
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 9, SEPTEMBER 2019 5783

Cross Subspace Alignment and the Asymptotic

Capacity of X -Secure T -Private

Information Retrieval
Zhuqing Jia , Student Member, IEEE, Hua Sun , Member, IEEE, and Syed Ali Jafar , Fellow, IEEE

Abstract— X-secure and T -private information retrieval
(XSTPIR) is a form of private information retrieval where data
security is guaranteed against collusion among up to X servers
and the user’s privacy is guaranteed against collusion among
up to T servers. The capacity of XSTPIR is characterized
for an arbitrary number of servers N and arbitrary security
and privacy thresholds X and T , in the limit as the number
of messages K → ∞. Capacity is also characterized for any
number of messages if either N = 3, X = T = 1 or if
N ≤ X +T . Insights are drawn from these results, about aligning
versus decoding noise, dependence of PIR rate on field size,
and robustness to symmetric security constraints. In particular,
the idea of cross subspace alignment, i.e., introducing a subspace
dependence between Reed–Solomon code parameters, emerges as
the optimal way to align undesired terms while keeping desired
terms resolvable.

Index Terms— Capacity, security, privacy, distributed storage.

I. INTRODUCTION

M
OTIVATED by the importance of security and privacy

in the era of big data and distributed storage, in this

work we explore the information theoretic capacity of private

information retrieval (PIR) in a secure distributed storage sys-

tem. Specifically, our focus is on the X-secure and T -private

information retrieval problem (XSTPIR). A PIR scheme is said

to be T -private if it allows a user to retrieve a desired message

from a database of K messages stored at N distributed servers,

without revealing any information about the identity of the

desired message to any group of up to T colluding servers.

Similarly, a distributed storage scheme is said to be X-secure1

if it guarantees that any group of up to X colluding servers
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1In other words, everything that is stored at any X servers must be

independent of the K messages. Besides X-security, no other constraints are
imposed on the storage. The storage and the PIR scheme are jointly optimized
to maximize the capacity of XSTPIR.

learn nothing about the stored data. The T and X parameters

may be chosen arbitrarily depending on the relative importance

of security and privacy for any given application.

The rate of a PIR scheme is the ratio of the number of bits

retrieved by the user to the total number of bits downloaded

from all servers. The supremum of achievable rates is called

the capacity of PIR. The capacity of the basic PIR setting was

found in [1] to be

CPIR(N, K ) = (1 + 1/N + 1/N2 + · · · + 1/N K−1)−1. (1)

The result was generalized subsequently in [2] to the T -PIR

setting, as

CTPIR(N, K , T )

=







(

1 + T/N + T 2/N2 + · · · + T K−1/N K−1
)−1

,

T < N

1/K , T ≥ N.

(2)

Further generalizations of T -privacy, e.g., when privacy

is required only against certain specified collusion

patterns [3], [4] have also been explored. In particular,

capacity is known for disjoint colluding sets [4].

The rapidly growing body of literature in this area has

produced capacity results for PIR under a rich variety of

constraints [5]–[20]. However, the capacity for the natural

setting of secure storage remains unknown, and relatively

unexplored. While a number of efforts are motivated by

security concerns, such efforts have focused largely on other

models, e.g., wiretap models where data security is desired

against eavesdroppers listening to the communication between

the user and the servers [21], [22], Byzantine models where

the servers may respond incorrectly by introducing erasures or

errors in their response to the user’s queries [23]–[27], and so

called symmetric security models [28]–[30] that allow the user

to learn nothing about the data besides his desired message.

An exception in this regard is the recent work in [31] where

PIR with distributed storage is explored and the asymptotic

(large K ) capacity for the X = T = 1 setting is bounded as
(

1 −
1

√
N

)2

≤ lim
K→∞

CXSTPIR(N, K , X = 1, T = 1)

≤
(

1 −
1

N

)

. (3)

As the main result of our work, we close this gap and char-

acterize the asymptotic capacity of XSTPIR for all N, X, T
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as follows.

lim
K→∞

CXSTPIR(N, K , X, T ) =

{

1 −
(

X+T
N

)

, N > X + T

0, N ≤ X + T .

(4)

The asymptotic capacity characterization leads us to supple-

mentary results which include a general upper bound on the

capacity of XSTPIR, the exact capacity characterization for

any number of messages K if N ≤ X + T , and the exact

capacity characterization for any K if X = T = 1, N = 3. The

results also lead us to interesting observations about aligning

versus decoding noise, dependence of PIR rate on field size,

robustness to symmetric security constraints, and a particularly

useful idea called cross subspace alignment. When privately

retrieving multiple symbols from a desired message in a secure

distributed storage system, the structure (say, 1,β,β2, · · · , for

one symbol and 1, γ , γ 2, · · · for another, as in Reed-Solomon

(RS) codes) of storage and queries for each symbol determines

the number of dimensions occupied by interference and the

resolvability of desired symbols. Choosing identical RS codes

(β = γ ) for each symbol of the same message would cause

desired signals to align among themselves, while making the

RS codes insufficiently dependent would cause interference

to occupy too many dimensions. Cross subspace alignment is

achieved by drawing the code parameters as linear combina-

tions from the same subspace (say, β = 1 + α, γ = 2 + α),

which turns out to be the optimal way to align interference

while keeping desired symbols resolvable. For a summary of

results and a better explanation of the main observations we

refer the reader directly to Section III.

Let us start by defining our notation.

Notation: Let [m : n] denote the set {m, m + 1, . . . , n}

for any two integers m, n such that m ≤ n. For sake of

simplicity, let X[m:n] denote the set of random variables

{Xm, Xm+1, . . . , Xn}. For an index set I = {i1, i2, . . . , in}, let

XI denote the set {X i1 , X i2 , . . . , X in }. For variables an, n ∈
[1 : N] and an arbitrary function f (·), we denote the N × 1

vector whose nth term is f (an), as
−−→
f (a). Similarly,

−−→
g(b)

denotes the vector (g(b1), · · · , g(bn))
T for variables bn, n ∈

[1 : N] and a function g(·). For such N × 1 vectors
−−→
f (a) and−−→

g(b), let
−−→
f (a) ◦

−−→
g(b) denote their Hadamard product, i.e., the

N × 1 vector whose nth term is f (an) × g(bn). The notation

X ∼ Y is used to indicate that X and Y are identically

distributed. When a natural number, say $ ∈ N, is used to

represent an element of a finite field Fq , it denotes the sum

of $ ones in Fq , i.e., $ is identified2 with
∑$

l=1 1, where the

addition is over Fq .

II. XSTPIR: PROBLEM STATEMENT

Consider data that is stored at N distributed servers. The

data consists of K independent messages, W1, W2, · · · , WK ,

2Recall that q = pn for some prime p and integer n ≥ 1, and the elements
of Fq are the polynomials over Fp whose degree is strictly less than n. The
natural number $ represents a polynomial of degree 0, i.e., simply an element
of Fp . Recall that elements of Fp may be represented as integers modulo p.
Therefore, there are only p distinct values of $. The prime p is called the
characteristic of the field.

and each message is represented3 by L random symbols from

the finite field Fq .

H (W1) = H (W2) = · · · = H (WK ) = L, (5)

H (W1, W2, . . . , WK ) = K L, (6)

in q-ary units. There are N servers. The information stored

at the nth server is denoted by Sn, n ∈ [1 : N]. An X-

secure scheme, 0 ≤ X < N , guarantees that any X (or fewer)

colluding servers learn nothing about the data.

[X-Security] I (SX ; W1, . . . , WK ) = 0,

∀X ⊂ [1 : N], |X | = X. (7)

Besides X-security, we place no other constraint4 on the

amount of storage or the storage code used at each server,

all of which is jointly optimized to maximize the capacity of

XSTPIR. To ensure information retrieval is possible, note that

the set of messages W1, · · · , WK must be a function of S[1:N].

H (W1, · · · , WK | S[1:N]) = 0. (8)

The user generates a desired message index θ privately and

uniformly from [1 : K ]. In order to retrieve Wθ privately,

the user generates N queries, Q
[θ]
1 , Q

[θ]
2 , . . . , Q

[θ]
N . The query

Q
[θ]
n is sent to the nth server. The user has no prior knowledge

of the information stored at the servers, i.e.,

I (S[1:N]; Q
[θ]

[1:N], θ) = 0. (9)

T -privacy, 1 ≤ T ≤ N , guarantees that any T (or fewer)

colluding servers learn nothing about θ .

[T -Privacy] I (Q
[θ]

T
, ST ; θ) = 0, ∀T ⊂ [1 : N], |T | = T .

(10)

Upon receiving the query Q
[θ]
n , the nth server generates an

answering string A
[θ]
n , as a function of the query Q

[θ]
n and its

stored information Sn .

H (A[θ]
n |Q[θ]

n , Sn) = 0. (11)

From all the answers the user must be able to recover the

desired message Wθ ,

[Correctness] H (Wθ |A
[θ]
[1:N], Q

[θ]
[1:N], θ) = 0. (12)

The rate of an XSTPIR scheme characterizes how many

bits of desired message are retrieved per downloaded bit,

(equivalently, how many q-ary symbols of desired message

are retrieved per downloaded q-ary symbol),

R =
L

D
, (13)

3As usual for an information theoretic formulation, the actual size of each
message is allowed to approach infinity. The parameters L and q partition the
data into blocks and may be chosen freely by the coding scheme to match the
code dimensions. Since the coding scheme for a block can be repeated for
each successive block of data with no impact on rate, it suffices to consider
one block of data subject to optimization over L and q.

4The amount of storage at each server is not constrained a priori, however,
it is remarkable that none of the XSTPIR schemes in this work end up storing
more than K L symbols at each server. Thus the amount of storage used is not
worse than a data replication scheme in the absence of security constraints.
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where D is the expected value (with respect to the random

queries) of the number of q-ary symbols downloaded by

the user from all servers. The capacity of XSTPIR, denoted

CXSTPIR(N, K , X, T ), is the supremum of achievable rates.

Finally, note that setting X = 0 and T = 1 reduces the

XSTPIR problem to the basic PIR setting where data storage

is not secure and the user’s privacy is only guaranteed if

no collusion takes place among servers. Setting X = 0 for

arbitrary T , reduces XSTPIR to the T -PIR problem. Setting

T = 0 for arbitrary X reduces XSTPIR to an X-secure storage

scheme with no privacy constraint.

III. CAPACITY OF XSTPIR: RESULTS AND OBSERVATIONS

The results of this work are presented in this section,

followed by some observations.

A. Results

Our first result, presented in the following theorem, is an

upper bound on the capacity of XSTPIR.

Theorem 1:

CXSTPIR(N, K , X, T ) ≤
(

N − X

N

)

CTPIR(N − X, K , T ). (14)

The proof of Theorem 1 appears in Section IV. The intuition

behind Theorem 1 may be understood through a thought

experiment as follows. Without loss of generality, suppose

the expected number of bits downloaded from each server is

the same. Now, relax the constraints so that S[1:X ], i.e., the

stored information at the first X servers is made available

globally (to all servers and to the user) for free, the messages

W1, W2, · · · , WK are made available to all servers, and the

data-security constraint is eliminated. None of this can hurt

capacity because any XSTPIR scheme from before can still

be used with the relaxed constraints. So any upper bound

on capacity of this relaxed setting is still an upper bound

on the capacity of the original XSTPIR setting. The relaxed

setting is analogous to the T -PIR problem with K messages

and N − X servers, for which we already know the optimal

download per server from the existing capacity results for

T -PIR. Thus, the statement of Theorem 1 follows. However,

formalizing this intuition into a proof is not trivial because

of the correlated side-information generated at the user and

servers in the process of relaxing the constraints. Indeed,

the formal proof presented in Section IV takes a less direct

approach.

It turns out the bound in Theorem 1 is quite powerful.

In fact, we suspect that this bound might be tight in general.

An immediate observation is that if we set X = 0, i.e., remove

the data storage security constraint, then the bound is tight

because it gives us the capacity of T -PIR. Similarly, if we

set T = 0, i.e., the privacy constraint is removed, then the

bound is also tight, and the capacity in the absence of privacy

constraints is easily seen to be CXSTPIR(N, K , X, T = 0) =

1− X
N

, which is achievable by a simple secret-sharing scheme.

We further prove the tightness of this bound for the cases

identified in our next set of results. The first setting identifies a

somewhat degenerate extreme where it is optimal to download

everything.

Theorem 2: If N ≤ X + T , then5 for arbitrary K ,

CXSTPIR(N, K , X, T ) =

(
N − X

N

)

CTPIR(N − X, K , T ) (15)

=
N − X

N K
. (16)

The proof of Theorem 2 is presented in Section V. Since

the upper bound is already provided by Theorem 1, only a

proof of achievability is needed. Furthermore, since retrieving

the desired message in this setting amounts to downloading

everything stored at all servers regardless of which message is

desired, the only thing required for the achievable scheme is a

secure storage scheme, which is readily achieved by including

X uniformly random noise symbols for every N − X symbols

of each message.

Next, the main result of this paper is the asymptotic capacity

characterization presented in the following theorem.

Theorem 3: As the number of messages K → ∞, for

arbitrary N, X, T ,

lim
K→∞

CXSTPIR(N, K , X, T )

= lim
K→∞

(
N − X

N

)

CTPIR(N − X, K , T ) (17)

=







1 −
(

X+T
N

)

, N > X + T

0, N ≤ X + T .
(18)

The proof of Theorem 3 appears in Section VI. Theorem 3 is

significant for two reasons. First, asymptotic capacity results

are particularly relevant for PIR problems because the capacity

approaches its asymptotic value extremely quickly — the

gap is negligible even for moderate values of K , and K

is typically a large value. Second, the asymptotic capacity

result showcases a new idea, cross subspace alignment, that

is interesting by itself.

Insights from the asymptotically optimal scheme allow us to

settle the exact capacity of XSTPIR with X = T = 1, N = 3

and arbitrary K .

Theorem 4: If the number of servers, N = 3, and

X = T = 1, then for arbitrary number of messages, K ,

CXSTPIR(N = 3, K , X = 1, T = 1)

=

(
N − X

N

)

CTPIR(N − X, K , T ) (19)

=
2

3

(

1 +
1

2
+

1

22
+ · · · +

1

2K−1

)−1

. (20)

Theorem 4 is proved in Section VII. The capacity achieving

scheme introduces a new insight. For almost all PIR settings

studied so far, asymptotic capacity achieving schemes have

been found that send a uniformly random query vector to

each server and download a product of the query vector and

information stored at the server. Suppose the query vector

is uniform over FM
q . Then with probability 1/q M the query

5Note that N > X by definition.
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vector is all zero, and the scheme requests nothing from the

server. Typically M depends on the number of messages K .

As K approaches infinity the probability of requesting nothing

approaches zero, so this does not help in the asymptotic sense.

However, if the same scheme is used for finite K , then M is

also finite, 1/q M > 0, and the average download is reduced

by the factor (1−1/q M), which improves the achieved rate of

the scheme. It is remarkable that the rate achieved in this way

depends on the field size. This idea is essential to the capacity

achieving scheme for Theorem 4.

Next we present some observations that place our results in

perspective.

B. Observations

1) Alignment of Noise and Interference: Consider the sim-

plest non-trivial setting for XSTPIR, where X = 1, T = 1, and

the number of servers, N ≥ 3. A natural idea for providing

X = 1 secure storage is to include 1 independent uniformly

random noise symbol along with the L symbols of each

message, creating a new message with M = L + 1 symbols.

This new message is stored across N servers according to an

(N, M) MDS code, essentially storing a linear combination of

the M message symbols at each server, where the coefficients

for the noise symbol at each server must be non-zero. Capacity

is known for PIR with coded storage (MDS-PIR [5]), and one

might wonder if such an MDS-PIR scheme might suffice to

achieve capacity with secure storage. It is not difficult to see

that the best rate achievable with such an MDS-PIR scheme

is

RMDS-PIR =
M − 1

M

(

1 +

(
M

N

)

+ · · · +

(
M

N

)K−1
)−1

.

(21)

The M−1
M

penalty appears because one of the M symbols of the

decoded message is the noise symbol. As K → ∞, the rate

approaches RMDS-PIR,∞ = M−1
M

(

1 −
(

M
N

))

. This expression

takes its maximum value when M =
√

N , so it can be bounded

as,

RMDS-PIR,∞ ≤
√

N − 1
√

N

(

1 −

(√
N

N

))

=

(

1 −
1

√
N

)2

. (22)

Note that this expression matches the achievable rate bound

of [31]. However, it is strictly smaller than, 1 − 2/N ,

the asymptotic capacity of XSTPIR for this setting. Evi-

dently, the natural MDS-PIR solution, and the secret sharing

based scheme of [31], are asymptotically suboptimal. In fact,

the MDS-PIR solution falls short of the asymptotic (K → ∞)

capacity of XSTPIR, even if the MDS-PIR scheme is only

required to deal with K = 2 messages. Denoting the corre-

sponding rate of the MDS-PIR scheme as RMDS-PIR,2, we have,

RMDS-PIR,2 ≤
√

N + 1
√

N + 1 + 1

(

1 +

(√
N + 1 + 1

N

))−1

≤ 1 −
2

N
. (23)

Fig. 1. Suboptimality of the rate achieved by the X = 1 secure MDS-PIR
alternative that allows the user to decode noise relative to the rate achieved
with the asymptotically optimal XSTPIR scheme where the noise is aligned
with other interference.

Figure 1 shows that the gap between the X = 1 secure

MDS-PIR alternative and the XSTPIR scheme is significant.

Intuitively, the reason for this gap is the following. The secure

MDS-PIR alternative allows the user to decode the artificial

noise symbol which is added to the message to guarantee

security. However, in the XSTPIR scheme, the user is able to

decode only the desired message, and not the noise protecting

it. In fact this noise is aligned with other interfering symbols,

e.g., the noise terms protecting other message symbols, thus

creating a more efficient solution. Incidentally, the alignment

of noise provides another unexpected benefit, in some cases

it automatically makes the scheme symmetrically secure,

as explained next.

2) Symmetric Security: Capacity of Sym-XSPIR: Let us

fix T = 1, thereby relaxing the T -privacy constraint to its

minimum value for PIR. Now, suppose in addition to X-secure

storage, we also include the so called ‘symmetric’ security

constraint, that the user should learn nothing about the data

besides his desired message, i.e.,

[Sym-Security] I (W[1:K ]; A
[θ]
[1:N] | Q

[θ]
[1:N], Wθ , θ) = 0.

(24)

Capacity of the basic (X = 0, T = 1, K > 1) Sym-PIR setting

was shown in [28] to be

CSym-PIR(K , N) = 1 −
1

N
. (25)

Note that there is a loss of capacity due to the additional sym-

metric security constraint. Furthermore, the capacity without

the symmetric security constraint depends on the number of

messages K while the capacity with the symmetric security

constraint does not.

XSTPIR with the symmetric security constraint and with

T = 1, in short the Sym-XSPIR setting (note that we drop the

T because T = 1 is the degenerate case for T -privacy), reveals

a surprising aspect of our XSTPIR schemes, that imposing the
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symmetric security constraint does not affect6 our capacity

results for T = 1. This is made explicit in the following

corollaries for Sym-XSPIR, that match the corresponding

theorems for XSTPIR.

Corollary 1:

CSym-XSPIR(N, K , X) ≤
(

N − X

N

)

CPIR(N − X, K ). (26)

Corollary 2: If N = X + 1, then7 for arbitrary K ,

CSym-XSPIR(N, K , X) =

(
N − X

N

)

CPIR(N − X, K ) (27)

=
1

N K
. (28)

Corollary 3: As the number of messages K → ∞, for

arbitrary N, X ,

lim
K→∞

CSym-XSPIR(N, K , X) = lim
K→∞

(
N − X

N

)

CPIR(N − X, K )

(29)

=

{

1 −
(

X+1
N

)

, N > X + 1

0, N ≤ X + 1.
(30)

Corollary 4: If the number of servers, N = 3, and X = 1,

then for arbitrary number of messages, K ,

CSym-XSPIR(N = 3, K , X = 1)

=

(
N − X

N

)

CPIR(N − X, K ) (31)

=
2

3

(

1 +
1

2
+

1

22
+ · · · +

1

2K−1

)−1

. (32)

The proofs of all 4 corollaries appear in Appendix B.

Surprisingly, note that there is no loss of capacity in each case

due to the additional symmetric security constraint. Also note

that according to Corollary 4, unlike Sym-PIR, the capacity

of Sym-XSPIR depends on the number of messages K for all

K > 1.

3) Cross Subspace Alignment: Conceptually, the most

intriguing aspect of the asymptotically optimal XSTPIR

scheme is the extent to which it is able to align interference.

Interference alignment is central to PIR [1], [32], and nearly

all existing PIR constructions use some form of interference

alignment. The strength of XSTPIR lies in the novel idea of

cross subspace alignment, that we explain intuitively in this

section through an example. Consider the setting of X = 2

secure and T = 1 PIR with N = 5 servers. Let w1 be

a symbol from a desired message W . For simplicity (and

because identical alignments are applied to all messages),

it suffices to focus on only this message for the purpose of

this explanation. In order to guarantee X = 2 security, w1 is

mixed with 2 random noise symbols z11, z12, according to the

following RS Code, so that the nth row is stored at the nth

6For T > 1 our XSTPIR schemes are not symmetrically secure.
7Note that since X < N by definition, and T = 1 for XSPIR, the condition

N ≤ X + T is equivalent to N = X + 1.

server, n ∈ [1 : 5].









1

1

1

1

1









w1 +









β1

β2

β3

β4

β5









z11 +









β2
1

β2
2

β2
3

β2
4

β2
5









z12

!
−→
1 w1 +

−→
β z11 +

−→
β2z12.

To ensure privacy, the query symbol qθ (qθ = 1, i.e., this

message is desired) is similarly mixed with a noise symbol z′
1.

−→
1 qθ +

−→
β z′

1 =
−→
1 +

−→
β z′

1

and the nth row of this query vector is sent to the nth

server. Each server returns the product of the noisy query

symbol and the noisy stored symbol, so that the user receives

the 5 answers.
(

−→
1 w1 +

−→
β z11 +

−→
β2z12

)

◦
(−→

1 +
−→
β z′

1

)

=
−→
1 w1 +

−→
β

(

w1z′
1 + z11

)

+
−→
β2

(

z11z′
1 + z12

)

+
−→
β3z12z′

1.

The desired symbol w1 appears along the vector
−→
1 while

the remaining 5 undesired symbols align along 3 dimensions.

Specifically, the undesired symbols w1z′
1 and z11 align along

the vector
−→
β ; undesired symbols z11z′

1 and z12 align along

the vector
−→
β2 and undesired symbol z12z′

1 appears along the

vector
−→
β3. This type of alignment, enabled by using the same−→

β in the storage and query, is indeed very useful and has been

used previously by Freij-Hollanti et al. for MDS-TPIR [6].

However, note that we have a 5 dimensional space (all vectors

are 5 × 1) and we are so far only using 4 dimensions (one

desired, three interference), so there is room for improvement.

In order to improve the efficiency of the retrieval scheme,

suppose we try to retrieve another symbol, w2, from the

same desired message W = (w1, w2). The challenge is that

because of the X = 2 security requirement w2 is mixed with

new (independent) noise symbols z21, z22 according to an RS

code parameterized by γ ,

−→
1 w2 +

−→γ z21 +
−→
γ 2z22, (33)

so any attempt to retrieve w2 will add new interference

terms. Since we already have 3 dimensions of interference,

the new interference added due to the noise protecting w2 must

align completely within the existing interference. This will be

accomplished by cross-alignment, i.e., introducing additional

structure across the storage and query codes for the different

symbols to be retrieved. In particular, we will use the query

vector −→γ ◦
(−→

1 +
−→
β z′

1

)

to multiply with the stored variables

containing w1 (i.e.,
−→
1 w1 +

−→
β z11 +

−→
β2z12) and the query

vector
−→
β ◦

(−→
1 +

−→γ z′
2

)

to multiply with the stored variables

containing w2 (i.e.,
−→
1 w2+

−→γ z21+
−→
γ 2z22). The sum of the two

multiplications is returned as the answer. Note that Hadamard

products are commutative and associative. The answers from
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the 5 servers are now expressed as follows.

−→γ ◦
(

−→
1 w1 +

−→
β z11 +

−→
β2z12

)

◦
(−→

1 +
−→
β z′

1

)

+
−→
β ◦ (

−→
1 w2 +

−→γ z21 +
−→
γ 2z22) ◦

(−→
1 +

−→γ z′
2

)

(34)

=
−→γ w1 +

−→
β w2 +

−→
β ◦ −→γ

(

w1z′
1 + z11 + w2z′

2 + z21

)

+
−→
β2 ◦ −→γ (z11z′

1 + z12) +
−→
β ◦

−→
γ 2(z21z′

2 + z22)

+
−→
β3 ◦ −→γ z12z′

1 +
−→
β ◦

−→
γ 3z22z′

2. (35)

Note that we cannot choose
−→
β =

−→γ , because the two desired

symbols (w1, w2) must not align in the same dimension.

Also note that by cross-multiplying the first set of answers

with −→γ and the second with
−→
β we have achieved cross

alignment of 4 terms along
−→
β ◦ −→γ . However, we now have

5 dimensions occupied by interference, along the 5 vectors,
−→
β ◦ −→γ ,

−→
β2 ◦ −→γ ,

−→
β ◦

−→
γ 2,

−→
β3 ◦ −→γ ,

−→
β ◦

−→
γ 3. Since the overall

space is only 5 dimensional and we need two dimensions for

desired symbols, we need to restrict interference to no more

than 3 dimensions. Surprisingly, it is possible to do this by

cross subspace alignment as we show next. Let us introduce

a structural relationship between β and γ . In particular, let us

set,

−→
β =

−−−→
1 + α (36)

−→γ =
−−−→
2 + α (37)

so that the answers from the 5 servers are now expressed as,
(−−−→

2 + α
)

w1 +

(−−−→
1 + α

)

w2 +

(−−−→
1 + α

)

◦
(−−−→

2 + α
)

I (38)

where the interference I is

I =
−→
1 (w1z′

1 + z11 + w2z′
2 + z21)

+

(−−−→
1 + α

)

(z11z′
1 + z12) +

(−−−→
2 + α

)

(z21z′
1 + z22)

+

(−−−−−−−−→
1 + 2α + α2

)

z12z′
1 +

(−−−−−−−−→
4 + 4α + α2

)

z22z′
2. (39)

Note that there are still 5 interference vectors, no two of which

align directly with each other. However, the 5 interference

vectors align into a 3 dimensional subspace of the 5 dimen-

sional vector space. This is what we mean by cross subspace

alignment and it is essential to this work. To see explicitly how

the interference aligns into a 3 dimensional subspace, we can

rewrite I as,

I =
−→
1 (w1z′

1 + z11 + w2z′
2 + z21 + z11z′

1

+ z12 + 2z21z′
1 + 2z22 + z12z′

1 + 4z22z′
2)

+
−→α (z11z′

1 + z12 + z21z′
1 + z22 + 2z12z′

1 + 4z22z′
2)

+
−→
α2(z12z′

1 + z22z′
2). (40)

Thus, due to cross subspace alignment, all of I aligns within

a 3 dimensional space, leaving the remaining 2 dimensions

interference-free for the desired symbols. Exactly the same

alignments apply to all messages as explained in the formal

descriptions of the schemes provided in this paper.

IV. PROOF OF THEOREM 1

Let us start with two useful lemmas. The first one shows

that the desired message index is independent of the messages,

stored variables, queries and answers.

Lemma 1: For all k, k ′ ∈ [1 : K ],∀T ∈ [1 : N], |T | = T ,

we have

(Q
[k]

T
, A

[k]

T
, S[1:N], W1, · · · , WK )

∼(Q
[k′]
T

, A
[k′]
T

, S[1:N], W1, · · · , WK ) (41)

Proof: Since W1, · · · , WK is a function of S[1:N] and A
[θ]

T

is a function of (Q
[θ]

T
, ST ) (refer to (11)), it suffices to prove

I (θ; Q
[θ]

T
, S[1:N]) = 0. From (9), we have

I (Q
[θ]
[1:N], θ; S[1:N]) = 0 (42)

⇒ I (Q
[θ]

T
, θ; S[1:N]) = 0 (43)

⇒ I (Q
[θ]

T
; S[1:N]) = I (Q

[θ]

T
; S[1:N]|θ) = 0 (44)

Next, we have,

I (θ; Q
[θ]

T
, S[1:N])

(9)
= I (θ; Q

[θ]

T
|S[1:N]) (45)

= H (Q
[θ]

T
|S[1:N]) − H (Q

[θ]

T
|S[1:N], θ)

(46)

(44)
= H (Q

[θ]

T
) − H (Q

[θ]

T
|θ) (47)

(10)
= 0 (48)

"

The second lemma is a statement of conditional indepen-

dence of answers from one set of servers from the queries to

the rest of the servers.

Lemma 2: For all T ,X ⊂ [1 : N],∀k ∈ [1 : K ],∀K ∈ [1 :

K ], we have

H (A
[k]

T
|SX , Q

[k]

[1:N], WK) = H (A
[k]

T
|SX , Q

[k]

T
, WK) (49)

Proof: It suffices to prove that I (A
[k]

T
; Q

[k]
[1:N]|SX ,

Q
[k]

T
, WK) = 0. This proof is presented as follows.

I (A
[k]

T
; Q

[k]

[1:N]|SX , Q
[k]

T
, WK)

≤ I (A
[k]

T
, SX , WK; Q

[k]
[1:N]|Q

[k]

T
) (50)

≤ I (A
[k]

T
, S[1:N], WK; Q

[k]

[1:N]|Q
[k]

T
) (51)

(8)(11)
= I (S[1:N]; Q

[k]

[1:N]|Q
[k]

T
) (52)

(9)
= 0 (53)

"

The next lemma formalizes the intuition that because of

the security constraint, the answers from any X servers are,

in some sense, not very useful. Specifically, after conditioning

on the information contained in any X servers, the answers

from the remaining N − X servers must still contain at least

L more bits than the interference that is included in those

answers. For a set X , its complement set is denoted as X ,

i.e., X = {n|n ∈ [1 : N], n /∈ X }. We use Dn to denote the

expected number of symbols downloaded from Server n.
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Lemma 3: For all X ∈ [1 : N], |X | = X , we have

L ≤
∑

n∈X

Dn − H (A
[1]

X
|SX , Q

[1]

[1:N], W1) (54)

Proof:

L = H (W1)
(12)
= I (W1; A

[1]
[1:N]|Q

[1]
[1:N]) (55)

≤ I (W1; A
[1]
[1:N], SX |Q

[1]
[1:N]) (56)

= I (W1; SX |Q
[1]

[1:N]) + I (W1; A
[1]

X
, A

[1]

X
|SX , Q

[1]

[1:N]) (57)

(11)
= I (W1; SX |Q

[1]
[1:N]) + I (W1; A

[1]

X
|SX , Q

[1]
[1:N]) (58)

(9)
= I (W1, Q

[1]
[1:N]; SX ) + I (W1; A

[1]

X
|SX , Q

[1]
[1:N]) (59)

(7)
= I (Q

[1]

[1:N]; SX |W1) + I (W1; A
[1]

X
|SX , Q

[1]

[1:N]) (60)

≤ I (Q
[1]

[1:N]; SX , W1) + I (W1; A
[1]

X
|SX , Q

[1]

[1:N]) (61)

(9)
= I (W1; A

[1]

X
|SX , Q

[1]
[1:N]) (62)

≤
∑

n∈X

Dn − H (A
[1]

X
|SX , Q

[1]
[1:N], W1) (63)

"

We may interpret the second term of the RHS of (54) as the

interference term. To bound it, we need the following recursive

relation, stated in a lemma.

Lemma 4: For all X ∈ [1 : N], |X | = X and for all k ∈
[1 : K ], we have

H (A
[k]

X
|SX , Q

[k]

[1:N], W[1:k])

≥
T

N − X

(

L + H (A
[k+1]

X
|SX , Q

[k+1]
[1:N] , W[1:k+1])

)

, if N > X + T .

(64)

H (A
[k]

X
|SX , Q

[k]
[1:N], W[1:k])

≥L + H (A
[k+1]

X
|SX , Q

[k+1]

[1:N] , W[1:k+1]), if N ≤ X + T .

(65)

Proof: First consider N > X + T . Consider any set T ⊂
X , |T | = T .

H (A
[k]

X
|SX , Q

[k]

[1:N], W[1:k])

≥ H (A
[k]

T
|SX , Q

[k]
[1:N], W[1:k]) (66)

(49)
= H (A

[k]

T
|SX , Q

[k]

T
, W[1:k]) (67)

(41)
= H (A

[k+1]

T
|SX , Q

[k+1]

T
, W[1:k]) (68)

(49)
= H (A

[k+1]

T
|SX , Q

[k+1]

[1:N] , W[1:k]) (69)

Averaging (69) over all choices of T and applying Han’s

inequality, we have

H (A
[k]

X
|SX , Q

[k]
[1:N], W[1:k])

≥
T

N − X
H (A

[k+1]

X
|SX , Q

[k+1]

[1:N] , W[1:k]) (70)

(11)(12)
=

T

N − X
H (A

[k+1]

X
, Wk+1|SX , Q

[k+1]
[1:N] , W[1:k]) (71)

=
T

N − X

(

H (Wk+1|SX , Q
[k+1]
[1:N] , W[1:k])

+H (A
[k+1]

X
|SX , Q

[k+1]

[1:N] , W[1:k+1])
)

(72)

=
T

N − X

(

L + H (A
[k+1]

X
|SX , Q

[k+1]
[1:N] , W[1:k+1])

)

(73)

where the last step uses L = H (Wk+1) and

I (Wk+1; SX , Q
[k+1]
[1:N] , W[1:k]) = 0, proved as follows.

I (Wk+1; SX , Q
[k+1]
[1:N] , W[1:k])

(5)(6)
= I (Wk+1; SX , Q

[k+1]
[1:N] | W[1:k]) (74)

≤ I (W[1:k+1]; SX , Q
[k+1]
[1:N] ) (75)

(7)
= I (W[1:k+1]; Q

[k+1]
[1:N] |SX ) (76)

≤ I (W[1:k+1], SX ; Q
[k+1]

[1:N] ) (77)

≤ I (S[1:N]; Q
[k+1]
[1:N] ) (78)

(9)
= 0 (79)

Next, consider N ≤ X + T . The proof is similar to that

presented above. Note that |X | = N-X ≤ T .

H (A
[k]

X
|SX , Q

[k]

[1:N], W[1:k])

(49)
= H (A

[k]

X
|SX , Q

[k]

X
, W[1:k]) (80)

(41)
= H (A

[k+1]

X
|SX , Q

[k+1]

X
, W[1:k]) (81)

(49)
= H (A

[k+1]

X
|SX , Q

[k+1]
[1:N] , W[1:k]) (82)

(11)(12)
= H (A

[k+1]

X
, Wk+1|SX , Q

[k+1]
[1:N] , W[1:k]) (83)

= H (Wk+1|SX , Q
[k+1]
[1:N] , W[1:k])

+ H (A
[k+1]

X
|SX , Q

[k+1]

[1:N] , W[1:k+1]) (84)

(79)
= L + H (A

[k+1]

X
|SX , Q

[k+1]

[1:N] , W[1:k+1]) (85)

This completes the proof of Lemma 4. "

Now let us apply Lemma 4 repeatedly for k = 1, 2, · · · .

When N > X + T , we have

H (A
[1]

X
|SX , Q

[1]

[1:N], W1)

≥
T

N − X

(

L + H (A
[2]

X
|SX , Q

[2]
[1:N], W[1:2]

)

(86)

≥
T

N − X

(

L +
T

N − X

(

L + H (A
[3]

X
|SX , Q

[3]
[1:N], W[1:3]

))

(87)

≥ · · · (88)

≥ L

(

T

N − X
+

(
T

N − X

)2

+ · · · +

(
T

N − X

)K−1
)

(89)

Similarly, when N ≤ X + T , we have

H (A
[1]

X
|SX , Q

[1]

[1:N], W1) ≥ L + H (A
[2]

X
|SX , Q

[2]

[1:N], W[1:2])

(90)

≥ · · · (91)

≥ L(K − 1) (92)
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Substituting (89), (92) into (54), we have

L ≤
∑

n∈X

Dn − L

(

T

N − X
+

(
T

N − X

)2

+ · · ·

+

(
T

N − X

)K−1
)

, if N > X + T .

(93)

L ≤
∑

n∈X

Dn − L(K − 1), if N ≤ X + T . (94)

Averaging over all X , we have

L ≤
(

N − X

N

)

D − L

(

T

N − X
+

(
T

N − X

)2

+ · · ·

+

(
T

N − X

)K−1
)

, if N > X + T .

(95)

L ≤
(

N − X

N

)

D − L(K − 1), if N ≤ X + T . (96)

Finally since the rate is defined as R = L/D, we arrive at the

final bound.

R ≤
N − X

N

(

1 +
T

N − X
+

(
T

N − X

)2

+ · · ·

+

(
T

N − X

)K−1
)−1

, if N > X + T .

(97)

R ≤
N − X

N
×

1

K
, if N ≤ X + T . (98)

Thus

CXSTPIR(N, K , X, T ) ≤
(

N − X

N

)

CTPIR(N − X, K , T ), (99)

and the proof of Theorem 1 is complete. "

V. PROOF OF THEOREM 2

Let each message consist of L = N − X symbols in Fq ,

q ≥ N , and append X instances of 0 symbols, to create

artificial messages of length N ,

W̄k = (Wk1, Wk2 , · · · , Wk(N−X), 0, 0, · · · , 0
︸ ︷︷ ︸

X

), ∀k ∈ [1 : K ].

(100)

Corresponding to each message Wk , let Zk =

(Zk1, Zk2, · · · , Zk X ) ∈ FX
q be X independent uniform

noise symbols, to be used for X-security. Let Zk be encoded

with an (N, X) MDS code to produce Z̄k ∈ FN
q . For each

k ∈ [1 : K ] and n ∈ [1 : N], the nth server stores the

nth symbol of W̄k + Z̄k . Thus, each server stores a total

of K symbols. The MDS property of Z̄k ensures that the

data storage is X-secure. Retrieval is trivial — in order to

retrieve the desired message Wθ , the user simply downloads

everything from all servers. Since the queries do not depend

on the desired message, the scheme is N-private, so it is

also T -private. The rate achieved is N−X
N K

which matches the

capacity for this setting. "

VI. PROOF OF THEOREM 3

Let us present an XSTPIR scheme for arbitrary X , T , N , K ,

that is asymptotically optimal (as K → ∞). The asymptotic

capacity is zero for N ≤ X + T , so we only need to consider

N > X + T . Throughout this scheme we will set

L = N − X − T (101)

and we will use the compact notation,

& =

L
∏

i=1

(i + α). (102)

&n will represent the value of & when α is replaced with αn .

Each message Wk , k ∈ [1 : K ], consists of L = N − X − T

symbols, Wk = (Wk1, Wk2, · · · , WkL ) from a finite field Fq .

The field Fq is assumed to have size8 q ≥ L + N , and

characteristic greater than L−1. For the design of this scheme,

we will need constants αn, n ∈ [1 : N] that are distinct

elements of G,

G = {α ∈ Fq : α + i /= 0, ∀i ∈ [1 : L]}. (103)

Such αn, n ∈ [1 : N] must exist because q ≥ L + N . These

constants will be globally known. In the following description

of the scheme, we will explain explicitly how the values of

these constants are chosen. For now, let us note that because

the characteristic of the field is assumed to be greater than

L − 1, the values α + 1,α + 2, · · · ,α + L are distinct for any

α ∈ Fq .

Let us split the messages into L vectors, so that Wl =

(W1l , W2l , · · · , WK l), l ∈ [1 : L], contains the l th symbol

of every message. Let Zlx , l ∈ [1 : L], x ∈ [1 : X],

be independent uniformly random noise vectors from F1×K
q ,

that are used to guarantee security. Similarly, let Z′
lt , l ∈ [1 :

L], t ∈ [1 : T ], be independent uniformly random noise

vectors from FK×1
q , that are used to guarantee privacy. The

independence between noise vectors, messages, and the user’s

desired message index θ is specified as follows.

H
(

(Wl)l∈[1:L] , (Zlx )l∈[1:L],x∈[1:X ] ,
(

Z′
lt

)

l∈[1:L],t∈[1:T ]
, θ

)

=H ((Wl)l∈[1:L]) + H (θ) + K L(X + T ) (104)

in q-ary units. Let Qθ represent9 the θ th column of the K × K

identity matrix, so it contains a 1 in the θ th position and zeros

everywhere else. Note that

(W1Qθ , W2Qθ , · · · , WLQθ )

=(Wθ1, Wθ2, · · · , Wθ L) = Wθ (105)

8In other words, we set q = pn for a prime number p and an integer
n ≥ 1 such that pn ≥ L + N and p ≥ L . While this makes the scheme more
general, let us note that for simplicity it may be desirable to choose n = 1
and q = p ≥ L + N . On the other hand, the general scheme is useful for
extensions of this work, say to private computation (see Footnote 9), where
the choice of field may be fixed by the functions that need to be computed.

9Note that the XSTPIR scheme described in this section works even if Qθ
is an arbitrary vector, i.e., if instead of retrieving one of the K messages,
the user wishes to compute an arbitrary linear function of the K messages
over Fq . Thus, the scheme automatically settles the asymptotic capacity
of the natural X-secure and T -private generalization of the linear private
computation problem introduced in [33] (also known as linear private function
retrieval [34]).
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is the message desired by the user. A succinct summary of

the storage at each server, the queries, and a partitioning of

signal and interference dimensions contained in the answers

from each server, is provided below.

Server ‘n’ (Replace α,& with αn,&n)

Storage W1 + (1 + α)Z11 + · · · + (1 + α)X Z1X ,

(Sn) W2 + (2 + α)Z21 + · · · + (2 + α)X Z2X ,

...

WL + (L + α)ZL1 + · · · + (L + α)X ZL X

Query &
1+α

(

Qθ + (1 + α)Z′
11 + · · · + (1 + α)T Z′

1T

)

,

(Q
[θ]
n ) &

2+α

(

Qθ + (2 + α)Z′
21 + · · · + (2 + α)T Z′

2T

)

,

...

&
L+α

(

Qθ + (L + α)Z′
L1 + · · · + (L + α)T Z′

LT

)

Desired symbols appear along vectors

−→
& ◦

(−−−−−−→
(1 + α)−1,

−−−−−−→
(2 + α)−1, · · · ,

−−−−−−→
(L + α)−1

)

Interference appears along vectors

−→
& ◦

(−→
1 ,

−−−−→
(1 + α), · · · ,

−−−−−−−−−→
(1 + α)X+T −1,

−−−−→
(2 + α), · · · ,

−−−−−−−−−→
(2 + α)X+T −1, · · · ,

· · · ,
−−−−→
(L + α), · · · ,

−−−−−−−−−→
(L + α)X+T −1

)

Initially, the user knows only his desired message index θ

and the noise terms Z′
lt , l ∈ [1 : L], t ∈ [1 : T ], all

of which are privately generated by the user. Each server

n ∈ [1 : N] knows only its stored information Sn . The storage

Sn at Server n may be viewed as a 1× L K row vector formed

by concatenating the L row vectors, Wl +
∑X

x=1(l +αn)
x Zlx ,

l ∈ [1 : L]. Similarly, the query Q
[θ]
n may be viewed as an

L K ×1 column vector formed by concatenating the L column

vectors, &n

l+αn

(

Qθ +
∑T

t=1(l + αn)t Z′
lt

)

, l ∈ [1 : L].

Upon receiving the query Q
[θ]
n from the user, Server n

responds with the answer A
[θ]
n that is exactly one symbol in

Fq , found by multiplying Sn with Q
[θ]
n .

A[θ]
n = Sn Q[θ]

n . (106)

This produces a single equation in a total of L(X + 1)(T + 1)

terms. Out of these, L terms are desired message symbols

WlQθ , l ∈ [1 : L], and the remaining L(X + 1)(T + 1) − L

terms are undesired, or interference terms. The interference

terms include LT terms of the type WlZ
′
lt , L X terms of the

type Zlx Qθ , and L XT terms of the type Zlx Z′
lt . The user

obtains one such equation from each server, for a total of

N equations, from which he must be able to retrieve his L

desired symbols. The key to this is the alignment of L(X +1)

(T +1)− L interference terms into N − L dimensions, leaving

L dimensions free from interference from which the L desired

symbols can be decoded.

First let us identify the desired signal dimensions, i.e., the

vectors along which desired symbols are seen by the user.

Each answer A
[θ]
n contains the desired symbols &n

l+αn
WlQθ =

&n

l+αn
Wθl , l ∈ [1 : L]. These L desired symbols appear along

the following L vectors.








&1
1+α1
&2

1+α2

...
&N

1+αN









,









&1
2+α1
&2

2+α2

...
&N

2+αN









, · · · ,









&1
L+α1
&2

L+α2

...
&N

L+αN









!
−→
& ◦

(−−−−−−→
(1 + α)−1,

−−−−−−→
(2 + α)−1, · · · ,

−−−−−−→
(L + α)−1

)

. (107)

Recall that ◦ represents the Hadamard product. Similarly,

the vectors along which interference symbols appear are

identified as follows.

−→
& ◦

(−→
1 ,

−−−−→
(1 + α), · · · ,

−−−−−−−−−→
(1 + α)X+T −1,

−−−−→
(2 + α), · · · ,

−−−−−−−−−→
(2 + α)X+T −1, · · · ,

· · · ,
−−−−→
(L + α), · · · ,

−−−−−−−−−→
(L + α)X+T −1

)

. (108)

Thus, the vector of answers from all N servers can be

expressed as

−−→
A[θ] =

L
∑

l=1

Wθl
−→
& ◦

−−−−−−→
(l + α)−1 +

L
∑

l=1

X+T −1
∑

i=0

−→
& ◦

−−−−→
(l + α)i Ili

(109)

for some interference terms Ili that are sums of various WlZ
′
lt ,

Zlx Qθ , and Zlx Z′
lt terms. The exact form of Ili terms is not

important for our analysis. Using binomial expansion to write

each
−−−−→
(l + α)i vector as

∑i
j=0

(
i
j

)

l j
−−→
αi− j , and grouping terms

by the vectors
−→
αi , we can write,

−−→
A[θ] =

L
∑

l=1

Wθl
−→
& ◦

−−−−−−→
(l + α)−1 +

X+T −1
∑

i=0

−→
& ◦

−→
αi I ′

i . (110)

Thus, all interference is aligned within the subspace spanned

by vectors
−→
& ,

−→
& ◦ −→α , . . . ,

−→
& ◦

−−−−−→
αX+T −1. As explained in

Section III-B.3, this is because of cross subspace alignment.

In matrix notation, we have,

−−→
A[θ] =









A
[θ]
1

A
[θ]
2
...

A
[θ]
N









= MN













Wθ1

...

Wθ L

I ′
0
...

I ′
(X+T −1)













(111)

where the N × N square matrix (note that L + X + T = N)

MN

=








&1
1+α1

···
&1

L+α1
&1 &1α1 ··· &1α

X+T −1
1

&2
1+α2

···
&2

L+α2
&2 &2α2 ··· &2α

X+T −1
2

...
&N

1+αN
···

&N
L+αN

&N &N αN ··· &N αX+T −1
N








(112)
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=

[−→
& ◦

−−−−−−→
(1 + α)−1 · · ·

−→
& ◦

−−−−−−→
(L + α)−1

−→
&

−→
& ◦ −→α · · ·

−→
& ◦

−−−−−→
αX+T −1

]

(113)

is called the decoding matrix. Evidently, if the decoding matrix

is invertible, then the user can recover his L desired message

symbols. We show that if αn, n ∈ [1 : N] are distinct elements

of G, then MN is invertible. This result is stated in the

following lemma. Note that in our design, we have chosen αn

as distinct elements, so Lemma 5 guarantees that the scheme

satisfies the correctness constraint. Fixing distinct values of

α1, · · · ,αN completes the design of the scheme.

Lemma 5: The decoding matrix MN is invertible if all

αn, n ∈ [1 : N] are distinct.

Proof: To set up the proof by contradiction, suppose on

the contrary that MN is singular. Then there must exist cn ∈
Fq , n ∈ [1 : N], at least one of which is non-zero, such that

c1
−→
& ◦

−−−−−−→
(1 + α)−1 + · · · + cL

−→
& ◦

−−−−−−→
(L + α)−1

+ cL+1
−→
& + cL+2

−→
& ◦ −→α + · · · + cN

−→
& ◦

−−−−−→
αX+T −1 =

−→
0

(114)

where
−→
0 is the vector whose elements are all 0. Now consider

n-th row of (114).

c1
&n

1 + αn

+ · · · + cL
&n

L + αn

+ cL+1&n + cL+2&nαn + · · · + cN &nα
X+T −1
n = 0.

(115)

From (102) and (103), we know that &n /= 0. Then αn must

be the root of the following polynomial

g(α) =

L
∑

i=1

ci

(
&

i + α

)

+

N
∑

i=L+1

ci&αi−(L+1) (116)

Note that & (as a function of α) has order L and i+α is a factor

of & (refer to (102)), so g(α) has order at most N −1. If g(α)

is a non-zero polynomial, then it can have at most N −1 roots

over Fq . Now αn, n ∈ [1 : N] are N distinct roots of g(α),

thus g(α) must be the zero polynomial, i.e., the coefficients

of all monomials in g(α) must be zero. The coefficient of

αN−1 is cN so we must have cN = 0. Then, the remaining

coefficient of αN−2 is cN−1, so we must have cN−1 = 0.

Similarly, we find cL+1 = cL+2 = · · · = cN = 0, leaving us

with

g(α) =

L
∑

i=1

ci

(
&

i + α

)

. (117)

Now, if this g(α) is the zero polynomial, then it must be zero

for every α ∈ Fq . Choosing α such10 that (i + α) = 0, gives

us ci = 0 for every i ∈ [1 : L]. Thus, we have c1 = c2 =

· · · = cN = 0. This is a contradiction since we assumed that

at least one of cn, n ∈ [1 : N] is non-zero. Thus, the proof is

complete. "

10Note that &
i+α

is simply a compact notation for
∏

l∈[1:L],l /=i (l+α), i.e., it

only means that the (i+α) factor is eliminated from &, so there is no ‘division

by 0’ when we set i + α = 0 in &
i+α

.

Now consider the security guarantee. For any X colluding

servers, i1, i2, · · · , iX , the X observations, Ukl1, · · · , Ukl X ,

of each message symbol Wkl , k ∈ [1 : K ], l ∈ [1 : L], are

protected by noise terms as follows.








Ukl1

...

Ukl X








=








Wkl

...

Wkl








+










l+αi1
(l+αi1

)2 ··· (l+αi1
)X

l+αi2
(l+αi2

)2 ··· (l+αi2
)X

...
...

...

l+αiX
(l+αiX

)2 ··· (l+αiX
)X










︸ ︷︷ ︸

P








Zl1(k)

...

Zl X (k)








︸ ︷︷ ︸

Z

(118)

=Wkl








1

...

1








︸︷︷︸

1

+









l+αi1
0 ··· 0

0 l+αi2
··· 0

0 0
. . . 0

0 0 ··· l+αiX


















1 l+αi1
··· (l+αi1

)X−1

1 l+αi2
··· (l+αi2

)X−1

...
...

...

1 l+αiX
··· (l+αiX

)X−1

















Zl1(k)

...

Zl X (k)








.

(119)

where Zlx (k) is the kth element of the vector Zlx . Note that P

is a product of a diagonal matrix which is invertible because

(l + αi j ) are non-zero, and a Vandermonde matrix which

is invertible because (l + αi j ) are distinct. Therefore, P is

invertible, and the observations are independent of the message

symbols as shown below.

I (Wkl ; (Uklx )x∈[1:X ])

=I (Wkl ; Wkl1 + P Z)

=I (Wkl ; Wkl P−11 + Z) = I (Wkl ; Z) = 0. (120)

Furthermore, since the noise terms protecting each message

symbol Wkl , k ∈ [1 : K ], l ∈ [1 : L], i.e., Zlx (k), x ∈ [1 : X]

are independent across (k, l, x), security is preserved for all

data.

The noise terms protecting each query also have the same

structure and independence properties by design. Therefore,

it follows from the same reasoning that user’s privacy is

protected from any T colluding servers.

Finally, note that the user is able to retrieve L = N − X −T

desired q-ary symbols by downloading N q-ary symbols, one

from each server. The rate achieved is L/N = 1−(X +T )/N ,

which is the asymptotic capacity for this general setting. This

completes the proof of Theorem 3. "

A. Example: (X = 1) Secure, (T = 1) Private Scheme

With N = 5 Servers

Each message consists of L = 3 symbols from a finite field

Fq , q ≥ N + L = 8, and characteristic greater than 2. For this
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setting, & = (1 + α)(2 + α)(3 + α).

Server ‘n’ (Replace α,& with αn,&n)

Storage W1 + (1 + α)Z1,

(Sn) W2 + (2 + α)Z2,

W3 + (3 + α)Z3

Query &
1+α

(

Qθ + (1 + α)Z′
1

)

,

(Q
[θ]
n ) &

2+α

(

Qθ + (2 + α)Z′
2

)

,

&
3+α

(

Qθ + (3 + α)Z′
3

)

Desired symbols appear along vectors
−→
& ◦

(−−−−−−→
(1 + α)−1,

−−−−−−→
(2 + α)−1,

−−−−−−→
(3 + α)−1

)

Interference symbols appear along vectors
−→
& ◦

(−→
1 ,

−−−→
1 + α,

−−−→
2 + α,

−−−→
3 + α

)

The answers from all N = 5 servers may be written explicitly

as,

−−→
A[θ]

=
−→
& ◦

−−−−−−→
(1 + α)−1W1Qθ +

−→
& ◦

−−−−−−→
(2 + α)−1W2Qθ

+
−→
& ◦

−−−−−−→
(3 + α)−1W3Qθ

+
−→
&

(

W1Z′
1 + W2Z′

2 + W3Z′
3 + Z1Qθ + Z2Qθ + Z3Qθ

)

︸ ︷︷ ︸

I10+I20+I30

+
−→
& ◦

−−−−→
(1 + α)

(

Z1Z′
1

)

︸ ︷︷ ︸

I11

+
−→
& ◦

−−−−→
(2 + α)

(

Z2Z′
2

)

︸ ︷︷ ︸

I21

+
−→
& ◦

−−−−→
(3 + α)

(

Z3Z′
3

)

︸ ︷︷ ︸

I31

(121)

=
−→
& ◦

−−−−−−→
(1 + α)−1Wθ1 +

−→
& ◦

−−−−−−→
(2 + α)−1Wθ2

+
−→
& ◦

−−−−−−→
(3 + α)−1Wθ3

+
−→
& (I10 + I20 + I30 + I11 + 2I21 + 3I31)

+
−→
& ◦ −→α (I11 + I21 + I31). (122)

Privacy and security are guaranteed since 1 + αn /= 0,∀n ∈
[1 : 5], the messages and queries are hidden behind the noise.

Interference terms align into the space spanned by the two

vectors,
−→
& ,

−→
& ◦ −→α , while the 3 symbols of the desired

message appear along
−→
& ◦

−−−−−−→
(1 + α)−1,

−→
& ◦

−−−−−−→
(2 + α)−1,

−→
& ◦−−−−−−→

(3 + α)−1. Independence of the 3 desired signal dimensions

from the two interference dimensions is trivially verified,

because the highest exponent of α along desired signal dimen-

sions is 2, but each interference dimension has an α3 term

(contributed by &). Independence of the 3 desired signal

dimensions among themselves is also easily verified, because

for

c1(2 + α)(3 + α) + c2(1 + α)(3 + α) + c3(1 + α)(2 + α)

(123)

to be the zero polynomial it must be zero everywhere, but

in that case, setting α + i = 0 for i = 1, 2, 3, leads us to

c1 = c2 = c3 = 0, thus proving their independence. The rate

achieved is 3/5, which matches the asymptotic capacity for

this setting.

B. Example: (X = 2) Secure, (T = 1) Private Scheme With

N = 4 Servers

Each message consists of L = 1 symbol from a finite field

Fq , q ≥ N + L = 5. & = (1 + α).

Server ‘n’ (Replace α,& with αn,&n)

Storage (Sn) W1 + (1 + α)Z11 + (1 + α)2Z12

Query (Q
[θ]
n ) Qθ + (1 + α)Z′

1

Desired symbols appear along vector
−→
1

Interference symbols appear along vectors
−→
& ◦

(−→
1 ,

−−−→
1 + α,

−−−−−→
(1 + α)2

)

The answers from all N = 4 servers may be written explicitly

as,

−−→
A[θ]

=
−→
1 W1Qθ +

−−−−→
(1 + α)

(

W1Z′
1 + Z11Qθ

)

+
−−−−−→
(1 + α)2

(

Z11Z′
1 + Z12Qθ

)

+
−−−−−→
(1 + α)3Z12Z′

1 (124)

=
−→
1 Wθ1 +

−→
& ◦






−→
1

(

W1Z′
1 + Z11Qθ

)

︸ ︷︷ ︸

I10

+
−−−−→
(1 + α)

(

Z11Z′
1 + Z12Qθ

)

︸ ︷︷ ︸

I11

+
−−−−−→
(1 + α)2 Z12Z′

1
︸ ︷︷ ︸

I12






(125)

=
−→
1 Wθ1 +

−→
& (I10 + I11 + I12)

︸ ︷︷ ︸

I ′
0

+
−→
& ◦ −→α (I11 + 2I12)

︸ ︷︷ ︸

I ′
1

+
−→
& ◦

−→
α2 (I12)

︸︷︷︸

I ′
2

. (126)

Interference aligns in the space spanned by the three vectors,
−→
& ,

−→
& ◦ −→α ,

−→
& ◦

−→
α2 , while the desired symbol appears along

the vector of all ones. The independence of these directions is

easily established. Privacy is guaranteed because 1 + αn /= 0,

∀n ∈ [1 : 4], so the queries are hidden behind random noise.

Security is guaranteed because for any X = 2 colluding

servers, i and j , the independent noise protecting each mes-

sage Wk , k ∈ [1 : K ],

[

1 + αi (1 + αi )
2

1 + α j (1 + α j )
2

]

︸ ︷︷ ︸

Pi j

[

Z11(k)

Z12(k)

]

=

[

1 + αi 0

0 1 + α j

] [

1 (1 + αi )

1 (1 + α j )

] [

Z11(k)

Z12(k)

]

(127)

spans X = 2 dimensions, because Pi j is invertible for distinct

and non-zero values of (1 + αi ), (1 + α j ). The rate achieved

is 1/4 which matches the asymptotic capacity for this setting.
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C. Example: (X = 1) Secure, (T = 2) Private Scheme With

N = 5 Servers

Each message consists of L = N − X − T = 2 symbols

from Fq , q ≥ 7.

& = (1 + α)(2 + α). (128)

Server ‘n’ (Replace α,& with αn,&n)

Storage W1 + (1 + α)Z1,

(Sn) W2 + (2 + α)Z2

Query &
1+α

(

Qθ + (1 + α)Z′
11 + (1 + α)2Z′

12

)

,

(Q
[θ]
n ) &

2+α

(

Qθ + (2 + α)Z′
21 + (2 + α)2Z′

22

)

Desired symbols appear along vectors
−→
& ◦

(−−−−−−→
(1 + α)−1,

−−−−−−→
(2 + α)−1

)

Interference symbols appear along vectors
−→
& ◦

(−→
1 ,

−−−→
1 + α,

−−−−−→
(1 + α)2,

−−−→
2 + α,

−−−−−→
(2 + α)2

)

The answers from all N = 5 servers may be written

explicitly as,

−−→
A[θ]

=
−→
& ◦

−−−−−−→
(1 + α)−1W1Qθ +

−→
& ◦

−−−−−−→
(2 + α)−1W2Qθ (129)

+
−→
&

(

W1Z′
11 + W2Z′

21 + Z1Qθ + Z2Qθ

)

︸ ︷︷ ︸

I10+I20

+
−→
& ◦

−−−−−→
(2 + α)2 Z2Z′

22
︸ ︷︷ ︸

I22

+
−→
& ◦

−−−−→
(1 + α)

(

Z1Z′
11 + W1Z′

12

)

︸ ︷︷ ︸

I11

+
−→
& ◦

−−−−→
(2 + α)

(

Z2Z′
21 + W2Z′

22

)

︸ ︷︷ ︸

I21

+
−→
& ◦

−−−−−→
(1 + α)2 Z1Z′

12
︸ ︷︷ ︸

I12

=
−→
& ◦

−−−−−−→
(1 + α)−1Wθ1 +

−→
& ◦

−−−−−−→
(2 + α)−1Wθ2

+
−→
& (I10 + I20 + I11 + 2I21 + I12 + 4I22)

+
−→
& ◦ −→α (I11 + I21 + 2I12 + 4I22) +

−→
& ◦

−→
α2(I12 + I22).

(130)

Thus, interference aligns into the space spanned by the 3

vectors:
−→
& ,

−→
& ◦ −→α ,

−→
& ◦

−→
α2 , while the 2 desired symbols

appear along
−→
& ◦

−−−−−−→
(1 + α)−1,

−→
& ◦

−−−−−−→
(2 + α)−1. Note that the

highest exponent of α along a desired signal dimension is 1,

but every interference dimension contains α2 (contributed by

&), so the desired signals are independent of the interference.

The independence of desired signals among themselves is also

easily verified because if c1
&

1+α
+c2

&
2+α

= c1(2+α)+c2(1+α)

is the zero polynomial, then by substituting i + α = 0 for

i = 1, 2 we find that we must have c1 = c2 = 0. Privacy and

security are guaranteed by the MDS coded independent noise

terms mixed with the message and query symbols. The rate

achieved is 2/5, which matches the asymptotic capacity for

this setting.

D. Example: (X = 2) Secure, (T = 2) Private Scheme With

N = 7 Servers

Each message consists of L = 3 symbols from a finite field

Fq , of size q ≥ 10 and characteristic greater than 2.

& = (1 + α)(2 + α)(3 + α).

Server ‘n’ (Replace α,& with αn,&n)

Storage W1 + (1 + α)Z11 + (1 + α)2Z12,

(Sn) W2 + (2 + α)Z21 + (2 + α)2Z22,

W3 + (3 + α)Z31 + (3 + α)2Z32

Query &
1+α

(

Qθ + (1 + α)Z′
11 + (1 + α)2Z′

12

)

,

(Q
[θ]
n ) &

2+α

(

Qθ + (2 + α)Z′
21 + (2 + α)2Z′

22

)

,

&
3+α

(

Qθ + (3 + α)Z′
31 + (3 + α)2Z′

32

)

Desired symbols appear along vectors

−→
& ◦

(−−−−−−→
(1 + α)−1,

−−−−−−→
(2 + α)−1,

−−−−−−→
(3 + α)−1

)

Interference symbols appear along vectors

−→
& ◦

(−→
1 ,

−−−→
1 + α,

−−−−−→
(1 + α)2,

−−−−−→
(1 + α)3,

−−−→
2 + α,

−−−−−→
(2 + α)2,

−−−−−→
(2 + α)3,

−−−→
3 + α,

−−−−−→
(3 + α)2,

−−−−−→
(3 + α)3

)

Interference aligns into the space spanned by the 4 vectors:
−→
& ,

−→
& ◦−→α ,

−→
& ◦

−→
α2 ,

−→
& ◦

−→
α3 . Independence of desired signals

from interference is trivially verified – highest exponent of α

along any desired signal dimension is 2, but each interference

dimension has an α3 term (contributed by &). The desired

signal dimensions are easily verified to be linearly independent

among themselves because in order for

c1(2 + α)(3 + α) + c2(1 + α)(3 + α) + c3(1 + α)(2 + α)

(131)

to be the zero polynomial it must be zero everywhere, but

in that case, setting α + i = 0 for i = 1, 2, 3 leads us to

c1 = c2 = c3 = 0. Privacy and security are guaranteed by the

MDS coded independent noise terms mixed with the message

and query symbols. The rate achieved is 3/7, which matches

the asymptotic capacity for this setting.

VII. PROOF OF THEOREM 4

In Section VI we presented an XSTPIR scheme for arbitrary

X, T, N, K that achieves capacity as K → ∞. Since the

scheme also works for any K , a natural starting point for

finite K settings is to apply the same scheme. A key insight

here is that the rate achieved by the scheme improves as K

decreases. Let us elaborate. Note that the query Q
[θ]
n that is

sent to each server is uniformly distributed in FL K
q . Therefore,

with probability 1
q L K , the query vector is the all zero vector.

Whenever this happens, no download is needed from the

server. Thus, the average download is reduced by the factor

(1 − 1/q L K ) and the rate achieved is expressed as follows.
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Lemma 6: The asymptotically capacity achieving XSTPIR

scheme of Section VI achieves the rate

R =

(

1 −
1

q K L

)−1 (

1 −
(

X + T

N

))

(132)

for arbitrary X, L, K , N values, where N > X + T .

Note that N ≤ X + T is excluded as the degenerate setting

where we already know the capacity for all parameters,

according to Theorem 2. Remarkably, the rate in Lemma 6

depends on the message size L and the field size q used by

the scheme. As presented, the scheme uses q ≥ L + N and

L = N − X − T . So the achieved rate for finite K becomes

R =

(

1 −
1

(2N − X − T )K (N−X−T )

)−1 (

1 −
(

X + T

N

))

.

(133)

Consider the simplest non-trivial setting of interest, i.e., the

setting for Theorem 4, where T = X = 1, N = 3 and K is

arbitrary. The scheme of Section VI uses L = 1, q ≥ 4, so the

rate achieved for arbitrary K is

R =
1

3

(

1 −
1

4K

)−1

. (134)

However, note that if the field size could be reduced to q = 2,

then the rate achieved by the scheme would become

1

3

(

1 −
1

2K

)−1

=
2

3

(

1 − 1
2

1 − 1
2K

)

=
2

3

(

1 +
1

2
+

1

22
+ · · · +

1

2K−1

)−1

which matches the capacity upper bound from Theorem 1.

Surprisingly, this can be done with some modification to the

structure of the scheme, as explained below.

Suppose each message Wk, k ∈ [1 : K ] consists of L = 1

symbol (bit) from F2. Let W = (W1, W2, · · · , WK ) be a

random row vector in F
1×K
2 , containing all messages. Let Z

and Z′ be uniformly random noise vectors from F
1×K
2 and

F
K×1
2 , that are used to guarantee data security and user privacy,

respectively. The noise vectors are independent of each other

and of the message vector and θ , i.e., H (W, Z, Z′, θ) =

H (W) + H (Z) + H (Z′) + H (θ). Let Qθ represent the θ th

column of IK (the K × K identity matrix). Note that WQθ =

Wθ is the message desired by the user. The storage at the

servers, the queries and the answers are listed below.

Server 1 Server 2 Server 3

Storage W + Z W + ZB Z

Sn

Query Z′ Qθ + Z′ (IK + B)Z′

Q
[θ]
n +BQθ

Answer WZ′ + ZZ′ WQθ + WZ′ ZZ′ + ZBZ′

A
[θ]
n +ZBZ′ + ZBQθ +ZBQθ

where B is a K × K deterministic binary matrix such that B

and IK +B are both full rank. Any such choice of B will work

for our scheme. The existence of such B is established in the

following lemma whose proof appears in Appendix A.

Lemma 7: For all K ≥ 2, there exists a matrix B ∈ F
K×K
2

such that B and IK + B are both invertible.

Now, let us check the correctness, security and privacy of

this scheme. The scheme is obviously correct because by

adding the three answers shown in the table above, the user

recovers Wθ . It is obviously secure because B is invertible,

so ZB ∼ Z, is still uniform noise independent of W. And

similarly, it is also obviously private, because IK + B is

also invertible, so (IK + B)Z′ ∼ Z′ is still uniform noise

independent of BQθ . Thus, surprisingly, we have achieved the

capacity of XSTPIR for arbitrary K , when X = T = 1 and

N = 3, completing the proof of Theorem 4. "

VIII. CONCLUSION

The XSTPIR problem is timely due to the growing impor-

tance of privacy and security concerns in modern informa-

tion storage and retrieval systems. It is a conceptually rich

topic that reveals new insights into alignment of noise terms,

dependence of coding and query structures, cost of symmetric

security, significance of field size for the rate of information

retrieval, etc. As indicated by various open problems identified

here, XSTPIR is a fertile research avenue for future work.

In particular, the capacity characterization for arbitrary K

could reveal fundamentally new schemes for PIR. Especially

intriguing would be the role that field size might play in such

a result. Capacity of Sym-XSTPIR is another promising open

problem. XSTPIR with constraints on the amount of storage

per server, coded storage, multi-message retrieval are other

open problems that merit investigation.

APPENDIX A

PROOF OF LEMMA 7

Let Jk denote the k × k anti-diagonal identity matrix, and

let 0k1×k2 denote the k1 × k2 matrix where all elements are

equal to 0 (when k1 = k2, this notation is further simplified

to 0k1 ). Define

I′
k =

[

Ik 0k×1

01×k 0

]

. (135)

Choose B as follows.

B =





























[

I K
2

J K
2

J K
2

0 K
2

]

,

if K is even,






J K+1
2

+ I′
K−1

2

+ I K+1
2

J K−1
2

0
1× K−1

2

J K−1
2

0 K−1
2

×1 0 K−1
2




 ,

if K is odd.

(136)

For example,

when K = 4: B =







1 0 0 1

0 1 1 0

0 1 0 0

1 0 0 0







,
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and when K = 5: B =









0 0 1 0 1

0 1 0 1 0

1 0 1 0 0

0 1 0 0 0

1 0 0 0 0









. (137)

Let us show that B and IK + B are both invertible.

First, consider B. Regardless of whether K is even or odd,

B is an upper anti-triangular matrix where all anti-diagonal

elements are 1 so that det(B) = 1 and B has full rank.

Next, consider IK + B.

When K is even:

IK + B =

[

I K
2

0 K
2

0 K
2

I K
2

]

+

[

I K
2

J K
2

J K
2

0 K
2

]

=

[

0 K
2

J K
2

J K
2

I K
2

]

(138)

⇒ det(IK + B) = 1. (139)

When K is odd:

IK + B =

[

I K+1
2

0 K+1
2 × K−1

2

0 K−1
2 × K+1

2
I K−1

2

]

+






J K+1
2

+ I′
K−1

2

+ I K+1
2

J K−1
2

01× K−1
2

J K−1
2

0 K−1
2 ×1 0 K−1

2




 (140)

=






J K+1
2

+ I′
K−1

2

J K−1
2

01× K−1
2

J K−1
2

0 K−1
2 ×1 I K−1

2




 (141)

⇒ det(IK + B)

= det

(

J K+1
2

+ I′
K−1

2

+

[

J K−1
2

01× K−1
2

]

I−1
K−1

2

[

J K−1
2

0 K−1
2

×1

]
)

(142)

= det

(

J K+1
2

+ I′
K−1

2

+ I′
K−1

2

)

= det
(

J K+1
2

)

= 1 (143)

where (142) follows from the following formula on the

determinant of a block matrix that is made up of matrices

A, B, C, D with proper dimensions and D is invertible.

det

(

A B

C D

)

= det(D) det
(

A − BD−1C
)

. (144)

The proof is thus complete. "

APPENDIX B

PROOF OF COROLLARIES 1, 2, 3, 4

The proof of Corollary 1 is trivial because imposing the

symmetric security constraint cannot increase capacity.

A. Proof of Corollary 2

To prove Corollary 2 we provide a scheme as follows.

Each message Wk , k ∈ [1 : K ], consists of L = 1 symbol

from some finite field Fq . Let Zx,k,m, x ∈ [1 : X], k ∈
[1 : K ], m ∈ [1 : K ] be independent uniform noise symbols

from Fq . The subscript, m, in Zx,k,m is interpreted modulo K ,

i.e., Zx,k,m = Zx,k,m+K . The storage at each server is specified

as,

Sn = {Zn,k,m , k ∈ [1 : K ], m ∈ [1 : K ]}, n ∈ [1 : X], (145)

Sn =

{

Wk +

X
∑

x=1

Zx,k,m, k ∈ [1 : K ], m ∈ [1 : K ]

}

, n = N.

(146)

The queries from each server are specified as,

Q[θ]
n : Ask for {Zn,k,mo , k ∈ [1 : K ]}, n ∈ [1 : X], (147)

Q[θ]
n : Ask for {Wk +

X
∑

x=1

Zx,k,mo−θ+k, k ∈ [1 : K ]}, n = N,

(148)

where mo is chosen privately and uniformly randomly by the

user from [1 : K ]. Thus, in order to retrieve 1 desired message

symbol, the user downloads a total of K N symbols from all

servers. The scheme is X-secure because each message symbol

is protected by independent uniform noise terms. It is correct

because for k = θ the download from Server N , contains the

symbol Wθ +
∑X

x=1 Zx,θ,mo and the downloads from the first

X servers include all the noise terms Zx,θ,mo . The scheme is

private because mo is chosen uniformly and privately by the

user. It satisfies symmetric security because all the undesired

message symbols Wk , k /= θ , contained in the answers are

protected by noise terms Zx,k,mo−θ+k and these noise terms

are independent of the noise terms downloaded from servers

n ∈ [1 : X] because mo − θ + k /= mo when k /= θ . The rate

achieved is 1
K N

, which is the capacity for this setting. "

Note that in the Sym-XSPIR scheme described above, each

server stores K 2 symbols, when the total data is only K L =

K symbols. Thus, this Sym-XSPIR scheme takes advantage

of unconstrained storage when K is large, more so than the

XSTPIR schemes which store no more than K L symbols at

each server.

B. Proof of Corollary 3

To prove Corollary 3, we show that the scheme presented in

Section VI automatically guarantees symmetric security when

T = 1. Define

Wc
i = {Wl , l ∈ [1 : L], l /= i} (149)

Zc
i j = {Zlx , l ∈ [1 : L], x ∈ [1 : X], (l, x) /= (i, j)}. (150)

We need to prove that beyond the information that the user

must have, i.e., Wθ , Q
[θ]

[1:N], θ , he cannot learn anything about

the messages W[1:L] from the answers A
[θ]
[1:N].

I
(

W[1:L]; A
[θ]

[1:N] | Wθ , Q
[θ]

[1:N], θ
)

=
∑

l∈[1:L]

I
(

Wl; A
[θ]
[1:N] | W[1:l−1], Wθ , Q

[θ]
[1:N], θ

)

(151)

≤
∑

l∈[1:L]

I
(

Wl; A
[θ]
[1:N] | Wc

l , Wθ , Q
[θ]
[1:N], θ

)

(152)

≤
∑

l∈[1:L]

I
(

Wl; A
[θ]
[1:N] | Zc

l1, Wc
l , Wθ , Q

[θ]
[1:N], θ

)

(153)
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where we repeatedly used the fact that I (A; B | C) ≤ I (A; B |

C, D) if I (A; D | C) = 0 and the facts that

I (Wl ; W[l+1:L] | W[1:l−1], Wθ , Q
[θ]
[1:N], θ) = 0 (154)

I
(

Wl; Zc
l1 | Wc

l , Wθ , Q
[θ]
[1:N], θ

)

= 0 (155)

that follow from the independence of messages, queries, and

the noise terms, by construction of the scheme in Section VI.

To prove Corollary 3 it suffices to show that each of the

terms in the summation is zero. Without loss of generality,

let us consider l = 1. Because of the conditioning on

Zc
11, Wc

1, Wθ , Q
[θ]

[1:N], θ , we can subtract the contributions from

these terms, whose values are fixed, from A
[θ]
n , leaving us with

only

A′[θ]
n

= (W1 + (1 + αn)Z11)

(
&n

1 + αn

)
(

Qθ + (1 + αn)Z′
1

)

(156)

=

(
&n

1 + αn

)

W1Qθ

+ &n(W1Z′
1 + Z11Qθ ) + &n(1 + αn)Z11Z′

1 (157)

=

(
&n

1 + αn

)

Wθ1

+ &n(W1Z′
1 + Z11(θ)) + &n(1 + αn)Z11Z′

1 (158)

where Z11(i) is the i th element of the vector Z11. Note that

Wθ1 is also a constant because of the conditioning on Wθ .

Given Zc
11, Wc

1, Wθ , Q
[θ]

[1:N], θ , the random variable A
[θ]

[1:N] is

an invertible function of A′[θ]

[1:N].

I
(

W1; A
[θ]

[1:N] | Zc
11, Wc

1, Wθ , Q
[θ]

[1:N], θ
)

(159)

= I
(

W1; A′[θ]
[1:N] | Zc

11, Wc
1, Wθ , Q

[θ]
[1:N], θ

)

(160)

= I
(

W1; A′[θ]
[1:N] | Wθ1, Q

[θ]
[1:N], θ

)

(161)

≤ I (W1; W1Z′
1 + Z11(θ), Z11Z′

1 | Wθ1, Qθ , θ) (162)

≤ I (W1; W1Z′
1 + Z11(θ), Z11Z′

1 | Wθ1, Qθ , Z′
1, θ) (163)

= 0. (164)

In (162) we used the fact that given Wθ1, the random variable

A′[θ]

[1:N] is a function of W1Z′
1 + Z11(θ), Z11Z′

1 because of

(158), and the fact that for any random variables A, B, C ,

we must have I (A; f (B) | C) ≤ I (A; B | C). In (163)

we used the fact that conditioning on an independent random

variable cannot reduce mutual information, i.e., I (A; B | C) ≤
I (A; B | C, D) if I (A; D | C) = 0, and the fact that Z′

1

is independent of W1 after conditioning on Wθ1, Qθ , θ by

construction of the scheme as described in Section VI. The

last step is justified as follows. Because of the conditioning

on Z′
1, its value is a constant for which there are only three

possibilities: Z′
1 is either the zero vector, or it is equal to µQθ

for some non-zero µ ∈ Fq , or it is neither zero nor equal to

µQθ . If Z′
1 is the zero vector, then the mutual information is

automatically zero because W1 is eliminated entirely. If Z′
1 =

µQθ for some non-zero µ, then W1Z′
1 = µWθ1 and the mutual

information is again zero because of the conditioning on Wθ1.

Finally, if Z′
1 is neither zero nor a scaled version of Qθ , then

Z11Z′
1 is a sum of uniformly random noise terms in Fq , at least

one of which is independent of Z11(θ) and Z′
1. So in this case

also the mutual information is zero. This completes the proof

of Corollary 3. "

C. Proof of Corollary 4

The proof of Corollary 4 is presented next. Recall that in

the scheme of the proof of Theorem 4, the user obtains the

following three symbols from the answers,

WQθ = Wθ (165)

WZ′ + ZZ′ (166)

WZ′ + ZBZ′ + ZBQθ . (167)

We show that symmetric security holds, i.e., conditioned on Z′,
from these three symbols the user learns nothing about the

undesired messages W1, · · · , Wθ−1, Wθ+1, · · · , WK . When Z′

is the zero vector, the symbol WZ′ is zero as well, leaking

nothing about the undesired messages. Now consider (166).

If Z′ is not the zero vector, then the symbol WZ′ is protected

by an independent noise term. Similarly, consider (167) and

consider three possibilities: B(Z′ + Qθ ) is either zero, or equal

to Z′, or not zero and not equal to Z′. If B(Z′+Qθ ) is the zero

vector, then because B is invertible, we must have Z′ = Qθ ,

so the symbol WZ′ = WQθ is the desired message, again

leaking nothing about undesired messages. If B(Z′+Qθ ) = Z′

then (167) is redundant, i.e., same as (166), so it leaks no new

information. Finally, if B(Z′ + Qθ ) is not zero and not equal

to Z′, then ZB(Z′ + Qθ) is independent of ZZ′, so that (167)

is protected by an independent noise term. Therefore, in all

cases, the user learns nothing about undesired messages, and

this completes the proof of symmetric security. "
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