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ABSTRACT

Orographic deep convection (DC) initiation and rapid evolution from supercells to
mesoscale convective systems (MCS) are common near the Sierras de Cordoba, Argentina, which
was the focal point of the Remote Sensing of Electrification, Lightning, And Mesoscale/microscale
Processes with Adaptive Ground Observations (RELAMPAGO) field campaign. This study used
an idealized numerical model with elongated north-south terrain similar to that of the Sierras de
Cordoba to address how variations in terrain height affected the environment and convective
morphology. Simulations used a thermodynamic profile from a RELAMPAGO event that featured
both supercell and MCS storm modes. Results revealed that DC initiated earlier in simulations
with higher terrain, owing both to stronger upslope flows and standing mountain waves. All
simulations resulted in supercell formation, with higher terrain supercells initiating closer to the
terrain peak and moving slower off the terrain. Higher terrain simulations displayed increases in
both low-level and deep-layer wind shear along the eastern slopes of the terrain that were related
to the enhanced upslope flows, supporting stronger and wider supercell updrafts/downdrafts and a
wider swath of heavy rainfall. Deeper and stronger cold pools from these wider and stronger higher
terrain supercells led to surging outflow that reduced convective available potential energy
accessible to deep convective updrafts, resulting in quicker supercell demise off the terrain. Lower
terrain supercells moved quickly off the terrain, merged with weaker convective cells, and resulted
in a quasi-organized MCS. These results demonstrate that terrain-induced flow modification may

lead to substantial local variations in convective morphology.
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1. Introduction

Terrain can have profound impacts on the initiation, maturation, and decay of deep
convection (DC). Insolation and subsequent heating of terrain surfaces relative to the cooler
surrounding air hydrostatically lowers pressures, fostering anabatic upslope flows (e.g., Crook and
Tucker 2005; Geerts et al. 2008). These upslope flows may converge near the terrain peak and
result in the erosion of ambient convective inhibition (CIN), leading to cumulus, cumulus
congestus, and in some instances, DC initiation (DCI). Terrain is also one of the leading instigators
of mesoscale convective systems (MCSs; Zipser 1977) that can produce severe weather and heavy
rainfall. In fact, climatological studies of MCSs show that a majority initiate in the lee of terrain
over land (e.g., Velasco and Fritsch 1987; Laing and Fritsch 1997). Other modes of DC have also
been observed to initiate and/or interact with terrain, such as supercells (e.g., Bluestein 2000;
Bosart et al. 2006; Tang et al. 2016; Scheftknecht et al. 2017; Mulholland et al. 2018; Mulholland
et al. 2019). Thus, it is clear that terrain exerts major influences on DCI through maturation and
decay.

Numerous observational, modeling, and theoretical studies have advanced our
understanding of how terrain impacts DCI (e.g., Orville 1965; Tucker and Crook 2005; Wilson
and Roberts 2006; Kirshbaum 201 1; Kirshbaum 2013; Kirshbaum and Wang 2014; and references
therein) or how mature DC, such as supercells or MCSs, interact with terrain (e.g., Bosart et al.
2006; Frame and Markowski 2006; Letkewicz and Parker 2011; Markowski and Dotzek 2011; and
references therein). While the impact of terrain on DCI is relatively straightforward to
conceptualize and is thoroughly covered in the aforementioned literature, the impact of terrain on
supercells and MCSs is a bit more nebulous. Observational studies of terrain influences on

supercells, such as by Bosart et al. (2006) and Tang et al. (2016), showed evidence for localized

3
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regions of enhanced low-level vertical wind shear (due to flow channeling) and larger convective
available potential energy (CAPE) (due to moisture “pooling”), both of which were favorable for
supercell sustenance/strengthening. Observational studies, however, can only be used to a certain
extent to discuss the relative influence of terrain on DC. In other words, there is no way to know
the true influences of terrain since we cannot (in reality) remove terrain and observe the outcome
on DC and/or the environment. Thus, numerical models are often used to help address research
questions related to terrain influences on DC (e.g., Markowski and Dotzek 2011).

Only a limited number of numerical modeling studies have attempted to address how
terrain influences supercells and MCSs. Frame and Markowski (2006) and Letkewicz and Parker
(2011) both used an idealized numerical modeling framework to study how terrain-crossing MCSs
changed in intensity and structure following interactions with terrain. Markowski and Dotzek
(2011) also used an idealized numerical modeling framework to analyze mature supercells
crossing terrain. Comparatively few studies, however, have been conducted on the influence of
terrain on the full evolution of DC, such as from DCI to supercell to MCS. Soderholm et al. (2014)
analyzed convective storm morphology near the Black Hills, an isolated mountain range in South
Dakota with a maximum terrain height ~2200 m. Using both a 10 yr observational climatology
and idealized numerical modeling simulations, they found that orographically forced convective
cells (within weak wind shear environments) were weaker off the terrain owing to greater CIN. In
stronger wind shear environments, more organized and longer-lived MCS and supercellular
convective modes were favored. Their major finding was that convective storm morphology was
relatively insensitive to thermodynamic perturbations induced by terrain, but was more strongly

modulated by wind shear perturbations induced by terrain.

4
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Mulholland et al. (2019) provided a detailed case study of an orographic supercell-to-MCS
transition event in Argentina, South America. In addition to an observational overview of the
event, the authors conducted a series of Weather Research and Forecasting (WRF) model
simulations in which the terrain of the Sierras de Cordoba was systematically raised or lowered
between -40% to +40%, relative to the control terrain height peak of ~2500 m. Their results showed
that higher terrain simulations had progressively earlier DCI owing to both enhanced standing
mountain waves and stronger low-level upslope flows. Furthermore, when the terrain was raised
(lowered), wind shear increased (decreased) and CAPE decreased (increased) relative to the
control simulation. These environmental differences resulted in the fastest supercell-to-MCS
upscale growth within the control simulation, with progressively slowed (non-existent) upscale
growth in higher (lower) terrain height simulations. While Mulholland et al. (2019) showed
modifications of the terrain influenced this particular event in a real-data model configuration
(including mesoscale-to-synoptic scale influences, such as a low-level jet, front), we seek to test
particular hypotheses in a more controlled model configuration to assess terrain-convective
morphology interactions.

The discrepancies in just how strongly terrain impacts the full convective life cycle of DC
motivates further research into this topic. Owing to the strong regulation of severe weather hazard
type by parent convective mode (e.g., supercells = greater tornado/large hail threat; MCSs = greater
damaging winds/flash flooding threat; Trapp et al. 2005; Dial et al. 2010; Smith et al. 2012), it is
vitally important to understand how terrain may impact what convective mode(s) is (are) favored
in a given environment. Our central research question is: How do terrain induced modifications to
a given supercell/MCS background environment affect deep convective morphology? Our central

hypothesis to this research question is: Terrain induced upslope flow, and the associated terrain

5
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induced modifications to the vertical wind shear profile, are capable of strongly modulating the
intensity of supercell updrafts, cold pool generation, and subsequently, the upscale evolution of
supercells into an MCS. To address our hypothesis, an idealized numerical modeling framework
is adopted in which an array of varying terrain height simulations (greater range of terrain heights
than the aforementioned studies) are conducted for a given environment. The use of an idealized
numerical modeling framework is chosen over a real-data modeling framework (as in Mulholland
et al. 2019) given its ability to more “cleanly separate” the specific roles of terrain effects on the
environment and subsequent convective morphology (i.e., remove mesoscale-to-synoptic scale
influences, such as warm air advection, low-level jets, and fronts). A description of the
experimental design is provided in section 2. Section 3 contains the results from the idealized
numerical modeling simulations and related discussion, and conclusions are located in section 4.
2. Experimental design
a. Numerical modeling setup

A series of idealized numerical model simulations were conducted using Cloud Model 1
(CM1; Bryan and Fritsch 2002) version 19.7. CMI is a compressible, nonhydrostatic numerical
model. The CM1 simulations were conducted with a uniform horizontal grid spacing of 500 m and
a uniform vertical grid spacing of 250 m over a domain with dimensions 324 x 504 x 20 km® (648
x 1008 x 80 grid points). Sensitivity test simulations conducted with a uniform horizontal grid
spacing of 250 m, a uniform vertical grid spacing 125 m, and a vertical dimension of 24 km for
the 4500 m terrain configuration showed little difference in convective morphology', thus

supporting the use of a relatively coarser resolution and shallower domain. The lower boundary

! Notable differences between 4500 m sensitivity tests: (1) DCI occurred slightly earlier in the higher resolution
simulations, (2) more persistent DC in higher resolution simulations following the gust front surge, and (3) largest
morphological differences late in the model integration.

6
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condition was semi-slip with the surface exchange coefficient for momentum (Cp) based on Fairall
et al. (2003) at low-to-mid wind speeds, and Donelan (2004) at higher wind speeds (the default
option in CM1), while the (constant) surface exchange coefficient for enthalpy (Cy) was based on
the specified land-use index. The top boundary condition was rigid and free slip. A Rayleigh
damping layer (coefficient = 3.33 x 107 s7!) was applied above 15 km to minimize the artifacts of
the rigid top boundary.

To study the effects of terrain on convective morphology and the surrounding environment,
seven different terrain configurations were implemented in the simulations. Terrain was specified
as an elliptically shaped mountain that was stretched in the north-south direction to mimic the
approximate shape and areal extent of the Sierras de Cordoba. The terrain height (Z5) was modified

from the function presented in Doernbrack et al. (2005) and was specified as:

-1.5

2
(1) ziy) =h<[(1+(E)) 1.

where 4 = halfwidth (2.5 km), a = 10 km, and

(2) X=\/(x+yxmax)2+ﬁ[(ay+(pymax)2]a

where y = x-position center of terrain (0.65), ¢ = y-position center of terrain (0.10), f = factor to
stretch entire terrain in north-south direction (0.15), a = factor to only stretch maximum terrain
height in north-south direction (0.40), x4, = length of domain in x-direction (324 km), and
Vmax = length of domain in y-direction (504 km). Seven different terrain height peaks of 500 m,
1500 m, 2000 m, 2500 m (Control: CTRL), 3000 m, 3500 m, and 4500 m were implemented. An
example plan view of the 2500m-CTRL terrain configuration and west-to-east oriented vertical
cross sections through all terrain peaks for these variable settings is depicted in Fig. 1.

Radiation and surface fluxes of heat, moisture, and momentum were included to allow for

the development of realistic slope flows and natural DCI without prescribing a warm/cold “bubble”

7
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in proximity to the heated terrain. Longwave and shortwave radiation were parameterized using
the RRTMG scheme (Iacono et al. 2008) derived from the WRF model. The initialization of the
radiation scheme included the following specifications: 1200 UTC 25 January 2019 at 31.30°S
and 64.21°W (time and location of where the input sounding was located; e.g., Fig. 2). The
radiation scheme was called every 5 min. All horizontal lateral boundaries were periodic to allow
for the diurnal evolution of the initial thermodynamic and wind profiles within the domain. Surface
fluxes of heat, moisture, and momentum were parameterized using the Monin-Obukhov similarity
theory surface layer model (Grell et al. 1994). The surface fluxes were dependent on the user
specified land-use category, which in this study was “irrigated cropland” with a soil moisture
availability of 0.5 (as in Nowotarski et al. 2014). Due to the coupled atmospheric radiation—land-
surface models used in these simulations, grid translation (i.e., uniform wind subtracted from base
state winds) was not possible, thus necessitating the relatively large domain size and coarser
horizontal and vertical grid spacings. The two-moment Morrison microphysics package (Morrison
et al. 2009) was used in all simulations with hail as the prognostic rimed ice hydrometeor species.
The simulations used a time step of 3 s, were integrated for 8 h, and model output was saved every
5 min. Coriolis acceleration was turned on for a sensitivity test simulation for the 4500 m terrain
configuration (latitude = 31.30°N and f = 7.58 x 107 s'). The results from this additional
simulation (not shown) were qualitatively similar® to the simulation with Coriolis acceleration
turned off, and thus, the rest of the simulations neglected Coriolis acceleration. A summary of the

CMI1 configuration is located in Table 1.

2 Main difference between the 4500 m terrain height simulation with/without Coriolis acceleration: (1) supercell in
the 4500m-Coriolis-ON simulation was slightly weaker and less organized than in the 4500m-Coriolis-OFF
simulation.

8
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The input thermodynamic profile for the CM1 simulations was derived from an observed
sounding from the Ingeniero Aerondutico Ambrosio L.V. Taravella International Airport in
Cordoba, Argentina (World Meteorological Organization site code 87344), at 1200 UTC 25
January 2019 (Fig. 2) during the extended observing period of the Remote Sensing of
Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground
Observations (RELAMPAGO) field campaign. Colorado State University C-band radar (31.63°S,
64.17°W, elevation 421 m) deployed for RELAMPAGO observed a vertically intense orographic
supercell that rapidly transitioned into an MCS (Fig. 3; also see Fig. S1), similar to the case study
presented in Mulholland et al. (2019) and climatological upscale growth events documented in
Mulholland et al. (2018). The sounding was characterized by a nocturnal near-surface inversion
layer with a surface dewpoint temperature of 26°C and mixing ratio of 23 g kg™!'. This near-surface
inversion layer was vertically mixed out in the simulations owing to the inclusion of radiative
fluxes. The CAPE and CIN for an air parcel with properties averaged over the lowest 100 hPa
(most unstable parcel) were ~2900 J kg!' (~4781 J kg'!) and ~ -175 J kg (~ -110 J kg™),
respectively. The mixed-layer lifting condensation level (LCL) was ~1030 m above ground level
(AGL), level of free convection (LFC) ~2690 m AGL, and equilibrium level (EL) ~15000 m AGL.
The input wind profile was based on the analytic quarter circle wind hodograph from Rotunno and
Klemp (1982) (Fig. 2b). The observed wind profile from 1200 UTC 25 January 2019 was not used
for the simulations as deep-layer wind shear magnitudes early on this day were sub-optimal for
supercell formation, likely due to the proximity of the sounding site to the terrain (e.g., 0—6 km
wind shear® = ~10-15 m s™'; not shown). The wind shear vector veered with increasing height from

southerly to westerly over the lowest 2 km and stayed westerly above. The initial near-surface

3 Wind shear throughout the article will refer to the bulk wind difference, calculated as a simple vector subtraction
between the upper-level horizontal wind vector and the lower-level horizontal wind vector (units: m s™).
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wind was approximately calm and did not contain any upslope component. To remain consistent
with a large portion of the established severe convective storms literature, all simulations were
based around a Northern Hemisphere-centric framework, i.e., a “right-moving” supercell (main
focus of paper) was one that deviated to the right of the mean wind shear vector and rotated
cyclonically (to avoid any confusion with the aforementioned Southern Hemisphere references).

The input wind hodograph captured the salient features accompanying orographic DC
events in north central Argentina, such as sharp veering of winds with increasing height near the
terrain peak, and a gradual increase in the magnitude of (approximately) westerly winds with
increasing height (e.g., see Fig. 15 from Mulholland et al. 2018). Note that this background
environment was dramatically different from the weaker wind shear/CAPE environment used to
study DC morphology over the Black Hills in South Dakota by Soderholm et al. (2014). To
facilitate the generation of a turbulence spectrum, random potential temperature perturbations,
with a maximum amplitude of |0.5 K|, were introduced uniformly across the domain below 1 km
in the initial conditions (e.g., Nowotarski et al. 2014; Peters et al. 2019a; Peters et al. 2020). DC
in the simulations initiated owing to the inclusion of radiation and surface fluxes, which quickly
led to upslope flows and subsequent low-level convergence, ascent, and erosion of ambient CIN
(in line with upslope flow onset and evolution for the given terrain height, width, and areal extent,
e.g., Egger et al. 2005; Zangl and Chico 2006; Geerts et al. 2008).
3. Results and discussion

All seven simulations resulted in DCI near the terrain, with higher terrain simulations
displaying earlier DCI (Figs. 4 and 5—far left panels; Table 2; also see radar animation in Fig. S2).
Lower terrain simulations resulted in DCI mainly along a low-level convergence zone to the north

of the terrain peak (not shown) whereas the 2500 m-CTRL simulation and all higher terrain

10
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simulations resulted in DCI mainly downwind (east) of the terrain peak. West-to-east oriented
Hovmoller diagrams taken through the terrain peaks and calculated at 1000 m above the terrain
peaks during the first 3 h of the simulations revealed that the 2500m-CTRL and all higher terrain
simulations had a standing mountain wave that monotonically increased in strength with increasing
terrain height (Fig. 6). A strengthening westerly flow component with increasing altitude impinged
on the terrain peaks, resulting in stronger standing mountain waves in higher terrain simulations
(Fig. 7). The upward and downward branches of these standing mountain waves, with
maximum/minimum vertical velocities between -4 to 4 m s™', did not extend more than 25-50 km
east of the terrain peaks for any of the terrain simulations (Figs. 6 and 7; also see animation in Fig.
S3). An upward wave branch was located just downstream of the terrain peak in these higher
terrain simulations, aiding in the earlier erosion of ambient CIN due to adiabatic cooling (color
shading in Fig. 6). In addition to stronger standing mountain waves in higher terrain simulations,
stronger heating of the elevated terrain and subsequent greater horizontal buoyancy and
perturbation pressure gradients resulted in enhanced low-level upslope flow (Figs. 8 and 9). Time
series of vertically averaged 0—1 km zonal wind that was then spatially averaged over a 50 x 200
km? box with the west-central side of the box centered ~50 km east of the terrain peaks revealed
that the 4500m simulation displayed ~3—4 m s™! greater low-level upslope flow as compared to the
500m simulation (Fig. 9). Inflow soundings and hodographs derived from a grid point 25 x 25 km?
to the south and east of the DCI locations at the time of DCI (i.e., first appearance of a lowest
model level reflectivity >40 dBZ) for each simulation revealed minimal thermodynamic
differences, but relatively larger wind profile differences, with higher terrain hodographs
displaying a greater toward-terrain flow component in the lowest few kilometers (Fig. 10; e.g.,

greater south-southeasterly low-level flow). The combination of enhanced low-level upslope flow
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convergence on the terrain peaks and the presence of a standing mountain wave explains the earlier
DCI in higher terrain simulations and is in line with the results from the WRF terrain height
simulations presented in Mulholland et al. (2019). Additional analysis of these terrain-induced
environmental variations and their effect on subsequent storm evolution are discussed throughout
the remainder of this section.

Remarkably, given the limiting assumptions of the idealized numerical modeling
framework adopted here, the resultant convective evolution following DCI in the 2500 m-CTRL
simulation resembled the convective evolution of the observed orographic supercell-to-MCS
transition on 25 January 2019 (compare radar animations in Figs. S1 and S2). Simulations with
terrain lower than the 2500m-CTRL generally displayed less organized DC with a tendency for
clustering of weaker convective cells owing to cold pool mergers with an eventual transition
toward a quasi-organized MCS (Fig. 11; also see animation in Fig. S4—top row). In contrast, a
distinct change in the character of convective evolution was noted for all terrain simulations above
the 2500m-CTRL, with relatively isolated, right-moving supercells nearer the terrain peaks (Fig.
12; also see animation in Fig. S4-bottom row). These higher terrain supercells did not interact
nearly as much with the weaker surrounding convective cells as did the lower terrain supercells;
instead, the mesocyclones of these supercells were essentially “undercut” by surging outflow
associated with the supercell cold pools along both their forward and rear flanks (e.g., Fig. 12—
bottom row). Finley et al. (2001) depicted a similar process of surging cold outflow undercutting
a supercell’s mesocyclone in numerical simulations. This surging cold pool evolution is
highlighted in south-to-north oriented vertical cross-sections taken through the maximum 2-5 km
updraft helicity (UHwmax) locations (along dotted black horizontal lines in Figs. 11 and 12) for each

simulation (UHmax at Y-distance = 0 km in Figs. 13 and 14). The higher-terrain supercell cold

12

020z AInr z1L uo 3senb Aq 4pd 06106 L PSEI/SG60961/L 061 0-6L-0-SV/GLL L0 L/10p/pd-ajonie/sel/Bio-o0siewes|euinolj/:dpy woly pepeojumoq



275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

Accepted for publication in Journal of the Atmospheric Sciences. DOI10.1175/JAS-D-19-0190.1.

pools were initially deeper and stronger, leading to southward-surging outflow away from the
mesocyclones in these simulations (e.g., Fig. 14-bottom row; also see Fig. S5). The Pearson linear
correlation coefficient (hereafter: CC) between maximum terrain height and minimum lowest
model level potential temperature perturbation temporally averaged over the first 7 h of the
simulations was -0.84, suggesting a robust relationship between maximum terrain height and the
supercell average cold pool strengths (Fig. 15h). This surging outflow, and resultant increasing
spatial separation between the deep convective updrafts associated with the supercell
mesocyclones and their near-surface outflow boundaries, resulted in air parcels having to travel
25-50 km overtop the cold pool before entering deep convective updrafts (e.g., Fig. 14—bottom
row; e.g., Peters and Schumacher 2016). As a result of this increased distance between near-surface
outflow boundaries and their parent mesocyclones in higher terrain simulations, the magnitude of
CAPE that reached the remaining deep convective updrafts was reduced (e.g., Fig. 14-bottom
row). Once the higher terrain supercells began to grow upscale into an MCS via this process of
southward-surging outflow, and CAPE was reduced, the resulting updrafts were comparatively
weaker than their lower terrain counterparts and by the end of the simulations, only weaker DC
cells developed well behind the supercell near-surface outflow boundaries (e.g., Fig. 12-T =390
min; Fig. 14-T =390 min).

Runtime accumulated swaths of UH depicted that higher terrain supercells were wider,
more coherent, and had motions that deviated more to the right of the mean deep-layer wind shear
(see red arrows® in Fig. 15). Given that higher terrain supercells generally moved slower (i.e., more
“anchored” to the terrain; see radar animation in Fig. S2) and more to the right of the deep-layer

wind shear meant that they were influenced by terrain-induced perturbations (e.g., enhanced wind

4 The focus of the remainder of the article is on the right-moving supercells denoted by red arrows in Fig. 12 as these
were most directly influenced by terrain modifications.
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shear) for lengthier periods compared to their lower terrain supercell counterparts. Time series of

2-8 km updraft effective radii (Ry, = \/% , where A = area of the updraft, defined using the largest

contiguous horizontal area of 2-8 km vertically averaged vertical velocity w,,,, exceeding 15 m s
1) and 2—5 km mesocyclone effective radii R,y,s, (defined using the largest contiguous horizontal
area of UH exceeding 250 m? s) confirmed that higher terrain supercell updrafts/mesocyclones
were indeed wider than their lower terrain supercell updraft/mesocyclone counterparts (Fig. 16a-
b). For example, the maximum R,,;, and R, for the 4500m supercell were 5.7 km and 4.8 km,
respectively, while the maximum R,,;,, and R, for the 500m supercell were 4.0 km and 2.1 km,
respectively (Fig. 16a-b). The range of simulated supercell updraft effective radii depicted here
generally fall within the range of simulated supercell updraft effective radii that resulted from
variations in both low-level and deep-layer wind shear presented by Peters et al. (2019b). Robust
linear relationships between maximum terrain height and maximum R, and maximum
Rineso Were noted with CC values of 0.83 and 0.95, respectively (Fig. 16d-e).

In addition to being wider, higher terrain supercell updrafts were also stronger (Fig. 17a).
Time series of both wy,;, and UHmax confirm that higher terrain supercells had stronger rotating
updrafts compared to lower terrain supercells (Fig. 17a-b). Maximum w;,, and UHwmax for the
4500m supercell were 43.0 m s and 4701.9 m? s, respectively, whereas the maximum Wy, and
UHwmax for the 500m supercell were 26.9 m s and 916.6 m? s, respectively (Fig. 17a-b). Strong
linear relationships between maximum terrain height and both maximum wy,; and maximum
UHwmax were found, with CC values of 0.94 and 0.89, respectively (Fig. 17¢ and 17¢). Furthermore,
higher terrain supercell downdrafts were also wider (Fig. 16c; R;,, defined using largest

contiguous horizontal area of 1-4 km vertically averaged vertical velocity wy,, less than -10 m s
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1Y and stronger (Fig. 17a). Maximum R, (minimum Wg,,) for the 4500m supercell was 2.8 km (-
18.9 m s!), whereas maximum R, (minimum W,,) for the 500m supercell was 1.2 km (-17.6 m
s!) (Figs. 16¢c and 17a). A strong linear relationship between maximum terrain height and
maximum R;, was manifest with a CC value of 0.84 (Fig. 16f), whereas a weaker linear
relationship existed between maximum terrain height and minimum wg,, with a CC value of -0.53
(Fig. 17d). Similar to the idealized supercell simulations presented by Marion and Trapp (2019),
these wider and stronger higher terrain supercell drafts directly led to a wider swath of heavy
rainfall (Fig. 18). A corresponding strong linear relationship (CC = 0.85) was noted between
maximum terrain height and maximum rainfall accumulation (Fig. 18h). Maximum rainfall
accumulation for the 4500m supercell was 27.2 cm, whereas the maximum rainfall accumulation
for the 500m supercell was 10.5 cm (Fig. 18). The heavier precipitation likely led to a greater
contribution to negative buoyancy via condensate loading which fostered the stronger downdrafts
and cold pools in higher terrain supercells (e.g., Fig. 15).

Next, all terrain simulation supercell updrafts were both subjectively and objectively
tracked to characterize the near-storm, “inflow” environments. To objectively track updrafts, we
first found the horizontal location (x,,, y;,,) of column maximum vertical velocity (wmax) within
the domain at a given time as a “first guess”. We then subjectively compared the time series of x,,
and y,, to the track of the most intense updraft within the domain, and removed points that were
not associated with the right-moving supercell nearest terrain (e.g., see red arrows in Fig. 15a-g).
We also discarded points when the domain wmax was <20 m s™!. The final supercell track (x;, ;)
was computed by applying a Gaussian filter with a temporal radius of influence of 30 min to x,,
and y,, (after all non-right-moving supercell points had been removed). A second subjective visual

analysis was then performed to affirm the correspondence of x5 and y; with the most intense storm
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in the domain (i.e., the right-moving supercell nearest terrain). The time series of storm motion

dxg A

d
Tt a

vectors C(t) = c, i+ ¢ = ;; =j was then computed using second order centered-in-
time finite differences.

To specifically assess quantities within the supercell “inflow” regions, we drew a 40 x 40
km? box (hereafter: inflow box>) at each time, with the north and west corner of the box positioned
at x; and y,. The average depth of the effective inflow layer (EIL; calculated using the CAPE and
CIN criteria from Thompson et al. 2007) from the input sounding was approximately 4.25 km.
Given that the EIL flow generally entered deep convective updrafts from the south and east (not
shown) justified our specific positioning of the inflow box. Quantities were vertically and/or
horizontally averaged within the inflow box, with all points of w >5 m s! excluded from these
averages to avoid updraft influences. For instance, storm-relative (SR) flow vectors were
computed by first averaging u and v within the inflow box, and then subtracting the storm motion
vector, C(t). To determine factors that influenced Ry, Ryeso, and Ry, (e.g., Fig. 16), updraft
intensity (e.g., Fig. 17), and subsequent downdraft production (e.g., Fig. 17), quantities, such as
0-2 km SR flow, 0—2 km wind shear, 0—6 km wind shear, most-unstable (MU)CAPE, and MUCIN,
were computed within the inflow box and compared to the time series of Ry, Ripeso, and Ryp
(Fig. 16a-c).

Time series of inflow 0—2 km SR flow and 0-2 km wind shear showed general increases
with increasing terrain height, especially the 0-2 km SR flow between 150-300 min into the
simulations (solid lines in Fig. 19a-b). Owing to potential cold outflow influences evidenced by
decreases in 0—2 km SR flow and increases in 0—2 km wind shear after 300 min into the

simulations, regression analyses between the supercell inflow time series variables and maximum

3 Various inflow box sizes were tested with similar conclusions as the final 40 x 40 km? box chosen for this analysis.
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terrain height from each simulation were calculated using the following method: the output time
corresponding to the maximum R,,,, was determined, and a +/- 30 min window around this output
time was chosen to calculate 60 min temporally averaged supercell inflow time series variables,
which were then compared with maximum terrain height from each simulation. The average 0—2
km SR flow displayed a strong linear relationship with maximum terrain height with a CC value
of 0.92 (Fig. 20a), whereas the average 0-2 km wind shear vs. maximum terrain height had a CC
value of 0.69 (Fig. 20b). The average 0-2 km SR flow and 0-2 km wind shear for the 4500m
supercell were 22.7 m s™! and 22.0 m s}, respectively, while the average 0—2 km SR flow and 0-2
km wind shear for the 500m supercell were 11.4 m s and 13.8 m s}, respectively (Fig. 20a-b).
Consistent with the increases in low-level SR flow and wind shear with increasing terrain height,
0—6 km wind shear also showed increases with increasing terrain height (dashed lines in Fig. 19b)
and the average 0-6 km wind shear correspondingly had a strong linear relationship with
maximum terrain height (CC = 0.94; Fig. 20c). The average 0—6 km wind shear for the 4500m
supercell was 41.7 m s!, while the average 0—6 wind shear for the 500m supercell was 26.4 m s!
(Fig. 20c). These variations in low-level SR flow/wind shear and deep-layer wind shear span a
similar parameter space presented in the idealized supercell simulations of Trapp et al. (2017),
Marion and Trapp (2019), and Peters et al. (2019b). The stronger wind shear environment was
consistent with the trend for wider (e.g., Fig. 16a-c) and stronger (e.g., Fig. 17a) supercell drafts
in higher terrain simulations. In contrast, time series of MUCAPE and MUCIN generally showed
weaker magnitudes of MUCAPE in higher terrain supercell inflow and comparable magnitudes of
MUCIN within all supercell inflow (Fig. 19c-d). A strong negative correlation between average
MUCAPE and maximum terrain height was noted, with a CC value of -0.90 (Fig. 20d), whereas

no linear relationship was found between average MUCIN and maximum terrain height (CC = -
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0.11; Fig. 20e). The average MUCAPE (MUCIN) for the 4500m supercell was 4194.7 J kg (0.0
J kg!) while the average MUCAPE (MUCIN) for the 500m supercell was 5050.0 J kg™ (-0.0 J kg
1) (Fig. 20d-e). These average values in MUCAPE are larger than previous idealized simulations
of supercells, whereas the range in terrain-altered MUCAPE (500-1000 J kg™') shown here are
similar to previous idealized supercell simulations that varied the base state MUCAPE (e.g.,
Kirkpatrick et al. 2011; Marion and Trapp 2019; Peters et al. 2019b). This means that even though
higher terrain supercell updrafts were ingesting 500-1000 J kg™! less average MUCAPE as
compared to lower terrain supercell updrafts, their updrafts were still wider and stronger owing to
the stronger wind shear in their environments (e.g., Marion and Trapp 2019; Peters et al. 2019b).
To ensure that these essential inflow variations in wind shear were truly linked to terrain-
induced modifications and not purely storm-induced modifications, low-level perturbation winds
from the initial base state were calculated. Horizontal winds at the lowest model level in the initial
base state were subtracted from horizontal winds at the lowest model level averaged between 3—4
h into the simulations (i.e., time frame leading up to supercell formation in most simulations). The
results showed that while enhancements in low-level winds did occur within the inflow region of
the higher terrain supercells, a vaster south-to-north enhancement was located along the eastern
slopes of the terrain, south of the right-moving supercells (e.g., Fig. 21e-g). This narrow “ribbon”
of enhanced low-level winds (5-10 m s! stronger for higher terrain simulations) along the eastern
slopes of the terrain is reminiscent of the low-level wind shear enhancements noted along the
eastern slopes of the Sierras de Cérdoba by Mulholland et al. (2019). This low-level wind shear
enhancement was tied to the stronger low-level upslope flows noted in higher terrain simulations

(e.g., Figs. 9 and 10).
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The greater magnitudes of wind shear within the inflow region of the higher terrain
supercells, both over shallow and deep layers, likely fostered the wider and stronger updrafts and
downdrafts, in line with several recent papers relating wind shear to supercell draft properties (e.g.,
Dennis and Kumyjian 2017; Trapp et al. 2017; Warren et al. 2017; Marion and Trapp 2019; Peters
et al. 2019b). For example, Marion and Trapp (2019) showed that supercells in environments with
stronger low- and deep-layer wind shear had resultant wider updrafts, wider downdrafts, deeper
cold pools, and greater rainfall production. Furthermore, Peters et al. (2019b; 2020) showed that
wider supercell updrafts in environments with stronger wind shear allowed them to be more
resistant to entrainment-driven dilution, and thus, realize more of their core buoyancy, resulting in
stronger upward vertical velocities. Enhanced upward dynamic forcing owing to the stronger deep-
layer wind shear in the higher terrain supercell inflow may have also resulted in the stronger
upward vertical velocities, especially in the low-to-midlevels (e.g., Weisman and Rotunno 2000;
Peters et al. 2019b).

Overall, these results suggest that terrain-induced variations to vertical wind profiles were
mainly responsible for the differences noted in convective morphology as compared to terrain
induced thermodynamic variations, in line with conclusions drawn by Soderholm et al. (2014).
Given that the higher terrain supercells generally moved slower than lower terrain supercells, and
were located nearer the terrain peaks, they were more strongly affected by the aforementioned
terrain-induced perturbations to the base state environment (e.g., enhanced wind shear). Lower
terrain supercells moved off the terrain at a quicker pace, and correspondingly were influenced by
weaker terrain-induced perturbations to CAPE/CIN and wind shear (i.e., the lower terrain supercell
inflow more closely matched the quasi-homogenous environment off the terrain).

4. Conclusions
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This study addressed the influences of terrain on the environment and resulting convective
morphology using an idealized numerical modeling framework. Our objective was to analyze the
full convective evolution, from DCI to supercell to MCS, in relation to a wide array of terrain
heights (greater range of terrain heights than previous authors used). Seven idealized numerical
modeling simulations were conducted in which the north-south model terrain (mimicking the
Sierras de Cordoba in Argentina, South America) was altered by systematically varying maximum
terrain height between 500 m and 4500 m.

The idealized numerical modeling simulations displayed systematic variations in DCI
timing and location, as well as subsequent supercell intensity, updraft and downdraft structure,
cold pool and rainfall characteristics, and upscale growth rates that varied with modified
environmental characteristics caused by the simulations’ terrain modifications. Similar to WRF
simulations of an orographic supercell-to-MCS transition case study presented in Mulholland et
al. (2019), the higher terrain simulations conducted here displayed earlier DCI. Such earlier DCI
was attributed to earlier and stronger low-level upslope flows, along with dynamically enhanced
upward vertical motions owing to a standing mountain wave. The stronger upslope flows also
enhanced wind shear along the immediate eastern slopes of the terrain, and the enhanced wind
shear (both low-level and deep-layer) fostered wider supercell updrafts with stronger vertical
velocities. Supercell updraft width has been shown to scale with wind shear magnitude, with
stronger wind shear leading to wider updrafts (e.g., Dennis and Kumjian 2017; Trapp et al. 2017;
Warren et al. 2017; Marion and Trapp 2019; Peters et al. 2019b; Peters et al. 2020). These
aforementioned studies used a more highly idealized numerical modeling framework (i.e., warm

“bubble” initiation, no friction/radiation/fluxes/terrain), so the results shown here from a more
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“realistic” setting further support the claim that stronger wind shear leads to wider supercell
updrafts.

The wider and stronger updrafts also supported stronger/wider downdrafts and a wider area
of heavy rainfall accumulation. The stronger and wider higher-terrain supercell downdrafts
produced slightly deeper and relatively stronger cold pools, especially early in their convective
morphology. Interestingly, the initially deeper higher-terrain supercell cold pools surged
southward away from the parent DC, which reduced CAPE accessible to deep convective updrafts
and led to a quicker demise of the nascent MCS (similar morphology also noted in Finley et al.
2001 and Klimowski et al. 2004). Perhaps the terrain blocked the higher terrain supercell cold
pools, leading to an accumulation of negatively buoyant air and a resultant horizontal acceleration
of the cold pool away from the parent DC (e.g., Xu et al. 2012; Phadtare 2018; Yin et al. 2020).
Future work should seek to isolate this proposed cold pool blocking mechanism using
modifications to the idealized numerical modeling framework used herein.

In summary, terrain-induced enhancements to wind shear over different tropospheric layers
in close proximity to the terrain appeared more crucial to orographic DC morphology than terrain-
induced alterations to the thermodynamic environment, in line with conclusions drawn by
Soderholm et al. (2014). Even given the decreased MUCAPE within the inflow region of higher
terrain supercell updrafts, the enhanced wind shear led to wider/stronger supercell updrafts with
wider/stronger downdrafts and slightly deeper/stronger cold pools. There does appear to be some
“tipping point” between the lower and higher terrain simulations, in context of the 2500m-CTRL
simulation, as configured herein. The DC evolution between these two groups of simulations was
rather different with the 2500 m-CTRL and all higher terrain simulations resulting an isolated

orographic supercell that grew upscale into a short-lived MCS; whereas, the lower terrain
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simulations depicted merging of weaker convective cells with the main supercell farther away
from the terrain to form a longer-lasting MCS. The higher terrain supercells moved off the terrain
at a slower pace, allowing them to be affected by the terrain-enhanced wind shear for lengthier
periods. Thus, there might be some “optimal” terrain height for a specific convective morphology
pathway, although such an optimal height would likely depend on environmental characteristics
such as mixed-layer depth, depth of the vertically sheared layer, CAPE/CIN, among other pertinent
atmospheric variables.

While the conclusions drawn here may be applicable to the environment common to the
Sierras de Cordoba, how would DC behave in other environments (i.e., weaker CAPE, stronger
wind shear) and terrain configurations (i.e., such as near the Rocky Mountains in the United
States)? In the present study, we used a singular input sounding that was characterized by both
large magnitudes of CAPE and vertical wind shear, and analyzed terrain-induced environmental
variations on the supercell-to-MCS transition deep convective pathway. Future idealized
numerical modeling simulations should include variations to the background CAPE and vertical
wind shear environment, terrain configurations, and deep convective pathways, to test the
robustness of the results presented herein. Finally, the idealized numerical modeling framework
adopted here excludes the influences of baroclinic boundaries, low-level jets, upper-level troughs,
among other synoptically relevant features that undoubtedly have an influence on convective

morphology (e.g., Bunkers et al. 2006; Coniglio et al. 2010; Dial et al. 2010).
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Tables and Figures

Table 1. Summary table of the CM1 configuration.

Attribute Value / setting
Fully compressible yes
Horizontal grid spacing 500 m
Vertical grid spacing 250 m
Vertical coordinate height (m)

Number of x, y, z grid points

648 x 1008 x 80

Top (bottom) LBC*

free slip (semi-slip)

North and south LBC* periodic
East and west LBC* periodic
Microphysics Morrison two moment; Morrison et al. (2009)
Diffusion 6" order
Subgrid turbulence Turbulent Kinetic Energy
Rayleigh damping yes
Dissipative heating yes

2" and 6™ order diff. coef.

75 m? 57! and 0.04

Longwave/shortwave radiation

RRTMG scheme; Tacono et al. (2008)

Surface layer

Monin-Obukhov; Grell et al. (1994)

Land use index

Irrigated cropland; Soil moisture availability = 0.
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Coriolis acceleration off
Boundary layer physics none
Cumulus parameterization none

*LBC -- lateral boundary condition
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Table 2. Summary table of the number of minutes into the simulations of convection initiation

(defined as the first appearance of lowest model level reflectivity >40 dBZ).

Simulation Convection Initiation
500 m 160*
1500 m 110*
2000 m 100*
2500 m-CTRL 95
3000 m 95
3500 m 75
4500 m 65

33

* — mechanism for convection initiation was a low-level convergence zone to the north of the
terrain peak (i.e., not directly near/over the terrain peak)
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WRF Terrain Plan View CM1 Terrain Plan View CM1 Terrain Cross-Sections

b) -\ 500m

1500m
2000m
~—— 2500m-CTRL
= 3000m
= 3500m
—— 4500m

Distance [ km ]

100

0
0 50 100 150 200 250 300 50 100 150

0 50 100 150 200 250 300
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Fig. 1. (a) Plan view of terrain height (m) from a 1-km WRF simulation (adapted from Mulholland
et al. 2019), (b) plan view of terrain height (m) from the 2500m-CTRL CM1 simulation and line
along which the west-to-east oriented vertical cross sections of terrain are shown in panel ¢ (red
dashed line), and (c) west-to-east oriented vertical cross sections of terrain height taken through

the peak of the terrain for each simulation (km; see red dashed line in panel b).
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Fig. 2. Initial background state of the CM1 simulations. (a) 1200 UTC 25 January 2019 Ingeniero
Aeronautico Ambrosio L.V. Taravella International Airport in Cérdoba, Argentina, sounding
plotted on a skew-7 log-P diagram. The red solid line is the air temperature (°C), the blue dashed
line is the dewpoint temperature (°C), and the black solid line is the vertical path of a parcel lifted
from the surface and (b) modified quarter-circle wind hodograph (from Rotunno and Klemp 1982)
with the u-component of the wind on the x-axis (m s!) and the v-component of the wind on the y-
axis (m s). Acronyms defined: BWD = bulk wind difference, EL = equilibrium level, LCL =
lifting condensation level, LFC = level of free convection, MUCAPE = most unstable convective
available potential energy, MUCIN = most unstable convective inhibition, RM = right-moving

supercell storm motion based upon Bunkers et al. (2000), and SRH = storm-relative helicity.
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761

762  Fig. 3. Colorado State University C-band radar (black dot) data, showing (a) 19:30 UTC 25 January
763 2019 0.8° plan position indicator scan of radar reflectivity (dBZ) and terrain height (shaded and
764  contoured in grey), (b) 19:34 UTC 25 January 2019 range height indicator scan of radar reflectivity
765 (dBZ),(c) 21:10 UTC 25 January 2019 1.5° plan position indicator scan of radar reflectivity (dBZ)
766  and terrain height (shaded and contoured in grey), and (d) 21:17 UTC 25 January 2019 range
767  height indicator scan of radar reflectivity (dBZ). Note that the azimuths along which the range
768  height indicator scans depicted in panels b and d are taken along are shown as thin black horizontal
769 lines in panel a and c. The approximate tropopause height (based upon observed sounding shown
770  in Fig. 2a) is marked by the horizontal dashed magenta line in panels b and d.

771
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Fig. 4. Plan views of lowest model level reflectivity (red contour = 40 dBZ), lowest model level
potential temperature perturbation (shaded; K), and terrain height (black contours = 250 m, 500

m, and 500 m increments thereafter). Rows = specific terrain simulation; Columns = output time
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778  Fig. 5. Same as in Fig. 4, but for higher terrain simulations.
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Fig. 6. West-to-east oriented Hovmoller diagrams of surface-based (positive) CIN (shaded; J kg
1, vertical velocity (every 1 m s™! starting at +/- 1 m s’'; reds = upward, blues = downward) and
cloud water path (black contours every 1 kg m™, starting at 1 kg m™) taken through the terrain
peaks and calculated at 1000 m above the terrain peaks during the first 3 h of the simulations. The
lime green dotted line denotes the location of the terrain peaks. Note that only a portion of the full

domain is shown.
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Fig. 7. West-to-east oriented vertical cross sections through terrain peaks (dark brown shading) of
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vertical velocity (shaded; m s™!), potential temperature (contoured in black every 5 K; thick black
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5m s full barb =10

reference line = 325 K), and in-plane winds (dark green barbs; half barb
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m s™'; pennant = 25 m s!) at 60 min into the simulations for (a) 500m, (b) 1500m, (c) 2000m, (d)
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2500m-CTRL, (e) 3000m, (f) 3500m, and (g) 4500m terrain experiments. Note that only a portion
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806  Fig. 8. West-to-east oriented cross sections of (a) horizontal buoyancy gradient (s2) and (b)
807  horizontal perturbation pressure gradient (hPa m™) at the lowest model level at 60 min into the
808  simulations. The location of the peak terrain height is the vertical dot-dash brown line. Note that
809  only a portion of the full domain is shown.
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820  Fig. 9. Time series of vertically averaged 0—1 km zonal wind (m s™') that was spatially averaged
821  overa 50 x 200 km? box with the west-central side of the box centered ~50 km east of terrain peaks
822  for each simulation.
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Fig. 10. Convection initiation soundings (taken 25 x 25 km? to the south and east of the first
appearance of lowest model level reflectivity = 40 dBZ) plotted on a skew-T log-P diagram (panel
a). The rightmost solid lines are air temperatures (°C), the leftmost dashed lines are dewpoint
temperatures (°C), and the 500 m (yellow), 2500m-CTRL (orange), and 4500 m (purple) terrain
height simulation horizontal winds (half barb = 5 m s’!; full barb = 10 m s™) are located on the
right hand side of the sounding. Convection initiation vertical wind profiles plotted on a hodograph
(panel b). The u-component of the wind is on the x-axis (m s™') and the v-component of the wind
is on the y-axis (m s™). Colored stars denote the Bunkers right-moving supercell storm motion
estimates (Bunkers et al. 2000). Black dots represent the horizontal wind at 1 and 6 km,

respectively. The initial background state sounding and hodograph are shown in red.
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Fig. 11. As in Fig. 4, but with south-to-north oriented black dashed lines denoting the locations of

where the vertical cross-sections in Fig. 13 are taken along.

44

020z AInr z1L uo 3senb Aq 4pd 06106 L PSEI/SG60961/L 061 0-6L-0-SV/GLL L0 L/10p/pd-ajonie/sel/Bio-o0siewes|euinolj/:dpy woly pepeojumoq



~T=390 min

N
5300 §
%250 i -2
2 500 :_u|

= -3
w I
- 3
5 g 5
& -

-6

‘; o _7
g S
i 3
i} 8
_ ] ~8
€
- k &
g A o
& @”l

50 100 150 200 50 100 150 200 50 100 150 200
Distance [ km ] Distance [ km ] Distance [ km ]

841

842  Fig. 12. Same as in Fig. 11, but for higher terrain simulations and with south-to-north oriented
843  black dashed lines denoting the locations of where the vertical cross-sections in Fig. 14 are taken
844  along.
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Fig. 13. South-to-north oriented vertical cross-sections taken through the black dashed lines in Fig.
11 depicting CAPE (shaded; J kg!) lifted from every grid point in cross section, potential
temperature perturbation (cyan contour = -3 K), vertical velocity (red contours = 3, 5, 10, 20, 30,
40, 50, 60, 70, 80, and 90 m s™'), and cross-section-parallel winds (grey vectors; legend at top right
of figure). The location of UHwmax is at Y-distance = 0 km, with south to the left (negative Y-
distances) and north to the right (positive Y-distances). Rows = specific terrain simulation;

Columns = output time (every 30 min). Note that only a portion of the full domain is shown.
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859  Fig. 14. Same as in Fig. 13, but for higher terrain simulations taken along the black dashed lines

860 in Fig. 12.
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Fig. 15. Plan views (panels a-g) of lowest model level potential temperature perturbation averaged
over the first 7 h of the simulations (shaded; K), accumulated 2—5 km UH swaths (black contour
= 500 m? s?), and terrain height (brown contours = 250 m, 500 m, and 500 m increments
thereafter). In panel h: minimum lowest model level potential temperature perturbation averaged
over the first 7 h of the simulations (K) (red dots; y-axis) vs. terrain height simulation (x-axis), best
fit line (blue dashed line), and the CC and p-values (listed in the title above the plot). Note that
only a portion of the full domain is shown in panels a-g. Note that the red arrows denote the track

of the analyzed predominant right-moving supercell closest to the terrain.
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873  Fig. 16. Panels a-c: time series of (a) Ry, (km), (b) Ry, (km), and (¢) Ry, (km). Panels d-f: (d)
874  maximum R, (km) (red dots; y-axis) vs. terrain height simulation (x-axis), (¢) maximum Ry,
875  (km) (red dots; y-axis) vs. terrain height simulation (x-axis), and (f) maximum R, (km) (red dots;
876  y-axis) vs. terrain height simulation (x-axis). In panels d-f, the best fit line is shown as a blue

877  dashed line and the CC and p-values are listed in the title above each plot.

878

49

Accepted for publication in Journal of the Atmospheric Sciences. DOI10.1175/JAS-D-19-0190.1.

020z AInr z1L uo 3senb Aq 4pd 06106 L PSEI/SG60961/L 061 0-6L-0-SV/GLL L0 L/10p/pd-ajonie/sel/Bio-o0siewes|euinolj/:dpy woly pepeojumoq



879

880

881

882

883

884

885

886

Accepted for publication in Journal of the Atmospheric Sciences. DOI10.1175/JAS-D-19-0190.1.

50

40

30

2--8 (1--4) km Layer-Mean Maximum Updraft (Downdraft)

500m a)

1500m

2000m
~— 2500m-CTRL
~—— 3000m
— 3500m
— 4500m

5000

2--5 km Maximum Updraft Helicity

4000

500m b)
1500m

2000m

2500m-CTRL

3000m

3500m

4500m

v e

€ W

m £

3 =

3 [

2 ©

e X0 2 3000

] c

= o

- 10 o

& =

S z

T . £ 2000

z " NSS5=== = - T

3 . —.-‘i-ﬂ?_':t.r: ~ A T

=3 = = &

= —10 7 *“ N ©

o -~y © 1000

2 TR 5

5 -20

=30 0+
50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450
Time [ min ] Time [ min ]
CC = 0.94 || p-value = 0.002 . CC = -0.53 || p-value = 0.223 son0 CC = 0.89 || p-value = 0007

c) ) 7 e) A o
Tas o I e
T -5 E 4000 o
W e | ¢ = -
£ oL = -7
— 40 o - £ e
& & s 5 - .
T ° .- £-10 . . 3 3000 -

_ -
S i
€ Prag L k= -7
£ o g-1s{ T TTE=—al - £ 2000 e
9 30 - . o o TTm=al_ £ R
& - 3 L] o ~=—- = e
3 > 7. T -20 ® 200 & L
22 PPl é 2 .'I”
i -
20 - -25 - -
« © ® ® © @ @ © ® i o« ® o« o @ @
L Q“@.C‘“ o e T T ST T o T QQ@.C‘?' AT et e
o

Fig. 17. Panels a-c: time series of (a) Wy, (solid lines; m s'!) and wg,, (dashed lines; m s™) and (b)

UHwmax (m? s2). Panels c-e: (c) maximum Wy, (m s) (red dots; y-axis) vs. terrain height

simulation (x-axis), (d) minimum Wg,, (m s!) (red dots; y-axis) vs. terrain height simulation (x-

axis), and (e) maximum UHmax (m? s72) (red dots; y-axis) vs. terrain height simulation (x-axis). In

panels c-e, the best fit line is shown as a blue dashed line and the CC and p-values are listed in the

title above each plot.
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51

020z AInr z1L uo 3senb Aq 4pd 06106 L PSEI/SG60961/L 061 0-6L-0-SV/GLL L0 L/10p/pd-ajonie/sel/Bio-o0siewes|euinolj/:dpy woly pepeojumoq



894

895

896

897

898

899

900

901

Accepted for publication in Journal of the Atmospheric Sciences. DOI10.1175/JAS-D-19-0190.1.

251

)
3

-1

a)

N

o
m
SR
[ 42 B == R 1

-
w»
T
[
=]

sl
T

0-2km| Vg | (ms™)
=
‘

o

e
T
= o M
S

[=]
T

BWD (0-2 km solid, 0-6 km dashed;

ow
1

5500

|
a

5000

c)

d)

500m

1500m

4000 - 2000m
——2500m-CTRL
-25 [ s 3000m

m— 3500m

MUGAPE (J kg
&
(&3
MUCIN (J kg
>

—4500m
T

3500 I 1 1 L L I
150 200 250 300 350 400 150 200 250 300 350

time (min) time {min}

Fig. 19. Time series of quantities calculated within the supercell inflow box (calculation method
described in text): (a) 0—2 km horizontal storm-relative (SR) flow magnitude (m s™), (b) 0-2 (solid
lines) and 0—6 (dashed lines) km bulk wind difference magnitude (BWD; m s!), (c) most-unstable
CAPE (MUCAPE; J kg!), and (d) most-unstable CIN (MUCIN; J kg™!). The legend for each terrain

height simulation is located in panel d.

52

400

020z AInr z1L uo 3senb Aq 4pd 06106 L PSEI/SG60961/L 061 0-6L-0-SV/GLL L0 L/10p/pd-ajonie/sel/Bio-o0siewes|euinolj/:dpy woly pepeojumoq



Ei-a) ° 22 b) ° C) -
T:m P izn * PPt 7:40‘ ° ’,"/ :
8 ;,0(‘(“ =~ 1905 W« ,C‘“\' 30““‘“ G;JQQ« L@QW ¢ gﬁn“‘ -y‘:““ﬁ\ .IQQN“ “‘«dqx\— 3@06‘ 5"006‘ Bf)gm\‘ * @m\" \:_pnﬁ‘ 100(16‘ “&,6‘&' cﬁem\‘ 3,_)00@ I@Qﬁ“
5400 CC = -0.90 || p-value = 0.006 0 CC = -0.11 || p-value = 0.808
) S
,_)Qa“‘ x"“ﬁﬁ\ _Lnum“ ()“(«C\?*\‘%QQQ‘“ ‘ﬁ(,m“ Aeoot“ ,_pu“‘ \,5“0«\ 10@“‘ Qo@'éa\’”’(’@m 3a“n“‘ w“nﬁ‘
902 g g
903  Fig. 20. Regression plots of: (a) average 0—2 km horizontal storm-relative (SR) flow magnitude
904 (m s') (red dots; y-axis) vs. terrain height simulation (x-axis), (b) average 0-2 km bulk wind
905 difference magnitude (BWD; m s™') (red dots; y-axis) vs. terrain height simulation (x-axis), (c)
906  average 0-6 km bulk wind difference magnitude (BWD; m s™!) (red dots; y-axis) vs. terrain height
907  simulation (x-axis), (d) average most-unstable CAPE (MUCAPE; J kg!) (red dots; y-axis) vs.
908 terrain height simulation (x-axis), and (e) average most-unstable CIN (MUCIN; J kg™!) (red dots;
909  y-axis) vs. terrain height simulation (x-axis). The best fit line is shown as a blue dashed line and
910 the CC and p-values are listed in the title above each plot.
911
912
913
914

Accepted for publication in Journal of the Atmospheric Sciences. DOI10.1175/JAS-D-19-0190.1.

W
&

CC = 0.92 || p-value = 0.003

CC = 0.69 || p-value = 0.084

CC = 0.94 || p-value = 0.002

24

53

020z AInr z1L uo 3senb Aq 4pd 06106 L PSEI/SG60961/L 061 0-6L-0-SV/GLL L0 L/10p/pd-ajonie/sel/Bio-o0siewes|euinolj/:dpy woly pepeojumoq



Downloaded from http://journals.ametsoc.org/jas/article-pdf/doi/10.1175/JAS-D-19-0190.1/4960955/jasd 190190.pdf by guest on 12 July 2020

=) P = o
o~ @ < o & £ = =
~ — — — © o~ = ©n ‘S —
()
4SS g & = 2
- =« © .5 S
X S I ) B
[ T T, Ve T b e Sy .m - MU. L«Uv
a —
.n.lnl_.l_.l,.l_.\a\q\n\a\q\n\ql,.qu.rm ﬂuv m ..m <
{Alqn).l_.l_.l_.\n\a\q\ﬂl_.ldlﬂl_.u .nl.a o < .I.V/.
m . = Q Q o [
b= ~ e \Zn/ =}
un 2] 1 +~
~ ©» <
E g5 £
© <t < m
g I I Z.
3 8 3 = m «m .
e i e e e \44.\4.#.\_.\44\4\4\4\4\4\4\42 1% < ) o
i e e B e e A S [vime o8 =x et s R «m - m nm
° - S = = Q <
i i 1 I O P O ISR Frde < v X A LA A AN 3 m pm 1>} O
WJJJJA\«AA\«\«JAJJ. o o . a Q 5
= ¢ —_ 5
Q 8 s ©w 5 -
7
: 2 g © g
S « & 3
) = I .2 g
o + [5)
8 g < o = =
= —_— = = O
=) 2 o < =
g g 2 o m o=
e e o | [F=r v e xR TR 5 &~ A m
p—
M= =T T T ¥ T 4 T A [ S .“ Lnua = =
R s - Ty S - e @ B = Ve
g . = = Ie) [ o= wv
M\nl._.\al1~lq\4\a\4\4|.n|dl1lth. S .m m w = ho]
Bl satie. o e s = ~ 8
b =
o (&) Bh < -
: 2 = £
Lo . - iz
$ ? % B 8 % £ 3 5 1L & %
=] 2 2] Q ) m
. ] I~ Lm o] ﬂ
e s S i S i B e O B i e e S| — < m N d
B e I e T e e o s i i B o T e J i 2 | = L«W..u f— n.,\/.w W
. =3 R
J..ﬂJ.lﬂ.J.J.J.I.«I_.-I_.I_.J-J,J.-B ml_.l_.\,.J.\A\A\A\q\n\A\A\q\Alﬂn‘uumn W Llew m I m
I R N e e e MJ..JJ.J.J.J..\A)\,.\«J.\«J.J.-H s O — Z o
3 [ 5 o et )
5-|«Ialnf-,-4|4l1|1|qlﬂlqlﬂ.1lﬁnmm.4./v ,mm m e w w m
e N L~ o - e o — e 3 .m =
: e . (=% o] o <
B i . ‘ < — [ 5 A lend . [0 m Q m
—} @ 2 - — O =
] T o
(LS N S i ey [ S S e\ n w2 -~
E 8 § % 8 8 8 g g .9 9 g T
2 a 2 2 5 a = S 2 ) 2 53 = —
[ wy ] @duelsig [ wx ] sdueisig 1=
= s 2 & &

915
916
917
918
919
920

54
Accepted for publication in Journal of the Atmospheric Sciences. DOI10.1175/JAS-D-19-0190.1.





