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Local Decision Pitfalls in Interactive Machine Learning: An

Investigation into Feature Selection in Sentiment Analysis

TONGSHUANG WU, DANIEL S. WELD, and JEFFREY HEER, University of Washington

Tools for Interactive Machine Learning (IML) enable end users to update models in a “rapid, focused, and

incremental”—yet local—manner. In this work, we study the question of local decision making in an IML

context around feature selection for a sentiment classi�cation task. Speci�cally, we characterize the utility of

interactive feature selection through a combination of human-subjects experiments and computational sim-

ulations. We �nd that, in expectation, interactive modi�cation fails to improve model performance and may

hamper generalization due to over�tting. We examine how these trends are a�ected by the dataset, learning

algorithm, and the training set size. Across these factors we observe consistent generalization issues. Our re-

sults suggest that rapid iterations with IML systems can be dangerous if they encourage local actions divorced

from global context, degrading overall model performance. We conclude by discussing the implications of our

feature selection results to the broader area of IML systems and research.
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1 INTRODUCTION

Interactive machine learning (IML) systems aim to ease the process of training a model by provid-
ing tools that support more rapid, focused, and incremental model updates than seen in a tradi-
tional machine learning (ML) process [2]. These properties enable everyday users to interactively
explore the model space through trial-and-error and drive the system toward an intended behav-
ior, hopefully reducing the need for supervision by ML experts [14, 30, 63]. IML enables two-way
interaction between human and machines: On one hand, the system explains to users how the
learner is making predictions, usually through visual [38, 41] or textual [34] feedback on model
performance [10, 52, 63]. On the other hand, the user then communicates modi�cations back to
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the learning system to enhance the resulting model. For example, the user may label more data
points [25, 57], adjust learning parameters [27], or add and delete features [33, 63].
While IML may help analysts express their domain knowledge [60], and labeling additional

data is likely to improve performance, we suspect that certain IML approaches may actually hurt
the resulting models due to the human desire for local improvements. Indeed, prior work [56]
documents the human tendency to anchor on available contextual information and to focus heavily
on local changes. In fact, local decisions, the ones wemake without having access to or considering
all the information available, are ubiquitous. As claimed in bounded rationality [58], individuals’
decisions are naturally limited by the tractability of the decision problem, the cognitive limitations
of their minds, and the time available to make the decision. Many decision biases re�ect the narrow
locality of the decision making context. For example, Tversky and Kahneman [65] describe how
we tend to rely on one speci�c piece of information, while O’Donoghue and Rabin [44] note that
we over-value immediate rewards. It has also been reported that these decisions, while compelling
locally, can add up to inferior overall patterns [56].
The prevalence of local decisions in the wild makes us suspect that locality is also a potential

denominator in IML. As a highly iterative and exploratory process, the rapid updates enabled
by IML tools may exacerbate practitioners’ focus on local information and create the danger of
inadvertent over�tting. For example, a practitioner may attempt to �x speci�c errors presented by
a tool, overlooking the global e�ect of their actions.
More speci�cally, IML users may fall prey to either over-con�dence or over-reliance [59]. In the

�rst case, users may trust in their own domain knowledge too strongly, lowering learner perfor-
mance by acting on their intuitions [37, 60]. In the second case, they may overly rely on IML
system feedback speci�c to the current model and over�t to the training or validation dataset [10,
63]. Both over-con�dence and over-reliance may hamper learner generalization due to localized
decisions. While some prior work has observed decreased model performance resulting from hu-
man input [2, 60], the role of IML in such problems has yet to be formally studied: To what degree
does IML help improve models? Is decreased model performance a small probability event, or a
fairly common consequence that researchers should be aware of?
This article seeks to illuminate potential IML pitfalls that may arise when users are encouraged

to immediately react to local observations about their model. Evaluation on IML is challenging,
as it can involve diverse domains and algorithms. A natural �rst step, therefore, is a closer exami-
nation in the context of a concrete domain. Speci�cally, we base our study on interactive feature
selection, which takes the form of adding or deleting certain features, within a text sentiment
classi�cation task. Text data is a common modality in IML research [10, 30, 33, 41, 55, 60, 61, 63],
and sentiment analysis is an interesting and representative task. Feature selection, while just one
activity supported by IML systems, is provided by many IML systems [10, 15, 33, 55, 60, 61, 63].
It also focuses on the immediate current iteration of a learner: classic feature selection systems
in the wild typically show the performance of the most up-to-date model that users have created
with previous manipulations. User input is by de�nition local when users make decisions based
on iteration-sensitive feedback.
We �rst investigate how people make local feature selection decisions, and assess the impacts of

these decisions on model performance. Speci�cally, we examine people’s judgments on whether
to include or exclude features (text phrases) in a sentiment analysis context. We focus on how
subjects balance prior knowledge (e.g., word polarity) and feedback on model performance (e.g.,
change in F1 classi�cation score) in their decision process. Through human-subjects experiments
with both crowdworkers and ML practitioners, we �nd that both factors sway users’ decisions, but
prior knowledge proves more in�uential. We also observe that participants become less con�dent
and spend more time on cases where the model does not perform as they expect. Importantly,
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interactive input byML practitioners fails to improve models on average. The user impact onmodels
seems to be largely random. Even for individuals who successfully reach an improved model, their
model performance oscillates as they revise the feature space.
Informed by our experiment, we next de�ne several automated strategies for interactive feature

selection, and then use them to simulate user input and study their e�ects at scale. We manipu-
late factors including decision criteria, dataset, training set size, learning algorithm, and (where
applicable) regularization parameter. Across all feature selection strategies we see no signi�cant
improvement in model performance on held-out test data. In a few isolated cases (e.g., extreme
regularization) we observe that user input may provide a helpful boost. However, in those cases,
the �nal model performance is poor (i.e., a user can make a bad model slightly better) and not
competitive with alternative models �t without human intervention.
Our results suggest that classical classi�cation algorithms do not bene�t from interactive local

modi�cation of low-level features. Despite the constrained setting, we see our work as a baseline
for understanding the impact of IML in which both prior knowledge and immediate model per-
formance feedbacks are taken into consideration. Assuming users are guided by stage-sensitive
feedback that prompts iterative local updates, we predict that human intervention is likely to be
ine�cient, and even potentially harmful.
To be clear, we are not claiming that IML “fails” or “has little use.” Our study is limited to in-

teractive feature selection for text sentiment classi�cation. While our results raise a cautionary
note, they may not generalize to other activities or domains. To fully build a “checklist” for when,
where, and how IML systems should be used, additional work is needed on how various factors
a�ect the utility of IML in di�erent tasks. We conclude the article with suggestions for future re-
search in IML that may shift focus away from overly “localized” perspectives and interventions.
We hypothesize that IML systems may be improved by (1) providing global feedback to present
a more comprehensive picture of the models before inviting user intervention, and (2) engaging
users in higher level interactions that leverage domain expertise rather than low-level “tuning.”
In summary, our research contributions are as follows:

—The results of a controlled human-subjects experiment on interactive feature selection. We
identify user strategies for balancing prior knowledge with model performance feedback
and �nd that interactive feature selection fails to improve model generalization.

—The results of a large-scale simulation of user feature selection decisions across datasets,
training set sizes, learning algorithms, and hyper-parameters, informed by our �rst study.
We con�rm that across varied contexts and algorithms, interactive feature selection fails to
improve models on average.

—A discussion of the implications of our results for IML systems and research. We suggest
that funneling user attention toward iterative, local model re�nement is unlikely to yield
improvedmodels. Rather, we argue for focusing user attention toward tasks that can reliably
convey high-level domain expertise and ethical oversight, including training data quality
assessment and model error analysis.

2 RELATEDWORK

We �rst provide an overview of IML. We then focus on aspects of IML that inspire our study:
feature selection, user decision factors, and performance impacts.

2.1 State-of-the-Art IML Systems

IML is a �eld that actively includes humans in ML model construction procedures. Broadly speak-
ing, most IML systems seek to either (1) enable non-programmers to build ML systems [4, 18, 19],
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(2) help end users understand their model failures [1, 3], and (3) improve their models [25, 30, 61].
As the name indicates, it enables two-way interaction between human and machines: the system
explains to users how it makes predictions, and the user then communicates modi�cations back
to the learning system [33].
Researchers have explored both sides. On one hand, many IML systems seek to expressively

present model behaviors. For instance, ModelTracker [3] and Squares [52] map the prediction
con�dence of classi�ers to locate false positives/negatives and quantify the level of “incorrect-
ness” for users. Similarly, Alsallakh et al. [1] analyze probabilistic distributions in classi�ers to
understand relations of di�erent classes. Besides visual representations, prior work also inspects
model behaviors with “what-if” scenarios. Users are allowed to either input new instances [37] or
manipulate certain features for a given instance [27, 31, 47].
On the other hand, researchers have also tried to understand what kind of human feedback is

most e�ective. Labeling is one classic type of feedback. Heimerl et al. [25] project textual docu-
ments onto scatterplots and coordinated views such that users can re-label items while observing
the changes. Simard et al. [57] propose structured labeling to cope with the evolution of users’ deci-
sion boundaries, resulting in more consistently labeled datasets. However, user studies show that
users prefer richer control over ML than simply labeling examples [2, 45, 60]. In response, many
IML systems support feature selection, which we discuss in Section 2.2. Across these projects, one
highly valued attribute is real-time responses to user feedback (e.g., [6, 11, 25, 54]). While rapid
updates enable iteration [2], they might also encourage local interventions that are not globally
bene�cial—the core concern of the present work.

2.2 Feature Selection

2.2.1 Forms of Feature Selection. Interactive feature selection can take several forms. For in-
stance, with INFUSE, Krause et al. [30] visually integrate multiple automated feature rankings and
help users select features they desire. The most frequently requested [61] and supported manip-
ulations are (1) to specify the feature space (e.g., add or delete features) and (2) to adjust feature
weights based on their domain knowledge. UTOPIAN [15] interactively re�nes topic models as
users create sets of selected keywords or adjust the meaning of a topic with keyword reweighing.
FeatureInsight [10] supports “feature ideation” by visually examining sets of errors, and facilitates
binary text classi�cation through word-based feature selection. May et al. [41] help users �lter
redundant features. EMR VisWeb [63] enables clinical researchers to review and select word fea-
tures from clinical text. DUALIST [55] updates an email classi�er with features deemed positive or
negative. Similarly, EluciDebug [33] supports experimentation with di�erent feature sets and their
corresponding weights. All of the works include certain forms of local interactive feedback based
on stage-sensitive information. In fact, though there is no o�cial de�nition for “local feature selec-
tion,” we suspect most interactive feature selection fall into this category because of their iterative
nature. As prior work has found that people are poor at quantitatively weighting features [14], we
focus our study on the addition and removal of features.

2.2.2 The Impact of Feature Selection. Other projects have examined the impact of feature se-
lection. Reunanen [53] notes the potentially misleading e�ect of hill-climbing cross-validation per-
formance with exhaustive search with the automated sequential forward �oating selection (SFFS)
algorithm, and suggests simple search strategies are less prone to over�tting. We similarly con-
trast accuracies on development and test validation sets in a hill-climbing setting; however, our
work focuses on human intervention, which as we show does not rely solely on following a model
performance gradient (we discuss these di�erences further in Section 8).

ACM Transactions on Computer-Human Interaction, Vol. 26, No. 4, Article 24. Publication date: June 2019.



Local Decision Pitfalls in Interactive Machine Learning 24:5

Raghavan et al. [49, 50], on the other hand, �nd a positive e�ect of interactive feature selection
in active learning, when a small amount of training data provides limited information (at most
50 documents in their case). In a similar text classi�cation context, Raghavan et al. compare the
overlap between the tokens deemed relevant by users and those ranked high by information gain
(IG) to show that users are capable of identifying important token features. They then simulate
a human-in-the-loop experiment to assess how inclusion of feature selection in addition to in-
stance labeling can boost performance relative to labeling alone. Their work, however, does not
consider the potential e�ect of model performance information on users’ sequential feature se-
lections. Moreover, as an increment to active learning, their evaluation does not include separate
development and test validation sets, limiting any assessment of generalizability.
Along the lines of active learning and feature labeling, Das et al. [16] also notice that idealized

feature labeling based on IG can speed up active learning and improve model performances. Their
user study suggests that actual end user labeling provides less of a gain than oracle feature labels,
and that some semi-supervised feature labeling algorithms perform even worse than algorithms
that ignore the feature labels. Das et al. use a di�erent scenario than ours, as their work does not
consider model performance feedback. Also, they allow users to provide features not originally
in the learning algorithm’s data representation, granting more capability to users than just fea-
ture selection. However, their observation that end users may provide noisy feature labels helped
inspire our work.

2.2.3 Application Domain: Sentiment Analysis. As evidenced by the above projects, interactive
feature selection is often used in text classi�cation tasks (e.g., [10, 15, 33, 55]). This is understand-
able, as text features (words and phrases) are naturally human understandable. We similarly base
our work in text classi�cation, speci�cally binary sentiment analysis: determining if the tone of
a document is positive or negative [43]. As a general audience can understand the task of senti-
ment analysis, this domain lets us study how users balance multiple decision factors, namely prior
knowledge and performance feedback (Section 2.3 below).

2.3 Decision Factors in IML

Prior work has identi�ed two primary factors a�ecting user decision-making in IML. On one hand,
researchers have observed model performance metrics to be commonly available, highly desired,
and especially in�uential. Trivedi et al. [63] report users’ desire for a performance report for the
model in each iteration, and Stumpf et al. [60] notice that users paid speci�c attention to the extent
of the accuracy variation. Amershi et al. [5] show that end users regarded leave-one out cross-
validation accuracy as a quantity to maximize, and participants in Fiebrink et al.’s [19] study also
report treating a high cross-validation accuracy as reliable evidence that a model was performing
well.
On the other hand, the importance of users’ prior knowledge has also been acknowledged.

Stumpf et al. [60] categorize prior knowledge that users reply on when generating feedback into
(a) knowledge of English, (b) commonsense knowledge, (c) domain-dependent knowledge, and
(d) other. Lim et al. [37] observe that prior knowledge lessened participants’ e�ort to be precise
about their understanding. Our study investigates these two decision factors.

2.4 Performance Impacts of IML

While IML interactions have been extensively studied, the e�ect of these interactions on the learner
requires more attention. Characterizing model performance—and in particular generalizability—
is essential, especially as some researchers have found that iterative re�nement does not always
improve model performance. For instance, researchers note that continuously adding new training
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Table 1. Comparison of Our Decision Study and Impact Study

Decision Impact
Objective Decision factors Model performance
Participants 100 MTurk workers 25 ML practitioners
Stimuli Controlled Automatic
ML-model Simulated Random forest

data can negatively impact performance [4] and that continuous labeling of training data can
violate iid assumptions [19], which can be problematic unless the examples are carefully chosen.

In the area of feature selection, Stumpf et al. [60] suggest that users may make poor decisions:
user-generated features tend to redundantly constrain or over-constrain the classi�er. In a more
recent study, Stumpf et al. [59] observe that IML explanations could lead to unintentional e�ects:
detailed explanations promote over-reliance, whereas lack of explanations leads to excessive self-
con�dence. Kulesza et al. [33] compare feature re�nement—adding, removing, and re-weighing
features—with traditional instance labeling. They evaluate the performance score trajectory as
subjects update models and empirically classi�ed features into “obvious” and “subtle” buckets,
and con�rm that explanations in IML could help improve subjects’ mental models and lead to
more e�ectivemodel improvement. However, they also notice that feature-based feedbackmay not
always result in themost accurate classi�er. Despite these observations, little work has investigated
(1) how users generate their feedback for the ML system, and (2) what are the e�ects of such
inputs. We seek to help �ll this gap, starting with a concrete investigation in the case of sentiment
analysis.

3 GENERAL CONTEXT AND METHOD OVERVIEW

As explained in Section 2.2.3, our study focuses on sentiment analysis for its generality, simplicity,
and because most people have common-sense intuitions about the domain knowledge. We use
generalization performance in order to assess the impact of user input. Cross-validated model
performancemeasures—precision, recall, and F1 score (their harmonicmean)—are standard in both
traditional and interactive ML systems. However, repeatedly testing on the same holdout across
iterations can lead to over�tting. To appropriately evaluate models, we perform a three-way split
of the data into training, development, and test sets [2]. We use the training set to build the ML
models, the development set to provide per-iteration performance feedback, and the test set to
evaluate the �nal model performance subsequent to interactive modi�cation.
Our work starts with two related human-subject experiments with di�erent aims (Table 1). The

�rst study (the “decision study,” Section 4) evaluates the factors driving users’ local feature selec-
tion decisions. For our experimental factors, we focus on (1) prior knowledge, which is what users
know about the question space, and (2) model behavior presented as the change in F1 score. For
this study, we recruited participants from Amazon Mechanical Turk. To examine their decision
processes in a controlled environment, we used a simulated ML-style interaction, rather than an
actual ML system. We do this because a change of F1 score that is unpredictable or falls into too
narrow a range is insu�cient for studying how participants react to varying reported performance
di�erences. Instead, we manually created strictly balanced (thus arti�cial) performance scores in
this study. The second study (the “impact study,” Section 5), focuses on how participants’ feature
decisions a�ect the performance of a real ML system. Prioritizing ecological validity, we recruited
ML practitioners from our university and provided them with actual classi�cation models, per-
forming real-time model updates and reporting changes in F1 scores. We compare and discuss
these results in Section 6.
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We then leverage our experimental results to construct a set of simulation experiments (Section 7)
that test a suite of interactive feature selection criteria at scale. A simulation-based approach en-
ables us to assess the e�ects of di�erent utility functions and feature selection strategies, as well
as choices of dataset, training set size, and learning algorithm. These simulations also allow us to
examine the asymptotic behavior of interactive feature selection criteria, providing more conser-
vative estimates that extend beyond early termination due to user fatigue.

4 STUDY 1: DECISION STUDY ON MTURK

The decision study examines how subjects balance their prior knowledge with system-reported
feedback on model performance. We hypothesized that both factors strongly in�uence decision
making for interactive feature selection, and created a strictly controlled environment with man-
ually selected variables to verify the following hypotheses. In order to control performance score
changes, this study did not use an actual ML model; however, subjects were under the impression
that the scores came from a real machine learner. To keep this distinction clear, this study refers
to changes to the features of “the imagined ML model.” We make the following three hypotheses:
H1. User decisions are in�uenced by prior knowledge. Studies have shown that prior knowledge

biases decision making under uncertainty [23], visualization perception and interpretation [26],
and understanding of vague phrases [22]. These studies lead us to hypothesize that humans will
trust themselves more for feature decisions on words with stronger polarities.
H2. User decisions are in�uenced by performance feedback. Supervised learning algorithms are

often explicitly designed to maximize generalization accuracy [19]. To assess performance, users
likely want to view accuracy (or F1 scores) while manipulating features [63]. We hypothesized that
such performance feedback a�ects users’ decisions.
H3. Decision-making time increases if prior knowledge and performance feedback do not agree.

Con�icting information could slow people down. Interaction delays might serve as a useful indi-
cator in this case, showing that users are aware of the con�ict between their prior knowledge and
the model feedback. We therefore measure users’ response time (RT) to assess this potential e�ect.

4.1 Participants

We recruited participants from Amazon’s Mechanical Turk, limiting the participant pool to sub-
jects from within the United States, with a prior task approval rating of at least 97%, and at least
1,000 approved tasks. To ensure the quality of the data, we rejected �ve participants post-hoc,
who (1) spent less than 1.5 seconds on more than half of the questions and (2) disagreed with most
participants on more than half of the questions. We collected data from a total of 100 participants.

4.2 Context: Sentiment of Movie Reviews

To provide a well-de�ned context to participants, we collected a random subset of IMDB Movie
Reviews [39] as our user study dataset, and asked participants to indicate if speci�c words were
useful for machines to predict the sentiment (positive or negative) of movie reviews. We believe
this scenario is representative and intuitive (i.e., movie reviews require mostly common sense),
such that participants’ performances were not unduly hindered by task di�culty.

4.3 Procedure

The study started with an introduction, in which we explained the context and tasks: “help the ma-
chine judge movie review sentiment.” To avoid biasing subjects’ attention, we did not explain our
focus on prior knowledge and performance feedback. To verify they understood the instructions,
we asked four quiz questions. Each subject then performed 56 tasks, each judging the relevance of
a possible feature. Afterwards, participants completed a brief survey, involving Likert scale [36]
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Fi g. 1. T h e i nt erf a c e f or t h e d e ci si o n ( S e cti o n 4 ) a n d i m p a ct st u di e s ( S e cti o n 5 ), pr o vi di n g ( a) t h e s el e ct e d
w or d (i nt e n d e d t o pri m e i m pli cit pri or k n o wl e d g e), ( b) p erf or m a n c e f e e d b a c k ( Δ S = 3 9 ), a n d ( c) e x a m pl e s of
t h e  w or d u s e d i n t h e tr ai ni n g c or p u s.

j u d g m e nts o n a 1 – 5 s c al e ( S e e t h e a n al ysis i n S e cti o n 6. 2 ).  We as k e d t h e f oll o wi n g: ( 1)  w h et h er
s u bj e cts r e a d t h e e x a m pl es c ar ef ull y, ( 2) t h e i m p ort a n c e of t h e esti m at e d s c or e, ( 3) t h e a c c ur a c y of
t h e esti m at e d s c or e, a n d ( 4) t h e i m p ort a n c e of t h eir pri or p ol arit y k n o wl e d g e.  We  wis h e d t o s e e if
t h eir s elf-r e fl e cti o ns  m at c h e d t h eir  w or d j u d g m e nts.  U p o n c o m pl eti o n, e a c h p arti ci p a nt r e c ei v e d
$ 1. 4 5  U S D i n c o m p e ns ati o n,  w hi c h c orr es p o n ds t o a n h o url y  w a g e of a p pr o xi m at el y $ 6. 9 0/ h o ur.

4. 4  T a s k a n d  E x p e ri m e nt al  C o n diti o n s

I n e a c h of t h e 5 6 t as ks, p arti ci p a nts  w er e gi v e n o n e i n di vi d u al  w or d ( u ni gr a m) a n d as k e d t o d et er-
mi n e if t h e  w or d is “r el e v a nt” f or  m a c hi n es t o pr e di ct s e nti m e nt or “ n ot r el e v a nt.”  C orr es p o n di n g t o
o ur h y p ot h es es,  w e d e fi n e d t w o v ari a bl es t o a p pr o xi m at e pri or k n o wl e d g e a n d p erf or m a n c e f e e d-
b a c k, r es p e cti v el y, i. e., t h e pri or p ol arit y a n d t h e p erf or m a nc e sc or e (i ntr o d u c e d b el o w).  T o  m e as ur e
t h e i m p a cts of b ot h,  w e v ari e d t h e t as ks b y stri ctl y g ui di n g t h e s el e cti o n of t h e 5 6  w or ds  wit h t h es e
t w o v ari a bl es ( S e cti o n 4. 5 ).  We cr e at e d a  UI t h at pr o vi d e d s u bj e cts  wit h t hr e e f or ms of i nf or m ati o n
( Fi g ur e 1 ) f or e a c h  w or d/t as k:

Pri or P ol arit y ( Fi g ur e 1 ( a)): S u bj e cts’ pri or k n o wl e d g e  w as pri m e d b y si m pl y r e a di n g t h e  w or d.
We b eli e v e s u bj e cts  w ei g h t h e g e n er al p ol arit y of t h e gi v e n  w or d  w h e n j u d gi n g its r el e v a n c e.
We esti m at e p ol arit y, P , usi n g S e nti W or d N et s c or es [7 ]. F or  w or ds  wit h  m ulti pl e p art- of-s p e e c h
f e at ur es,  w e t o o k t h e a v er a g e of all t h eir s y ns et s c or es as t h e fi n al p ol arit y.

P erf or m a nc e Sc or e ( Fi g ur e 1 ( b)):  We dis pl a y e d t h e p erf or m a n c e f e e d b a c k as t w o s c or es i n t h e
r a n g e [ 5 0, 1 0 0]: S r (t h e pr e di ct e d s c or e of t h e i m a gi n ar y  m o d el if t h e  w or d is d e e m e d r el e v a nt
a n d i n cl u d e d i n t h e  m o d el) a n d S i (t h e s c or e if t h e  w or d is d e e m e d irr el e v a nt a n d e x cl u d e d fr o m
t h e i m a gi n ar y  m o d el). P arti ci p a nts  w er e t ol d t h e s c or e s h o w e d h o w r el e v a nt or n ot t h e  m a c hi n e
esti m at e d a  w or d t o b e, b ut t h at t h e s c or es  w er e o nl y esti m at e d a n d c o ul d b e  wr o n g.  We s h o w
b ot h t h e r el e v a nt a n d irr el e v a nt s c or es t o gi v e s u bj e cts a s e ns e of t h e r a n g e of p ot e nti al p erf or-
m a n c es; h o w e v er, t h e r el ati v e di ff er e n c e i n s c or es is t h e ess e nti al si g n al t h at  w e  w a nt t o c o n v e y. F or
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instance, Figure 1(b) indicates our arti�cial model rates word “best” to be undoubtedly useful—
using it as a feature could boost the performance by 72%, from Si = 54 to Sr = 93. This large esti-
mated boost may induce subjects to mark “best” as a “relevant” for the imaginary model.
Examples of Word Use (Figure 1(c)): For context, participants were shown 10 randomly selected

example reviews. Instead of showing the full reviews, which were lengthy, we displayed fragments
(�ve words before and after the given one). This design re�ects the widely accepted idea in lin-
guistics that “a word is characterized by the company it keeps” [20]. The experiment introduction
emphasized that we wished to understand the general case, not any speci�c examples, so we could
use the words to train a machine to predict the sentiment of other reviews not yet written.
We expect the subjects to weigh these three signals when determining relevancy of a word. In

Figure 1’s case, subjects are highly likely to deem “best” to be relevant to movie review sentiments,
as the prior polarity, performance score, and the examples all consistently suggest it. In addition,
we also create cases that involve con�icting signals (explained below). Quantifying the polarity
and the performance score and comparing them to users’ �nal selection in each task, we should
then be able to analyze how subjects balance this two.

4.5 Word Selection: Artificially Balanced

We selected a list of words to carefully balance the distribution of both prior polarities and perfor-
mance scores. This procedure includes three steps as follows:
Step 1: Sample 56 words based on estimated polarity scores. Startingwith a word feature list ranked

with IG [28], we matched each word with its SentiWordNet polarity score (a continuous score in
the range [0, 1] that we refer as P ) [7]. To ensure we chose words with evenly distributed polarity
scores, we did not directly use the continuous P values; instead, we strati�ed them into discrete
levels Lp , with the strata computed via uniform steps. With Lp , we then manually selected a list
of 56 words that were relatively highly ranked by IG, with an equal number of words in each
polarity level Lp . As our pilot studies con�rmed that the sign of the polarity did not a�ect relevance
judgments, we broke the absolute value |P | into four levels Lp : neutral (0), low (1), medium (2), and
high (3). Each level includes 14 words, and includes both positive and negative polarities—For
instance, Lp = 3 corresponds to a word that is strongly positive or negative. Note that this polarity
score is only estimated (a limitation discussed in Section 8.2.1), and is not displayed in the UI. The
actual in-context polarity is perceived by the subjects only by reading the word.
Step 2: Assign arti�cial scores to each selected word. We generated 56 pairs of arti�cial perfor-

mance scores (Sr , Si ). To best mimic a real model, all the Sr and Si are randomly sampled between
50 and 100. In the process, we balanced (and thus to examine participants’ reactions to) (1) the di-
rection of the performance estimation (i.e., relevant or irrelevant, re�ected by siдn(Sr − Si ) being 1
or −1), and (2) the signi�cance of the score di�erence (|∆S | = |Sr − Si |). The �nal range for the score
di�erence, Sr − Si , is [−50, 50]. Similarly, to ensure even distribution as in step 1, we strati�ed this
performance di�erence range into seven levels Ls , from highly irrelevant (−3) to highly relevant
(3). The direction of Sr − Si causes the levels to be doubled here.

Step 3: Balance the polarity and the performance score. We evenly paired the level of polarity
and performance to evaluate their interactions. The �nal distribution includes two words for each
combination of Lp ∈ [0, 1, 2, 3] and Ls ∈ [−3,−2,−1, 0, 1, 2, 3]. Note that Lp and Ls are only used
for sampling and pairing. We use the original continuous performance score P and performance
score ∆S in the following computational analysis.
As shown in Table 2, the selected words comprehensively cover both intuitive cases, where the

polarity and performance score agree onword relevancy (e.g., “awful”), and surprising cases, where
the two values point to di�erent directions (e.g., “amazing”). The 56 words were independent of
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Table 2. Example Words from the Artificially
Generated List

Word |P | Sr Si ∆S Lp Ls
awful 0.875 97 51 46 3 3
worst 1.0 52 50 2 3 0

amazing 1.0 52 94 −42 3 −3
life 0.25 96 58 38 0 3
prior 0.0 73 80 −7 0 0
thing 0.125 58 90 −40 0 −3

each other, and were randomly ordered for each participant. This balanced design should prevent
biasing subjects toward either factor.

4.6 Results

We collected users’ decisions and their RT for each word, as well as their self-ratings in the sur-
vey questions. Here, we analyze the impact of prior knowledge and performance scores on what
participants chose, and how long it took them to choose it. We discuss the self-re�ection results
later, in order to compare between the decision and impact studies.

4.6.1 Decision Strategy: Polarity > Performance. We �t a logit mixed-e�ects model to analyze
how participants’ decisions vary with prior knowledge and performance feedback. The dependent
variable was users’ binary relevance judgment. Our model included as �xed e�ects the perfor-
mance feedback ∆S , the absolute continuous polarity of the prior word |P |, and their interaction
∆S · |P |. We also included a maximal random e�ects structure [8], with a per-subject random inter-
cept (capturing individual decision thresholds) and per-subject random slopes for all �xed e�ects
(capturing varied sensitivities to those factors). We normalized both the polarities and the perfor-
mance scores for easier comparison.
The �tted (�xed e�ects) model formula for the logit is as follows:

I (Relevant ) = −1.301 + 1.061 · ∆S + 3.464 · |P | − 0.621 · ∆S · |P |.

The negative intercept indicates that subjects default to judging a word “irrelevant.” The slope for
∆S is smaller than the intercept, indicating that performance scores alone are usually not enough
to judge a word relevant. The slope for |P |, on the other hand, is around three times both the
intercept and the slope for ∆S . This suggests that prior knowledge played a more important role
in participants’ decision process.
The analysis supports both hypotheses H1 and H2. We observed signi�cant e�ects of both per-

formance score ∆S (z = 8.504, p < 0.001) and polarity |P | (z = 17.324, p < 0.001). The interaction
term was also signi�cant (z = −3.085, p = 0.002); the negative value indicates that the predictive
power of performance and polarity is maximized when the other factor is a con�icting indicator;
for instance, when the system reports strong performance feedback for a neutral word, it has much
more impact than similar feedback on a strongly positive word.

4.6.2 Response Time: Conflict Slows Participants Down. Overall, the average time to complete
the decision study was µ = 13.63 minutes (σ = 5.807). We analyzed RTs with a linear mixed-
e�ects model, including the following four factors as independent variables: (1) the word order
o, (2) the absolute polarity of a word |P |, (3) the performance feedback ∆S , and (4) the interaction
term ∆S · |P |. Again, we included a per-subject random intercept and random slopes for all �xed
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e�ects. We found a signi�cant impact of the word order; participants spent less time on each word
as they advanced through the study (F (1,5482.1) = 1417.76, p < 0.001). This makes sense, as the
more words they �nished, the more familiar they were with the task. We also observed a signi�-
cant e�ect of the interaction term |P | · ∆S (z = 8.580, p = 0.003), indicating that participants took
longer if performance and polarity provided con�icting clues, con�rming hypothesis H3. This re-
sult may suggest a heuristic for identifying confusing cases where more supportive information
may be helpful. We did not observe any signi�cant e�ect of |P | (F (1,99.1) = 0.00, p = 0.999) or ∆S
(F (1,99.3) = 0.21, p = 0.649) on the RTs.

5 STUDY 2: IMPACT STUDY WITH ML PRACTITIONERS

We now investigate how users’ feature-selection decisions a�ect the performance of ML models.
Given the potential risks of either being over-con�dent in one’s own knowledge or being over-
reliant on performance feedback, we hypothesized that (H4) participants’ selection of features will

not lead to improved model accuracy.
We used a similar study design and the same interface (Figure 1) as the decision study, but with

real ML model updates and skilled users.

5.1 Participants

We recruited researchers and students from our university, using email lists associated with de-
partments like Computer Science and Engineering, where potential subjects were likely to have
signi�cant computer experience. We used a screening survey, limiting subjects to those over
18 years old with basic ML knowledge. We ended up with 25 participants who have taken one
or more ML courses and/or have experience building ML models. On a 1–5 scale, subjects’ average
self-rating of ML expertise was µ = 3.24 (σ = 0.879). We compensated subjects with $10 gift cards.

5.2 Study Se�ings: Actual Sentiment Analysis Model

To ensure ecological validity, we used a real sentiment analysis model with random forest classi-
�ers [12, 29]. In pilot studies, we observed consistent results for a number of candidate algorithms.
We then chose random forests for their speed, an essential factor for the real-time iterations re-
quired in this study.
For each participant, we randomly sampled 400 movie reviews as the model’s underlying train-

ing dataset, and 100 as the development set. This is because studies that purely involve feature
selection normally use 100–1,000 training data points [10, 30, 53, 60]. We used a consistent test
set with 2,500 reviews—A larger dataset than the training set for testing generalizability (also seen
in [61]). For training the model, we initialized our feature space to be all the uni-, bi-, and trigrams
except extremely rare (frequency smaller than 0.005) or common (frequency larger than 0.995)
ngrams. As a result, our model starts with around 6,460 features in total. We ranked all these fea-
tures by their IG [28] and took the top 56 words to be the partial feature subset for gathering user
inputs. Though selecting features based on the IG takes the risk of potentially including more
relevant features than irrelevant ones, this strategy follows prior work on prioritizing the most
important features for users to interact with [33, 61, 63].
We displayed these 56 words to participants in sequence. For each word displayed, we trained

a model that used the entire current feature space (i.e., including the word), and one that used all
features except for the current word. We tested the two models against the development set, and
used the resulting F1 scores as the performance score for the “relevant” and “irrelevant” options.
Each time a participant judged a word, the feature space was updated accordingly. If the subject

chose “relevant,” no change was made. Otherwise, the word was excluded from the feature space,
and the model was re-trained. Afterwards, the system presented the next word to the participant,
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Fi g. 2.  A v er a g e d  w or d f e at ur e c o u nt i n t h e i m p a ct st u d y,  wit h r e s p e ct t o t h e p ol arit y l e v el L p a n d t h e p er-
f or m a n c e l e v el L s .

Fi g. 3. Δ F 1 di stri b uti o n c oll e ct e d fr o m t h e i m p a ct st u d y,  wit h t h e r e d b ar b ei n g t h e “ n o- c h a n g e” i n di c at or.
T h e 9 5 %  C o nfi d e n c e I nt er v al o v erl a p s  wit h 0, i n di c ati n g n o si g nifi c a nt e ff e ct: i nt er a cti v e f e at ur e s el e cti o n
w a s l ar g el y a  w a st e of ti m e i n o ur s e nti m e nt- a n al y si s d o m ai n.

wit h t h e u p d at e d  m o d el us e d t o esti m at e p erf or m a n c e s c or es. I n ot h er  w or ds, p arti ci p a nts  m a d e
s eri al c h a n g es, s u c h t h at pri or d e cisi o ns c o ul d a ff e ct t h e  m o d el p erf or m a n c e s e e n l at er.  D e p e n d-
i n g o n h o w p arti ci p a nts d e ci d e d t o  m o dif y t h e f e at ur es, t h e u p d at e d  m o d els  w er e tr ai n e d  wit h a
v ar yi n g n u m b er of f e at ur es, r a n gi n g fr o m 6, 4 0 4 t o 6, 4 6 0.

N ot e t h at i n c o ntr ast t o t h e d e cisi o n st u d y, i n  w hi c h t h e t as k  w or ds  w er e  m a n u all y s el e ct e d a n d
b al a n c e d,  w e h a d n o dir e ct c o ntr ol o v er t h e 5 6  w or ds, t h eir dis pl a y or d er, or p erf or m a n c e s c or es —
t h es e  w er e c o m pl et el y d et er mi n e d b y t h e r a n d o ml y s el e ct e d d at as ets, t h e us ers’ a cti o ns, a n d t h e
l e ar n e d  m o d els t h e ms el v es. I n ot h er  w or ds, t h e y all v ari e d f or e a c h i n di vi d u al.

5. 3  R e s ult s

As i n t h e d e cisi o n st u d y,  w e c oll e ct e d p arti ci p a nts’ d e cisi o ns a n d t h eir  R Ts f or e a c h  w or d, as  w ell
as t h eir r es p o ns es t o t h e e xit s ur v e y q u esti o ns.  We first a n al y z e d h o w s u bj e cts’ d e cisi o ns i m p a ct e d
t h eir  m o d els.  We t h e n  m o d el e d p arti ci p a nts’ d e cisi o n pr o c ess es a n d t h eir  R T usi n g t h e s a m e a p-
pr o a c h as i n t h e d e cisi o n st u d y.

5. 3. 1 R etri e vi n g  D at a  Distri b uti o n. Si n c e t h e tr ai ni n g d at as et  w as u n c o ntr oll e d,  w e a n al y z e d t h e
d at a distri b uti o n. Fi g ur e 2 s u g g ests t h at t h e a ut o m ati c all y g e n er at e d d at a als o h as a f airl y b al a n c e d
distri b uti o n.  O ut of t h e 5 6  w or ds, o ur  m o d el s u g g est e d 2 5. 8  w or ds t o b e “irr el e v a nt” o n a v er a g e
(S D = 4 .3 7). I n t h es e s u g g est e d “irr el e v a nt” c as es, t h e a v er a g e p erf or m a n c e s c or e di ff er e n c e, Δ S ,
w as − 0 .0 4 3 ( S D = 0 .0 3 5);  T h e s c or e f or r el e v a n c e c as es  w as ( μ = 0 .0 4 9 1 ,S D = 0 .0 4 0).  As f or d e ci-
si o ns, o ur p arti ci p a nts r e m o v e d/ d e e m e d 2 8. 3  w or ds ( S D = 5 .0 6) t o b e irr el e v a nt o n a v er a g e, a m o n g
w hi c h ar o u n d 1 4. 2  w er e ali g n e d  wit h t h e  m o d el s u g g esti o n.

5. 3. 2 I m p a ct: I nt er a cti v e F e at ur e S el e cti o n  C a n  D e gr a d e  M o d el P erf or m a n c e. We r e c or d e d t h e
i niti al  m o d el m 0 a n d t h e fi n al  m o d el m 1 (i. e., aft er 5 6 f e at ur e  m a ni p ul ati o ns) f or e a c h p arti ci p a nt.
W hil e t h e a v er a g e p erf or m a n c e o n t h e d e v el o p m e nt s et w e nt u p  wit h F 1 cli m bi n g fr o m 0. 7 6 7 t o
0. 8 0 7, t h e a v er a g e t est s et F 1 dr o p p e d fr o m 0. 7 7 4 t o 0. 7 6 3.  T his i n di c at es t h at  w hil e us er i n p ut
i m pr o v e d “l o c al” F 1 s c or es, it oft e n l e d t o p o or er o v er all p erf or m a n c e d u e t o o v er fitti n g.  H o w e v er,
as s h o w n i n Fi g ur e 3 , t h e distri b uti o n of F 1 s c or e di ff er e n c es o n t h e t est s et Δ F 1 t e s t h a s a f airl y  wi d e
s pr e a d ( μ = − 0 .0 1 1, σ = 0 .0 1 9).  We c o m p ut e d a 9 5 % c o n fi d e n c e i nt er v al ( CI) vi a b o otstr a p pi n g,
s a m pli n g s u bj e cts  wit h r e pl a c e m e nt.  T h e i nt er v al o v erl a ps  wit h z er o, a n d a  Wil c o x o n si g n e d-r a n k
t est (z = 1 1 3, p = 0 .2 3 0) f ails t o r ej e ct t h e n ull h y p ot h esis t h at t h e tr u e  m e a n is e q u al t o z er o.
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Fig. 4. Performance trajectory examples for four participants along the 56 tasks. The F1 scores oscillate for
participants who modify the model to (a) have increased performance on both the development and test set,
(b) have decreased performance on both sets, and (c, d) increase performance on either the development or
the test set, and decreased score for the other dataset.

In other words, we �nd no signi�cant e�ect of interactive feature selection on the �nal model
performance (hypothesis H4).
Unfortunately, we were not able to identify key factors that lead to those ∆F1 > 0 cases (word

ordering, participants’ choices on certain words, number of words determined as “relevant,” etc.)
In fact, as in Figure 4, even for individuals who successfully increased the model performance on
the test set, their F1 trajectory along the 56 tasks showed no monotonicity. To the best of our
knowledge, the observed widespread ∆F1 seems to be a result of users’ randomness. We suspect
this is because participants can hardly develop a complete understanding of the data given prior
knowledge and local performance feedback, and therefore their feature updates just sway around
the idealized feature distribution. Some participants might select features that �t the structure
of the data by coincidence, while others were less “fortunate” and injected “mismatches between
model assumptions and problem structure” [16].

5.3.3 Decision Strategy: ML Practitioners and Turkers Act Similarly. Though the impact study
was not conducted with controlled word polarities or performance scores, we can still �t a logit
mixed e�ects model to understand the decision strategies of ML practitioners. Interestingly, we
�nd that the slopes and intercept for ML practitioners are very similar to those of Mechanical
Turk workers, suggesting they share similar strategies:

I (Relevant ) = −1.667 + 1.099 · ∆S + 3.270 · |P | − 0.054 · ∆S · |P |.

The impact of |P | remained strong (z = 14.066, p < 0.001). The signi�cance of ∆S was slightly
lower (z = 2.642, p = 0.008). We did not observe a signi�cant e�ect for the interaction term.
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Fig. 5. Sca�erplot contrasting the per-subject random slope terms for polarity |P | and model score ∆S with
one dot for each subject and covariance ellipses. We observe both groups have similar behavior, but ML
practitioners make more consistent decisions.

5.3.4 Response Time: Similar Pa�ern, Slower Overall. The average time µ to complete the impact
study was 17.31 minutes (σ = 5.681). Note that this is around 4 minutes longer than in the decision
study. The di�erences in the average completion time could result from either the participant
di�erences (e.g., ML practitioners completed the tasks more carefully), or that the impact study
was designed to take longer by nature, as participants had to wait brie�y for the model to retrain,
after each iteration. A linear mixed e�ects model revealed similar patterns: completion time is
signi�cantly correlated with the word order (F (1,1358.74) = 53.494, p < 0.001) and the interaction
term ∆S · |P | (F (1,1057.29) = 4.181, p = 0.041).

6 CROSS-STUDY COMPARISON

With both studies at hand, we analyze the di�erences between the MTurk workers and ML prac-
titioners. We �rst inspect inter-subject di�erences and then analyze the exit survey results.

6.1 Decisions: ML Practitioners Are More Consistent

Recall that our mixed e�ects models include per-subject random slopes for all �xed e�ects. To
inspect inter-subject variability, we examine the estimated per-subject random slope terms in our
models to inspect how consistent the users in di�erent groups behave. In speci�c, we adjusted
the slopes from the �tted models (in Sections 4.6.1 and 5.3.3) for each subject according to his/her
random slope, so to recover the individual behaviors. Figure 5 shows a scatterplot of coe�cients
(adjusted per-subject) for polarity |P | versus performance feedback ∆S , with the covariance ellipse
for 95% CI overlaid.
The plot shows to what degree individuals more strongly weigh these factors than the aver-

age value, and indicates the level of variation in each subject population. For instance, while in
Section 4.6.1 we �nd “the slope for |P | is around three times the slope for ∆S” (referring to the
dense distribution of orange dots around (3.464, 1.061)), those orange dots in Figure 5’s upper left
corner reveal that there are also MTurk users who, in contrast to the general trend, consider the es-
timated model performance feedback to be more essential. The covariance ellipse shows that ML
practitioners (blue dots) are more compactly clustered, showing greater strategical consistency,
whereas MTurk workers (orange dots) exhibit higher variance in inter-subject di�erences.

6.2 Self-Reflection: Polarity Preferred to Score

Finally, we contrasted the self-re�ections from MTurk workers and ML practitioners (Figure 6).
Most of our participants in both studies reported that they read the examples carefully (µ = 4.71,
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Fig. 6. Participant self-reflections: both populations reported that they read examples carefully, and cared
more about polarities. Compared to MTurk users, ML practitioners believed the system score feedback was
less important and less accurate.

σ = 0.478 for the decision study; µ = 3.76, σ = 0.880 for the impact study). Prior knowledge of
word polarity (µ = 4.03, σ = 1.020) was rated more important than the performance feedback
(µ = 3.24, σ = 1.124) for MTurk workers. This result may be due to subjects’ belief that the perfor-
mance feedback was not su�ciently accurate (µ = 2.95, σ = 1.209): we observe a positive corre-
lation between how important participants think the performance feedback is, and how accurate
it is (r = 0.626,p < 0.001). The self-reported importance bias is even larger for ML practitioners:
(µ = 4.24, σ = 0.879) for polarity importance versus (µ = 1.96, σ = 0.934) for score importance.

7 SIMULATION STUDIES

Using our model of decision making factors from our user studies, we look beyond the “word rele-
vance” context for movie reviews, and use the model to simulate interactive updates in additional
settings. Our primary goal is to enhance generalizability by extensively testing if our user study
results hold for multiple conditions, without requiring extensive (and intractable) additional user
studies. Our simulations include various (1) utility functions, which re�ect how users weigh dif-
ferent factors in feature selection, to see which local decisions are most aligned with the global
model performance improvement, (2) feature selection strategies to see if alternative strategies can
be more bene�cial, (3) datasets with di�erent characteristics and sizes to assess potential e�ects of
dataset and training set size, and (4) di�erent algorithm families with varying regularization settings

to see if certain classi�cation algorithms are more suitable for interactive feature selection than
others.
A secondary goal of our simulations is to understand model performance impacts in the asymp-

totic case. Real user studies need to be of reasonable duration to avoid fatigue and not exceed a
maximum number of features that a user is willing (or able) to consider. Simulating users making
consistently quali�ed choices until convergence can help verify if observed performance detri-
ments result from early termination, or from more inherent issues.

7.1 Workflow and Context

We simulate a user that iteratively re�nes a sentiment analysis model in a greedy manner. Our
simulation runs as follows:
1. Model Initiation. Given a dataset, we randomly sample half of the data to use as the test set.

This test set is used across all the simulation processes to ensure fair comparisons. We then sample
a certain number of data points (pre-determined as described below), and split them into training
and development sets. We build the initial model based on the training set.
2. Iterative Feature Selection. We start the iterative re�nement process with an initial feature set

derived from the initial model. The feature set is ranked by IG [28]. We then make feature selec-
tion decisions in order, based on one of three utility functions. In each iteration, we edit features
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Table 3. Conditions Tested in the Simulation

Count Condition
100 Repeated runs

× 3 Utility functions
× 3 Feature selection strategies
× 3 Datasets
× 3 Sample size for training and development set
× 3 Classi�cation algorithms
× 4 Regularization settings
= 97,200 Runs

following some strategy, and examine if the change should be accepted based on the utility function.
We keep running the iteration to convergence: it is not stopped until there are 1,000 consecutive
changes rejected (i.e., actions taken that do not satisfy the utility function’s requirement). We also
record the model’s performance against the test set with each iteration.
3. Evaluation. As in the impact study, we compare the initial and the �nal F1 scores to assess

performance changes (∆F1). Negative ∆F1 values indicate decreases in model performance.

7.2 Experimental Conditions and Hypotheses

We run simulations across a variety of parameterizations (Table 3).We conduct 100 simulation runs
for each condition to address potential sample bias across training/development/test set splits.

7.2.1 Utility Functions for Accepting or Rejecting Changes. Our user studies found that both
prior knowledge and performance feedback are important, and that humans tend to balance them.
In response, we simulate three di�erent utility functions, to test both the two extreme cases where
users hill climb solely based on prior knowledge or model performance, and a balanced case using
the coe�cient weights from our mixed e�ects models.
Following the notions in the user study, the two extreme cases are (1) Pure polarity |P | (Polarity),

where highly sentimental words are preferred, and (2) Pure performance score ∆S (Score), where the
model’s F1 score performance changes positively on the development set. For (3) Balanced mixture

(Mixture), we simulate user decisions with our logistic model trained on ML practitioners. Because
the interaction term did not show any signi�cance, we retrain the model omitting that term. The
resulting equation for the log-odds is −1.676 + 1.070 · ∆S + 3.280 · |P |. We hypothesized that (H5)
The two extreme (pure) cases will causemore harm than the balanced case, as they directly correspond
to the over-con�dence and over-reliance traps.

7.2.2 Feature Selection Strategies. We devised three feature selection strategies, informed by
conversations with ML practitioners in our university, to evaluate if certain strategies are more
bene�cial than others:
Deleting features (Delete). Starting with all the unigrams, bigrams, and trigrams, users deduct

features from the full feature space to prevent models from being overly constrained.
Similarity-based feature replacement (Replace). Startingwith unigrams, users replace one selected

unigram with a set of bigrams and trigrams that contain it to �nd the best level of detail of certain
features. For instance, compared to the single verb “destroy,” multi-word phrases such as “destroy
terrorism” and “destroy the movie” convey clearer positive and negative sentiments, respectively.
While “similarity” might mean semantically similar (e.g., synonym) or structurally related (e.g.,
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Table 4. Distributions of the Tested Datasets

Data #Total #Pos #Neg #Avg. word
IMDB 12,500 6188 6312 227.78

Sentiment140 25,000 12500 12500 14.18
Enron 16,859 4,214 12,644 352.40

neighbors, adjectives related to a noun), our similarity de�nition based onword containment keeps
the original feature and the replacing feature set tightly connected.
Document-oriented feature re�nement (Doc). In addition to examining features, we have noticed

that practitioners sometimes focus on �xing a particular document. Our third strategy simulates
this focus. The simulated user �rst ranks misclassi�ed documents based on howmisclassi�ed they
are. This is computed based on the documents’ classi�cation probability being positive Pp and
their gold label l (0 for negative or 1 for positive): |Pp − l |. For each document, features are ranked
by their IG. Starting with the most misclassi�ed document, the simulated user replaces features
that push the document toward the gold label, deleting those causing misclassi�cation, until the
document’s label is corrected. All the changes made are combined into a set that is either kept
or deleted as a whole based on the development set change. We hypothesized that (H6) There is a
signi�cant di�erence between the three strategieswith Doc being the worst and Replace the best. We
suspected theDoc strategy would underperform, due to over�tting from �xing speci�c documents,
but we were optimistic about Replace, which has the potential to improve the model by providing
more nuanced features.

7.2.3 Data Selection. Dataset. We simulate interactive feature selection across three di�erent
datasets (Table 4): IMDB Movie Reviews for movie review sentiment analysis [39], Sentiment140
for Twitter sentiment analysis [21], and a subset of Enron-Spam for email spam identi�cation [42].
These datasets exhibit varied characteristics: the movie review is the most balanced dataset, the
Twitter data has high sparsity, and the email spam data has unbalanced positive and negative
classes. We hypothesized that (H7) the pitfalls observed in the user study hold for datasets with

di�erent distributions and content types.

Dataset size. We randomly sample n = 500, 1,000, and 5,000 data points from each dataset to
form a subset, and then break them into training and development sets using a ratio of 4 : 1. As
a larger training set could potentially lead to a larger feature space, we hypothesized that (H8)
the e�ect of feature selection decreases as the size of the training set increases. As mentioned in
Section 5.2, this sample range follows the conventions in papers that primarily focus on feature
selection. We discuss a pilot simulation with a much smaller training dataset in Section 7.3.2.

7.2.4 Algorithm Se�ings. Algorithm selection. We run the simulations across three commonly
used classi�cation algorithms: Logistic Regression, SVM, and random forest, using the implemen-
tations within Scikit-Learn [46]. These belong to di�erent algorithm families: Logistic Regression
emphasizes linearity, SVM introduces nonlinearity via kernels (rbf kernel in our case), and Ran-
dom Forest relies on Ensemble Learning to form the best model. These variations let us see if
certain algorithms are especially susceptible to over�tting due to feature selection.
Regularization. We additionally examine four levels of regularization. For Logistic Regression

and SVM, we use the L2-norm, with the inverse of regularization strength being 100, 1, 0.01, 0.0001
(i.e., smaller values specify stronger regularization). For Random Forest, we set the minimum num-
ber of samples required to split an internal node as 100%, 85%, 70%, and 55% of the total number of
input data to generate both full trees and pruned trees. This lets us see if aggressive regularization
can rectify suboptimal user inputs, and thereby recover models from local optima.
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Fi g. 7. Δ F 1 di stri b uti o n s f or t h e t hr e e utilit y f u n cti o n s,  wit h 9 5 % c o nfi d e n c e i nt er v al s of t h e  m e a n. T h e s m all
CI s o v erl a p  wit h 0, i n di c ati n g n o r eli a bl e n et e ff e ct f or a n y utilit y f u n cti o n s.

Fi g. 8. Δ F 1 di stri b uti o n s a n d 9 5 %  CI of t h e  m e a n f or t hr e e d at a s et s.  W hil e t h e d e gr e e of i m p a ct v ari e s,
m o d el s f or all t hr e e d at a s et s c a n d e gr a d e  wit h h u m a n i n p ut s.

O ur h y p ot h esis f or t h e al g orit h m s etti n gs  w as t h at ( H 9) t h e pitf alls o bs er v e d i n t h e us er st u d y
h ol d f or di ff er e nt al g orit h m t y p es a n d r e g ul ari z ati o n p ar a m et ers .

7. 3  R e s ult s

We s e e k t o u n d erst a n d t h e i m p a cts of e a c h si m ul at e d c o n diti o n o n t h e r es ulti n g  m o d els’ F 1 s c or es.
T h o u g h  w e e x a mi n e d t h e a bs ol ut e fi n al F 1 s c or e f or t h e r es ulti n g  m o d els, f or si m pli cit y  w e r e-
p ort t h es e v al u es o nl y f or t h e d at as et si z e a n d r e g ul ari z ati o n c o n diti o ns, as t h eir r es ults ar e hi g hl y
r el at e d t o o ur dis c ussi o n o n Δ F 1.  T h e ot h er a bs ol ut e F 1 s c or e distri b uti o ns ar e, i n c o ntr ast, l ess
w ort h y of s p e ci fi c dis c ussi o n ( utilit y f u n cti o ns yi el d si mil ar e ff e cts a n d t h er ef or e r e n d er t h e a bs o-
l ut e F 1 l ess i nt er esti n g, a n d t h e a bs ol ut e F 1 f or di ff er e nt d at as ets ar e n ot dir e ctl y c o m p ar a bl e).

We e v al u at e e a c h si m ul ati o n c o n diti o n b y c o m p uti n g t h e 9 5 %  CI of t h e a v er a g e Δ F 1 vi a b o ot-
str a p pi n g, a n d e x a mi ni n g if t h e c e ntr al t e n d e n c y si g ni fi c a ntl y di ff ers fr o m z er o usi n g t h e  Wil c o x o n
Si g n e d- R a n k t est [ 6 7 ]. I n a d diti o n,  w h er e a p pli c a bl e,  w e e x a mi n e t h e di ff er e n c es b et w e e n t h e Δ F 1
distri b uti o n r es ulti n g fr o m di ff er e nt c o n diti o ns usi n g t h e  K ol m o g or o v – S mir n o v t est [ 4 0 ].

7. 3. 1  O v er all: I nt er a cti v e F e at ur e S el e cti o n is  N ot  B e n efi ci al. Wil c o x o n t ests o n t h e P ol arit y ( z =
1 .9 5 1 · 1 0 6 ,p = 0 .1 1 8), S c or e ( z = 1 .6 0 4 · 1 0 6 ,p = 0 .3 4 5), a n d  Mi xt ur e ( z = 1 .7 8 5 · 1 0 6 ,p = 0 .1 4 4)
utilit y f u n cti o n i n di c at e t h at n o n et e ff e ct is dis c o v er e d, f aili n g t o c o n fir m  H 5.  T his c a n als o b e o b-
s er v e d i n Fi g ur e 7 .  T h o u g h all t h e t hr e e utilit y f u n cti o ns l e a d t o a s pr e a d of Δ F 1, t h e CI, w hil e b ei n g
c o nsi d er a bl y s m all, o v erl a ps  wit h 0.  D es pit e t h e s e e mi n gl y si mil ar s h a p e, p air wis e  K S-t ests i n di-
c at e t h at t h e utilit y f u n cti o ns d o n ot r es ult i n t h e s a m e distri b uti o ns,  wit h all p - v al u es p < 0 .0 0 1:
K (P ol arit y , S c or e ) = 0 .0 3 9 , K (P ol arit y,  Mi xt ur e ) = 0 .0 5 5 6, a n d K (S c or e , Mi xt ur e ) = 0 .0 8 1 .

We di d n ot fi n d a n y si g ni fi c a nt di ff er e n c es b et w e e n t h e t hr e e f e at ur e s el e cti o n str at e gi es, c o n-
tr ar y t o  H 6.  Wil c o x o n t est r es ults ar e (z = 1 .8 6 7 · 1 0 5 ,p = 0 .4 5 2) f or  D el et e, ( z = 1 .3 5 9 · 1 0 5 ,p =
0 .2 4 1) f or  R e pl a c e, a n d ( z = 1 .6 6 7 · 1 0 5 ,p = 0 .7 5 7) f or  D o c.

7. 3. 2  D at as et a n d Si z e: I nt er a cti v e F e at ur e S el e cti o n  H urts b y  Di ff eri n g  D e gr e es. D at a- wis e,  w e
n oti c e t h at all t hr e e d at as ets t est e d s u ff er fr o m a p ot e nti al l oss of  m o d el p erf or m a n c e ( Fi g ur e 8 ).
T h o u g h o ur i m p a ct st u d y f o u n d t h at us er i n p ut d e cr e as e d a v er a g e cl assi fi er p erf or m a n c e f or I M D B,
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Fi g. 9.  Di stri b uti o n s a n d 9 5 %  CI s of t h e  m e a n f or ( 1) Δ F 1 a n d ( 2) t h e fi n al F 1 f or t h e c o n v er g e d  m o d el  wit h
r e s p e ct t o t h e t hr e e d at a s et si z e s.  CI f or Δ F 1  m o v e s t o w ar d s n e g ati v e a s t h e d at a si z e gr o w s, i n di c ati n g h u m a n
i n p ut s ar e l e s s d e sir e d f or  m o d el s  wit h a d e q u at e tr ai ni n g s a m pl e s.

Fi g. 1 0.  Di stri b uti o n s a n d 9 5 %  CI s of t h e  m e a n f or ( 1) Δ F 1 a n d ( 2) t h e fi n al F 1 f or t h e c o n v er g e d  m o d el  wit h
r e s p e ct t o t h e t hr e e d at a s et si z e s us e d i n a pil ot si m ul ati o n .  We o b s er v e si mil ar tr e n d s a s i n Fi g ur e 9 , o nl y
t h at t h e Δ F 1 di stri b ut e  m or e s p ar s el y ( n ot e t h e s c al e), a n d t h e fi n al F 1 d e cr e a s e s o v er all.

o ur si m ul ati o n fi n ds a s m all p ositi v e i m pr o v e m e nt ( z = 3 .1 0 3 · 1 0 4 ,p = 0 .0 4 4 fr o m  Wil c o x o n t est).
H o w e v er, b ot h t h e E nr o n d at as et ( z = 1 .5 4 0 · 1 0 5 ,p = 0 .0 0 2) a n d t h e s p ars e S e nti m e nt 1 4 0 d at as et
(z = 1 .5 6 2 · 1 0 5 ,p = 0 .0 0 4) e x hi bit n e g ati v e p erf or m a n c e c h a n g es.  A g ai n, p air wis e  K S-t ests r e v e al
si g ni fi c a nt di ff er e n c es f or t h e Δ F 1 distri b uti o ns.  We t h er ef or e c o n fir m h y p ot h esis  H 7.  M or e e x-
p eri m e nts ar e n e e d e d t o e x a mi n e s p e ci fi c c orr el ati o ns b et w e e n d at as et c h ar a ct eristi cs a n d t h e
e ff e cti v e n ess of i nt er a cti v e f e at ur e s el e cti o n.

We als o s e e t h at  m o d els  wit h l ar g er tr ai ni n g s ets ar e l ess a ff e ct e d b y f e at ur e s el e cti o n d e cisi o ns,
c o n fir mi n g  H 8.  T h e v ari a n c e of Δ F 1 d e cr e as es as t h e d at as et si z e gr o ws.  T h e v ari a n c e f or n = 5 0 0
(σ 2 = 3 .7 4 5 · 1 0 − 4 ) d o u bl es t h e v ari a n c e f or n = 1 ,0 0 0 ( σ 2 = 1 .7 9 4 · 1 0 − 4 ), a n d is r o u g hl y a f a ct or of
f o ur l ar g er t h a n n = 5 ,0 0 0 ( σ 2 = 8 .5 5 8 · 1 0 − 5 ).

We f urt h er o bs er v e t h at f e at ur e s el e cti o n is  m or e li k el y t o d e gr a d e t h e  m o d el as t h e tr ai n-
i n g s et si z e gr o ws. I n Fi g ur e 9 , t h e  CI f or d at a si z e n = 5 0 0 f alls i n t h e p ositi v e r a n g e ( z =
1 .2 0 6 · 1 0 5 ,p < 0 .0 0 1),  m e a ni n g i nt er a cti n g  wit h  m o d els fit t o li mit e d tr ai ni n g s ets ar e  m or e li k el y
t o b e h el pf ul. I n c o ntr ast, t h e s m all er  CI f or n = 5 ,0 0 0 distri b ut es stri ctl y i n t h e n e g ati v e r a n g e
(z = 1 .6 2 6 · 1 0 5 ,p < 0 .0 0 1),  w hi c h c o n fir ms t h at  m a ni p ul ati o ns c a n fr e q u e ntl y h urt  m o d els t h at
h a v e s e e n c o m p ar ati v el y  m or e a d e q u at e i nf or m ati o n.  T h e n = 1 ,0 0 0 c o n diti o n sits i n b et w e e n
(z = 1 .2 0 1 · 1 0 5 ,p = 0 .3 5 9).  M or e o v er, fr o m t h e distri b uti o n of fi n al F 1 i n Fi g ur e 9 ,  w e o bs er v e t h at
t h e i m p a ct of f e at ur e s el e cti o n o n t h e r es ulti n g F 1 is  w e a k r el ati v e t o d at as et si z e.  T his r es ult
c o nf or ms  wit h t h e c o m m o n b eli ef t h at  m or e tr ai ni n g d at a yi el ds  m or e st a bl e  m o d els  wit h b ett er
p erf or m a n c e, a n d i n di c at es t h at i n cr e asi n g l a b eli n g a d diti o n al d at a  m a y b e a  m or e e ff e cti v e us e of
us ers’ ti m e t h a n l o w-l e v el f e at ur e s el e cti o n.

We o bs er v e d si mil ar tr e n ds i n a pil ot si m ul ati o n  w h er e  w e t est e d  m o d els  wit h 5, 5 0, a n d 1 0 0
tr ai ni n g d at a, as p a p ers t h at i n v ol v e l a b eli n gs of b ot h tr ai ni n g d at a a n d f e at ur e us u all y d e m o nstr at e
t h eir us ef ul n ess i n t h e s c e n ari o  w h er e t h e i niti al l a b el e d d at a is e xtr e m el y li mit e d.  As i n Fi g ur e 1 0 ,
Δ F 1 distri b ut e  m u c h  m or e s p ars el y  wit h t h es e d at a si z es;  T h e  CI f or d at a si z e n = 5 is stri ctl y i n t h e
p ositi v e r a n g e.  H o w e v er,  wit h o ut t h e l a b eli n g p o w er,  m o d els’ a bs ol ut e p erf or m a n c e ar e ar o u n d
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Fi g. 1 1. Δ F 1 di stri b uti o n s a n d 9 5 %  CI s of t h e  m e a n f or t hr e e  M L al g orit h m s. L o gi sti c  R e gr e s si o n yi el d s t h e
l e a st v ari a n c e.

Fi g. 1 2.  Di stri b uti o n s a n d 9 5 %  CI s of t h e  m e a n f or ( 1) Δ F 1 a n d ( 2) t h e fi n al F 1 f or t h e c o n v er g e d  m o d el
wit h r e s p e ct t o t h e f o ur r e g ul ari z ati o n t er m s.  W hil e a g gr e s si v e r e g ul ari z ati o n li ft s Δ F 1, t h e o v er all  m o d el
p erf or m a n c e i s still l o w, li k el y d u e t o u n d erfi tti n g.

r a n d o m g u ess, a n d c a n g o as l o w as 0. 3 5.  We d e e m e d t h es e si z es t o b e t o o s m all f or a f e at ur e
s el e cti o n c o nt e xt, a n d t h er ef or e a b a n d o n e d t h es e s a m pli n g n u m b ers.

7. 3. 3  Al g orit h m: T h e  M or e E x pr essi v e, t h e  M or e  M a ni p ul a bl e. A cr oss al g orit h ms ( Fi g ur e 1 1 ),  w e
o bs er v e t h at si m ul ati o ns usi n g L o gisti c  R e gr essi o n l e a d t o  m or e c o n c e ntr at e d o ut p uts ( σ 2 = 9 .3 1 0 ·
1 0 − 5 i s o n e t hir d a n d o n e fift h t o  R a n d o m F or est a n d S V M r es p e cti v el y).  K S-t ests c o n fir m t h e o ut p ut
of l o gisti c r e gr essi o n is si g ni fi c a ntl y di ff er e nt fr o m S V M ( K = 0 .2 4 6, p < 0 .0 0 1) a n d r a n d o m f or est
(K = 0 .1 8 7, p < 0 .0 0 1).  U ns ur prisi n gl y, it a p p e ars t h at  m or e e x pr essi v e al g orit h ms li k e S V M a n d
R a n d o m F or est ar e  m or e e asil y a ff e ct e d b y f e at ur e s el e cti o n d e cisi o ns. F urt h er m or e,  Wil c o x o n t ests
i n di c at e a si g ni fi c a nt n e g ati v e e ff e ct o n Δ F 1 f or L o gisti c  R e gr essi o n ( z = 1 .4 5 3 · 1 0 5 ,p < 0 .0 1).  We
d o n ot s e e si g ni fi c a nt e ff e cts ( p ositi v e or n e g ati v e) f or  R a n d o m F or est ( z = 1 .1 0 8 · 1 0 5 ,p = 0 .7 8 4)
or S V M ( z = 1 .0 5 5 · 1 0 5 ,p = 0 .1 6 5).

7. 3. 4 R e g ul ari z ati o n: L ar g er I m pr o v e m e nt,  W ors e  A bs ol ut e S c or e. I nt er esti n gl y, r e g ul ari z ati o n, a
c o m m o n pr a cti c e t o a v oi d o v er fitti n g, c a n n ot e ff e cti v el y c o u nt er a ct t h e n e g ati v e e ff e cts of f e at ur e
s el e cti o n.  As s e e n i n Fi g ur e 1 2 , e xtr e m el y a g gr essi v e r e g ul ari z ati o n r = 0 .0 0 0 1 c a n s hift t h e Δ F 1
i n a p ositi v e dir e cti o n (z = 2 .7 7 8 · 1 0 4 ,p < 0 .0 0 1).  H o w e v er, a c o m p aris o n  wit h t h e fi n al F 1 r e v e als
t h at r = 0 .0 0 0 1 r es ults i n  m o d el u n d er fitti n g,  wit h di mi nis h e d a bs ol ut e p erf or m a n c e.

O v er all, o ur a n al ysis i n t h e a b o v e t w o s e cti o ns c o n fir m e d  H 9 t h at o ur o bs er v e d pitf all h ol ds f or
di ff er e nt c h oi c e of al g orit h ms a n d r e g ul ari z ati o n p ar a m et ers.

8  DI S C U S SI O N

I n t his s e cti o n,  w e first s u m m ari z e o ur fi n di n gs, a n d c o m p ar e o ur  w or k t o pri or st u di es t h at eit h er
e n c o ur a g e or dis c o ur a g e t h e us e of i nt er a cti v e f e at ur e s el e cti o n.  We t h e n dis c uss li mit ati o ns of o ur
st u d y d esi g n a n d s u m m ari z e t h e i m pli c ati o ns of o ur st u d y.
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8.1 Result Summary: Extend Findings in Prior Work, A Baseline for Future Work

In the context of sentiment analysis, our work studies the potential impact of interactive feature
selection with a combination of human-subject experiments and computational simulations. Our
experiment �nds that (1) users judged feature relevance based on both their prior knowledge and
model performance feedback, tending to weight prior knowledge more strongly, and (2) ML prac-
titioners degraded model performance via local low-level feature manipulation. Based on models
derived from participants’ judgments, we simulated scenarios in which users build classi�ers with
di�erent algorithms (regularized to various degrees) across multiple datasets with varying dataset
sizes, subject to di�erent feature selection strategies and decision functions. Our simulation �nds
that, in most cases, low-level feature manipulation based on local model performance and users’
prior belief cannot e�ectively improve the model—at least not in the case of sentiment analysis.
Comparing to Reunanen [53], the pure F1 hill-climbing condition in our simulation study par-

tially replicates their results in a di�erent context, and corroborates the lack of bene�t of feature
selection via step-wise performance hill climbing. In addition, our work extends prior work by
(importantly) involving users who could follow their own intuition, often in con�ict with per-
formance scores. Interestingly, we �nd that human intuition does not do better (or worse) than
such automated methods. However, the over�tting problem is arguably even more damaging in
the interactive context, as it wastes human time, not just computing time.
Comparing to prior user studies for IML systems,which provided con�icting evidence for IML,

our work con�rms the observation that human inputs may not improve models [2, 16, 61]. We also
go one step further and show that these cases may be quite common. Frequency-wise, instead of
reporting occasional decrement of model performances, our study shows that intuitive (yet naïve)
feature selection has a very high chance of hurting the model. Condition-wise, throughout our
studies, we observe that neither ML practitioners’ input (Section 5) nor simulated utility func-
tions (Section 7) improve the learned models. In other words, users’ local interactions—based on
a speci�c feature and the current status of the model—often fail to improve the global picture. We
hypothesize that IML tasks other than basic feature inclusion/exclusion decisions might also su�er
from similar shortcomings, particularly if they are similarly rooted in localized, stepwise decisions
as part of a model-�tting process.
As we discuss below in Section 8.2.2, our studies do not cover all the possible variations of IML—

di�erent tasks, systems that provide feature distribution information, stable models that partially
accept user inputs, and so on. We based our studies on a representative setting, such that it could
serve as a baseline for the future work. Starting here, more in-depth studies can be conducted
to do a “hyper-parameter” search for IML. Ideally, if we extend the study of IML impacts to other
potentially bene�cial elements, we should be able to characterize its strengths andweaknesses, and
make statements like “certain forms of IML are likely to lead to positive outcomes under speci�c
contexts.” Until then, we wish our observations that “simple local interventions are often a waste
of the users’ time” can encourage more cautious use of IML systems.

8.2 Study Limitations

Our study has the following two main limitations: (1) our settings do not perfectly mimic IML
feature selection practices in the wild, and (2) our settings seek to provide the most basic and
general building blocks for IML, ignoring potential bene�ts from additional clues.

8.2.1 Approximation of the Real World. In part due to the tradeo� between being “real” and
being “feasible,” we chose to simplify the real-world condition, and used a simple, binary learning
task, and an approximate model of users’ domain knowledge.
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Users’ Polarity vs. Scored Polarity: Only an Approximation. We used SentiWordNet to quantify
polarities in both the user study and the simulation. However, the dictionary scores words inde-
pendent of the context in which they are used. For example, we observed “Oscar” to be a neutral
word in WordSentiNet. However, “Oscar” can be highly positive in the context of movie reviews.
The mismatch is further exaggerated in the cases of bi- and tri-grams, since we estimated polarity
of these with the average of the associated unigrams.
Users’ Own Modeling E�orts vs. An Arti�cial Task. We were surprised to see that ML practition-

ers tended to discount performance feedback, especially given prior work that reports subjects
valuing it greatly [10, 63]. We wonder if user behavior might be di�erent if the subjects “owned”
the learning problem and so cared more about actual performance. In the context of an arti�cial
experiment, participants may instead be more likely to behave as they think they “ought” to. In
this work, we chose to trade personalized factors for better comparability. An alternative that em-
braces individual motivations would be to observe user interactions with their own data, task,
and model. A follow-up study could investigate this further. However, this level of personalization
could make the results di�cult to generalize.
Users’ Context vs. Experimental Context. Our work re�ects only a small slice of practical IML

application scenarios. For the sake of feasibility, our work is strictly constrained both task-wise
(sentiment analysis via binary classi�cation) and feature-wise (n-grams). In the real world, mod-
elers may select novel classes of features within a much larger task space (image recognition,
machine translation, etc.). For example, for tasks in which humans’ domain knowledge is not as
tangible as textual polarities (e.g., examining image metadata), we might expect users to assign
greater weight to model feedback and less to their domain intuition.

8.2.2 Focus on Straightforward Interactions between Models and Users. Our work is conducted
in a scenario where the users and the models interact naïvely. From the user point of view, the
only feedback they receive are the performance score and contextual examples. In other words,
we set the baseline in a complete “blackbox” setting, which means users may develop subjective
and incomplete mental models [64] of how the learning system operates, leading to defective util-
ity functions. Such mental models can potentially be recti�ed with additional explanations [19,
33], which may then alter the feedback these users provide to an ML system. For instance, when
evaluating the e�ectiveness of an explanatory debugging system, Kulesza et al. [33] saw generally
improving F1 scores as participants provided more feedback.
On the other hand, the model is also updated strictly following users’ binary decisions on each

word. Such absolute trust on user performance is not very fault tolerant, and the model perfor-
mance may well su�er when users misbehave. It is possible that regarding user feedback as soft
constraints rather than hard commands can help rectify potential user biases. In this vein, Trivedi
et al. [63] allow batched feature feedback to avoid collecting con�icting feedback from users. How-
ever, naïve constraints can still lead to suboptimal values during training. In their experiment in
which users provided constraint-based feedback, Stumpf et al. [60] noticed that the hardness of the
constraints played an essential role, and that future research should reduce the potential redun-
dancy of user feedback andmodels’ learned results, and should prevent over-constraining. Though
rarely seen in feature selection papers, prior work on feature labeling has observed that sophisti-
cated algorithms can make e�ective use of modi�ed features [16]. For instance, instead of directly
modifying the feature space, Raghavan and Allan [48] created additional training data with newly
labeled features.
To generalize our �nding to more transparent IML systems, additional work on (1) how di�er-

ent kinds of explanations (feature distribution, etc.) impact users’ utility functions, and (2) how
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di�erent mechanisms for incorporating user feedback a�ect the model performance changes will
be needed.

8.3 Implications

We wish to make clear that we are not trying to dismiss the potential bene�ts of IML, nor to levy
a general criticism (“IML is wrong”). Rather, we hope our work will serve as a step toward better
characterizing strengths and weaknesses of di�erent types of user interactions in IML systems,
in order to better focus productive user e�ort. In this section, we consider three areas where IML
may be more likely to lead to positive outcomes.

8.3.1 Emphasize Best Practices from Traditional ML. Our studies leveraged two common prac-
tices from traditional ML. First, we split the dataset into training, development, and test sets to
separate development feedback and �nal performance testing. Unfortunately, we observed users
can over�t to the given development set, leading to decreased model performance on the test set.
This e�ect is expected, as users are repeatedly testing their (iterated) models on one single devel-
opment set. Even worse, some IML systems fail to support any development set [10, 33], leading
users to over�t on their test data, without any indication of lost generalizability. Studies dealing
with over�tting in traditional ML can be helpful here. For instance, perhaps IML systems could
incorporate a reusable holdout set [17], which uses the idea of di�erential privacy to safely run
tests on a development set multiple times for validation.
Second, we tested e�ects due to regularization in our simulations. In our study, aggressive reg-

ularization pruned features such that the �nal model performed uncompetitively, with or without
user input. However, future work might explore “appropriately” pruning poor inclusion decisions
by users by tuning the regularization term to the right level. More generally, selecting an appro-
priate level of regularization is itself a potentially valuable IML task.

8.3.2 Change the Scope and Interpretation of User Input. Our work suggests local “tuning” ma-
nipulations may be harmful to model performance and prone to over�tting. A natural step forward
would be to design interaction strategies that make better use of user input. We review two po-
tential improvements here.
First, IML systems could promote more global and principled changes to prevent local oscilla-

tion. In the case of feature manipulation, instead of bag-of-word feature selection or reweighting
(as in current IML systems), expanding the feature space with alternative categories of features can
be more bene�cial. Consider practitioners building a classi�er to determine if a textual document
describes “wildcats”: instead of manually adding a list of infrequent nouns with names of species,
one might bene�t from the semantic similarity provided by word vector space embeddings, which
�nds words like “tiger” and “leopard” to be highly similar. However, these kinds of conceptual
moves are currently the purview of ML experts and involve writing feature engineering code. Fu-
ture studies examining the broader feature engineering space are needed, such that we can better
understand how to design IML systems that support such manipulations.
Also, IML systems could treat users’ local decisions with skepticism, interpreting user input

as uncertain or “noisy” observations. For example, prior work on Snorkel [51] demonstrates that
modeling potentially low-quality labeling functions can help to train high-quality end models.
Similar approaches that regard user input as suggestions as opposed to hard constraints (a design
limitation we discussed in Section 8.2.2) can strive for more e�ective improvements. A possible
�rst step in this direction would be to automatically backtrack to previous stages and reweigh
users’ con�icting feedback.
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8.3.3 Enable Assessment of Training Data and Model Performance. Beyond improving the it-
erative loop of model �tting, an alternative is to focus on validating the inputs and outputs of
the process. Data validation can help spot biases in what the model is learning from and what
it is tested on. This approach can help addresses issues that are not �xable by model iteration
alone (e.g., ML fairness [9, 24] and accountability [35]) and may dissuade practitioners from mak-
ing uninformed or unnecessary structural changes to models. Both assessment of training data
and model error analysis seem promising. Tools for inspecting training data like Facets [62] and
Flipper [66] can aid in inspecting data quality and representativeness. Going beyond standard per-
formance feedback (F1, accuracy, etc.) into more thorough failure analysis is also helpful. Creating
structured labels [13, 32] for errors in models, or hierarchically structuring their relations based
on possible causes, can re�ect model strengths and weaknesses on di�erent data segments. Such
processes should allow user interaction to provide more stable and reusable contributions via data
correction or augmentation. Moreover, input and output validation are applicable across a broad
class of modeling approaches, including the neural networks now common in practice.

9 CONCLUSION

This article investigates the impact of local interactions in IML in the context of low-level feature
selection for text classi�cation. With a combination of human-subject experiments and simula-
tions, we examined the decisions users make and their impact on model performance. We ob-
served through the context of sentiment analysis that local interactive feature selection, though
supported and advocated in IML research, is not bene�cial as one would hope. On average, man-
ual tuning of unigram representations does not improve classi�er performance, and in many cases
degrades it. As a result, interactive tools might encourage users to perform futile actions without
actually improving their models. We suspect that other IML tasks, beyond feature selection, might
su�er from similar issues: if their interactions are based largely on stepwise decisions within local
contexts, users may fail to globally improve their models. Though conducted in a simple binary
text-classi�cation context, our results sound a cautionary note and suggest priorities for subse-
quent study. Additional avenues for future work include better means of enshrining ML best prac-
tices in IML tools, the design of interfaces for more expressive high-level feature speci�cation, and
enhanced data triage and error analysis capabilities to better identify areas for improvement.
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