bis + di3
asz + c21 + dao . assteatdy ) | agrtoastdig |
Q(l, 3, Q,I) . b33 + C32 + d31 ) b4o + C44 + d43 Q(3, 2, 3,1) b57 + Cs6 + d55
4 1Q(1,2,1,2, M) : ass + bss + ¢35 + Nau Wl M) age +bas + o3 +daa | Q(3,1,2,1, M) : azg + bog + a3 + dao
Q(1,2,1,3, M) : asg + bzg + c3s + di | Q(2,1,2,3; M) agr + bar + co6 +das | Q(3,1,2,3, M) : ags + bar + c26 + das
Q(1,2,3,1, M) : ago + baz + ca1 + dao\ Q(2,1,3,1, M) : a%W Q(3,1,3,1, M) : are + bso + ca9 + dos
Q(1,2,3,2, M) : agy + bys + caq +dyz N Q(2,1,3,2, M) : ago + bzz + c32 Fdar—F Q(3,1,3,2, M) : arr + b3z + c32 +d3y
Q(1,3,1,2, M) : a2 + bag + car + das | Q(2,3,1,2, M) : aro + bag + car +dus | Q(3,2,1,2, M) : azg + bzg + ¢35 + das
Q(1,3,1,3,M):a63+b1+Coo+d49 Q(2,3,1,3,M):a71+b1+Co+d49 Q(3,2,1737M):a79+b39+038+d37
Q(17372717M):a64+b4+03+d Q(27372717M):a72+b4+03+d Q(37273717M):a80+b42+041+d40
Q(17372737M) . a60+b57+caﬁ+doo Q(27372737M) . a73+b57+caﬁ+doo Q(37273727M) L asi +b45+C44+d43
Fig. 1. Query generation tree according to PIR2 for M = 4 messages and N = 3 servers. Red arrows indicate the use of the Exploit-SI algorithm, and

blue arrows indicate the use of the M-Sym algorithm. Note that the symbol index assignments in any Z partition are uniquely determined by the indices in

the corresponding M partition.

In fact, the index assignment process for K messages is
comprised of localized operations within the sets of queries
that form the vertices of this tree, that operate exactly as in
the V = 2 setting. Let us use the tree terminology to explain
the query construction for arbitrary K, M, N.

The root node (not shown because it carries no information)
branches into IV vertices at depth 1. These vertices, denoted
Q(n1),n1 € [1 : NJ, represent the first set of queries from
each server. For our example, Q(n1) = (any,bnyyCnyydny)-
The queries associated with a vertex are internally partitioned
into two parts. Queries that include a desired message symbol
have the identifier M, and queries that do not include any
desired message symbol have the identifier Z. For our example
we assume 6 = 1, so that the a,, symbols are the desired

message symbols. Thus, Q(ny, M) = a,, and Q(ny,Z) =
(bny, Cny s dy ).

Each level 1 vertex, Q(ny),n1 € [1 : NJ, branches into
N —1 vertices,® Q(nz2,n1),n2 € [1: N],ng # ny, to produce
level 2 of the tree. The query vertex @Q(ng,nq) is assigned to
Server ny. Thus, level 1 vertices at Server n; generate level 2
vertices associated with every server other than Server n;. As a
result each Server ng, ng € [1: N|, has N — 1 level 2 query
vertices, denoted Q(ng,nq) for all ny € [1 : N],ny # no.
Level 2 query vertices are all comprised of 2-sums, i.e., sums
of two symbols, and are internally partitioned into M and Z

8 A query vertex at level m refers to the set of queries Q(nm, -+ ,n1)

Q(nmv 7”17M) UQ(TLm,"' 7”171)'
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based on whether or not they contain desired message symbols.
The queries in Q(ng,n1, M) are generated by exploiting the
side-information (cf. the Exploit-SI algorithm [15]) contained
in the level 1 queries Q(n1,7), i.e., these queries are generated
by adding a new desired message symbol to each of the sym-
bols in Q(n1,Z). Thus, the query set Q(nz2,n1, M) contains
M — 1 elements. For our example, these M — 1 = 3 elements
are Q(ng,n1, M) = {a; + bpy,a; + cny,ax + dp, }, Where
1,7,k are new symbol indices that have not appeared in any
queries so far. Next, the queries in Q(n2,n1,Z) are generated
to enforce message symmetry (cf. the M-Sym algorithm [15]),
and contain a 2-sum of every type that does not include
the desired message, for a total of (M; 1) elements. For our
example, these (;) = 3 queries are b, + ¢y, by + dy, ek + d..
The symbol indices ‘*’ are assigned based on the query
set Q(n2,m1, M) as described in our previous example.
Since Q(n2,n1, M) = {a; + bn,,a; + cn,,ar + dpn, } the
index assignment produces Q(n2,n1,Z) = {b; + ¢;, by, + d;,
Cr + dj}

The query tree grows similarly to a total of M levels.
A level m query vertex assigned to Server n,,, n, € [1 :
N], is denoted as Q(nm,Nm—1, - ,n1) and is comprised
of m-sums that include desired message symbols, denoted
Q(nm,nm—1,-+ ,n1, M), and m-sums that do not include
desired message symbols, denoted Q (1, Nypn—1, - ,n1,Z).
The queries in Q (1, Nm—1,: - ,n1, M) are m-sums gener-
ated by adding a new desired message symbol to each query
contained in Q(nm—1,--+,n1,Z). This is formalized in the
Exploit-SI algorithm. The queries in Q(n,, nym—1, - ,n1,Z)
are generated by the M-Sym algorithm to force message
symmetry, and contain an m-sum of every type that does
not include the desired message, for a total of (Mn:l) ele-
ments.® The index assignment for these queries takes place
as follows. Consider a query ¢ € Q(nm,Nm—1, -+ ,n1,Z),
q = i (%) + ui(x) + -+ + w4, (¥), where * symbols
represent indices that need to be assigned. Note that since
this query is in the Z partition, 6 ¢ {i1,42, -+ ,%m}. The
index * for w;(x), I € [1 : m], comes from the m-sum
query in Q(nm, Nm—1,--+ ,n1, M) that contains symbols
from wg, , Uy, + 5 Us_y UG, Usyy 5 * * * Ui, - If the symbol index
for ug in this query is jj, i.e., the query contains ug(j;) then the
index j; is assigned to wu;,. In this way, the M-Sym algorithm
assigns all indices to generate the query ¢ = w; (j1) +
Uiy (42) + -+ + w4, (jm). This completes the description of
PIR2.

The following observations follow immediately from the
query construction described above.

D 1Q(rm, 1, -+ 1, T)| = (M1

2) |Q(nm,nm,1, T ,TL1,M)| = |Q(nm71; to 7n17:[)| =
(1)
m—1

3) The number of level m query vertices

Q(NmyNm—1,--- ,n1) assigned to Server ¢, (such
that n,, = i), is (N — 1)™~!. This is because there
are N — 1 valid values for n,,_; that are not equal to

91f m = M, then Q(nm,Nm—1,- - ,n1,Z) is the empty set.
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Ny, = 1, there are N — 1 values for n,,_o that are not
equal to n,,—1, and so on.
4) The total number of queries assigned to Server i is
Sh (V=1 (0 ().

5) If @ and Q' are two query vertices assigned to the
same server, then the symbol indices that appear in
Q@ are distinct from the symbol indices that appear
in Q'.

The proof of privacy for PIR2 is similar to that for PIR1
in [6]. We note that once the labels M, T are suppressed, and
the queries sorted in lexicographic order, the structure of the
queries from any individual server is fixed regardless of the
desired message index . For our M = 4, N = 3 example,
this is illustrated in Figure 2.

Note that only distinct symbol indices are shown. All the
remaining indices can be inferred uniquely from the ones
shown based on the index assignment rule. Thus, the particular
query realization (depending on ) to Server n, n € [1 : N],
depends only on the realization of these distinct indices.
However, the indices depend on the permutation © which is
chosen uniformly and privately by the user. Thus, all distinct
choices for these indices are equally likely, regardless of 6,
and the scheme is private.

The correctness of PIRZ2 follows directly from the cor-
rectness of PIR1. By the same token, if the messages are
independent then PIRI and PIR2 have the same rate. Thus,
the index assignment process produces a new PIR scheme,
PIR2, that for independent messages, is equally efficient as
PIR1 in terms of download, i.e., PIR2 is capacity achieving
for independent messages. However, depending upon the form
of the message dependencies, it turns out that the ‘sums’ may
not be sufficient and more sophisticated mixing of message
symbols may be required. For the linear dependencies' that
we consider in this paper, we will need sign assignments, that
are explained next.

B. Sign Assignment: PC

In this section, we present the sign assignment proce-
dure that produces the private computation scheme PC' from
PIR2 for arbitrary K, M,N. We will use Example A to
illustrate its steps. The sign assignment procedure depends
on 0. Let us choose # = 3 to illustrate the process.
Note that o; are now generated uniformly and independently
from {+1, —1}.

To explain the sign assignment, it is convenient to express
each query in lexicographic order. For example, the query
Ui, (J1) + iy (J2) + -+ + iy, (4m) is in lexicographic order
if i1 < 19 < < iy, regardless of the values of the
indices j. For our M = 4 example, the query cg + a7 + bg
is expressed as ay + bg + cg9 under lexicographic ordering.
Note that the lexicographic order for the M = 4 example is

101f we use PIR2 for dependent messages (not necessarily linearly depen-
dent), we can save M — K downloaded symbols because of the redundancy
among the 1-sum symbols. However, to achieve the capacity of private
computation with linearly dependent messages, we require redundancy in the
m-sum symbols for all m € [1 : M — K]. Such redundancy does not exist
for PIR2 over non-binary fields.
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B Server n
Q(1):as,b,e,d
Ajy (1,2) + biz,(l,z)
Aky (1,2) +ec
Ay (1,2) +d
b+c
b+d
c+d
Ajy (1,3) + biz,(l,s)
Aky (1,3) +c
Aly 1 5y T d
b+c
b+d
c+d
Aly 1,91y T bjs,(1,2,1) T Ciz 1,01y
As3 (1,2,1) + ka,(l,Z,l) +d
g (1,2,1) +c+d
b+c+d
Aly 193 T bj3,(l,2,3) T Cig (1,23
Ass (1,23 T bks,u,z,s) +d
Gty (154 TCT d
b+c+d
Al 131y T bjs,(l,a,l) + Ciz 13,1
Asg (1,3,1) + bk3,(1,3‘1) +d
Atg (1,3,1) +c+d
b+c+d
A3 (1,3,2) + bjs,(1.3,2) + Cig (1,3,2)
Gsg 1,30y T bka,u,s,z) +
Atg (1,3,2) +c+d
b+c+d

Aly (1,2,1,2) + bk4.(1,2,1,2)

[

2 Q(1,2):

Q(1,3):

3] Q@1,2,1):

Q(1,2,3)

Q(1,3,1):

Q(1,3,2):

4] Q(1,2,1,2):

Cia,(1,2,1,2) + i4,(1,2,1,2)

Aly (1,2,1,3) + bk4.(1.2,1,3)

Q(1,2,1,3):
T + Cis (1,2,1,3) i4,(1,2,1,3)
Q(1,2,3,1) : Ay (1,2,3,1) +bk4,(1,2,3,1)
t Ciiaes i4,(1,2,3,1)
Q(1,2,3,2) : Ma,1,2,3,2) +bk4(’i(1’2’3’2)
+ Cia,(1,2,3,2) + i4,(1,2,3,2)
Q(l,?), 1, 2) . Aly (1,3,1,2) + k4,(1,3,1,2)
t Ciaasae i4,(1,3,1,2)
Q(1,3,1,3) : Ay 15,1,8) + Oki (15,1.9)
+ Cia,(1,3.1,3) i4,(1,3,1,3)
Q(1,3,2,1): Wa,1,3,2,1) +bk4él(1’3’2’1)
+ Cis,(1,3,2,1) + i4,(1,3,2,1)
Q(1,37273) . QAly (1,3,2,3) +bk4,(1,3,2,3)

+ Cia,(1,3,2,3) i4,(1,3,2,3)

Fig. 2. Structure of queries generated by PIR2 when M =4 and N = 3.

simply the ordering a < b < ¢ < d and the indices do not
matter. The position of the c. symbol within this lexicographic
ordering of query ¢ will be denoted as A.(q), i.e., for the query
q = a7 + b + cg, we have A, (q) = 1,A4(q) = 2,A:(q) =3
and Ag4(q) = 0 where the 0 value indicates that a symbol from
that message is not present in the query.

Next, the queries are sorted in increasing order of blocks, B,
so that the mt" block B = m, contains only m-sums. Each
block is partitioned into sub-blocks, S, such that all the queries
g in the same sub-block have the same value of Ay, (q).
The sub-blocks are sorted within a block in descending order
of Aw,(q) and numbered S = 1,2,---. With this sorting,
the query structure is represented as follows.

3887
0=3
B | S(A.) Server 1 Server 2
1 cl,al,bl,dl Cg,ag,bg,dg
2 1(2) az +c3 ay + cg
1(2) ba + ¢4 b1 + ¢
2(1) cs + do cg + dy
3(0) ayq + b a7 + bg
3(0) as + d3 ag + d6
3(0) bs + dy bg + dr
3 1(3) a7+ bg + cg ag + bz + ci2
2(2) as + C10 + d6 as + C13 + d3
2(2) bs + c11 + dr bs + cra +dy
3(0) a11 + big + dg a14 + b1z + dio
41 1(3) | ara+bis+ci5+dia | a11 + bio + c16 + do

The sign assignment algorithm for arbitrary M is comprised
of 4 steps.

Algorithm: SignAssign

(Step 1) Consider queries for which Aw,(¢) = 0,
i.e., queries that do not contain desired message symbols. The
terms in these queries that occupy even positions (in lexico-
graphic order within each query) are assigned the ‘—’ sign.
Thus, for example the query ¢ = aj1 + b1g + dy changes to
qg — q = a11 — big + dgy after the sign assignment. Notice
that the signs are alternating in the lexicographic ordering of
symbols within the query. The sign assignments for the queries
with Ay, (¢) = 0 are now settled.

(Step 2) If a symbol is assigned a negative sign in Step 1
then in Step 2 it is assigned a negative sign everywhere it
appears. Note that any undesired symbol that appears in the
query from one server, appears exactly once within the query
to each server.

For our M = 4 example, at this point we have,

=3

B | S(A,) Server 1 Server 2

1 c1,a1,b1,d; C2, a2, b2, do

2 1(2) az +c3 a1+ ¢cg
1(2) by + ¢4 b1 + c7
2(1) cs + ds cs +dy
3(0) a4q — b3 a7 — b(;
3(0) as — d3 ag — dg
3(0) bs — dy bs — dr

3 1(3) a7 — b6 + ¢9 Ay — b3 + c12
2(2) ag + c19 — dg as + c13 — ds
2(2) bs +c11 — d7 b5 + c14 — d4
3(0) a1 — b +dy a4 — bz +dia

41 1(3) | ais—biz+cis+diz | ain —bio +c16 +dy

(Step 3) Every query such that Ay, (q) > 0, i.e., every
query that contains a desired message symbol is multiplied by
(—1)5+1O#1) | where S is the sub-block index and 1(6 # 1)
is the indicator function that takes the value 1 if § # 1 and 0
if0=1.

(Step 4) Finally, in Step 4, for each query ¢ that contains
a desired symbol, i.e., Aw,(¢) > 0, the desired symbol is
assigned the negative sign if it occupies an even numbered
position, i.e., if Ay, (¢g) is an even number, and a positive
sign if it occupies an odd numbered position, i.e., if Ay, (q)
is an odd number.
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Following this procedure for our running example, we have
the final form of the queries as follows.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 6, JUNE 2019

Algorithm 1 Q-Gen Algorithm
1: Input: 6

TS . 91:3 S 2: Output: Q(1,°0°),--- ,Q(N,*0")
(Ac) erver erver 3: Initialize: All query sets are initialized as null sets. Also
1 5 c1, a1, b1, dy Ca, 02, b2, da initialize Block = 1;
as — C3 a1 — Cg
4: for DB; =1: N
1(2) b2 — C4 bl —C7 or ! do
2(1) Cs — dz cg — dl
2% as — 33 a7 — Zﬁ Q(DBy, ‘6", Block, M) «— {ug(DB1)}
as — ds ag — de yet)
3(0) be — d, bs — do Q(DBy, ‘0’,Block, T) «
3 1(3) ar —bs + co as — by + c1o {u1(DB1), -+, up(DB1)}/{us(DB1)}
2(2 “as —c —as — -
2 ag — 1o + do a5 — 13+ da 6: end for(DB )
2(2) —bg —c11 + dy —bs — C14 + dy . for Block — 2 : M d
3(0) air — bio +dy a1g — bz +dia 7 oil: ok = N 1 ]\(; d
41 13) |aa—biz+cis+dia | a1 —big +ci6 +dy 8: for DBpiock =1 : 0
9: for each (DBBlOCkfl, DBBiock—2, *  * ,DBl), where
To complete the illustration for our M = 4 example, let us DBElock—1 7 DBBlock, DBBlock—2 7 DBBlock—1, - - - »
also present the final queries for = 1,2, 4. DB; # DB, do
=1 10:
B | S(A.) Server 1 Server 2
1] - a1, by, e, d az, by, o, da Q(DBBjock; DBBlock—1, - * - , DB1, ‘0, Block, M) «—
1?; a3 — by ag — b1 Exploit-SI(Q (DBgiock—1, DBBlock—2, - - - ; DB1, ‘0’
1(1 as — co ar —C _
1(1) a5 — do as — dy Block — 1,7))
2(0) by — c3 by — cg Q(DBgiock, DBBlock—15 * - - ,DB1, ‘0, Block, Z)) «
;Eg; bs — ;l3 b — ZG M'Sym(Q(DBBlockv DBglock—1, * * * ; DB1, ‘6, Block, M))
Cs — aq Cg —ar
3 1(1) ag—b7+66 a9 —b4+C3
1(1) aio — bg +ds a3 — bs +ds 11: end for (DBBlock—h DBBlock—2, " " * ,DBl)
1(1) a1, — ¢s +dy a14 — C5 +da 12: end for(DBg,)
2(0) bin — c10 +dy bia — c13 + dia 13: end for (Block)
4| 1(1) | a15 —bia+c13 —dia | are — b1 + c10 — do 14: for DBpjex = 1 : N do
0=2 15:
B | S(Ap) Server 1 Server 2 o
1 bi,a1,c1,d; ba, az, ca, da Q(DBpock, “6") U U
— — ock€ [1: M| DBglock—1 7ZDBBlock
ST = e
4 — C2 7—C1
2(1) b5 — dg bg —d (Q(DBBlock7 DBBlock—l; U 7DB17 ‘9’7 BIOCka I)U
3(0) a4 — c3 a7 — Ce
3(()) as — d3 ag — d6 Q(DBBlock7 DBBlock—h T 7DB17 ‘9’5 BlOCk7 M))
3(0) Cy — d4 cg — d7
3 1(2) a7 — bg — g ag — b12 — 3 16: end f:OI‘(DBE:lOCk) . o
1(2) as — byo — dg as — bys — ds 17: SignAssign(Q(1, ¢’),--- ,Q(N, ‘"))
2(1) b11 *Cg+d7 b14 — Cs +d4
3(0) a1 — cio +dy ays —ci13 +dia
4| 1(2) |ais—bis—ciz+dia | ar1 —big — ci0 + do
04 We include the full algorithm here for completeness.
BT S(A,) Server ; Server 3 Q(n, ‘0’) denotes the queries for Server n € [1: N] when Wy
1 I a bo P is desired. For any ordered tuple u, let new(u) be a function
SR 1&2 - Cli; ! 22112; 621575 : that, starting with u(1), returns the “next” element in u each
1(2) by — dy by — dy time it is called with the same tuple u as its argument.
1(2) o — ds 1 — dg The sub-routines are as follows. 6, Block are assumed to be
2(0) as — by ar — bg available to the sub-routines as global variables. 7,,, represents
2(0) as — c3 as — Cg tge set of all possible choices of m distinct indices in [1 : M].
2(0) bs — c4 bg —c7 7T indicates that the elements of 7 are to be accessed in the
31 13) ar —be +do as — bz +diz natural lexicographic increasing order.
1(3) ag — ¢ + dio a5 — c3 +diz This completes the description of the scheme PC. The
1(3) bg —cr+du bs — ca + dua correctness of PC follows from that of PIR2. Remarkably,
2(0) ai1 = bio + ¢ a1a — bis + c1o if the messages are independent, then PC may be seen as
4] 14) Jaua—bistez—dis | e —bo+co—dis another PIR scheme that achieves the same rate as PIRI1,
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Algorithm 2 M-Sym Algorithm

1: Input: Q = Q(DBgiock, DBBlock—1, - - - ; DB1, ‘6’,
Block, M)

2: Output: Q* = Q(DBgiock; DBBlock—1, " - , DB1, ‘6”,
Block, Z)

3: Initialize: Q* «— 0.

. proa— .
4: for each i[1.giock) € TBlocks O ¢ i[1:Block] dO

Q" Q" U{us (J1) + wiy (J2) + - + Wig o (FBlock) }
such that VI € [1 : Block]
Jup) + Y, wi () €EQ
r€[1:Block],r#l

6: end for (ij1.ioc)

Algorithm 3 Exploit-SI Algorithm

1: Illpllt: Q = Q(DBBlockfla DBgiock—2; * * -, DB1, ‘0’7
Block — 1,7)

2: Output: Q' = Q(DBgiock, DBBlock—1, - -+ ; DB1, ‘6,
Block, M)

3: Initialize: Q' :@.
4: for each g € Q do

Q' — Q' U {new(ug) + q}
6: end for (q)

PIR2, i.e., all three are capacity achieving schemes. The proof
of privacy of PC is deferred to Section VI-A for Example A
and to Section VI-B for arbitrary K, M, N.

The main advantage of PC' is that for the dependent
message setting of Theorem 1, it is the optimal private
computation scheme. Its proof of optimality is presented next.

V. PROOF OF OPTIMALITY OF PC

In this section, we show how PC' achieves the capacity of
private computation when the messages are dependent. The
key idea is that the message dependencies combined with
the special index and sign structure of PC' create redundant
queries, which reduces the download requirement, according
to Slepian Wolf source coding with side information [27]. For
example, suppose the answer from Server n includes i.i.d.
uniformly random symbols X,Y,Z € F,, H(X,Y,Z) =
3log(q). If the user already knows side information U from
the answers from other servers, which introduces redundancy,
ie., H(X,Y,Z|U) < 2log(q), then the answer X,Y, Z can
be compressed into no more than 2log(q) bits per (X,Y, Z)-
symbol, without knowledge of U at Server n.

A. Proof of Optimality for Example A

To prove optimality, we need to show that the scheme
achieves a rate that matches the capacity of private com-
putation according to Theorem 1. Specifically, let us prove
that the rate achieved is 8/12 = 2/3. For this, we will
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show that the user downloads only 12 symbols from each
server. Note that ostensibly there are 15 symbols that are
queried from each server. However, it turns out that based
on the information available from the other server, 3 of these
symbols are redundant. Thus, 12 generic combinations of these
15 symbols are sufficient.

Let us see why this is the case for the queries from Server 1.
c1,d; are clearly redundant symbols because according to (9)
they are functions of a;,b;. So we need one more redundant
symbol. Suppose a is desired (# = 1). Then, consider the
2-sum queries that do not involve the desired message, a.
There are 3 such queries. However, the key is that from any 2
we can construct the 37, In this case from Server 1 we have:
by — c3,b5 — d3, c5 — d4. But note that

v (bs — ds3) — vy (bs — c3) — (v3v) — v4vy)as — vy ag + v3 as
= (c5 —da)
Verify:

LHS = v4(bs — d3) — vy(bs — c3) — (v30) — v4vy)as

— V4 G4 + V3 a5

© v (bs — vaaz — v)bs) — vy (bs — v3as — vibs)

— (v3v)y — vavh)ag — vy ag + v3 as
9
= U3 a5+vé bs — vy a4—U:1 In (:) (C5—d4) = RHS

Since the user knows as, a4, as due to the side information
available from the other server, out of these 3 equations, 1 is
redundant. Thus, one more symbol is saved, giving us 12
effective downloaded symbols, and the rate 8/12 is achieved.
Since this is also the outer bound, this scheme achieves
capacity. It can similarly be verified for Example A that the
redundancy exists no matter which message is desired.

As another example, suppose c is desired (f = 3). Referring
to the scheme, from Server 1, the three queries (that are
2-sums) not involving ¢ are a4 — b3, a5 — d3, bs — d4. But
note that

(v3v) — vav})(ag — b3) — vs(as — d3) — vacs — vy ¢4 + C5
= v3(bs — da)

Verify

LHS = (UgUil — U4Ué)(a4 — b3) — VU3 (Cl5 — d3) — V4C3
— V) c4+cs5

9
® (v3vy — v4v5)(ag — b3) — v3(as — v4 az — vy b3)

—vg(vgas + vibs) — v} (vsas + viby)
+ (vsas + vibs)

/(bg, — V4 Q4 —’U:l b4)

Us
= v (bs — ds) = RHS

—~
=

Note that the scheme is designed to satisfy server symmetry,
so redundancy exists for Server 2 as well. Note also that
the redundant symbols are created in the message symmetry
step so that regardless of the value of 6, the sign structure
(alternating) is maintained and the symbol index structure
is guaranteed to be symmetric. So for all § € [1 : 4],
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we always have 3 redundant symbols from each server, and
downloading 12 symbols per server suffices. The rate achieved
is L/D=16/24=2/3=C

B. Proof of Optimality for Arbitrary K, M and N = 2

To prove optimality, we need to show that the scheme

: K—1\"1 2K
achieves a rate of (1+1/24---4+1/2571)"" = FERTY-
For this, we will show that the user downloads only

ZM ((M) - (M_K)) = 2M _ oM=K gymbols from each

m=1 m m

server. Note that the message size is L = 2M then the rate
. . M K .

achieved is 2(2A432M,K) = as desired. Note that

2(22K—1) ’
there are (AW/{ ) symbols queried in Block m,m € [1 : M] from
each server. However, it turns out that based on information
available from the other sever, (M*K ) of these symbols are
redundant. Thus, (M) — (* %) generic combinations of these
(% ) symbols are sufficient.
Next we prove why this is the case in the following lemma.
Lemma 1: For all § € [1 : M], for each server, in Block
ell: M-K], ( . ) of the (%) symbols are redundant,
based on the information available from the other server.

Proof: Let us start with the case where 6§ = 1. Consider
the m-sum queries that do not involve the desired message u;.

There are (') such queries, divided into two groups:

1) (M N —(M~K) queries that involve at least one element

in {us, - uk},
2) (M K) queries that do not involve any element in
{u2a auK}'

The key is that the symbols in Group 2 are redundant.
Specifically, we show that they are functions of the symbols
in Group 1 when u; is known.!! ]

Example 1: We accompany the general proof with a concrete
example to explain the idea. For this example, assume K = 3
datasets, M = 6 messages, and denote symbols u1,us, - - - , Ug
by distinct letters a,b, - - - , f, respectively, for simplicity. Con-
sider Block m = 3. The queries that do not involve the desired
message w1 are shown below. For this example, we will see
that the only symbol in Group 2 is a function of the 9 symbols
in Group 1.

Group 1 by, —¢j, +dj,
bjs — cjs + €5
bj7 —Cj, + fjl
bjs - djs + €,
bjg - dj4 + sz
bjlo —€j, + fjs

Cjs — dj6 + €55
Cjo — dj7 + fj5
Cjrg — Cjr T f]e

To simplify the notation, define
q(ui[lzm]) = q({u“ ) U’i27 e

m

£ Z(_l)liluiz

=1

7uim})
(10)

This is guaranteed because the desired variable u; in Block & is mixed
with side information in Block k£ — 1 available from the other server.
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where the message indices i1 < i2-- - < %,,, and the symbol
indices are suppressed. Consider an arbitrary query in Group 2:

q0 = q(Wip.,)
where K < i3 < ig---
known, the query gqp is a function of (
Group 1. These (™5 1)
every type'? in 7 £

02 {q(uj[m]) © Jjim) C T} (11)

where the set of all possible m distinct indices (types of m-
sums) in Z except i[y.y) is denoted as 7. Without loss of
generality, we assume j; < ja < --- < jm. The indices of
these queries are assigned by the index assignment process.
From the linear dependence of the messages (3), we have
wi, (x) =05, (yur () +- - vy (yur (), [€[l:m]  (12)

Note that uq(x) are assumed known, so wuq(*) could be
canceled (equivalently, we may set ui(*) to zero). Now we
show that ¢q is a linear function of the queries in Q.

< %m. We show that when wu; is

m+K71) — 1 queries in
m

— 1 queries contain an m-sum of

[2 : K] U Z[lm] (except Z[1m])

Z h(uj[1:m])Q(uj[1:m]) (13)
Jim €T
where the linear combining coefficients h(uy, ) are func-
tions of v;,,---,v; . The elements of the matrix V* £
(vg VT V;T) are shown below (the rows and columns
are labelled by corresponding messages).
Vo= (vip v, o Vi)
Uiy Wiy Wi,

U2 [Vi(2)  Viy(2) Vi (2)

U3 | Vi (3) Uiy (3) Vi (3)

UK \Vj(K) Viy(K) Vi (K)

In particular, h(uj,,, ) are specified as follows. Suppose
ljpizm) N[22 K| = t, where ¢ € [1 : m] and denote these ¢
elements as jj1.4 £ ji1.m)N[2 : K. Then 1) Nif1m)| = m—
t and denote these m— t elements as 1[1 m—t] = j[l m] ﬂz[l im)-
We further define 7; iy t] = (1] /z[l :m—t]» Where i3 < -+ <.
For example, suppose K = 5, m = 4, i[.p,) = {6,7,9,11}
and jii.m) = {2,4,6,11}. Then t = 2 because j.,,, and
[2 : K] have 2 common elements, i.e., jji.q = {2,4}. The
common elements of jy.,,,) and djy.p,) are ify.p—y = {6, 11}
and the remaining elements in i[y.,,) are g[l:t] ={7,9}.

We are now ready to give h(uyp, ). h(ujp,,,, ) is equal to
the determinant of the ¢ x ¢ square matrix obtained as the sub-
matrix of V* where the rows correspond to messages u;

J[1:t]
and the columns correspond to messages LA
hlt,g) = (1) Ermr Q0 (/201
16 VG Vi (1)
2) %@ %@ (14)

YiiGo VG

2Type refers to the set of message indices that appear in a query. For
example, the type of q(ui[l:m,]) is {i1,42, ,im}.
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where Q(i,) is defined as the position'® of , in the lexi-
cographic ordering of the elements of i[;.,,. For example,
SUPPOSE i[1.y,] = {4,6,7,9}. Then if 4, = 6, then Q(z,a) = 2.
Similarly, if fr =0, then Q(Z,,) =4.

Let us verify that (13) holds. In (13), (m;[fl_ ") distinct
symbol indices appear, and each of those symbol indices is
assigned to K' message variables. Pick any m — 1 messages
from the m + K — 1 messages uz, say ua,.,, _,,» Where oy <
<y <K < a1 < oo < Q1,0 € [0 : K—].] The
same index (denoted by #) is assigned to the variables

uI/ua[1:m—1] £ UB. k) (15)
where 01 < -+ < fg_1—+ < K < fg—¢ < -+ < Bg. From
(15), we have

[2: K]

Ag1:m—1] U Bk —t:K] = U[1:m)

(16)
a7)

g U Bk —1-4 =

The K variables ug, ., (#) appear in the following K queries.

aQ £ Q(ua[1:m,—1]uﬁz)a lell: K] (18)

We show that for any m — 1 distinct indices 1., 1) in Z,
(13) holds for the K variables ug, ., (#). Using (12), we write
ugy,, ., (#) as linear combinations of up. k] (#). Next we prove
that (13) holds for w, (#),Vn € [2 : K]. Define

V = [Vijle+1)x+1)

UBk —+(n) VB —t41(m) VB (n)
UBk—i(c1)  UBk—t41(ar) Uk (a1)

£ | U8r—i(az) UBr—ti1(az) VB (az) (19)
UBk—t(ar)  UBk—tq1(an) UBk (at)

and the minor of V (the determinant of the submatrix formed
by deleting the i-th row and j-column) is denoted by M, ;.
Note that ;1 1.m—1] U Bl —t:K] = i[1:K]> SO

{Qa41) U U Q(am—1) UQ(Br—¢) U -+ Q(BK) }
={Q@)U---UQUg)}=1[1: K] (20)
and

A, (0)=t+Q(By)—(r—(K—t)), Vre[K—t:K]
(2D

We now consider two cases for 7.
Case 1: 1 € o). In this case, u,(#) variables come from
UB .y (#)- (13) boils down to

3The variable 2 is introduced to specify the signs of h(u; L) (refer to
(14)) so that the signs match the terms from the expansion of the (ieterminant
of sub-matrices of V* (e.g., refer to (23) and (38)), which is required for the
proof of redundancy.
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K
Ay r)+1
(}j h(Uag, us,) % (—1)3uer @) %-(n))
‘.

=K—t
X up(#)=0
— UBK_t(n)(_l)AuﬁKft (gr—t)+1
x (—1)Zin e AB)—UBr—) (=D /24

(gr—t+1)+1

(22)

A’U/

F Vg () (—1) R

3 (= 1) Skt B = UBre ) +E=D /24 g o

+ Uy (—1) r T

X (—1) T r—e AB)=RBROFE=D/24 =

(23)

Vg (M1 — Vi (M2

+ (—1)t+20[3K(n)M1’t+1 =0
= ViiMyg—VigMig- -+ (=1)"2Vi i My

(24)

(25)

where (24) follows from the observation that consecutive terms
in (23) have alternating signs, proved as follows. For any
re[lK—t: K-1],

(= 1)2ue, (@ (L) S ke 280 =08 +1(0-1) /241
(:1) (_1)t+Q[;'T7(7’7(K7t))+1

X (—1) ez r—r UB) =B H(=1) /241

— 1)t = EO) L () B QB+t 1) /241

= (1) x (_1)t+ﬂ(ﬂr+1)—(r+1—(K—t))+1

% (_1)Z§=K,tQ(ﬁs)—ﬂ(ﬁr+1)+t(t—1>/2+1

(

x (—1) g (AT

x (—1)Zeer—t AB)=QUBrs1) +H(t-1) /241 (26)

(25) is due to the fact that n € 1.4, so 'V has two identical
rows and its determinant is 0.

Case 2: ) € Bj1.x—1—4- In this case, u,(#) variables come
from uﬂ[K—t:K]Un(#)' If Q1:m—1] N [2 : K] £ (0, (13) boils
down to

Auy, (g(uary,,, _;un))+1
(h(um[m_n(—l) (@einyyon))

K
Ay (qr)+1
+ 2 AlHaggus) X (ST %(n))

r=K-—t
Xty (#) = 0 @7)
— V|- V] =0 (28)

where the second term of (28) follows from (25) and the ‘—’
sign in (28) is due to the fact that in (27), the sign of the first
term is different from the sign of the second term, proved as
follows.

(—1) 2 (g o)+ () B (@ o))+
x (—1) K QBs)HH(t+1) /241

= (_1) X (_1)t+9(5;<_f,)+1
X (—1)25:K—t+1 Q(Bs)+t(t—1)/2+1

B (—1) x (—1) o (Ot
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X (_1)Z§:K—t+1 Q(Bs)+t(t—1)/2+1 (29)

Note that in the first line, the first (—l)A“" (@®aqy,p_yyun))+1

term is to account for the different ordering of the vectors in
V that appear in defining A(uyuay.,,_,))-

Otherwise, if ai.;m—1)N[2: K| =0, i.e., a[1:m—1) C i[1:m]s
we have t = 0 and (13) boils down to

(_1)AuﬂK (gr)+1

UBk (n)
= Dty (=1) 20 @ H L 30)
— (_1)W(5K)+1UBK(U) = h(uWU(yu;mq]) (3D

where (31) follows from A, (qK) = w(ﬁK) as in
gr, the messages are ug, U u(y[l 1] Wipy.,,y» and
Ay, (q(uag,,,_yun) = 1asn < K < ag. Note that (31)
is the definition of A(uyuay,,,_,,) (see (14)). Therefore the
proof is complete.

Example 1 (Continued): Consider the query in Group 2,
dj,o — €jo + fis. We show that it is a function of the 9 queries
in Group 1, when the desired variables (a.) are set to zero.

djlo — €jy T+ fjs
—_ _|Y(2) Us(2) o .
= Us3) Ue(3) (bjs — ¢j +djy)
Va(2)  Ve(2) L .
+ Vi) Ve(s) (bje — cjs +€5,)
_ | Y42y Us(2) . .
Vi) Us(s) (bjr — cju + fi1)
+v6(2) (bjs — djs +€5,) — Vs(2) (bjo — djy + [4,)
+ V4(2) (bjlo — €y + fj3) + Vg (3) (ng - djﬁ + ej5)
—053) (¢jo — djr + [i5) + vaz) (¢jio — €57 + fis)

Example 2: Let us include another example, where K = 4,
M = 8. Consider Block m = 3 and the desired message index
0 = 1. The queries that do not involve uy are divided into
Group 1 (where us,us or uy appears) and Group 2 (where
none of usg,us,us appears). Consider a query in Group 2,
g0 = q(us63), i.e., i1 ="5,ip = 6,i3 = 8 When u, is known,
qo is a function of the following (3+§71) — 1 = 19 queries.
Here T ={2,3,4,5,6,8}.

Q= {Q(u2,3,4) q(u2,35),q(u2,36),q(u2,338),q(uz,45),
Q(U2,4,6) q(u2,4,8),q(U2,5, 6) qu2,5 8)7 Q(U2 6 8)
(J(u3,4,5) (u3 4 6)7 Q(u3,4,8) (U3 5, 6); Q(U3 5, 8)
q(us,6,8),q(uas56),q(uas,8), q(uae 8)} (32)

The linear combining coefficients in (13) are designed follow-
ing (14). Let us verify (13) for the symbols with a particular
index value, #. To this end, let us pick the m —1 = 2
message indices an = 3,aa = 4 (note that {3,4} C I).
As ag = 4 < K = 4, we have t = 2. The variables with index
# are from ug, us, ug, ug (from the difference set of T and
{a1,a2}), so that we have 31 = 2,3, = 5,03 = 6,04 = 8.
These 4 variables appear in queries

q1 = Q(U2,3,4), q2 = (J(UJ3,4,5)7

q3 = q(usa6), qa = q(usag). (33)
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We can write us(#), ug(#),us(#) as a linear combination
of ua(#),us(#), us(#) after ui(#) is eliminated, or equiv-
alently, set to zero. Next we show that (13) holds for us(#).
In this case, n = 3 and n C {a1, a2} = {3,4}, so we are in
Case 1. We want to show the following.

(h(u3,4,5) x (—1)Aus(a(uaas))tly, o
+h(u3,476) X (—1)A“'6(q(u3’4’6))+1’U6(3)
+ h(’U,g,478) % (—1)A“'8(q(u3’4’8))+1vg(3))u?,(#)

S (34)
= h(u3,4,5)v5(3) + h(u3,4,6)6(3) + h(u3,4,8)vs(3)
-0 (35)

Note that A, (q(us.a5)) is related to Q(5). We now find
h(usa5). Referring to (14), we have

J1=3, jo=4, js=5 =3, ja=4 (36)
i=5, i1=6, =8, Q6)=2 Q@)=
(37)
Al — (_1)Q6)+Q(8)+2x1/2+1 Ug(3) Us(3)
(aae) = (21 U6(4)  Us(a)
_ _|Ye(3) Us(3) (38)
Us(4) V8(4)
Similarly,
— | V53 Us(3)
h(u = ,
(s.10) Us(4)  Us(4)
— _ |3 Ys(3)
h = — . 39
(u3,4,6) Vst Vs (39)
Therefore (35) is equivalent to
_|Y63) U8@3) vs 5(3) 8(3) | 4
vswy vsay | P T osqa) s | O
Us(3)  Ue@3) |,
Usa) Vo) | O
Us(3) Ve(3) Vs(3)
= —|U53) Ve3) Vs3)|=0 (40)
Us(4) Ve(4) Vs(4)

and thus (35) holds. For the other case (Case 2), we show
that (13) holds for uz(#), i.e, n =2 and n = (1 = 2. In this
case, we want to show

(h(UQ 3,4) X (—1)Au2(q(u2,3,4))+1

+h(u345) (- 1)Au5(Q(’u3,4,5))+1U5(2)
+ h(uza6) X (— 1)Au6(Q(’u3,4,6))+1vﬁ(2)
+ h(usa,8) X (— 1)A“'8(q(":"4*8))+1vg(2)) X g (#)
=0 (41)
<= h(u23.4) + h(us,a,5)vs02) + h(us,4,6)V62)
+h(u34,8)vg2) =0 (42)

Following the definition of h(uz,3.4) (refer to (14)), we find
that

Us(2) Ve(2) V8(2)

h(uz3.4) = |Vs3)  Vs3) Vs(3)

Us(4) Ve(4) V8(4)

(43)
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Then (42) is equivalent to

U5(2) Us(2) Us(2) Us(2)  Us(2) Ug(2)
Us3)  Us3) Us3) | — |Vs@3) Ve) Us)| =0 (44)
Us(4) UVs(4) Us(4) Us(4) Us(4) Usg(4)

and thus (42) holds. Let us consider another index (#') where
a1 =5,a9 =6, ie, oy > K =4 and t = 0. The index #'
is assigned to variables from us,us3, ug,u7 (61 = 2,02 =
3,03 = 4,04 =T) in queries

q1 = Q(U2,5,6), q2 = Q(u3,5,6)7

q3 = q(uase), qa = q(user) (45)

After writing every variable in terms of us,us,us (uy terms
are set to zero because they are known and can be removed),
we show that (13) holds for us(#'), us(#'), us(#'). Note that
no matter which variable we pick, say us(#'), ie, n = 4,
n € {2,3,4} = {B1, B2, B3} Further {a1,a2}N{2,3,4} = 0.
In this case, we want to show

(_1)Au7(qs,6,7)+1v7(4)u4(#l)
_ h(u47575)(_1)Au'4 (q(u4,5,6)+1u4(#/)

< Ur@4) = h(ua,5,6)

(46)
(47)

which matches the definition of h(uasc) (see (14)) thus
holds.

The proof for arbitrary 6 # 1 follows similarly. Since the
first K of the M linear combinations are linearly independent
(in fact, they are the K independent datasets), there exist K —1
messages from u(i.x) (denoted as uy, ., T2:x] C [1 @ KJ)
such that up U uy, ,, are independent. Similarly, consider
the m-sum queries that do not involve the desired message
ug, which are further divided into two groups, depending
on whether at least one element from w,, ., is involved
(Group 1) or not (Group 2). We show that any query go =
q(Wify )5 i1:m) N (O UTa.7) = 0 in Group 2 is a function of
the queries in Group 1. gg exists as m < M — K. The symbol
indices in gy are assigned by the index assignment process.
By a change of basis, we express each variable as a linear
combination of ug U uy, . Then we show that g is a linear
combination of the queries q(u;,,, ), where jji.,,) € 7', and
T is the set of all possible m distinct indices in 72, ] Ui[1:m]
€xcept i[.m,). The rest of the proof, where we design the
linear combining coefficients and show the linear combination
holds, is identical to the case of # = 1 (by an invertible
mapping from 7(2.x) to [2 : K, and between i[;.,, of the two
cases).

Example 3: We give an example where 0 # 1. Assume
K = 3 datasets, M = 6 messages, 0 = 5, and denote
symbols uy,us, -+ ,ug by distinct letters a,b,--- , f, respec-
tively. Consider Block m = 2. There exists two messages in
a, b, ¢ (assume without loss of generality, a,b) such that a,b, e
are independent. The queries that do not involve the desired
message e are shown below. The queries are divided into
Group 1 (where a or b appears) and Group 2 (where none
of a,b appears).
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Group 1 aj, —bj,
Ajs — Cjy
Ajy dj1
Ajs fj1
bjz — Cjy
bj4 - djz
L b
Group 2 cj, — dj,
Cjs — fia
djs — [is

We express c,d, f as a linear combination of a,b, e (note that
a, b, e are linearly independent). Assume

C = U¢(a)@ + Uc(b)b + Ve(e)€ (48)
d= Vd(a)@ + vd(b)b + Vg(e)e (49)
F=vp@at+vmb+upee (50)

The queries in Group 2 are functions of the queries in Group
1. For example, consider c;, — f;,. When e, are set to zero,
we have

Uc(a) Vf(a)
Ueb)  Vf(b)
— Uf(a) (ajs - le) + Ve(a) (aj5 - fjl)
=0y (bjs =€) + ve) (bjs — fin)

Cjs — fjg = - (a’j2 - b]l)

(51

where the linear combining coefficients are determined by the
following matrix.

¢ f
a (Ua(a) Uf<a>>
b \vew) s
For example, for aj, — c;,, from (14), the linear coefficient is
(D> 0pa) = =0(a).

C. Proof of Optimality for Arbitrary K, M, N

The proof of optimality when N > 2 follows from that
when NV = 2. The query structure of any query vertex at level
m for arbitrary IV is identical to the structure of a query vertex
at level m for the N = 2 setting. From the observations listed
in Section IV-A.2, recall that for any N > 2, the queries
from each server in block m are made up of (N — 1)m~1!
query vertices. Also let us recall from Lemma 1 that when
N = 2, for each server there are (" ~*) redundant symbols
within each level m query vertex, m € [1 : M — K].
Therefore, when N > 2, there are (N — 1)m*1(M_K)

redundant symbols in block m, and it suffices to download

only N (Z%ZI(N —1)m-t ((%) - (M;LK)>) symbols in
total from all N servers. The rate achieved is'*

M
R = N (52)

N (S = 1m0 = (M2

14The message size L for our capacity achieving scheme is N, which
increases with M (note that this is in contrast to the capacity, which does not
depend on M). Generalizations of the private computation problem to include
finite message size constraints along the lines of [15] remain an interesting
direction for future work.
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NM
T N x 5 (NM — NM-K)
N-1 NE
=N NF_1 (53)
-1
1 1
=(1+N+"'+W> (54)

which matches the capacity of private computation. The opti-
mality proof is therefore complete.

VI. PROOF OF PRIVACY OF PC
A. Proof of Privacy for Example A

To see why this scheme is private, we show that the queries
are identically distributed, regardless of the value of 6. To this
end, we show that the query for § = 2,3, 4 has a one-to-one
mapping to the query for = 1, respectively, through a choice
of permutation = and signs o; which is made privately and
uniformly by the user.

For example, for Server 1 and Server 2, the query for § = 2
can be converted into the query for § = 1 by the following
mapping:

Server 1: (3,2,7,9,10,8,15,14,—0’6,—0'12,—0'13)
— (2,3,9,7,8,10,14,15,0’5,0’12,0’13)

Server 2:  (6,1,12,4,13,5,16,11, —03, —09, —010)
(1,6,4,12,5,13,11,16, 03,09, 010)

—

However, these mappings are privately generated by the user
and both alternatives are equally likely regardless of desired
message. Hence, these queries are indistinguishable.

We can similarly verify that the other remaining queries
for § = 3,4, are indistinguishable as well. For Server 1 and
Server 2, the query for # = 3 can be converted into the query
for 6 = 1 by the following mapping:

Server 11 (3,4,2,7,6,9,10,11,8, —0s, 14, 13, 15, —012)
— (2,3,4,9,7,6,8,10,11, 011, 15, 14, 13, 1)
Server 2:  (7,6,1,4,3,12,14,13,5, —05,11,10,16, —09)
—  (6,1,7,12,4,3,13,5,14, 514,16, 11, 10, oo)

The last case is when 6 = 4. The mapping from that to § = 1
is as follows.
Server 1:  (3,4,5,2,6,7,8,9,10,11,14, 13,12, 15)
— (2,3,4,5,8,10,11,6,7,9,15,14,13,12)
(6,7,8,1,3,4,5,12,13,14,11,10,9, 16)
(1,6,7,8,5,13,14,3,4,12,16,11,10,9)

Server 2:

—

Again, since these mappings are privately generated by the
user and both alternatives are equally likely regardless of
desired message, these queries are indistinguishable. Thus all
queries are indistinguishable and the scheme is private.

B. Proof of Privacy for Arbitrary K, M, N

We prove that PC' is private. We know that PIR2 is private
and PC is obtained from PIR2 by the sign assignment.
Therefore it suffices to show that the sign assignment does not
destroy privacy, i.e., @(n, ‘0’) still has a one-to-one mapping
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to Q(n, ‘1”) by a choice of permutation 7 and signs o; which
is made by the user privately and uniformly.

The one-to-one mapping is quite simple. Note that each
query in Q(n, ‘1’) has alternating signs. Consider Q(n, ‘0).
We only need to consider the non-desired symbols in queries
introduced by Exploit-SI (so ug is involved). The reason is
that the signs of the desired symbols introduced by Exploit-
SI and the other queries introduced by M-Sym are the same
as the signs of the queries in Q(n, ‘1°).!> These queries all
satisfy that Ay, > 0. Now to map Q(n, ‘0’) to Q(n, ‘1°), for
each block, we flip the signs (i.e., replace o; with —g;) of
variables to the right of ug in queries from sub-blocks S if .S
is odd, and the signs of variables to the left of uy in queries
from sub-blocks S if S is even.

Example 4: We accompany the general proof with a concrete
example to explain the idea. Consider M = 6 (messages),
block m = 4, desired message index 0 = 4. For simplicity,
we denote ui,us, - ,ug by a,b,--- | f. In Block B =m =
4, we have (ij) = 10 queries introduced by Exploit-SI
(contains d) as follows. The signs that need to be flipped are
colored in red.

=4

B | S(Ay) Server n

4 1(4) QAjs — bjz +¢j, — d.
2(3) 7a’j6+bj3 +d, — €41
2(3) 7aj7+bj4 + (/ — fjl
2(3) —jstCj5 + dy — €z
2(3) —@jytCj, + dy — sz
2(3) | —bjstcis +de —ejg
2(3) *bjg +cj, + d, — fjs
3(2) Ajro — (/1’7ej4+fj3
3(2) bjlo —d, 7ej7+fje
3(2) Cjro — ds 7ej9+fj8

Note that o; appears in all message variables with symbol
index ¢, so o; might be flipped multiple times and we need to
make sure that o; is flipped consistently, i.e., the sign flipping
rule either changes or does not change the signs of all variables
with the same index. This is indeed true, proved as follows.
Note that we flip the signs depending on whether the sub-block
index is even or odd and if the variables are to the left or right
of ugy. This means, for variables in two consecutive sub-blocks,
the variables to the left of ug in one sub-block and the variables
to the right of ug in the other sub-block are simultaneously
flipped or unflipped. So it suffices to show that all variables
with the same index are

o either in the same sub-block, and all are on the same side
of wy,

e or in two consecutive sub-blocks, but are on different
sides of wuy.

I5Note that the indices of the non-desired symbols introduced by Exploit-
SI do not appear in the queries introduced by M-Sym. The reason is seen as
follows. Consider a symbol u;, ¢ # 6 that appears in a query introduced by
Exploit-SI (denote the query by g, so ug appears in g) and suppose the index
of u; is j (i.e., we have u;(j)). Now from index assignment, symbols with
index 7 all appear in terms that contain ug (thus these terms are all generated
by Exploit-SI).
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Example 4 (Continued): Referring to the table above, con-
sider all variables with index ji, i.e., cj ,ej,, fj,. ¢j is in
sub-block 1 and is to the left of d. e;,, f;, are in sub-block 2
and are to the right of d. Further, the signs of c;,,e;,, [, are
all unflipped. As another example, consider all variables with
index jyo, i.e., aj,,,bj,,,Cj,. They are all in sub-block 3 and
their signs are all unflipped. One more example: all variables
with index je, Gjs,Cjs fis- Gjss Cjs are in sub-block 2 and are
to the left of d. fj, is in sub-block 3 and is to the right of d.
The signs of ajs, Cjs, fijs all need to be flipped.

We now find variables with the same symbol index, say #.
From index assignment, we know that all occurrences of
symbol index # are in queries that contain the same m — 1
(distinct) variables (ug included). Suppose the message indices
of these m — 1 variables are i[;.,,, U0, and let the remaining
M — (m — 1) message indices be denoted by 7[1.17—(m—1)]-
Assume that 71 < ig--- < i; <ug < Ujp1--- < U, ,. Then
the symbol index # appears in queries

ium(#) Zl:’u“() +--- :l:UZJ() + (/(;() :l:uij+1()

4+ ...+ Ui, ()
Fup () Fug, () o) Tug,, ) £ Fug,, ()
+ UTM (m—1) (#) (55)

3

where =+ represents either ‘4’ or ‘—’, determined by sign
assignment. These M — (m — 1) variables u,,,l € [1
M — (m — 1)] can be divided into two sets (one set could
be empty), where

« the first set are those u,, where r; < 0
« and the second set are those u,, where r; > 6

So the variables in the first set are to the left of ug and the
variables in the second set are to the right of wug. Further,
the two sets are in consecutive sub-blocks because A,, only
differs by 1. Therefore the sign flipping rule is consistent and
the privacy proof is complete.

Example 4 (Continued): Suppose we want to find all vari-
ables with index # = j1. They appear in queries that contain
a,b,d. The queries in (55) are

QAjs — bj2 + ¢y — d
—aj6+bj3 +d. — e,jl
—aj; +bj4 +d. — fjl

The 3 variables with index # = ji are cj,,¢€;,, fj, (colored
in blue). The first set contains cj, (< d) (in sub-block 1) and
the second set contains ej,, f;,(> d) (in sub-block 2). As
another example, suppose we want to find all variables with
index # = j10. The queries in (55) are

Ajyy — s _ej4+fj3
bjlu —d _ej7+fj6
Cji0o — (/*76]‘9+fj8

The 3 variables with index # = j10 are aj,,, b0, Cjro (< d).
They all belong to the first set (sub-block 3). One more
example: find all variables with index # = jg. The queries
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in (55) are

7aj6+bj3 +d. — €41
_bjs +ejo + di — e
bjlo —d _ej7+fj6

The 3 variables with index # = j¢ are ajg, Cjs, fis. The first
set contains ajg, ¢j, (< d) (in sub-block 2) and the second set
contains fj,(> d) (in sub-block 3).

VII. CONCLUSION

Motivated by privacy concerns in distributed computing,
we introduce the private computation problem where a user
wishes to compute a desired function of datasets stored at
distributed servers without disclosing any information about
the function that he wishes to compute to any individual
server. The private computation problem may be seen as a
generalization of the PIR problem by allowing dependencies
among messages. We characterize in Theorem 1 the capacity
of private computation for arbitrary N servers, arbitrary K
independent datasets, and arbitrary M linear combinations
of the K independent datasets as the possible functions.
Surprisingly, this capacity turns out to be identical to the
capacity of PIR with N servers and K independent messages.
Thus, there is no loss in capacity from the expansion of
possible messages to include arbitrary linear combinations.

Going beyond linear-combinations, we show in Theorem 2
that in the asymptotic limit where the number of independent
datasets K — oo, the capacity of private computation is
not affected by allowing non-linear functions into the set of
functions that may be computed by the user, provided the
symbol-wise entropy of each of these functions is no more
than the entropy of a symbol from a dataset.

In the non-asymptotic regime, the capacity of private com-
putation with arbitrary (non-linear) functions is an interesting
direction for future work. Along these lines, let us conclude
with the following two observations. The first observation
is a general achievability argument for private computation.
Consider the most general setting, where we allow the M
messages to be arbitrarily dependent and even the entropies of
the message symbols are allowed to be different for different
messages. Suppose each message W,,, m € [1 : M] is made
of L symbols W,,, = (Wi1, Wi 2, -+, Win,r). While the
messages may have arbitrary dependencies, the sequence of
symbols is generated i.i.d. in [, ie., for all [ € [1 : L],

the symbols (Wi, Way, -, Wary) ~ (w1, we, -, war).

We have
H(W17"')WM):LH(U}1)"')wJW) (56)
H(W,,) = LH(wy,), me[l:M] (57)

Symbols from different messages may not have the same
entropy, i.e., we allow the possibility that H(w;) # H(w;).
In this general setting, the private computation rate of R =
I}{I"—;(l — ) is always achievable, (although not optimal in
general) where Hpax = max(H(w1), H(ws), -, H(war))
and Hyin = min(H (wy), H(we), -, H(war)). Just like the
achievability argument for Theorem 2, the general achievabil-
ity claim follows essentially from [8]. For example, suppose
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N = 2. First we compress each message separately into Hax
bits per message symbol. This is possible because ¥m € [1 :
M), H(wy,) < Hpax. Then, in order to retrieve the i‘" bit of
the compressed desired message, W, i the user requests from
Server 1, the linear combination Z —1 mWm; and from
Server 2, the linear combination Z m—1 CmWm i+Wa i, where
¢ are i.i.d. uniform binary coefficients generated privately by
the user and all operations are over Fy. Adding the answers
received from the two servers, allows the user to recover Wy ;.
The total number of bits downloaded is 2H,,.x, while the
number of desired bits retrieved is at least H,,;,. Thus, the rate

; ; Hwmin _—  Hmin _
achieved is at least 57 = (1-%) for N 2.

max max

Similarly, following the approach of [8], the rate in (] — %)
is achieved for arbitrary N.

The second observation is the capacity characterization for
an elemental case where we have M = 2 arbitrarily correlated
messages and N servers. Again consider the general setting
with arbitrary dependencies and without loss of generality,
suppose H(wy) > H(ws). In this case, the capacity is C' =

NH(w2)
H(w1 ,w2)+(N71)H(w1) *

The converse is proved as follows. From Fano’s inequality,
we have

LH(wl)
D o) (58)
7
= H(A],- A“H@“] Q)
—HAY, - AP, QY QB + o)
(61)
(6)
< D—HATW, QY. QW) + (L) (62)
= D—HA W, Q) +o(L) (63)
2 p— HAP WL, QP) + oD (64)
where (63) follows from that H( |W Qm QE\I,]) =
H(A[ll] |Wrh, Q[ll]), proved as follows.
I(A[11]7 [21]7 7QE%T]|W17Q[11])
S I(A[11]7W27 [21]7 7QE%T]|W17Q[11]) (65)
= I Q5. QK Q1Y)
+1(AM QY QW w, Q) (66)
5
1wl QY. Q) (67)
< I(Wo, Wi Q4 QIR (68)
< I(Wo, W13 QY-+, QW) (69)
@y (70)
By a similar argument, we have
1(AP; QY- wh, Q) =0
(71)
I(ALZ]7 [2] . Q[Q]van-f—lv"' [2]|W Q[Q]) -0
(72)
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Next, from (64), by symmetry, we have

LH(wy) < D — HAPW,, Q) +o(L), Yne[2:N]
(73)
Adding (64) and (73) for all n € [2: N], we have
NLH(wi) + o(L)
N
< ND =Y H(AP Wy, Qi) (74)
n=1
(T1)(72) al
EYND - ST HAP W, QY QR a5)
n=1

< ND—H(AP, - AQw, QP ,Q%)  (76)

7

(:)N (A[12]a"'7 N7W2|W17Q12]a"'7QE37])
(77

< ND — HWo|W1, Q.- QR (78)

Y ND — HWuW) (79)

GSL5D D — LH (wswn) (80)

H
< lim LH(ws) 81)
L—oo % (NLH(w1) + LH(wa|wy) + o(L))
_ NH(’LUQ) (82)

H(wi,w2) + (N — 1)H(w1)
The converse proof is thus complete.

The achievability is based on PIR2. Consider N2 symbols
of each message at a time. The user privately generates a
random permutation over [1 : N2|, and applies the same
permutation to both messages, taken N? symbols at a time.
Denote this random permutation of the N2 symbols from
Wi as aj,aq,--- Similarly, the corresponding ran-
dom permutation of the N 2 symbols from W5 is denoted
as by, by Note that only symbols with the same
index are correlated. Without loss of generality, suppose

W is desired, and consider the queries generated according
to PIR2.

,aAN2.

NNER

0=2
Server 1 Server 2 Server N
al;bl (12,[)2 aNabN
as + by ay + bon a1 +bn2_nyo
an +ban_1 | ay +b3n_2 an—1+ by

In order to send (a1, b1), Server 1 needs only H (wy,ws) bits.
Note that optimal compression requires long sequences, so the
scheme operates over LN symbols each of W, and W, for
large L, so that a1 is a sequence of L symbols from W7, and
by is the corresponding sequence of L symbols from Wy, and
optimal compression is possible as L — oo. Thus, for (a1, b1)
the server sends LH (wy,ws) + o(L) bits. For az + by41,
the key is that the server first compresses the L symbols of as,
and the L symbols of by 1, separately, each into LH (wy) +
o(L) bits. This is possible because H (w1) > H(ws). And then
the server sends the sum of the compressed bits, for a total of
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LH (w1)+o(L) bits. Each 2-sum a+b is compressed similarly.
Thus, the total download from Server 1 is LH(wi,w2) +
L(N — 1)H(w1) + o(L) bits. The total download from all
servers is N times that number of bits. The total number
of desired bits retrieved is LN?H (ws). Therefore, the rate
achieved is limy, oo LN2H (wg)/N(LH (wy,ws) + L(N —
1)H(w)+o0(L)) = NH(ws)/(H(wy, we) + (N — 1) H (wy)),
and the capacity for this case is settled. Finding the capacity
for 3 or more dependent messages with arbitrary dependencies
is the next immediate open problem for future work.
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