Tea: A High-level Language and Runtime System
for Automating Statistical Analysis

Eunice Jun', Maureen Daum', Jared Roesch',
Sarah Chasins?, Emery Berger?4, Rene Just!, Katharina Reinecke!

'University of Washington,
Seattle, WA
{emjun, mdaum, jroesch,
rjust, reinecke} @uw.edu

ABSTRACT

Though statistical analyses are centered on research questions
and hypotheses, current statistical analysis tools are not. Users
must first translate their hypotheses into specific statistical
tests and then perform API calls with functions and parame-
ters. To do so accurately requires that users have statistical
expertise. To lower this barrier to valid, replicable statistical
analysis, we introduce Tea, a high-level declarative language
and runtime system. In Tea, users express their study de-
sign, any parametric assumptions, and their hypotheses. Tea
compiles these high-level specifications into a constraint satis-
faction problem that determines the set of valid statistical tests
and then executes them to test the hypothesis. We evaluate
Tea using a suite of statistical analyses drawn from popular
tutorials. We show that Tea generally matches the choices of
experts while automatically switching to non-parametric tests
when parametric assumptions are not met. We simulate the
effect of mistakes made by non-expert users and show that
Tea automatically avoids both false negatives and false pos-
itives that could be produced by the application of incorrect
statistical tests.

Author Keywords

statistical analysis; automated statistical analysis; declarative
programming language; constraint-based system; data
science; reproducibility; pre-registration

CCS Concepts
*Human-centered computing — User interface toolkits;

INTRODUCTION
The enormous variety of modern quantitative methods
leaves researchers with the nontrivial task of matching
analysis and design to the research question.

- Ronald Fisher [16]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

UIST ’19, October 20-23, 2019, New Orleans, LA, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6816-2/19/10 ...$15.00.
http://dx.doi.org/10.1145/10.1145/3332165.3347940

2University of California,
Berkeley, CA
schasins@cs.berkeley.edu

3University of
Massachusetts Amherst,
“Microsoft Research,
Redmond, WA
emery @cs.umass.edu

Since the development of modern statistical methods (e.g.,
Student’s t-test, ANOVA, etc.), statisticians have acknowl-
edged the difficulty of identifying which statistical tests people
should use to answer their specific research questions. Almost
a century later, choosing appropriate statistical tests for eval-
uating a hypothesis remains a challenge. As a consequence,
errors in statistical analyses are common [26], especially given
that data analysis has become a common task for people with
little to no statistical expertise.

A wide variety of tools (such as SPSS [55], SAS [54], and
JMP [52]), programming languages (e.g., R [53]), and libraries
(including numpy [40], scipy [23], and statsmodels [45]), en-
able people to perform specific statistical tests, but they do
not address the fundamental problem that users may not know
which statistical test to perform and how to verify that specific
assumptions about their data hold.

In fact, all of these tools place the burden of valid, replicable
statistical analyses on the user and demand deep knowledge
of statistics. Users not only have to identify their research
questions, hypotheses, and domain assumptions, but also must
select statistical tests for their hypotheses (e.g., Student’s t-test
or one-way ANOVA). For each statistical test, users must be
aware of the statistical assumptions each test makes about the
data (e.g., normality or equal variance between groups) and
how to check for them, which requires additional statistical
tests (e.g., Levene’s test for equal variance), which themselves
may demand further assumptions about the data. This cog-
nitively demanding process requires significant knowledge
about statistical tests and their preconditions as well as the
ability to perform the tests and verify their preconditions. This
process can easily lead to mistakes.

This paper presents Tea', a high-level declarative language
for automating statistical test selection and execution that ab-
stracts the details of statistical analysis from the users. Tea
captures users’ hypotheses and domain knowledge, translates
this information into a constraint satisfaction problem, iden-
tifies all valid statistical tests to evaluate a hypothesis, and
executes the tests. Tea’s higher-level, declarative nature aims
to lower the barrier to valid, replicable analyses.

'named after Fisher’s “Lady Tasting Tea” experiment [16]

http://dx.doi.org/10.1145/10.1145/3332165.3347940
mailto:permissions@acm.org
mailto:emery@cs.umass.edu
mailto:reinecke}@uw.edu
mailto:schasins@cs.berkeley.edu

We have designed Tea to integrate directly into common data
analysis workflows for users who have minimal programming
experience. Tea is implemented as an open-source Python
library, so programmers can use Tea wherever they use Python,
including within Python notebooks.

In addition, Tea is flexible. Its abstraction of the analysis
process and use of a constraint solver to select tests is designed
to support its extension to emerging statistical methods, such
as Bayesian analysis. Currently, Tea supports frequentist Null
Hypothesis Significance Testing (NHST).

The paper makes the following contributions:

e Tea, a novel domain-specific language (DSL) for automati-
cally selecting and executing statistical analyses based on
users’ hypotheses and domain knowledge (Section 5),

e the Tea runtime system, which formulates statistical test
selection as a maximum constraint satisfaction problem
(Section 6), and

e an initial evaluation showing that Tea can express and exe-
cute common NHST statistical tests (Section 7).

We start with a usage scenario that provides an overview of
Tea (Section 2). We discuss the concerns about statistics in
the HCI community that shaped Tea’s design (Section 3), the
implementation of Tea’s programming language (Section 5),
the implementation of Tea’s runtime system (Section 6), and
the evaluation of Tea as a whole (Section 7). We discuss
limitations and future work, differentiate Tea from prior work,
and conclude with information on how to use Tea.

USAGE SCENARIO

This section describes how an analyst who has no statistical
background can use Tea to answer their research questions.
We use as an example analyst a historical criminologist who
wants to determine how imprisonment differed across regions
of the US in 1960?. Figure 1 shows the Tea code for this
example.

The analyst specifies the data file’s path in Tea. Tea handles
loading and storing the data set for the duration of the analysis
session. The analyst does not have to worry about reformatting
the data during the analysis process in any way.

The analyst asks if the probability of imprisonment was higher
in southern states than in non-southern states. The analyst
identifies two variables that could help them answer this ques-
tion: the probability of imprisonment (‘Prob’) and geographic
location (‘So’). Using Tea, the analyst defines the geographic
location as a dichotomous nominal variable where ‘1 indi-
cates a southern state and ‘0’ indicates a non-southern state,
and indicates that the probability of imprisonment is a numeric
data type (ratio) with a range between 0 and 1.

The analyst then specifies their study design, defining the study
type to be “observational study” (rather than “experimental
study”) and defining the contributor (independent) variable

2The example is taken from Ehrlich [13] and Vandaele [47]. The
data set comes as part of the MASS package in R.

import tea

tea.data ('UScrime.csv') 1
variables = [
{
'name' : 'So',
'data type' : 'nominal',
'categories' : ['0', 'l']
by
{
'name' : 'Prob',
'data type' : 'ratio',
'range' : [0,1]
}
]
tea.define variables (variables) 2

study design = {
'study type': 'observational study',
'contributor variables': 'So',
'outcome variables': 'Prob',
}
tea.define_study_ design(study_design)

3
assumptions = {
'groups normally distributed': [['So', 'Prob']l],
'Type I (False Positive) Error Rate': 0.05
}
tea.assume (assumptions) “
hypothesis = 'So:1 > 0'
tea.hypothesize (['So', 'Prob'], hypothesis) Es

Figure 1: Sample Tea program. The specification outlines
an experiment to analyze the relationship between geographic
location (‘So’) and probability of imprisonment (‘Prob’) in
a common USCrime data set [49, 24]. See Section 2 for an
explanation of the code. Tea programs specify 1) data, 2)
variables, 3) study design, 4) assumptions, and 5) hypotheses.

to be the geographic location and the outcome (dependent)
variable to be the probability of imprisonment.

Based on their prior research, the analyst knows that the prob-
ability of imprisonment in southern and non-southern states
is normally distributed. The analyst provides an assumptions
clause to Tea in which they specify this domain knowledge.
They also specify an acceptable Type I error rate (probability
of finding a false positive result), more colloquially known
as the ‘significance threshold’ (a0 = .05) that is acceptable
in criminology. If the analyst does not have assumptions or
forgets to provide assumptions, Tea will use the default of
o =.05.

The analyst hypothesizes that southern states will have a higher
probability of imprisonment than non-southern states. The
analyst directly expresses this hypothesis in Tea. Note that
at no point does the analyst indicate which statistical tests
should be performed.

From this point on, Tea operates entirely automatically. When
the analyst runs their Tea program, Tea checks properties of
the data and finds that the Student’s t-test is appropriate. Tea
executes the Student’s t-test and non-parametric alternatives,
such as the Mann-Whitney U test, which provide alternative,
consistent results.

Tea generates a table of results from executing the tests, or-
dered by their power (i.e., results from the parametric t-test
will be listed first given that it has higher power than the
non-parametric equivalent). Based on this output, the analyst
concludes that their hypothesis—that the probability of im-

prisonment was higher in southern states than in non-southern
states in 1960—is supported. The results from alternative
statistical tests support this conclusion, so the analyst can be
confident in their assessment.

The analyst can now share their Tea program with colleagues.
Other researchers can easily see what assumptions the analyst
made and what the intended hypothesis was (since these are
explicitly stated in the Tea program), and reproduce the exact
results using Tea.

DESIGN CONSIDERATIONS

In designing Tea’s language and runtime system, we con-
sidered best practices for conducting statistical analyses and
derived our own insights on improving the interaction between
users and statistical tools.

We identified five key recommendations for statistical analysis
from Cairns’ report on common statistical errors in HCI [6],
which echoes many concerns articulated by Wilkinson [56],
and the American Psychological Association’s Task Force on
Statistical Inference [1]:

e Users should make explicit their assumptions about the
data [1].

e Users should verify and report the results from checking
assumptions statistical tests make about the data and vari-
ables [6, 1].

e Users should account for multiple comparisons [6, 1].

e When possible, users should consider alternative analyses
that test their hypothesis and select the simplest one [1].

e Users should contextualize results from statistical tests us-
ing effect sizes and confidence intervals [1].

An additional practice we wanted to simplify in Tea was repro-
ducing analyses. Table 1 shows how Tea compares to current
tools in supporting these best practices.

Based on these guidelines, we identified two key interaction
principles for Tea:

1. Users should be able to express their expertise, assumptions,
and intentions for analysis. Users have domain knowledge
and goals that cannot be expressed with the low-level API
calls to the specific statistical tests required by the majority
of current tools. A higher level of abstraction that focuses
on the goals and context of analysis is likely to appeal to
users who may not have statistical expertise (Section 5).

2. Users should not be burdened with statistical details to
conduct valid analyses. Currently, users must not only
remember their hypotheses but also identify possibly ap-
propriate tests and manually check the preconditions for all
the tests. Simplifying the user’s procedure by automating
the test selection process can help reduce cognitive demand
(Section 6).

While there are calls to incorporate other methods of statis-
tical analysis [27, 26], Null Hypothesis Significance Testing
(NHST) remains the norm in HCI and other disciplines. There-
fore, Tea currently implements a module for NHST with the

tests found to be most common by [50] (see subsection 6.6 for
a list of tests). We believe that Tea’s abstraction and modular-
ity will enable the incorporation of other statistical analysis
approaches as they move into the mainstream.

OVERVIEW OF TEA

Tea consists of a high-level programming language and a
runtime system. There are three key steps to compiling a
Tea program from user specifications to executing statistical
analyses:

1. Check for completeness and syntax. Tea first checks that
a user’s program specifies a data set, variable declarations,
study design description, a set of assumptions, and hypothe-
ses using the correct syntax. For pre-registration (further
discussed in Section 9), the data set can be empty (with only
column names). If there are any syntax errors or missing
parts, Tea will issue an error and stop execution.

2. Check for consistent, well-formed hypotheses. Using the
variable declarations, Tea then checks that the hypotheses
the user states are consistent with variable data types. For
instance, Tea would issue an error and halt execution if
a nominal variable was hypothesized to have a positive
relationship with another nominal variable. If the nominal
variables have categories given by numbers (e.g., a variable
for education where ‘1’ stands for ‘High School’, ‘2° for
‘College’, etc.), a linear relationship would be possible
to compute by treating the categories as raw continuous
values. However, treating the numbers as values is incorrect
and the results misleading because the numbers represent
discrete categories, not continuous values. Tea avoids such
mistakes.

3. Inspect data properties and infer valid statistical tests.
Once Tea’s compiler verifies that a Tea program is com-
plete, syntactically correct, and consistent, Tea’s runtime
system inspects the data to verify properties about it and
find a set of valid statistical tests. The higher-level Tea
program is then compiled to logical constraints, which is
further discussed in Section 6.

TEA’S PROGRAMMING LANGUAGE

Tea is a domain-specific language embedded in Python. It
takes advantage of existing Python data structures (e.g.,
classes, dictionaries, and enums). We chose Python because
of its widespread adoption in data science. Tea is itself imple-
mented as a Python library>.

A key challenge in describing studies is determining the level
of granularity necessary to produce an accurate analysis. In
Tea programs, users describe their studies in five ways: (1)
providing a data set, (2) describing the variables of interest
in that data set, (3) specifying their study design, (4) stating
their assumptions about the variables, and (5) formulating
hypotheses about the relationships between variables.

3Tea is open-source and available for download on pip, a common
Python package manager.

Table 1: Comparison of Tea to other tools. Despite the published best practices for statistical analyses, most tools do not help
users select appropriate tests. Tea not only addresses the best practices but also supports reproducing analyses.

Best practices SAS SPSS JMP R Statsplorer [S0] Tea
Explicit statement of user assumptions — — — — — v
Automatic verification of test preconditions — sometimes | sometimes v v
Automatic accounting of multiple comparisons — — — — v v
Surface alternative analyses — — — — — v
Contextualize results v sometimes v sometimes v v
Easy to reproduce analysis v v — v — v

Test: students_t

***Test assumptions:

Exactly two variables involved in analysis: So, Prob
Exactly one explanatory variable: So
Exactly one explained variable: Prob
Independent (not paired) observations: So
Variable is categorical: So

Variable has two categories: So
Continuous (not categorical) data: Prob
Equal variance: So, Prob

Groups are normally distributed: So, Prob

***Test results:

name = Student's T Test

test_statistic = 4.20213

p_value = 0.00012

adjusted_p_value = 0.00006

alpha = 0.05

dof =45

Effect size:

Cohen's d = 1.24262

A12 = 0.83669

Null hypothesis = There is no difference in means between
So =0 and So = 1 on Prob.

Interpretation = t(45) = 4.20213, p = 0.00006. Reject the null
hypothesis at alpha = 0.05. The mean of Prob for So = 1
(M=0.06371, SD=0.02251) is significantly greater than the
mean for So = 0 (M=0.03851, SD=0.01778). The effect size is
Cohen's d = 1.24262, A12 = 0.83669. The effect size is the
magnitude of the difference, which gives a holistic view of
the results [1].

[1] Sullivan, G. M., & Feinn, R. (2012). Using effect size—or
why the P value is not enough. Journal of graduate medical
education, 4(3), 279-282.

Figure 2: Part of Tea’s output. The output is a result of
running the sample program in Figure 1. Tea outputs the data
properties that led Tea to select the statistical test as well as
results from executing the test, effect size calculations, the null
hypothesis tested, and the interpretation of the results, which
can be included in publications with minor editing.

Data

Data is required for executing statistical analyses. One chal-
lenge in managing data for analysis is minimizing both dupli-
cated data and user intervention.

To reduce the need for user intervention for data manipulation,
Tea requires the data to be a CSV in long format. CSVs
are a common output format for data storage and cleaning
tools. Long format (sometimes called “tidy data” [51]) is a
denormalized format that is widely used for collecting and
storing data, especially for within-subjects studies.

Unlike R and Python libraries such as numpy [40], Tea only
requires one instance of the data. Users do not have to du-
plicate the data or subsets of it for analyses that require the
data to be in slightly different forms. Minimizing data duplica-
tion or segmentation is also important to avoid user confusion
about where some data exist or which subsets of data pertain
to specific statistical tests.

Optionally, users can also indicate a column in the data set
that acts as a relational (or primary) key, or an attribute that
uniquely identifies rows of data. For example, this key could
be a participant identification number in a behavioral experi-
ment. A key is useful for verifying a study design, described
below. Without a key, Tea’s default is that all rows in the data
set comprise independent observations (that is, all variables
are between subjects).

For pre-registration where there is no data, a CSV with only
column names is necessary. Using Tea for pre-registration is
discussed further in Section 9.

Variables

Variables represent columns of interest in the data set. Vari-
ables have a name, a data type (nominal, ordinal, interval, or
ratio), and, when appropriate, valid categories. Users (nat-
urally) refer to variables through a Tea program using their
names. Only nominal and ordinal variables have a list of pos-
sible categories. For ordinal variables, the categories are also
ordered from left to right.

Variables encapsulate queries. The queries represent the in-
dex of the variable’s column in the original data set and any
filtering operations applied to the variable. For instance, it is
common to filter by category for nominal variables.

Study Design

Three aspects of study design are important for conducting
statistical analyses: (1) the type of study (observational study
vs. randomized experiment), (2) the independent and depen-
dent variables, and (3) the number of observations per par-
ticipant (e.g., between-subjects variables vs. within-subjects
variables).

For semantic precision, Tea uses different terms for indepen-
dent and dependent variables for observational studies and
experiments. In experiments, variables are described as ei-
ther “independent” or “dependent” variables. In observational
studies, variables are either “contributor” (independent) or
“outcome” (dependent) variables.

Assumptions

Users’ assumptions based on domain knowledge are critical
for conducting and contextualizing studies and analyses. Of-
ten, users’ assumptions are particular to variables and specific
properties (e.g., equal variances across different groups). Cur-
rent tools generally do not require that users encode these
assumptions, leaving them implicit.

Tea takes the opposite approach to contextualize and increase
the transparency of analyses. It requires that users be explicit
about assumptions and statistical properties pertaining to the

import tea
tea.data('statex77.csv"')

variables = [

{

'name' : 'Illiteracy',
'data type' : 'interval',
'categories' : [0, 100]
I
{
'name' : 'HS Grad',
'data type' : 'ratio',
by
{
'name' : 'Life Exp',
'data type' : 'ratio',

}
]

tea.define_variables(variables)

study_design = {
'study type': 'observational study',
'contributor variables': ['Illiteracy',
'outcome variables': ‘Life Exp'
}

tea.define_study_design(experimental design)

'HS Grad'],

assumptions = {
'Type I (False Positive) Error Rate': 0.05,
'normal distribution': ['Illiteracy']

}
tea.assume (assumptions)
tea.hypothesize(['Illiteracy',

'Life Exp'], ['Illiteracy ~ Life Exp'])

()

tea.assume (assumptions, ‘relaxed’)

@ tea.assune (assumptions)

Running under STRICT mode.

User asserted property: is_normal, but is NOT supported
by statistical checking.

Tea will override user assertion. C

Results:

Test: kendalltau_corr

***Test assumptions:

Exactly two variables involved in analysis: llliteracy, Life
Exp

Continuous OR ORDINAL (not nominal) data: llliteracy
Continuous OR ORDINAL (not nominal) data: Life Exp

***Test results:

name = Kendall's Tau Correlation

test_statistic = -0.42852098220257756

p_value = 2.0419780693976688e-05

adjusted_p_value = 2.0419780693976688e-05

alpha = 0.05

Null hypothesis = There is no relationship between llliteracy
and Life Exp.

Interpretation = Reject the null hypothesis at alpha = 0.05.
There is a relationship between llliteracy and Life Exp.

Test: spearman_corr

***Test assumptions:

Exactly two variables involved in analysis: llliteracy, Life
Exp

Continuous OR ORDINAL (not nominal) data: llliteracy
Continuous OR ORDINAL (not nominal) data: Life Exp

***Test results:

name = Spearman's R Correlation

test_statistic = -0.5553734920297565

p_value = 2.8357505361058644e-05

adjusted_p_value = 2.8357505361058644e-05

alpha = 0.05

Null hypothesis = There is no relationship between llliteracy
and Life Exp.

Interpretation = Reject the null hypothesis at alpha = 0.05.
There is a relationship between llliteracy and Life Exp.

Running under RELAXED mode.

User asserted property: is_normal, but is NOT supported
by statistical checking.
User assertion will be considered true. f

Results:

Test: pearson_corr

***Test assumptions:

Exactly two variables involved in analysis: llliteracy, Life
Exp

Continuous (not categorical) data: llliteracy

Continuous (not categorical) data: Life Exp

Normal distribution: llliteracy

Normal distribution: Life Exp

***Test results:

name = Pearson Correlation

test_statistic = -0.5884779255792575

p_value = 6.9692504664204045e-06

adjusted_p_value = 6.9692504664204045e-06

alpha = 0.05

Null hypothesis = There is no relationship between llliteracy
and Life Exp.

Interpretation = Reject the null hypothesis at alpha = 0.05.
There is a relationship between llliteracy and Life Exp.

Test: kendalltau_corr

***Test assumptions:

Exactly two variables involved in analysis: llliteracy, Life
Exp

Continuous OR ORDINAL (not nominal) data: llliteracy
Continuous OR ORDINAL (not nominal) data: Life Exp

**Test results:

name = Kendall's Tau Correlation

test_statistic = -0.42852098220257756

p_value = 2.0419780693976688e-05

adjusted_p_value = 2.0419780693976688e-05

alpha = 0.05

Null hypothesis = There is no relationship between llliteracy
and Life Exp.

Interpretation = Reject the null hypothesis at alpha = 0.05.
There is a relationship between llliteracy and Life Exp.

Test: spearman_corr

***Test assumptions:

Exactly two variables involved in analysis: llliteracy, Life
Exp

Continuous OR ORDINAL (not nominal) data: llliteracy
Continuous OR ORDINAL (not nominal) data: Life Exp

*Test results:

name = Spearman's R Correlation

test_statistic = -0.5553734920297565

p_value = 2.8357505361058644e-05

adjusted_p_value = 2.8357505361058644e-05

alpha = 0.05

Null hypothesis = There is no relationship between llliteracy
and Life Exp.

Interpretation = Reject the null hypothesis at alpha = 0.05.

There is a relationship between llliteracy and Life Exp.

bbb

Figure 3: Tea program and its mode-dependent executions. a) Tea program that aims to determine if two contributor variables,
‘Illiteracy‘ and ‘HS Grad’ that may predict a third outcome variable ‘Life Exp’, are correlated. The user asserts that ‘Illiteracy’ is
normally distributed. b) By default, Tea executes programs in the strict mode. c) Warning that Tea disagrees with the user and will
override the user’s assertion that ‘Illiteracy’ is normally distributed in the strict mode. d) Results without the parametric test since
Tea overrides user’s assertion. e) A single line change can modify Tea to execute a program in relaxed mode. f) Warning that Tea
cannot verify normality for ‘Illiteracy’ but will defer to user’s assertion. g) Results with the parametric test since Tea proceeds as

if ‘Illiteracy’ was normally distributed.

analysis as a whole (e.g., acceptable Type I error rate/signifi-
cance threshold) and the data.

Tea supports two modes for treating user assumptions: strict
and relaxed. In both modes, Tea verifies all user assumptions
and issues warnings for assumptions that statistical testing
does not verify. In the strict mode, Tea overrides user as-
sumptions when selecting valid statistical tests. In the relaxed
mode, Tea defers to user assumptions and proceeds as if the
assumptions verified even if they did not. The strict mode is
the default, but users can specify the relaxed mode. Figure 3
shows the two modes and the different warnings and output
they generate.

If users also know that a data transformation (i.e., log trans-
formation) applies to a variable, they can express this as an
assumption. Data transformations are not properties to be
verified but rather treatments of data that are applied during
assumption verification, statistical test selection, and test ex-
ecution, which is why they are included in the assumptions

clause. The next section discusses the verification process for
assumptions in greater detail.

Hypotheses
Hypotheses drive the statistical analysis process. Users often
have hypotheses that are technically alternative hypotheses.

Tea focuses on capturing users’ alternative hypotheses about
the relationship between two or more variables. Tea uses the
alternate hypothesis to conduct either a two-sided or one-sided
statistical test. By default, Tea uses the null hypothesis that
there is no relationship between variables.

Figure 4 exemplifies the range of hypotheses Tea supports.

TEA’S RUNTIME SYSTEM

Tea compiles programs into logical constraints about the data
and variables, which it resolves using a constraint solver. A
significant benefit of using a constraint solver is extensibility.
Adding new statistical tests does not require modifying the
core of Tea’s runtime system. Instead, defining a new test

sons between groups
: Southern > Northern’

One-sided compa

hypothesis =

hypothesis = ‘Region: Northern < Southern’

#Partial orders

hypothesis = ‘Region: Southern > Southwest,
Region: Northeast > Midwest’

Two-sided comparisons

hypothesis = ‘Region: Southern != Northern’

Positive linear relationships

hypothesis = ‘Imprisonment ~ Region’

hypothesis = ‘Imprisonment ~ +Region’

Negat > linear relationships

hypothesis = ‘Imprisonment ~ -Region’

Under development

hypothesis = ‘Region: Southern > 1.5 * Northern’

tea.hypothesize ([‘Region’, ‘Imprisonment’], hypothesis)

Figure 4: Hypotheses that users can express in Tea.

requires expressing a single new logical relationship between
a test and its preconditions.

At runtime, Tea invokes a solver that operates on the logical
constraints it computes to produce a list of valid statistical
tests to conduct. This process presents three key technical
challenges: (1) incorporating statistical knowledge as con-
straints, (2) expressing user assumptions as constraints, and
(3) recursively selecting statistical tests to verify preconditions
of other statistical tests.

SMT Solver
As its constraint solver, Tea uses Z3 [10], a Satisfiability Mod-
ulo Theory (SMT) solver.

Satisfiability is the process of finding an assignment to vari-
ables that makes a logical formula true. For example, given
the logical rules 0 < x < 100 and y < x, {x = 1,y = 0},
{x =10,y =5}, and {x =99,y = —100} would all be valid
assignments that satisfy the rules. SMT solvers determine the
satisfiability of logical formulas, which can encode boolean, in-
teger, real number, and uninterpreted function constraints over
variables. SMT solvers can also be used to encode constraint
systems, as we use them here. A wide variety of applications
ranging from the synthesis of novel interface designs [46], the
verification of website accessibility [41], and the synthesis of
data structures [33] employ SMT solvers.

Logical Encodings

The first challenge of framing statistical test selection as a con-
straint satisfaction problem is defining a logical formulation
of statistical knowledge.

Tea encodes the applicability of a statistical test based on its
preconditions. A statistical test is applicable if and only if all
of its preconditions (which are properties about variables) hold.
We derived preconditions for tests from an online HCI and
statistics course [29], a statistics textbook [15], and publicly
available data science resources from universities [4, 32].

Tea represents each precondition for a statistical test as an
uninterpreted function representing a property over one or
more variables. Each property is assigned true if the property
holds for the variable/s; similarly, if the property does not hold,
the property function is assigned false.

Tea also encodes statistical knowledge about variable types and
properties that are essential to statistical analysis as axioms,
such as the constraint that only a continuous variable can be
normally distributed.

Algorithm

Tea frames the problem of finding a set of valid statistical tests
as a maximum satisfiability (MaxSAT) problem that is seeded
with user assumptions.

First, Tea translates each user assumption about a data property
into an axiom about a property and variable. As described
in subsection 5.4, user assumptions about properties but not
data transformations are always checked. In the strict mode,
Tea overrides any user assumptions it does not find to hold,
creating an axiom that a property is false. In the relaxed
mode, Tea defers to user assumptions, creating axioms that a
property is true. For any user assumptions that do not pass
statistical testing, Tea warns the user and explains how it will
proceed depending on the mode.

Then, for each new statistical test Tea tries to satisfy, Tea
checks to see if each precondition holds. For each precondi-
tion checked, Tea adds the property and variable checked as an
axiom to observe as future tests are checked. If any property
violates the axioms derived from users’ assumptions, the prop-
erty is removed and the test is invalidated. Users’ assumptions
always take precedence.

The constraint solver then prunes the search space. Tea does
not compute all properties for all variables, a significant opti-
mization when analyzing very large data sets.

At the end of this process, Tea finds a set of valid statistical
tests to execute. If this set is empty, Tea defaults to its imple-
mentation of bootstrapping [12]. Otherwise, Tea proceeds and
executes all valid statistical tests. Tea returns a table of results
to users, applying multiple comparison corrections [22] and
calculating effect sizes when appropriate.

Optimization: Recursive Queries

When Tea verifies a property holds for a variable, it often must
invoke another statistical test. For example, to check that two
groups have equal variance, Tea must execute Levene’s test.
The statistical test used for verification may then itself have a
precondition, such as a minimum sample size.

Such recursive queries are inefficient for SMT solvers like
Z3 to reason about. To eliminate recursion, Tea lifts some
statistical tests to properties. For instance, Tea does not encode
the Levene’s test as a statistical test. Instead, Tea encodes
the property of having equal variance between groups and
executes the Levene’s test for two groups when verifying that
property for particular variables.

User Output

The result of running a Tea program with data is a listing of the
results of executing valid statistical tests, as shown in Figure 2.
For each valid statistical test executed, the output contains the
properties of data that Tea checked and used to determine that
a statistical test applied, the test statistic value, p-value (and an
adjusted p-value, if applicable), effect sizes (Cohen’s d [9] and
Vargha Delaney A12 [48]), the alpha level the user specified
in their program, the precise null hypothesis the statistical test

examined, an interpretation of the results in APA format [2],
and text recommending users to focus on effect size rather
than the p-value for a holistic view of their data. This output is
intended to inform users of why Tea selected specific statistical
tests and how to interpret their results.

Null Hypothesis Significance Testing Module

Tea currently implements tests common to NHST in HCI.
In particular, Tea supports four classes of tests: correla-
tion (parametric: Pearson’s r, Pointbiserial; non-parametric:
Kendall’s 7, Spearman’s p), bivariate mean comparison (para-
metric: Student’s t-test, Paired t-test; non-parametric: Mann-
Whitney U, Wilcoxon signed rank, Welch’s), multivariate
mean comparison (parametric: F-test, Repeated measures one
way ANOVA, Factorial ANOVA, Two-way ANOVA; non-
parametric: Kruskal Wallis, Friedman), and comparison of
proportions (Chi Square, Fisher’s Exact). Tea also supports an
implementation of bootstrapping [12].

INITIAL EVALUATION

We assessed the validity of Tea in two ways. First, we com-
pared Tea’s suggestions of statistical tests to suggestions in
textbook tutorials. We use these tutorials as a proxy for expert
test selection. Second, for each tutorial, we compared the
analysis results of the test(s) suggested by Tea to those of the
test suggested in the textbook as well as all other candidate
tests. We use the set of all candidate tests as as a proxy for
non-expert test selection.

We differentiate between candidate and valid tests. A can-
didate test can be computed on the data, when ignoring any
preconditions regarding the data types or distributions. A valid
test is a candidate test for which all preconditions are satisfied.

How does Tea compare to textbook tutorials?
Our goal was to compare Tea to expert recommendations.

We sampled 12 data sets and examples from R tutorials ([24]
and [15]). These included eight parametric tests, four non-
parametric tests, and one Chi-square test. We chose these
tutorials because they appeared in two of the top 20 statistical
textbooks on Amazon and had publicly available data sets,
which did not require extensive data wrangling.

We translated all analyses into Tea and encoded any assump-
tions explicitly stated in the tutorial. Tea selected tests based
only on the data and the assumptions expressed in the Tea
program. Where Tea disagreed with the tutorials, either (1) the
tutorial authors chose the wrong analyses or (2) the tutorial
authors had implicit assumptions about the data that did not
hold up to statistical testing.

For nine out of the 12 tutorials, Tea suggested the same sta-
tistical test (see Table 2). For three out of 12 tutorials, which
used a parametric test, Tea suggested using a non-parametric
alternative instead. Tea’s recommendation of using a non-
parametric test instead of a parametric one did not change the
statistical significance of the result at the .05 level. Tea sug-
gested non-parametric tests based on the Shapiro-Wilk test for
normality. It is possible that tutorial authors visualized the data
to make implicit assumptions about the data, but this practice

or conclusion was not made explicit in the tutorials. (We dis-
cuss the trade-offs between statistical tests and visualizations
for testing data properties in Section 8.)

For the two-way ANOVA tutorial from [15], which studied
how gender and drug usage of individuals affected their percep-
tion of attractiveness, a precondition of the two-way ANOVA
is that the dependent measure is normally distributed in each
category. This precondition was violated. As a result, Tea de-
faulted to bootstrapping the means for each group and reported
the means and confidence intervals. For the pointbiserial cor-
relation tutorial from [15], Tea also defaulted to bootstrap for
two reasons. First, the precondition of normality is violated.
Second, the data uses a dichotomous (nominal) variable, which
invalidates Spearman’s p and Kendall’s 7.

Tea generally agrees with expert recommendations and is more
conservative in the presence of non-normal data, minimizing
the risk of false positive findings.

Does Tea avoid common mistakes made by non-expert

users?

Our goal was to assess whether any of the tests suggested by
Tea (i.e., valid candidate tests) or any of the invalid candidate
tests would lead to a different conclusion than the one drawn
in the tutorial. Table 2 shows the results. Specifically, empha-
sized p-values indicate instances for which the result of a test
differs from the tutorial in terms of statistical significance at
the .05 level.

For all of the 12 tutorials, Tea’s suggested tests led to the same
conclusion about statistical significance. For two out of the 12
tutorials, two or more candidate tests led to a different conclu-
sion. These candidate tests were invalid due to violations of
independence or normality.

To summarize, the evaluation shows us that (i) Tea can repli-
cate and even improve upon expert choices and (ii) Tea could
help novices avoid common mistakes and false conclusions.

LIMITATIONS AND FUTURE WORK

The goal of this paper was to design and assess Tea’s high-level
DSL and constraint-based runtime system. Here, we identify
limitations of the current work that suggest opportunities for
future work.

Empirical evaluation of usability. While we believe that
abstracting away statistical tests—thus obviating the need for
detailed statistical knowledge—will make Tea easier to use
than conventional statistical tools, an empirical evaluation
with non-statistical expert users is required to establish this. A
study comparing Tea to conventional statistical analysis tools
such as SPSS or R would be of particular interest.

Dichotomous thinking, such as relying on the result of a signif-
icance test to definitively decide if there is evidence to support
a hypothesis, ignores the need to consider the magnitude of
effects. Practical significance is more important than statisti-
cal significance for decision making, so tools should support
reasoning about practical significance. Tea aims to guide users
away from dichotomous thinking and towards holistic interpre-
tations of analyses by providing effect sizes, clear statements

Table 2: Results of applying Tea to 12 textbook tutorials.

Tea is comparable to an expert selecting statistical tests. Tea can prevent false positive and false negative results by suggesting only tests that satisfy all assumptions.
Tutorial gives the test described in the textbook; Candidate tests (p-value) gives all tests a user could run on the provided data with corresponding p-values;
Assumptions gives all satisfied (lightly shaded) and violated (white) assumptions; Tea suggests indicates which tests Tea suggests based on their preconditions
(assumptions about the data). Emphasized p-values indicate instances where a candidate test leads to a wrong conclusion about statistical significance. Although
this table focuses on p-values, Tea produces richer output that provides a more holistic view of the statistical analysis results by including effect sizes, for instance.
Refer to Figure 2 for an example of output from a Tea program.

Tutorial Candidate tests (p-value) Assumptions® Tea suggests
Pearson Pearson’s r (6.96925¢-06) @@ (> —
[24] Kendall’s T (2.04198¢-05) @ ® v
Spearman’s p (2.83575¢-05) @@ v
Spearman’s p Spearman’s p (.00172) @@ v
[15] Pearson’s r (01115 @ ® —
Kendall’s 7 (00126) @@ v
Kendall’s T Kendall’s T (.00126) @ ® v
[15] Pearson’s r (.01115) @® —
Spearman’s p (.00172) @@ v
Pointbiserial Pointbiserial (Pearson’s r) (.00287) @@ (B —
[15] Spearman’s p .00477) @@ —
Kendall’s T (.00574) @®@ —
Bootstrap (<0.05) vV
Student’s t-test Student’s t-test (.00012) @@ ® v
[24] Mann-Whitney U (9.27319¢-05) @@ @ v
Welch’s t-test (.00065) @@®06G @ v
Paired t-test Paired t-test (.03098) @@B® v
[15] Student’s t-test (.10684) @@ O —
Mann-Whitney U (.06861) @@ (® —
Wilcoxon signed rank (.04586) @ @@
Welch’s t-test (.10724) @O —
Wilcoxon signed rank Wilcoxon signed rank (.04657) @@ @ v
[15] Student’s t-test (.02690) @@ —
Paired t-test (.01483) @@ G ® —
Mann-Whitney U (.00560) @@ @ —
Welch’s t-test (.03572) @@ —
F-test F-test (9.81852¢-13) @@®BG ®©O® v
[15] Kruskal Wallis (2.23813e-07) @@ © v
Friedman (8.66714e-07) @@ —
Factorial ANOVA 9.81852¢-13) @ @G ®® v
Kruskal Wallis Kruskal Wallis (.03419) @@ © v
[15] F-test (.05578) @@ (B O —
Friedman (3.02610e-08) @@ —
Factorial ANOVA (.05578) @@ (B © —
Repeated measures one way ANOVA Repeated measures one way ANOVA (.0000) @ @G ©® @ ©® v
[15] Kruskal Wallis (4.51825¢-06) @@ D ® —
F-test (1.24278¢-07) @ @G ® D © —
Friedman (5.23589%-11) @@ @ ® v
Factorial ANOVA (1.24278¢-07) @ @B ® © v
Two-way ANOVA Two-way ANOVA (3.70282¢-17) @@ (B ©® —
[15] Bootstrap (<0.05) v
Chi Square Chi Square (4.76743e-07) @@ © v
[15] Fisher’s Exact (4.76743¢-07) @@ © v

*(1) one variable, (2) two variables, (3) two or more variables, (3) continuous vs. categorical vs. ordinal data, (5) normality, (6) equal variance, (7) dependent vs.
independent observations, (8) exactly two groups, (9) two or more groups

about the null hypotheses tested in each statistical test, the
results of the statistical tests in light of the specific null hy-
pothesis, and citations for more statistical information (see
Figure 2). However, Tea does not prevent partial reporting, or
“cherry-picking” [11], of results. Further research is needed to
investigate how automated systems show the results of multi-
ple analyses, perhaps with interactive scaffolding of results to
avoid cherry-picking.

Relaxing Tea’s conservatism. Tea is conservative in its test
selection because Tea’s runtime system will execute a statisti-
cal test only when all the preconditions are met. In practice,
some preconditions may be more important than others. For
instance, Tea could allow some degree of deviation from abso-
lute normality. Further evaluation with statistical and domain
experts could help refine Tea’s decision making procedure.

The benefit of implementing Tea’s runtime system with con-
straints is that its knowledge base can expand and become
more refined as best practices for statistics evolve. Tea could
employ a more sophisticated constraint system where, for in-
stance, normality is treated as a soft constraint that has more
weight when the sample size is small but is relaxed with a
sufficiently large sample size. Still, normality tests may not
be (a) ideal due to their over-sensitivity to small deviations
from normality with large samples and their lack of power
for small samples or (b) always necessary [34]. Therefore, a
combination of statistical and graphical approaches to judging
normality is likely best, as discussed next.

Moreover, because sample size and acceptable degrees of
violating assumptions are highly domain dependent, Tea
could also be expanded to incorporate reconfigurable domain-
specific constraints. A promising direction is to imagine for-
malized domain-specific statistics guidelines. Similar to how
I&TEXuses style classes for typesetting text, Tea could take
as input domain-specific guides for preferential weighting of
properties and statistical tests.

Incorporating visualizations and humans-in-the-loop. To
ascertain properties about the data (e.g., normality), Tea uses
statistical tests rather than visualizations. There are trade-offs
and limitations to both approaches. Statistical tests may be sen-
sitive to sample size and slight violations, which is acceptable
for many hypothesis tests and models [34]. The main advan-
tage of statistically checking data properties is that decisions
are reproducible and more objective. Through visual inspec-
tion, trained analysts can examine the data, detect and assess
any violations to data properties that are unacceptable in their
domain, and notice other properties about the data to check.
As visualizations form an important part of analysts’ work-
flows for building models [17] and generating hypotheses [5],
future work should investigate incorporating visualizations
with Tea for a human-in-the-loop system that supports data
property checking and test selection. Tea already provides
initial support for such interaction through its two modes of
treating user assumptions. Human-in-the-loop systems could
go back and forth between strict and relaxed adherence to
user assumptions depending on sample size, data property,
and user expertise. Scaffolding this back and forth process

with visualization to enable novice analysts to learn statistical
analysis skills is an interesting avenue for future research.

Expanding beyond NHST. Tea’s architecture is designed to
be flexible and support extension. Currently, Tea provides
a module for NHST because NHST is the most common
paradigm in HCI. As statistics norms change, it will be impor-
tant for Tea to support a broader range of analyses, including
regression and Bayesian inference.

Extending Tea’s architecture and language to Bayesian in-
ference presents several research challenges: (1) easing the
process of choosing and expressing priors, (2) easing the pro-
cess of choosing and expressing models, and (3) suggesting
appropriate statistical tests. A variety of probabilistic program-
ming languages emphasize language abstractions that let pro-
grammers succinctly express priors and models—BUGS [35],
BLOG [38], Stan [7], Church [18], and Figaro [42] are a few
prominent examples. Existing work suggests appropriate sta-
tistical tests for a researcher’s goals [30, 31, 37], but these
suggestions are not embodied in a tool, language, or program-
ming environment; we look forward to developing ways to
encode these into Tea.

DISCUSSION

This paper introduces Tea, a high-level programming language
that supports users in formalizing and automating statistical
analysis.

Towards Task-Appropriate Analyses. Our evaluation shows
that Tea’s constraint-based system to find suitable statistical
tests generally matches the choices of experts. In particular,
it automatically switches to non-parametric tests when para-
metric assumptions are not met. When preconditions are not
met, Tea will always default to tests with fewer assumptions
about the data, all the way to the bootstrap [12]. Tea prevents
conducting statistical analyses that rely on unfounded assump-
tions. Given Tea’s automated test selection and assumption
checking, analyses are more likely to be sound than is currently
the case [6].

Towards Reproducible Analyses. Researchers have sug-
gested automation as an opportunity to increase the trans-
parency and reproducibility of scientific experiments and find-
ings [43]. Tea programs are relatively straightforward to write
and read and therefore could serve as a way for researchers to
share their analysis for others to reproduce and to extend.

Towards Trustworthy Analyses: Pre-registration. Pre-
registration holds the promise of promoting trustworthy
analyses—e.g., by eliminating HARKing [28] [8], “p-
hacking”, and “cherry picking” results. Tea can amplify ongo-
ing efforts for pre-registration by providing a standard format
for expressing study designs, hypotheses, and researcher as-
sumptions.

Even before collecting data, researchers can write Tea pro-
grams to explicitly state their experimental designs, assump-
tions, and hypotheses. Without data, Tea will (i) check that the
program is syntactically correct and (ii) check for consistency
between variable declarations and hypotheses to ensure that
hypotheses are well-formed. If the assumptions hold with the

assumptions = {
‘Statistical Test’: “Student’s T Test”,
'Type I (False Positive) Error Rate': 0.05
}

tea.assume (assumptions)

(a) Specify the test.

assumptions = {
‘groups normally distributed’: [[‘So’, ‘Prob’]],
‘equal variance’: [[‘So’, ‘Prob’l],
'Type I (False Positive) Error Rate': 0.05

}

tea.assume (assumptions)

(b) Specify the properties.

Figure 5: Tea can support pre-registration. Tea programs
provide an executable format for pre-registration. When pre-
registering studies, users can explicitly state their assumptions
about data properties or specify the exact statistical test they
intend to run with data. Specifying the name of a test (a) is
syntactic sugar for the more verbose form (b). The above code
snippets are semantically equivalent.

data (once collected), Tea will accurately select the valid tests
that researchers have pre-registered. To more directly support
the practice of pre-registering the specific statistical tests to
run with data, Tea lets users state which statistical tests they
want to execute once the data is collected. Stating the specific
test names acts as syntactic sugar: during execution, Tea un-
rolls the statistical tests to assert the set of assumptions that
would lead to its selection (Figure 5). Both methods achieve
the same effect.

Fine-Tuning the Division of Labor. Tea provides what Heer
refers to as “shared representations,” representations that sup-
port both human agency and system automation [20] in statis-
tical analysis. Users are in ultimate control with Tea. Tea’s
language empowers users to represent their knowledge and
intent in conducting analyses (i.e., to test a hypothesis). Users
convey their experimental designs, assumptions, and hypothe-
ses, the high-level goals and domain knowledge that only the
user can provide. Tea takes on the laborious and error-prone
task of searching the space of all possible statistical tests to
evaluate a user-defined hypothesis. Thus, Tea complements
users’ efforts to conduct valid statistical analyses.

RELATED WORK

Tea extends prior work on domain-specific languages for the
data life cycle, tools for statistical analysis, and constraint-
based approaches in HCI.

Domain-specific Languages for the Data Life Cycle

Prior domain-specific languages (DSLs) have focused on sev-
eral different stages of data exploration, experiment design,
and data cleaning to shift the burden of accurate processing
from users to systems. To support data exploration, Vega-
lite [44] is a high-level declarative language that supports users
in developing interactive data visualizations without writing
functional reactive components. PlanOut [3] is a DSL for
expressing and coordinating online field experiments. More
niche than PlanOut, Touchstone2 provides the Touchstone

Language for specifying condition randomization in experi-
ments (e.g., Latin Squares) [14].essential aspect of the domain
knowledge users encode in Tea programs. To support rapid
data cleaning, Wrangler [25] combines a mixed-initiative in-
terface with a declarative transformation language. Tea can be
integrated with tools such as Wrangler that produce cleaned
CSYV files ready for analysis.

In comparison to these previous DSLs, Tea provides a lan-
guage to support another crucial step in the data life cycle:
statistical analysis.

Tools for Statistical Analysis

Research has also introduced tools to support statistical anal-
ysis in diverse domains. ExperiScope [19] supports users in
analyzing complex data logs for interaction techniques. Ex-
periScope surfaces patterns in the data that would be difficult to
detect manually and enables researchers to collect noisier data
in the wild that have greater external validity. Touchstone [36]
is a comprehensive tool that supports the design and launch
of online experiments. Touchstone provides suggestions for
data analysis based on experimental design. Touchstone2 [14]
builds upon Touchstone and provides more extensive guidance
for evaluating the impact of experimental design on statistical
power. Statsplorer [50] is an educational web application for
novices learning about statistics. While more focused on vi-
sualizing various alternatives for statistical tests, Statsplorer
also automates test selection (for a limited number of statisti-
cal tests and by executing simple switch statements) and the
checking of assumptions (though it is currently limited to tests
of normality and equal variance). [50] found that Statsplorer
helps HCI students perform better in a subsequent statistics
lecture.

In comparison to Statsplorer, Tea is specifically designed to
integrate into existing workflows. Tea can be executed in any
Python environment, including notebooks, which are widely
used in data analysis. Tea enables reproducing and extending
analyses by being script-based, and the analyses are focused
on hypotheses that analysts specify.

Constraint-based Systems in HCI

Languages provide semantic structure and meaning that can be
reasoned about automatically. For domains with well defined
goals, constraint solvers can be a promising technique. Some
of the previous constraint-based systems in HCI have been
Draco [39] and SetColLa [21], which formalize visualization
constraints for graphs. Whereas SetCoLa is specifically fo-
cused on graph layout, Draco formalizes visualization best
practices as logical constraints to synthesize new visualiza-
tions. The knowledge base can grow and support new design
recommendations with additional constraints.

Another constraint-based system is Scout [46], a mixed-
initiative system that supports interface designers in rapid
prototyping. Designers specify high-level constraints based on
design concepts (e.g., a profile picture should be more empha-
sized than the name), and Scout synthesizes novel interfaces.
Scout also uses Z3’s theories of booleans and integer linear
arithmetic.

We extend this prior work by providing the first constraint-
based system for statistical analysis.

CONCLUSION

Tea is a high-level domain-specific language and runtime sys-
tem that automates statistical test selection and execution. Tea
achieves these by applying techniques and ideas from human-
computer interaction, programming languages, and software
engineering to statistical analysis. Our hope is that Tea opens
up possibilities for new statistical analysis tools, helps re-
searchers in diverse fields, and resolves a century-old question:
“Which test should I use to test my hypothesis?”’

USING TEA

Tea is an open-source Python package that users can download
using Pip, a Python package manager. Tea can be used in
iPython notebooks. Information on how to download Tea and
the source code can be accessed at http://tea-lang.org.

ACKNOWLEDGMENTS

We are grateful to our anonymous reviewers and our shepherd,
Rob Miller. We would also like to thank Emina Torlak, Chen-
glong Wang, and James Bornholt for feedback on the runtime
system’s implementation; Dominik Moritz, Pavel Panchekha,
and Martin Kellogg for reading early drafts of this paper;
Jeffrey Heer, UW Interactive Data Lab, and UW Database
Group for conversations and feedback. This work is supported
by a National Science Foundation (NSF) Graduate Research
Fellowship, NSF grant #1651487, and NSF grant #1617892.

REFERENCES
[1] American Psychological Association. 1996. Task Force
on Statistical Inference. (1996). https:
//www.apa.org/science/leadership/bsa/statistical/

[2] American Psychological Association and others. 1983.
Publication manual. American Psychological
Association Washington, DC.

Eytan Bakshy, Dean Eckles, and Michael S Bernstein.
2014. Designing and deploying online field experiments.
In Proceedings of the 23rd international conference on
World wide web. ACM, 283-292.

[4] J. Bruin. 2019. Choosing the Correct Statistical Test in
SAS, Stata, SPSS and R. (2019).
https://stats.idre.ucla.edu/other/mult-pkg/whatstat/

3

—

[5

—

Andreas Buja, Dianne Cook, Heike Hofmann, Michael
Lawrence, Eun-Kyung Lee, Deborah F Swayne, and
Hadley Wickham. 2009. Statistical inference for
exploratory data analysis and model diagnostics.
Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences 367,
1906 (2009), 4361-4383.

Paul Cairns. 2007. HCI... not as it should be: inferential
statistics in HCI research. In Proceedings of the 21st
British HCI Group Annual Conference on People and
Computers: HCL.. but not as we know it-Volume 1.
British Computer Society, 195-201.

[6

—_

[7] Bob Carpenter, Andrew Gelman, Matthew D. Hoffman,
Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus
Brubaker, Jigiang Guo, Peter Li, and Allen Riddell.

2017. Stan : A Probabilistic Programming Language.
Journal of Statistical Software 76 (01 2017). DOIL:

http://dx.doi.org/10.18637/jss.v076.i01

Andy Cockburn, Carl Gutwin, and Alan Dix. 2018. Hark
no more: on the preregistration of chi experiments. In
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. ACM, 141.

[8

—_—

[9

—

Jacob Cohen. 1988. Statistical power analysis for the
social sciences. (1988).

[10] Leonardo De Moura and Nikolaj Bjgrner. 2008. Z3: An
efficient SMT solver. In International conference on
Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337-340.

[11] Pierre Dragicevic. 2016. Fair statistical communication
in HCI. In Modern Statistical Methods for HCI.
Springer, 291-330.

[12] Bradley Efron. 1992. Bootstrap methods: another look
at the jackknife. In Breakthroughs in statistics. Springer,
569-593.

[13] Isaac Ehrlich. 1973. Participation in illegitimate
activities: A theoretical and empirical investigation.
Journal of political Economy 81, 3 (1973), 521-565.

[14] Alexander Eiselmayer, Chatchavan Wacharamanotham,
Michel Beaudouin-Lafon, and Wendy Mackay. 2019.
Touchstone2: An Interactive Environment for Exploring
Trade-offs in HCI Experiment Design. (2019).

[15] Andy Field, Jeremy Miles, and Zoé¢ Field. 2012.
Discovering statistics using R. Sage publications.

[16] Ronald Aylmer Fisher. 1937. The design of experiments.
Oliver And Boyd; Edinburgh; London.

[17] Jonah Gabry, Daniel Simpson, Aki Vehtari, Michael
Betancourt, and Andrew Gelman. 2019. Visualization in
Bayesian workflow. Journal of the Royal Statistical
Society: Series A (Statistics in Society) 182, 2 (2019),
389-402.

[18] N. D. Goodman, V. K. Mansinghka, D. M. Roy, K.
Bonawitz, and J. B. Tenenbaum. 2008. Church: a
language for generative models. Uncertainty in Artificial
Intelligence (2008).

Francois Guimbretiere, Morgan Dixon, and Ken
Hinckley. 2007. ExperiScope: an analysis tool for
interaction data. In Proceedings of the SIGCHI
conference on Human factors in computing systems.
ACM, 1333-1342.

[19

—

[20] Jeffrey Heer. 2019. Agency plus automation: Designing
artificial intelligence into interactive systems.
Proceedings of the National Academy of Sciences 116, 6
(2019), 1844-1850.

[21] Jane Hoffswell, Alan Borning, and Jeffrey Heer. 2018.
SetCoLa: High-Level Constraints for Graph Layout. In
Computer Graphics Forum, Vol. 37. Wiley Online
Library, 537-548.

http://tea-lang.org
https://www.apa.org/science/leadership/bsa/statistical/
https://www.apa.org/science/leadership/bsa/statistical/
https://stats.idre.ucla.edu/other/mult-pkg/whatstat/
http://dx.doi.org/10.18637/jss.v076.i01

[22] Sture Holm. 1979. A simple sequentially rejective
multiple test procedure. Scandinavian journal of
statistics (1979), 65-70.

[23] Eric Jones, Travis Oliphant, Pearu Peterson, and others.
2001-2019. SciPy: Open source scientific tools for
Python. (2001-2019). http://www.scipy.org/

[24] Robert I Kabacoff. 2011. R: In Action. (2011).

[25] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and
Jeffrey Heer. 2011. Wrangler: Interactive visual
specification of data transformation scripts. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 3363-3372.

[26] Maurits Kaptein and Judy Robertson. 2012. Rethinking
statistical analysis methods for CHI. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 1105-1114.

[27] Matthew Kay, Gregory L Nelson, and Eric B Hekler.
2016. Researcher-centered design of statistics: Why
Bayesian statistics better fit the culture and incentives of
HCLI. In Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems. ACM,
4521-4532.

[28] Norbert L Kerr. 1998. HARKing: Hypothesizing after
the results are known. Personality and Social
Psychology Review 2, 3 (1998), 196-217.

[29] Scott Klemmer and Jacob Wobbrock. 2019. Designing,
Running, and Analyzing Experiments. (2019).
https://www.coursera.org/learn/designexperiments

[30] John K. Kruschke. 2010. Doing Bayesian Data Analysis:
A Tutorial with R and BUGS (1st ed.). Academic Press,
Inc., Orlando, FL, USA.

[31] John K. Kruschke and Torrin M. Liddell. 2018. The
Bayesian New Statistics: Hypothesis testing, estimation,
meta-analysis, and power analysis from a Bayesian
perspective. Psychonomic Bulletin & Review 25, 1 (01
Feb 2018), 178-206. D01 :
http://dx.doi.org/10.3758/s13423-016-1221-4

[32] Kent State University Libraries. 2019. SPSS Tutorials:
Analyzing Data. (2019).
https://libguides.library.kent.edu/SPSS/AnalyzeData

[33] Calvin Loncaric, Emina Torlak, and Michael D Ernst.
2016. Fast synthesis of fast collections. ACM SIGPLAN
Notices 51, 6 (2016), 355-368.

[34] Thomas Lumley, Paula Diehr, Scott Emerson, and Lu
Chen. 2002. The importance of the normality
assumption in large public health data sets. Annual
review of public health 23, 1 (2002), 151-169.

[35] David J. Lunn, Andrew Thomas, Nicky Best, and David
Spiegelhalter. 2000. WinBUGS - A Bayesian modelling
framework: Concepts, structure, and extensibility.
Statistics and Computing 10, 4 (01 Oct 2000), 325-337.
DOI:http://dx.doi.org/10.1023/A:1008929526011

[36] Wendy E Mackay, Caroline Appert, Michel
Beaudouin-Lafon, Olivier Chapuis, Yangzhou Du,
Jean-Daniel Fekete, and Yves Guiard. 2007. Touchstone:
exploratory design of experiments. In Proceedings of the

SIGCHI conference on Human factors in computing
systems. ACM, 1425-1434.

Michael E. J. Masson. 2011. A tutorial on a practical
Bayesian alternative to null-hypothesis significance
testing. Behavior Research Methods 43, 3 (Sept. 2011),
679-690. DOI:
http://dx.doi.org/10.3758/s13428-010-0049-5

[38] Brian Milch, Bhaskara Marthi, Stuart Russell, David
Sontag, Daniel L. Ong, and Andrey Kolobov. 2005.
BLOG: Probabilistic Models with Unknown Objects. In
Proc. 19th International Joint Conference on Artificial
Intelligence. 1352—1359. http://sites.google.com/site/
bmilch/papers/blog-ijcai®5.pdf

[37

[}

[39] Dominik Moritz, Chenglong Wang, Greg L Nelson,
Halden Lin, Adam M Smith, Bill Howe, and Jeffrey
Heer. 2019. Formalizing visualization design knowledge
as constraints: Actionable and extensible models in
Draco. IEEE transactions on visualization and computer
graphics 25, 1 (2019), 438-448.

Travis E Oliphant. 2006. A guide to NumPy. Vol. 1.
Trelgol Publishing USA.

[41] Pavel Panchekha, Adam T Geller, Michael D Ernst,
Zachary Tatlock, and Shoaib Kamil. 2018. Verifying that
web pages have accessible layout. In Proceedings of the
39th ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM, 1-14.

[40

—_

[42] Avi Pfeffer. 2011. Practical Probabilistic Programming.
In Inductive Logic Programming, Paolo Frasconi and
Francesca A. Lisi (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 2-3.

[43] Alex Reinhart. 2015. Statistics done wrong: The
woefully complete guide. No starch press.

[44] Arvind Satyanarayan, Dominik Moritz, Kanit
Wongsuphasawat, and Jeffrey Heer. 2017. Vega-lite: A
grammar of interactive graphics. IEEE transactions on
visualization and computer graphics 23, 1 (2017),
341-350.

Skipper Seabold and Josef Perktold. 2010. Statsmodels:
Econometric and statistical modeling with python. In
Proceedings of the 9th Python in Science Conference,
Vol. 57. Scipy, 61.

[46] Amanda Swearngin, Andrew J Ko, and James Fogarty.
2018. Scout: Mixed-Initiative Exploration of Design
Variations through High-Level Design Constraints. In
The 31st Annual ACM Symposium on User Interface
Software and Technology Adjunct Proceedings. ACM,
134-136.

[47] Walter Vandaele. 1987. Participation in illegitimate
activities: Ehrlich revisited, 1960. Vol. 8677.
Inter-university Consortium for Political and Social
Research.

[45

—_

http://www.scipy.org/
https://www.coursera.org/learn/designexperiments
http://dx.doi.org/10.3758/s13423-016-1221-4
https://libguides.library.kent.edu/SPSS/AnalyzeData
http://dx.doi.org/10.1023/A:1008929526011
http://dx.doi.org/10.3758/s13428-010-0049-5
http://sites.google.com/site/bmilch/papers/blog-ijcai05.pdf
http://sites.google.com/site/bmilch/papers/blog-ijcai05.pdf

(48]

[49

—

(50]

[51]

[52]

Andras Vargha and Harold D Delaney. 2000. A critique
and improvement of the CL common language effect
size statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics 25, 2 (2000),
101-132.

William N Venables and Brian D Ripley. 2013. Modern
applied statistics with S-PLUS. Springer Science &
Business Media.

Chat Wacharamanotham, Krishna Subramanian,
Sarah Theres Volkel, and Jan Borchers. 2015.
Statsplorer: Guiding novices in statistical analysis. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems. ACM,
2693-2702.

Hadley Wickham and others. 2014. Tidy data. Journal of
Statistical Software 59, 10 (2014), 1-23.

Wikipedia contributors. 2019a. JMP (statistical
software) — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=JMP_

[56

[}

—

|

(statistical_software)&oldid=887217350. (2019).
[Online; accessed 5-April-2019].

Wikipedia contributors. 2019b. R (programming
language) — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=R_
(programming_language)&oldid=890657071. (2019).
[Online; accessed 5-April-2019].

Wikipedia contributors. 2019c. SAS (software) —
Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=SAS_
(software)&oldid=890451452. (2019). [Online; accessed
5-April-2019].

Wikipedia contributors. 2019d. SPSS — Wikipedia, The
Free Encyclopedia. https://en.wikipedia.org/w/index.
php?title=SPSS&o01did=888470477. (2019). [Online;
accessed 5-April-2019].

Leland Wilkinson. 1999. Statistical methods in
psychology journals: Guidelines and explanations.
American psychologist 54, 8 (1999), 594.

https://en.wikipedia.org/w/index.php?title=JMP_(statistical_software)&oldid=887217350
https://en.wikipedia.org/w/index.php?title=JMP_(statistical_software)&oldid=887217350
https://en.wikipedia.org/w/index.php?title=R_(programming_language)&oldid=890657071
https://en.wikipedia.org/w/index.php?title=R_(programming_language)&oldid=890657071
https://en.wikipedia.org/w/index.php?title=SAS_(software)&oldid=890451452
https://en.wikipedia.org/w/index.php?title=SAS_(software)&oldid=890451452
https://en.wikipedia.org/w/index.php?title=SPSS&oldid=888470477
https://en.wikipedia.org/w/index.php?title=SPSS&oldid=888470477

	Introduction
	Usage Scenario
	Design Considerations
	Overview of Tea
	Tea's Programming Language
	Data
	Variables
	Study Design
	Assumptions
	Hypotheses

	Tea's Runtime System
	SMT Solver
	Logical Encodings
	Algorithm
	Optimization: Recursive Queries
	User Output
	Null Hypothesis Significance Testing Module

	Initial Evaluation
	How does Tea compare to textbook tutorials?
	Does Tea avoid common mistakes made by non-expert users?

	Limitations and Future Work
	Discussion
	Related Work
	Domain-specific Languages for the Data Life Cycle
	Tools for Statistical Analysis
	Constraint-based Systems in HCI

	Conclusion
	Using Tea
	Acknowledgments
	References

