CHI 2020 Paper

CHI 2020, April 25-30, 2020, Honolulu, HI, USA

Dziban: Balancing Agency & Automation in Visualization
Design via Anchored Recommendations

Halden Lin
University of Washington
haldenl @cs.washington.edu

ABSTRACT

Visualization recommender systems attempt to automate de-
sign decisions spanning choices of selected data, transforma-
tions, and visual encodings. However, across invocations such
recommenders may lack the context of prior results, producing
unstable outputs that override earlier design choices. To better
balance automated suggestions with user intent, we contribute
Dziban, a visualization API that supports both ambiguous
specification and a novel anchoring mechanism for convey-
ing desired context. Dziban uses the Draco knowledge base
to automatically complete partial specifications and suggest
appropriate visualizations. In addition, it extends Draco with
chart similarity logic, enabling recommendations that also
remain perceptually similar to a provided “anchor” chart. Ex-
isting APIs for exploratory visualization, such as ggplot2 and
Vega-Lite, require fully specified chart definitions. In con-
trast, Dziban provides a more concise and flexible authoring
experience through automated design, while preserving pre-
dictability and control through anchored recommendations.

Author Keywords
visualization; recommendation; anchoring; language

CCS Concepts

*Human-centered computing — Visualization systems
and tools; Visualization toolkits; *Software and its engineer-
ing — Domain specific languages;

INTRODUCTION

Data analysts must balance ease of use with control when
choosing a visualization authoring tool. Visualization rec-
ommender systems [10, 13, 14, 22, 26] have the potential to
provide more effective and efficient exploration of data by
automating decisions over selected data, transformations, and
visual encodings that are normally required from users of full-
specification APIs (application programming interfaces) such
as Vega-Lite [18] and ggplot2 [24]. These full-specification
APIs, in contrast, offer tight control over output visualizations
when recommendation systems may be forced to compromise
in the face of ambiguous user intent (Figure 1). Indeed, many

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHI 20, April 25-30, 2020, Honolulu, HI, USA.

© 2020 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6708-0/20/04 ...$15.00.
http://dx.doi.org/10.1145/3313831.3376880

Paper 751

Dominik Moritz
University of Washington
domoritz@cs.washington.edu

Jeffrey Heer
University of Washington
jheer@uw.edu

I'd like to visualize 'Origin’, 'Miles_per_Gallon', and 'Displacement’

w o
y Displacement . o
g Boowe 1 Fo =~
2 sapan H =28
5 i
usa 11 20 i -

o 1 2 w4 s o . .
Miles_per_Gallon ' ‘ﬁg* 50
o
)

Figure 1. Which chart should a recommender suggest? Recommender
systems are often forced to make decisions in the face of ambiguous user
intent. Sometimes, these decisions will hamper exploration.

life expectancy + fertility

540 45 %0 8 60 65 1
ife_expect (binned)

Figure 2. A series of recommendations by the Draco [14] recommender
system. Inconsistency in channel assignments and marks can be found
between the addition of each new field.

exploratory analysis tools (e.g., Voyager [27, 28], Tableau)
mix the two authoring paradigms to marry agency and automa-
tion [9] and provide a more efficient and amenable visualiza-
tion authoring experience.

The mixture of manual and automated methods is particularly
evident for visualization query refinement, when an analyst
asks follow-on questions (e.g., adding fields to their query) or
modifies a visualization to better answer an existing question
(e.g., changing data transformations). Recommendations re-
sulting from iteration on an ambiguous partial specification
can lack stability or coherence relative to their context (e.g.,
when a user wishes to inspect fields A and B, but has not spec-
ified data transformations or encoding channel assignments,
see Figure 2). In these cases, refinements to the specifica-
tion may produce stark discontinuities among output charts.
This difference can result in a high cognitive cost for people
as they attempt to (1) make sense of the new visualization,
which may possess inconsistent channel assignments, scales,
or other graphical and data properties, and (2) elaborate the
specification in order to match the context of their exploration.

Reliance on design decisions by people as a solution for re-
solving ambiguous intent creates a burden for users of recom-
mendation systems, who may lack expertise or be averse to
the tedium of this process. With respect to efficiency and ap-
proachability, tools built around recommendation systems can
be bottle-necked by this crutch. Voyager [27] is an example
of a tool that attempts a more elegant solution to the visualiza-
tion refinement problem. Voyager allows users to “lock” the
data and encoding properties of a recommended visualization

Page 1

http://dx.doi.org/10.1145/3313831.3376880
mailto:permissions@acm.org

CHI 2020 Paper

(among a set recommendations) before proceeding with refine-
ment. However, this restriction can lead to ineffective (or even
inexpressive) visualizations if data transformations or other
graphical properties are subsequently modified.

Moreover, it is unclear how to design interactions for a hand-
off between recommender and user in programming environ-
ments. This may, in part, contribute to the lack of a mainstream
recommender-powered visualization API. Instead, program-
mers rely on full-specification APIs for their visualization
needs, without access to a dedicated recommender system.

To address these challenges, we present Dziban, a novel vi-
sualization API. Dziban differs from existing visualization
APIs for exploratory visualization, such as Vega-Lite and gg-
plot2, by accepting partial specifications and incorporating
recommendation, removing the need for complete specifica-
tion of data transformations and visual encodings. In addition,
Dziban contributes a novel anchoring mechanism for con-
veying desired context for recommendations as a solution for
recommender-powered query refinement. With anchored rec-
ommendations, users provide Dziban with an “anchor” chart
to supplement their specification query. Dziban then provides
recommendations that are perceptually similar to the anchor.
By not requiring manual specification or “locking” of field-
channel assignments and other encoding properties, Dziban
offers visualization refinement that is automated, yet flexible.

Internally, Dziban uses the Draco knowledge base [14] to gen-
erate recommendations. We contribute extensions to Draco
to enable reasoning over multiple charts, and integrate the
chart similarity logic of GraphScape [11] to support anchoring
as an additional soft constraint. The Dziban API is imple-
mented in Python and intended for use in Jupyter notebook
environments, where interactive programming lends itself to
exploration context and iteration.

We first present Dziban’s design and implementation. Next,
we demonstrate its usage, focusing on the merits of anchored
recommendations. We argue that anchored recommendations
are particularly beneficial when refinement of an existing vi-
sualization query is desired. Next, we present a benchmark
evaluation of anchored recommendations, demonstrating a
favorable trade-off between reduced context-free effectiveness
and increased perceptual similarity. Finally, we discuss future
work on Dziban and potential applications of its core ideas. Dz-
iban is available as open source at github.com/uwdata/dziban.

BACKGROUND & RELATED WORK
Dziban draws on prior work in visualization specification, au-
tomated design, multi-view consistency, and chart sequencing.

Visualization Specification

Visualization authoring tools typically use domain-specific
abstractions to formalize their design space. In particular,
Wilkinson’s Grammar of Graphics [25] has inspired many
visualization grammars and specification APIs.

Vega-Lite [18] is a high-level grammar that maps data to vi-
sual properties. Dziban uses Vega-Lite as its output format.
The Vega-Lite API [23] wraps this grammar in a convenient
interface for use in JavaScript programming environments.

Paper 751

CHI 2020, April 25-30, 2020, Honolulu, HI, USA

Altair [21] is an analogous Python API for the Vega-Lite gram-
mar. Both the Vega-Lite API and Altair provide interfaces
that map nested objects to a resulting Vega-Lite JSON dic-
tionary. Taking a slightly different approach, ggplot2 [24]
abstracts visualizations as a sum of graphical layers. Its R
API presents this paradigm in its language design, were the
addition operator is used to add elements together.

These APIs require full specification of chart encodings; users
can omit low-level details such as scales and guides (i.e., axes
and legends) that are synthesized by the tool. In contrast, Dz-
iban takes advantage of a visualization recommendation sys-
tem to allow users to omit visualization properties as desired,
increasing efficiency [13, 27]. Dziban searches a design space
of possible visualizations, using a set of scoring functions
to suggest one appropriate complete visualization specifica-
tion for the user’s query. The user can then modify the result
if adjustments are required. While Dziban takes inspiration
from the design of the Vega-Lite and Altair APIs, it flattens
their specification interface to promote iterative refinement of
visualizations rather than complete re-declaration.

Automated Visualization Design

Automated visualization design systems vary greatly in im-
plementation and design. Dziban draws from a breadth of
existing tools, both graphical and non-graphical.

Mackinlay’s APT [12] asks users for a dataset and ranked list
of fields of interest as input. It then enumerates candidate
visualizations, prunes those that violate expressiveness criteria,
and ranks remaining candidates using perceptual effectiveness
criteria. Expressiveness refers to a graphic’s ability to convey
no more and no less than the facts provided by the data. Ef-
fectiveness refers to a graphic’s ability to convey these facts
in a form that is perceptually consumable by viewers. APT
uses ranked lists of the presumed effectiveness of encoding
channels (x, y, color, etc.) based on the field datatype (quanti-
tative, ordinal, nominal), informed by the work of Bertin [3],
Cleveland & McGill [5], and others. Unlike Dziban, APT
recommends visualizations without context.

Dziban’s goal of recommender-powered exploratory analysis
takes inspiration from existing recommender-powered end-
user interfaces. SeeDB [22] analyzes statistical properties of
a dataset to suggest a set of visualizations that may be of in-
terest. ZenVisage [19] recommends visualizations that match
hand-drawn sketches of a pattern of interest. DIVE [10] is a
mixed-initiative system that recommends lists of visualizations
from selected fields. Users can then select charts of interest,
perform statistical analysis, and construct stories. Using Voy-
ager [27, 28], analysts specify data or visualizations of interest,
and a gallery of recommended views is presented, facilitating
more systematic exploration. Tableau’s Show Me [13] sug-
gests graphical encodings based on selected data. Tableau’s
Ask Data provides a natural language interface that recom-
mends visualizations in response to user questions; Tory and
Setlur [20] describe their process of designing recommen-
dations that are context-sensitive and (like Dziban) enforce
consistency to provide more goal-oriented graphics. Dziban
aims to increase agency in visualization modification by al-
lowing users to modify a breadth of visualization properties

Page 2

https://www.github.com/uwdata/dziban

CHI 2020 Paper

(as compared to SeeDB, ZenVisage, DIVE, Ask Data), while
removing reliance on manual specification (Show Me) or in-
flexible locking of visualization properties (Voyager).

CompassQL [26] is a visualization query language that powers
recommendations in Voyager. Like CompassQL, Dziban uses
Vega-Lite [18] to express output charts. However, CompassQL
cannot recommend visual encoding and data transformation
properties without explicit prompting. For example, one must
specify a transformation (e.g., aggregation) as desired for an
aggregation function to be chosen.

Draco

Draco [14] is a more recent design knowledge base that ex-
pands on of the principles of APT and CompassQL. It is more
flexible in both user input and scoring logic to find appropriate
recommendations. Draco is designed to accept arbitrary prop-
erties of a visualization specification (in contrast to APT) and
other information, such as analysis task (in contrast to Com-
passQL), and recommends visualizations based on a system
of weighted constraints over potential visualization properties.
Draco is written in a logical programming language, Answer
Set Programming (ASP) [4]. Answer set programming en-
ables the encoding of design rules and preferences as logical
statements. For example:

i~ type(E,nominal), channel(E,x). [1]

states a general preference against encoding nominal variables
on the x channel (as rotated text is more difficult to read).
Violating this constraint incurs a cost of 1.

Using these constructs, Draco has the expressive power to
model a variety of complex inputs and utility functions. Dz-
iban is built on top of Draco and exploits this flexibility. As
described later, Dziban extends Draco with additional chart
similarity logic to support anchored recommendations.

Multi-View Consistency and Visualization Sequencing

Dziban’s anchored recommendations draw from a body of
work on multi-view consistency for the purposes of both ex-
ploration and presentation. Baldanado et al. [1] present eight
guidelines for the design of multiple view systems. For each,
they discuss the impacts of these guidelines on cognitive utility
for viewers; for example, “consistency” can “facilitate com-
parison and learning” [1]. Qu and Hullman [16] present a
Wizard-of-Oz study to assess the role of multi-view consis-
tency in exploratory visual analysis and presentation. In it,
they document the trade-offs made by users to either achieve
or ignore consistency between visualizations. They extend
prior work on consistency guidelines [1, 6, 15] by proposing
a set of constraints for use in consistency checking (such as
“same field — same color mapping”) and discuss design op-
portunities for visualization tools. Existing visual analysis
tools also apply some consistency principles, such as the use
of consistent scale domains across charts in Voyager [27, 28].

While these works focus on consistency between views in
dashboard visualizations (where diverse views are adjacent to
each other), Dziban is concerned with similar views across
an interactive session. Moreover, Dziban does not contain
explicit constraints for multi-view consistency. Rather, it uses

Paper 751

CHI 2020, April 25-30, 2020, Honolulu, HI, USA

perceptual similarity as a flexible measure to guide the modifi-
cation of data transformations and graphical encoding prop-
erties. Nonetheless, the core objective is similar: anchored
recommendations attempt to preserve consistency between
visualizations authored by the user.

GraphScape

Dziban uses GraphScape [11] as its model for perceptual dis-
tance between arbitrary pairs of visualizations. Unlike APT,
CompassQL, and Draco, GraphScape is an automated design
system that focuses on the recommendation of sequences of
visualizations, rather than single views. It contributes a model
of chart similarity between Vega-Lite visualizations, based on
atomic editing operations one can apply to a chart. In Graph-
Scape, nodes represent visualizations and weighted edges rep-
resent modifications to them. A path from one visualization to
another represents one possible sequence of edits that achieve
the transformation. The weight of an edge represents the rela-
tive cognitive cost of that modification. For example, moving
an encoded data field from the x-axis to the y-axis may induce
less interpretation cost than changing to a color encoding. The
cost of a path represents the perceptual cost of moving from
its source to its destination. The weights of GraphScape are
computed by solving a linear program, and do not represent an
absolute measure of perceptual distance. They can, however,
be used to rank order perceptual distance between pairs of
visualizations. GraphScape was verified in user studies that
asked participants to rank sequences of visualizations based
on their ease of interpretation.

DESIGN CONSIDERATIONS
The design of Dziban was driven by several considerations:

C1. Facilitate iterative development of visualizations.

Exploratory visual analysis is a conversational process. An an-
alyst begins by asking a question and authoring a visualization
to answer it. The analyst learns from the result, which may
prompt further questions, and the process repeats. Battle &
Heer [2] found that exploratory analysis is made up of depth-
oriented sessions: more often going down an exploration tree
(iterating on existing questions) rather than across (asking en-
tirely new questions). Building on this insight, Dziban adopts
an iteration-oriented, functional programming paradigm. In-
stead of declaring entire specifications in a single invocation,
edits are chained together to construct immutable chart ob-
jects. In contrast to existing APIs such as Altair [21] and
Vega-Lite [18], which use nested objects for specification,
Dziban has a flat, relational model of visualization properties.

C2. Guide recommendations towards user goals.

While recommendations can be powerful, the ambiguity of
partial specifications can result in inconsistent outputs when
iteratively updating queries (Figure 2). Dziban employs an-
chored recommendations to address this issue. An anchored
recommendation accepts a supplementary chart (the “anchor’)
and presents a visualization that is similar. In this way, users
guide Dziban via charts they have already constructed by sim-
ply referencing them as anchors.

Page 3

CHI 2020 Paper

C3. Flexibly apply automation, but uphold user agency.
Properties explicitly specified by a user should be taken as-
is. However, design decisions made by Dziban may be re-
considered in subsequent invocations, lest the system dig
itself into an inexpressive or ineffective hole. To this end,
Dziban’s anchored recommendations allow visualization prop-
erties present in the “anchor” to be modified, so long as they
are not explicitly specified by the user. In other words, anchors
act as soft constraints on the recommendation process.

THE DZIBAN API

We now present the basics of query construction, modifica-
tion, and anchored recommendation in the Dziban API. The
examples below assume Dziban use within Jupyter notebooks.

Query Construction
Dziban exposes its API through the Chart object. Charts
accept a Pandas data frame as input.

from dziban import Chart
from vega_datasets import data

movies = data('movies') # a Pandas dataframe
base = Chart(movies) # constructs an empty query

Editing a Query
Queries are modified by invoking functions on a Chart object.
The field function accepts a column name to visualize.

view the values of the IMDB_Rating column
imdb_ratings = base.field('IMDB_Rating"')

For iterative development (C1) users can update queries by
building on top of existing ones. The field function also
accepts graphical properties and data transformations as input.
IMDB_Rating by mean(US_Gross)

imdb_by_us_gross = imdb_ratings.field(

'US_Gross',
aggregate='mean'

Rendering

To render a query, a Chart is listed as output for a notebook
cell. Upon execution, Dziban’s recommendation system is
invoked and the top-ranked visualization is returned.

imdb_by_us_gross

120,000,000

100,000,000

80,000,000

60,000,000

40,000,000

Mean of US_Gross

20,000,000

o

10 a0 5.0 7.0 2.0

IMDB_Rating (binned)

Note that IMDB_Rating was automatically binned by Dziban
to preserve expressiveness, and mark and channel assignments
were chosen by effectiveness criteria modeled in Draco [14].

Paper 751

CHI 2020, April 25-30, 2020, Honolulu, HI, USA

Cold and Anchored Recommendations

Dziban’s default behavior is to provide cold (or context-free)
recommendations. Here, we add a field, the Rotten Tomatoes
Rating of movies, to our query:

cold recommendation
imdb_by_us_gross.field('Rotten_Tomatoes_Rating')

100+

-] 0000000 M:aannlusGmss
B °© 00000 § ‘womom
-'.:m_ [+ 3} OOOO (O 60,000,000
éwi co0oo0000Q0 () 80,000,000
£ 00000 () 100,000,000
gw— 0000 - () 120,000,000
E 1l =000O0O0O° () 140,000,000
5 = 00000
e 20
2 o 0000 o0
& 10
JJe 00000
0

T T
30 50 70 9.0
IMDB_Rating (binned)

1

Notice that this visualization, while effective if the analyst’s
intent is to gain an understanding of US_Gross as a function
of the other variables, does not adhere to the encodings pro-
duced by the imdb_by_us_gross query. If users intend to
refine their chart (rather than ask a new question), they can
anchor on a previous chart to signal their intent and guide
Dziban towards a similar design. This can be done by either
invoking the anchor function on a previous chart or invoking
the anchor_on(. . .) function with an arbitrary chart.

anchored recommendation
imdb_by_us_gross.anchor() . field(
'Rotten_Tomatoes_Rating'

)

Mean of Rotien_Tomatoes_Rating
120000000
100,000,000 BD
g 50

1.0 30 50 70 9.0 o
IMDE_Rating (binned)

Mean of US_Gross
5 3 8
E 2 2
8 & £
g8 8 8

Users may also specify queries using channel functions (e.g.,
chart.x(field="IMDB_Rating')) and a breadth of other
data transformation and scale properties as function argu-
ments (e.g., chart.field('Rotten_Tomatoes_Rating',
scale="1log")). Further documentation is provided as sup-
plemental material.

DZIBAN IMPLEMENTATION DETAILS

Draco’s strength is its ability to reason about the effectiveness
of visualizations. However, it cannot reason about multiple
views. GraphScape is a model for reasoning about the per-
ceptual distance between two visualizations. However, in the
context of recommendation, optimizing for perceptual distance
without taking to account visualization effectiveness will re-
sult in many unusable graphics. Dziban overcomes conceptual
and technical challenges to combine Draco and GraphScape.

Knowledge Representation

Dziban uses the Draco [14] knowledge base to assess visual-
ization expressiveness and effectiveness. Draco doubles as a
recommendation system. Given a partial query, Draco uses the
Clingo [7, 8] solver to search a design space of potential visual-
izations by reasoning through a set of hard and soft constraints,

Page 4

CHI 2020 Paper

assigning each visualization a Draco cost and picking the best
one. This is sufficient to provide cold recommendations.

For the purpose of anchored recommendations, Dziban aug-
ments the Draco knowledge base by incorporating chart simi-
larity logic. We accomplish this in two steps.

Multi-View Reasoning

First, we extend Draco to reason about multiple views. In
Draco, visualization properties are defined using Answer Set
Programming (ASP) syntax:

mark(bar). % bar mark
encoding(el). % there is an encoding named el

field(el,"IMDB_Rating"). % el shows IMDB_Rating

For Dziban, we introduce an additional predicate, the view,
and use it to qualify every encoding property:
view(viewl).

mark(viewl,bar).
encoding(viewl,el).

view(view2).
mark(view2,tick).

The view predicate allows us to introduce new constraints
defined over multiple views. As an example, the statement
same_mark(V1,V2) :- mark(V1,M), mark(V2,M). in-
fers an atom with same_mark when two views have the same
mark type. A slight modification to the Draco API gives us an
interface for interacting with multiple views in Python.

GraphScape for View Similarity Logic

We translated Kim et al.’s GraphScape [11] model into a set
of constraints and weights in ASP, similar to Draco’s soft
constraints. GraphScape describes asymmetrical edits from
one visualization to another, so we introduce a base predicate
to denote a source, or anchor, visualization.

We can then construct a set of constraints to express the chart
edits modeled by GraphScape. As an example, a mark edit
from bar to area with a weight of 3 looks like this in ASP:

edit(area_bar,V1,V2) :~ base(V1), mark(Vl,area),
mark(V2,bar). [3]

We then add an optimization function to Draco that gives
it the option to minimize GraphScape weights. Critically,
this GraphScape optimization is able to leverage the Draco
knowledge base’s hard constraints, and thus the recommended
visualizations do not include those that Draco deems inexpres-
sive. The GraphScape cost of a chart is the sum of all edit
weights between itself and an anchor.

Recommendation Execution
Rendering a Chart initiates compilation and execution of a
recommendation query.

Compiling a Draco Specification

Dziban constructs a partial query from the Chart’s properties
(expressing user-specified constraints) translated into ASP [4].
When a user invokes a Chart’s field function, a new Chart
is constructed with an additional Encoding object in its inter-
nal representation. These objects hold (1) the field of interest,

Paper 751

CHI 2020, April 25-30, 2020, Honolulu, HI, USA

and (2) any properties specified by the user (e.g., aggregate,
bin). Similarly, when the mark function is invoked, the result-
ing Chart holds a mark property.

For example, the Dziban Chart

Chart(
movies
) .mark('bar').field('Major_Genre', channel='y")

is translated into the following ASP statement (a chart’s default
view name is v, this is changed for anchors):

1 view(v).

> encoding(v,e0).
3 mark(v,bar).

4+ :- not field(v,E,"Major_Genre") : encoding(v,E).
s :- field(v,E,"Major_Genre"), not channel(v,E,y).

In plain English, this states that there is a chart (named v)
that has an encoding and uses a bar mark type (lines 1-3).
Additionally, for some encoding, that encoding must express
the Major_Genre field (line 4). Finally, the encoding with
Major_Genre must be placed on the y channel (line 5).

Retrieving Cold Recommendations

For cold recommendations, the ASP query statement is com-
bined with the data declaration and sent to Draco, to be opti-
mized under Draco’s standard optimization function. In return,
we receive the “optimal” (least cost) completed specification.
For the example above, the completed specification describes
a horizontal bar chart measuring counts of records:

view(v).

encoding(v,e0).

mark(v,bar).

encoding(v,1).

channel(v,1,x).

channel(v,e0,y).

field(v,e0,"Major_Genre").

aggregate(v,1,count).

type(v,e0,nominal).

zero(v,1).

type(v,1,quantitative).

We then translate this logical representation into a Vega-Lite
specification using Draco’s existing conversion API.

Retrieving Anchored Recommendations

With anchored recommendations, an “anchor” Chart will be
provided by the user. We assume here the anchor is not an
anchored query itself. (If it is anchored, the process we de-
scribe is repeated recursively from the bottom up.) First, we
retrieve its recommendation—in this case, a cold recommen-
dation. To differentiate its specification, we change its view
name to “anchor”. Additionally, we mark it as a base specifi-
cation, such that it is not modified by Draco when solving our
subsequent query. This becomes our anchored specification.

Next, we combine this anchored specification with specifi-
cation of the current chart to create an anchored query. In
contrast to a cold recommendation, where a single visual-
ization is retrieved from a Draco optimization function, an
anchored query is passed to two top-k functions — (1) optimiz-
ing Draco costs, and (2) optimizing GraphScape costs — where
k is an adjustable parameter discussed later in this section. In-
tuitively, (1) provides us the k “best” visualizations, according

Page 5

CHI 2020 Paper

to Draco, while (2) provides the k “most similar” according to
GraphScape.

We compute the intersection between the Draco and Graph-
Scape results. This list represents all visualizations that are
both (to some degree) effective and similar to the anchor. If
the intersection is empty, we use the Draco list, preferring
effective charts over those that are only perceptually similar.

Next, we obtain GraphScape and Draco scores for each visu-
alization in the intersection list. For Draco, these often fall
between 0 and 100; for GraphScape, between 0 and upwards
of 1000. These numeric scores vary according to the com-
plexity of the query and its relation to the “anchor.” Note that
Draco and GraphScape scores were tuned independently to
support ordinal comparisons. As a result, a linear combination
of the two would provide inconsistent trade-offs. This is why
we must combine two optimization queries. To reconcile the
two measures, we normalize the scores to [0, 1] within their
respective top-k groups: (val —min)/(max —min). We select
a “best” visualization by choosing the one with the lowest sum
of normalized Draco and GraphScape scores (indicating the
best tradeoff), breaking any ties by picking the more effective
visualization (Draco score).

In practice, we observe that k=200 provides reasonable compu-
tation time (no more than a couple seconds, including render-
ing) without a noticeable change in recommendation quality
relative to higher values. In development, we found that &
values that were oo high (e.g., 400) resulted in ineffective
recommendations. We hypothesize that k=200 provides a
near exhaustive search of the most reasonably effective and
similar visualizations in Draco’s design space, while a value
such as k=400 allowed for less effective visualizations to be
considered and picked in favor of a lower GraphScape cost.

ANCHORED RECOMMENDATION USE CASES

We now demonstrate the advantages of anchored recommen-
dations in specific scenarios, increasing user agency overall.
Our goal is not to show that anchored recommendations are
always superior. Rather, we argue that they provide users an
option for greater control in well-defined circumstances. In
general, we argue that going down an exploratory branch [2]
(e.g., iterating on an existing question) is a good use case for
anchored recommendations, while cold recommendations may
be more suited for lateral exploration moves (e.g., asking new
questions). In this section we also further exhibit Dziban’s
language design and functionality.

Drilling Down

Imagine we are analyzing a dataset of movies and are curious
about the distribution of Genre (Figure 3). We start with a
univariate summary (a) and want to refine the resulting bar
chart with a further breakdown by MPAA Rating. That is, our
question goes from “What is the distribution of Genre?” to
“What is the distribution of Genre and their MPAA Ratings?”.
In this case, a cold recommendation (b) changes the encoding
of every field, redefining the focus of the chart. This change
results in a graphic that both fails to answer our question and
requires significant cognitive effort to make sense of. The an-
chored recommendation (c), meanwhile, answers our question

Paper 751

CHI 2020, April 25-30, 2020, Honolulu, HI, USA

genre = Chart (movies) .field('Major_Genre')
genre

anchored

N

genre.anchor () .field ('MPAA_Rating')

o a0 a0 s eo
Count of Records

genre.field ('MPAA_Rating')

8
sor Gonre

Figure 3. Anchored recommendation (c) from a prior (a) is better suited
than cold recommendation (b) when elaborating an analysis question.
This may be useful when adding supplementary information to an exist-
ing visualization. In this example, adding MPAA Rating as supplemen-
tary to the distribution of movies by Genre is better achieved by using
an anchored recommendation, as the cold recommendation completely
changes the relationship in focus by swapping channel assignments.

ratings_and_gross = Chart(movies) .field('IMDB_Rating', 'US_Gross').mark('rect')
ratings_and gross
(3) oo Cototcers
—/ 700000000 500
69900000
£ s0000000 0
3 00000
§ somon ™
S 200000
100000000 =0
cold o - anchored

10 30 s0 70 90 0
IMDB_Rating (binned)

-

ratings_and_gross.mark('bar')

R

ratings_and_gross.anchor () .mark('bar')

Count of Records.

120000000 120000000

p— esomon "
£ woomon | Je—
b X o
% oo

H H 400
- § omomn
- lII - -
o | o

0 0 10 30 so 70 0 o
IMDB_Rating (binned)

—

IMDB_Rating (binned)

Figure 4. Anchored recommendation (c) from a prior (a) is better suited
than cold recommendation (b) when pivoting to a modified hypothesis.
This may be beneficial when an original property (in this case, count) is
useful for maintaining context in analyzing a relationship between vari-
ables (here, understanding the density of movies per rating group).

effectively by supplementing the existing visualization and
preserving original channel assignments.

Pivoting a Hypothesis

Suppose we are exploring this same dataset of movies, as in
Figure 4. We wonder “How does IMDB Rating correlate with
US Gross?” and review a heatmap (a). We realize that perhaps
the relationship is beyond correlation; perhaps a movie’s rat-
ing actively affects the number of movie-goers attending its
showings. To illustrate this, we want to turn our heatmap into a
bar chart, so we specify a bar mark. In this scenario, the cold
recommendation (b) loses the count encoding, emphasizing
the average gross of highly (9+) rated movies. A viewer may
be confused initially, as the prior chart shows a lack of high
grossing, 9+ rated movies. The anchored recommendation (c),
however, retains the count aggregation from the anchor, mak-
ing mapping between the two easy and reassuring the viewer
that a few outliers must be the explanation.

Page 6

CHI 2020 Paper

hp_by_origin = Chart(cars) .field('Horsepower', 'Origin')
hp_by _origin

@

g Europe e
£ e 11§]
co1d vsa| | INEDLLAININ 1Y 1 anchored
t e i '
o 50 100 150 200
/ Horsepower
hp_by_origin.field('MPAA Rating') hp_by origin.anchor () .field('MPAA Rating')
w0 Q0 0 o CountotRecor® g | 000 o Count of Records
S nc 00 . o= § el 2000 o o=
S - 0000000 0 o Ei 5 e . 0000 o o “2“”
Ow O
W om ik ik 2 20 B e @ 1 om0 o0

Horsepower (binned) Horsepawer (binned)

Figure 5. Anchored recommendation (c) can preserve the scale of the
prior (a) when cold recommendation (b) does not. This may be useful in
scenarios where comparison to an original chart (here, using the original
as an unaggregated reference for sample awareness) is desired.
pop_by_country = Chart(gapminder) .field('pop', 'country')
pop_by_country

a) China
India

Indanesia

country

Pakistan

United States
cold | anchored

o 1,400,000,000
/. pop ﬁ

Ppop_by_country.mark ('point') pop_by_country.anchor () .mark ('point')

Count of Records. China-{
India-|

Indonesia-| @

(e}
country

Pakistan-{ @
O United Siaies | o

° 1,400,000,000 ——
pop (binned)] 1,400,000,000

Pop
Figure 6. Anchored recommendation (c) can be used to fine-tune a prior
(a) whereas cold recommendation may modify extraneous properties. If
a user wants to adjust only the mark type (for visibility), anchored rec-
ommendations may be more effective. Here, changing the mark of the
prior via cold recommendation results in unwanted binning.

This case also demonstrates the flexibility of anchored recom-
mendations. Here, the prior recommendation (a) bins both
axes. Changing the mark to a bar without modifying these
properties would have resulted in an inexpressive visualiza-
tion, leaving Dziban’s user confused and frustrated. However,
Dziban’s anchored recommendations can override previous
design decisions when necessary, so long as they have not
been explicitly set by the user.

Edits for Effectiveness

Now suppose we are analyzing a dataset of cars from the 1970s
and are curious as to the distribution of Horsepower across
different manufacturing regions (Figure 5). We start with a
bivariate query (a) but want to refine the resulting tick plot
because of overplotting. To do so, we request that Horsepower
be binned. In this case, the cold recommendation (b) loses its
zero baseline. A user may be confused upon first glance. It’s
unclear, initially, if or how the distribution has shifted. The
anchored recommendation (c) preserves the zero baseline of
the original chart. The prior and anchored charts are immedi-
ately comparable: the prior provides context and can be used
to spot gaps not visible in the binned plot.

This example shows how anchored recommendation can safe-
guard user agency. Dziban preserves a property the user may
not have known was present. Upon noticing it, they, rather
than the recommender, can decide whether to keep it.

Paper 751

CHI 2020, April 25-30, 2020, Honolulu, HI, USA

genre_vs_rating = Chart(movies) .field('IMDB Rating', 'Major_Genre')
genre_vs_rating

cold anchored

plus_votes = genre_vs_rating.field('IMDB Votes')
plus_votes

©)

“looooo00000000

l Move IMDB Rating back onto X Axis

plus_votes2 = plus_votes.field (' IMDB_Rating', channel='x')
plus_votes2

Major Genre

e, neiog s
| Un-bin IMDB Rating

plus_votes3 = plus_votes2.field (' IMDB_Rating', bin=False)

plus_votes3
= 1MDB_Votes

o lwm ©
" 400,000 -
o

-

100000

: 4 6 & 0w
IMDB_Rating

l Finally, switch the IMDB Rating to the size channel

plus_votes3.field('IMDB_Votes', channel='size')
- o0}

genre_vs_rating.anchor () .field (' IMDB_Votes')
= i

Figure 7. Trying to coerce cold recommendations towards a specific goal
can result in a frustrating experience in which effectiveness is optimized
at the expense of consistency. In this example, an anchored recommenda-
tion maintains the unaggregated view of movies plotted by their IMDB
Rating and Genre. On the other hand, a cold recommendation initially
swaps channel assignments (removing the original visualized relation-
ship) and aggregates fields (removing sample awareness). Cold queries
that attempt to correct these changes can result in further deviations (in
this case, changing of mark and channels) that require further adjust-
ments. Anchored recommendations ease this process by reducing the
number of changes made to the prior.

Fine-Tuning

In cases where a small modification to a chart is desired, a cold
recommendation may automate foo much. Figure 6 shows a
tick plot displaying multi-year population records for the five
largest countries in the world. We notice that the ticks are
a bit difficult to see. We would prefer larger point marks to
emphasize the difference in growth between China and India
and the others. An anchored recommendation handles this
smoothly, modifying only the mark type. A cold recommenda-
tion (b), however, adds binning and a count aggregate to avoid
overplotting. Anchored recommendations integrate minute
adjustment with automated design.

Page 7

CHI 2020 Paper

Towards a specific visualization

In some cases of exploratory analysis, authors may already
have a visualization in mind when interacting with data. In
such cases, automated recommendation systems can assist
in reducing tedium and removing the syntactical burden of
authoring. However, stateless recommendations (e.g., cold
recommendations from Draco) may involve a frustrating se-
ries of modifications to achieve a particular result. This is
especially evident when the intended visualization is similar
to the existing one, but contains a few design decisions that
might be considered less optimal.

In Figure 7, attempting to move towards the bubble chart (bot-
tom) with cold recommendations results in Draco ignoring
consistency (swapping channel assignments [a]) and optimiz-
ing effectiveness (binning [a, b] and switching to ticks [c] to
avoid occlusion). The examples posed by Figure 3 and Fig-
ure 6 exhibit similar issues when attempting to course-correct
cold recommendations. Anchored recommendations, by incor-
porating similarity, allow for more controlled authoring.

To Be Extra Sure...

Assume we are analyzing a dataset of flights, and are interested
in the relationship between flight length and delay. In Dziban,
we can start with a query over two fields:

time_by_delay = Chart(flights).field('time', 'delay')
time_by_delay

-50 [+] 50 100 150
delay

We immediately see that the scatter plot is too dense; perhaps
a heatmap would be better suited for this dataset [17]. As
we know we are refining a query, rather than asking a new
question, we specify an anchor:

tbd_rect = time_by_delay.anchor() .mark('rect")
or time_by_delay.mark('rect’)

257 Count of Records

40,000

3

30,000

o

=

20,000

time (binned)

7l

10,000

=100 -fLU 6 5‘0 Iélu 1%0 Zml o
delay (binned)

As it turns out, anchoring was not necessary, as a cold rec-
ommendation results in the same visualization. However, we
note that anchoring does no harm here. A common pattern
with Dziban can be to anchor when in doubt, switching back
to cold recommendations if it becomes clear that the intended
visualization goal need not be constrained by prior context.

Paper 751

CHI 2020, April 25-30, 2020, Honolulu, HI, USA

Comparing Dziban to other visualization authoring tools, we
note that a similar visualization in Altair would require man-
ual specification of binning directives for both fields and the
addition of the count aggregate to the color channel:

alt.Chart(flights) .mark_rect() .encode(
x=alt.X('time', bin=True),
y=alt.Y('delay', bin=True),
color="count()"'

)

Dziban performs these automatically. Moreover, by iterating
upon, but not replacing, the original scatter plot, we can use it
for context to identify patterns where the heatmap hides them
(such as the rift between 0 and 5 hours). As in Altair, we can
manually tweak minor parameters to correct this issue.

thd. field('time', 'delay', maxbins=25)

24+
23]
20
18]
16-]
14-
12
10

.

Count of Records

6,000

4,000

time (binned)

67

4l 2,000
2]
=

-GIG‘ I-ZID‘ ! IZI{II ! IGID‘ ! ‘1(‘30‘ ! II“KJI I1é0' 0

delay (binned)
Here, we take advantage of field’s multi-argument function-
ality to modify maxbins for both “time” and “delay” at once.

BENCHMARKING ANCHORED RECOMMENDATIONS

We now present a quantitative assessment of anchored rec-
ommendations in Dziban. We wish to better understand the
impact of anchored recommendations relative to cold recom-
mendations. By Dziban’s design, more similar visualizations
come at the cost of lower effectiveness, but to what extent?
To answer this question, we measure anchored recommenda-
tions’ effectiveness and perceptual similarity scores relative to
a baseline of cold recommendations provided by Draco.

Benchmark Design

The goal of this benchmark is to compare anchored recommen-
dations and cold recommendations along two axes: similarity
and effectiveness. To determine whether anchored recom-
mendations provide a favorable or unfavorable tradeoff, we
require a common metric. Score cannot be used, as Draco
and GraphScape weights were tuned independently and are
thus incomparable. Nor should we use a method similar to
the normalization Dziban uses to reconcile Draco and Graph-
Scape weights: normalization occurs within each query and
thus values are incomparable across multiple queries as score
distributions differ. Instead, we use the rank of a recommen-
dation along each axis. With both systems being ranking rec-
ommenders, this provides a meaningful comparison between
Draco and GraphScape and across multiple queries.

To cover a relatively comprehensive space, we programmat-
ically generate a set of “priors” and “edits.” A “prior” rep-
resents a recommendation query that results in a chart. An
“edit” represents a modification to that query. We generate
priors to cover a combinatorial space of data fields, types, and

Page 8

CHI 2020 Paper

Property Values

field quantitative (q), nominal (n)
transform raw, mean, bin

Table 1. Properties & possible values for “prior” chart generation.

Edit Values

add field q, n, bin(q), mean(q)
change mark point, bar, line, area, tick, rect
transform mean, bin

Table 2. Edits & possible values for query modification.

transformations, described in Table 1. We run our benchmark
over three datasets: IMDB movies! (3,201 rows), Cars? 406
rows), and a subset of the Chicago Crimes> dataset (100,000
rows) for their data type coverage and real-world relevance.
We generate edits to cover a reasonable space of query and
visualization refinements. These include changing marks and
adding fields or data transformations, as shown in Table 2.

For each prior, we apply every edit in two ways. First, we
apply the edit and request a cold recommendation; next, an
anchored recommendation with the “prior” as the anchor. We
introduce a few constraints to prevent illegal edits, such as
aggregating an already binned field.

Next, we obtain the relative Draco and GraphScape ranks of
each recommendation. The Draco rank of the cold recom-
mendation is 0, as Draco is the only optimizing function. The
Draco rank of the anchored recommendation is obtained by
solving for the top N recommendations of the corresponding
cold query and searching those recommendations for a match.
We obtain the GraphScape rank for both the cold and anchored
recommendations by anchoring on the prior and solving for
the top N recommendations under the GraphScape optimiza-
tion function, searching for a match. For this experiment, we
use k = 200, the same value seen in regular usage of Dziban,
to obtain recommendations. We use N = 1,000 to search for
matches. With N > k, we can obtain the rank of visualiza-
tions that would otherwise fall outside of the & threshold. For
example, cold recommendations may routinely fall outside of
the top 200 in similarity (GraphScape rank) to the prior.

Benchmark Results

We report benchmark results in Table 3. Of 447 valid prior
and edit pairs across the three datasets (149 for each), 230
resulted in identical recommendations between cold and an-
chored queries, and 217 resulted in differing recommendations.
Of these differing pairs, 127 had cold recommendations with a
GraphScape rank outside the top 1,000. As designed, we find
that none had anchored recommendations with Draco rank
outside the top 200 (as discussed earlier, we defer to the top &
Draco charts if we cannot find effective GraphScape charts).
The mean GraphScape rank of anchored recommendations is

1https://vega. github.io/vega-datasets/data/movies. json
2https ://vega.github.io/vega-datasets/data/cars.json

3https ://data.cityofchicago.org/Public-Safety/
Crimes-2001-to-present/ijzp-q8t2

Paper 751

CHI 2020, April 25-30, 2020, Honolulu, HI, USA

Change in Rank for Anchored Recommendations (Relative to Cold)

] add_field ®
,\ S
8 -~ K mark
= =
o T
[w transform
e
v
2
[)
T g add_field
13 >
s «~ F mark -
z =
S transform
r T T T T T 1
0 100 200 300 400 500 600

Change in Rank

Legend
Mean Gain in GraphScape Rank Mean Loss in Draco Rank

Figure 8. Gain in GraphScape rank (blue) versus loss in Draco rank
(red) for anchored recommendations from cold recommendations, along
with a 95% confidence interval. This figure excludes identical recom-
mendations for cold and anchored variants and queries that resulted
in an undefined (outside top 1000) Cold GraphScape rank. All three
datasets are represented.

significantly lower than the GraphScape rank of cold recom-
mendations (aggregate mean of 14.08 vs. 106.07—an order
of magnitude difference), while the Draco ranks are within a
few values (aggregate mean of 5.42 vs. 0). The numbers vary
slightly by dataset—this can be attributed to both variations
in characteristics of their data and fields—but a trend is con-
sistent across all: we observe a large gain in GraphScape rank
at the expense of a relatively small decrease in Draco rank.
We see an exception in one-dimensional mark modifications,
where the mean gain in GraphScape rank is lower than its loss
in Draco rank, but the difference is less than one rank index
(average GraphScape gain of 0.48 vs. average Draco loss of
0.88). In all other situations, anchored recommendations pro-
vide a favorable tradeoff between GraphScape and Draco rank,
particularly when adding a field (likely due to preservation of
channel assignments, which otherwise incurs a high cost in
GraphScape).

Figure 8 visualizes anchored recommendations’ loss in Draco
rank compared to their gain in GraphScape rank for all 217
differing recommendations that possess ranks within the top
1,000. A big factor of the large variance in GraphScape rank
gain is the distribution of cold recommendation GraphScape
ranks, which are dependent on the prior and edit performed.
For example, some may incur high cost channel reassignments,
while others may only incur lower transform costs.

DISCUSSION
We now reflect on Dziban and discuss areas for future work.

Takeaways from Use Cases and Benchmark

Anchored recommendations enable greater control in chart au-
thoring by suggesting charts that are effective, but also similar
to a previously constructed chart. Our design ensures that an-
chored recommendations never fall out of some top & (200, for
this benchmark) Draco visualizations. Our benchmark study
shows that, in addition, anchored recommendations provide
a considerable benefit in visualization similarity, as ranked
by GraphScape, across a variety of priors and edits. As Fig-
ure 8 shows, this benefit comes at a comparatively minimal

Page 9

https://vega.github.io/vega-datasets/data/movies.json
https://vega.github.io/vega-datasets/data/cars.json
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2

CHI 2020 Paper

CHI 2020, April 25-30, 2020, Honolulu, HI, USA

Fields Edit Count # Cold w/ Graph- Draco Rank GraphScape Rank
of Prior Scape Rank
Outside Top 1,000 Cold ~ Avg. Anchored Avg. Cold Avg. Anchored
all 40 7 12 12 0% 132 114 46 151.1 137.8 140.1 206 9.2 357
1 mark 20 6 7 6 0% 1.3 00 13 9 2 9 1 2 1
add field 16 1 5 6 0% 279 289 53 3287 346.7 386.7 43.7 21.3 995
transform 4 0 O 0 o* 3 3 143 108 108 10.8 53 53 5
all 109 27 29 40 O* 28 35 49 89 873 103.6 10.1 99 138
> mark 56 12 13 18 O* 1.5 1.1 4 308 289 351 5 i 4
add field 40 15 15 20 0% 64 9.1 16.1 221.1 1948 2827 302 282 443
transform 13 0 1 2 0% 04 03 3 125 728 143 41 43 45

Table 3. Results of anchored recommendation benchmark for the movies, cars, and crimes datasets. Calculations include queries that resulted in
identical recommendations between cold and anchored variants. When calculating means, queries that resulted in an undefined cold GraphScape rank
(i.e., outside the top 1,000) are ignored. * A cold recommendation is always the same as the Draco recommendation.

reduction in visualization effectiveness, as ranked by Draco.
The effectiveness of the anchored recommendations in the use
cases presented provide credence to these conclusions: the
decrease in Draco rank does not result in poor visualizations.

The use cases we described also demonstrate that this favorable
tradeoff can improve a user’s exploratory analysis process. In
particular, Figures 3, 6, and 7 show that similarity, with only a
slight loss of assumed effectiveness, can provide reasonable
visualizations when the instability of cold recommendation
sequences might otherwise throw an exploration awry.

Future work should further validate this approach through
human-subject evaluations. By comparing Dziban to exist-
ing recommendation and full-specification authoring tools,
such studies could demonstrate the usability of Dziban as an
authoring interface and its efficacy in practice.

Improving Dziban

Dziban’s API does not currently support the entire Vega-
Lite [18] design space. This can be improved by further imple-
mentation, but a key hurdle is expanding the expressiveness of
Dziban’s supporting recommendation model, the Draco [14]
knowledge base. Its lack of support for multi-view and lay-
ered composition is one large hole that GraphScape [11] also
shares. Moreover, Dziban’s recommendations are far from
perfect, primarily stemming from flaws in the Draco knowl-
edge base. The “top” Draco recommendation is not always, in
our opinion, the most effective one, and a set of visualizations
may have differing scores when their effectiveness remains
nearly identical. We hope to improve both Draco’s constraint
system and the GraphScape model.

A large challenge in developing Dziban was implementing
a multi-objective optimization function used to reconcile the
Draco and GraphScape models. We attempted a variety of lin-
ear weighting and normalization routines before we landed at
our current implementation. We believe our approach strikes a
nice balance between effectiveness and consistency, but future
work could explore the tuning of this function to accommodate
different use cases. For example, one could lean more heavily
towards GraphScape weights if minute visualization refine-
ment, rather than query refinement, is the objective. Better yet,
we could provide users the ability to control the function as
they please, or adapt it to their usage patterns.

Paper 751

Applications of Dziban and Anchored Recommendations
We also hope to explore alternative designs for Dziban’s output
interface. Currently, Dziban renders a single recommendation
as output for a Jupyter notebook cell. Rendering multiple
visualizations—either with variation in design, or variation in
data (as with Voyager [27, 28])—could facilitate exploration
and increase user agency. This could take the form of an inter-
active carousel, tabs of visualizations, or a simple stepper that
allows users to page through recommended visualizations. We
are particularly excited about the potential for these interfaces
to improve Dziban’s recommendation model. By learning
from user input (if permission is granted), Dziban might adapt
to individual domains, tasks, and design preferences.

We are also eager to explore Dziban’s use outside of program-
ming environments. For example, Dziban could be used in
place of Voyager’s [28] “locking” functionality to provide
more flexibility in exploration. View similarity and consis-
tency have roles outside exploratory analysis as well. Dziban’s
multi-objective optimization can be an asset in tools used for
narrative authoring (e.g., DIVE [10]), where similar views are
often placed in sequence to tell a story. Where GraphScape
could only recommend sequence design or chart modifications,
its inclusion in Dziban can provide tools the opportunity to
suggest a breadth of narratively compatible visualizations.

CONCLUSION

We presented Dziban, a visualization API that supports both
ambiguous partial specification visualizations and a novel an-
choring mechanism for conveying desired context. Dziban
takes advantage of automated visualization design to provide
a concise specification interface, and encourages small modifi-
cations to queries to facilitate common patterns in exploratory
visual analysis. These attributes balance Dziban’s automated
design system and provide users with increased agency as they
create and refine visualizations.

ACHNOWLEDGEMENTS

We would like to thank Rastislav Bodik and Kanit “Ham”
Wongsuphasawat for their helpful guidance. We also thank
the UW Interactive Data Lab, colleagues at the University
of Washington, and anonymous reviewers for their feedback.
This work was supported by NSF award IIS-1907399.

Page 10

CHI 2020 Paper

REFERENCES

(1]

2

[}

(3]
(4]

(5]

[6

—_

[7

—

[8

[}

[9]

[10

—_

[11

—

(12]

Michelle Q. Wang Baldonado, Allison Woodruff, and
Allan Kuchinsky. 2000. Guidelines for Using Multiple
Views in Information Visualization. In Proceedings of
the working conference on Advanced visual interfaces,
AVI 2000, Palermo, Italy, May 23-26, 2000. 110-119.
DOI:http://dx.doi.org/10.1145/345513.345271

Leilani Battle and Jeffrey Heer. 2019. Characterizing
Exploratory Visual Analysis: A Literature Review and
Evaluation of Analytic Provenance in Tableau.
Computer Graphics Forum (Proc. EuroVis) (2019). DOI:
http://dx.doi.org/10.1111/cgf.13678

Jacques Bertin. 1983. The Semiology of Graphics.

Gerhard Brewka, Thomas Eiter, and Miroslaw
Truszczynski. 2011. Answer set programming at a
glance. Commun. ACM 54, 12 (2011), 92-103. DOI:
http://dx.doi.org/10.1145/2043174.2043195

William S Cleveland and Robert McGill. 1984.
Graphical perception: Theory, experimentation, and
application to the development of graphical methods.
Journal of the American statistical association 79, 387
(1984), 531-554.

Camilla Forsell and Jimmy Johansson. 2010. An
heuristic set for evaluation in information visualization.
In Proceedings of the International Conference on
Advanced Visual Interfaces, AVI 2010, Roma, Italy, May
26-28, 2010. 199-206. DOI:
http://dx.doi.org/10.1145/1842993.1843029

Martin Gebser, Roland Kaminski, Benjamin Kaufmann,
and Torsten Schaub. 2014. Clingo = ASP + Control:
Preliminary Report. ArXiv abs/1405.3694 (2014).

Martin Gebser, Benjamin Kaufmann, Roland Kaminski,
Max Ostrowski, Torsten Schaub, and Marius Schneider.
2011. Potassco: The Potsdam Answer Set Solving
Collection. AI Commun. 24, 2 (April 2011), 107-124.
http://dl.acm.org/citation.cfm?id=1971622.1971623

Jeffrey Heer. 2019. Agency plus automation: Designing
artificial intelligence into interactive systems.
Proceedings of the National Academy of Sciences 116, 6
(Feb. 2019), 1844-1850. DOTI :
http://dx.doi.org/10.1073/pnas.1807184115

Kevin Zeng Hu, Diana Orghian, and César A. Hidalgo.
2018. DIVE: A Mixed-Initiative System Supporting
Integrated Data Exploration Workflows. In
HILDA@SIGMOD.

Younghoon Kim, Kanit Wongsuphasawat, Jessica
Hullman, and Jeffrey Heer. 2017. GraphScape: A Model
for Automated Reasoning About Visualization Similarity
and Sequencing. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems
(CHI ’17). ACM, New York, NY, USA, 2628-2638.
DOI:http://dx.doi.org/10.1145/3025453.3025866

Jock Mackinlay. 1986. Automating the design of
graphical presentations of relational information. ACM

Paper 751

(13]

[14]

[15]

(16]

[17

—

(18]

[19

—

[20]

[21]

[22]

CHI 2020, April 25-30, 2020, Honolulu, HI, USA

Transactions on Graphics 5, 2 (1986), 110-141. DOI:
http://dx.doi.org/10.1145/22949.22950

Jock D. Mackinlay, Pat Hanrahan, and Chris Stolte.
2007. Show Me: Automatic Presentation for Visual
Analysis. IEEE Trans. Vis. Comput. Graph. 13, 6 (2007),
1137-1144. DOT:
http://dx.doi.org/10.1109/TVCG.2007.70594

Dominik Moritz, Chenglong Wang, Gregory Nelson,
Halden Lin, Adam M. Smith, Bill Howe, and Jeffrey
Heer. 2019. Formalizing Visualization Design
Knowledge as Constraints: Actionable and Extensible
Models in Draco. IEEE Trans. Visualization & Comp.
Graphics (Proc. InfoVis) (2019). D01 :
http://dx.doi.org/10.1109/TVCG.2018.2865240

Zening Qu and Jessica Hullman. 2016. Evaluating
Visualization Sets: Trade-offs Between Local
Effectiveness and Global Consistency. In Proceedings of
the Sixth Workshop on Beyond Time and Errors on Novel
Evaluation Methods for Visualization, BELIV 2016,
Baltimore, MD, USA, October 24, 2016. 44-52. D01 :
http://dx.doi.org/10.1145/2993901.2993910

Zening Qu and Jessica Hullman. 2018. Keeping
Multiple Views Consistent: Constraints, Validations, and
Exceptions in Visualization Authoring. IEEE Trans. Vis.
Comput. Graph. 24, 1 (2018), 468—477. D01 :
http://dx.doi.org/10.1109/TVCG.2017.2744198

A. Sarikaya, M. Gleicher, and D. A. Szafir. 2018.
Design Factors for Summary Visualization in Visual
Analytics. Computer Graphics Forum 37, 3 (June 2018),
145-156. DOI :http://dx.doi.org/10.1111/cgf. 13408

Arvind Satyanarayan, Dominik Moritz, Kanit
Wongsuphasawat, and Jeffrey Heer. 2017. Vega-Lite: A
Grammar of Interactive Graphics. IEEE Trans. Vis.
Comput. Graph. 23, 1 (2017), 341-350. DOI:
http://dx.doi.org/10.1109/TVCG.2016.2599030

Tarique Siddiqui, Albert Kim, John Lee, Karrie
Karahalios, and Aditya Parameswaran. 2016. Effortless
Data Exploration with Zenvisage: An Expressive and
Interactive Visual Analytics System. Proc. VLDB Endow.
10, 4 (Nov. 2016), 457-468. DOI:
http://dx.doi.org/10.14778/3025111.3025126

Melanie Tory and Vidya Setlur. 2019. Do What I Mean ,
Not What I Say ! Design Considerations for Supporting
Intent and Context in Analytical Conversation. I[EEE
Trans. Visualization & Comp. Graphics (Proc. VAST)
(2019).
https://research.tableau.com/paper/intent-VAST

Jacob VanderPlas, Brian Granger, Jeffrey Heer, Dominik
Moritz, Kanit Wongsuphasawat, Arvind Satyanarayan,
Eitan Lees, Ilia Timofeev, Ben Welsh, and Scott Sievert.
2018. Altair: Interactive Statistical Visualizations for
Python. Journal of Open Source Software (dec 2018).
DOI:http://dx.doi.org/10.21105/joss.01057

Manasi Vartak, Samuel Madden, Aditya G.
Parameswaran, and Neoklis Polyzotis. 2014. SEEDB:

Page 11

http://dx.doi.org/10.1145/345513.345271
http://dx.doi.org/10.1111/cgf.13678
http://dx.doi.org/10.1145/2043174.2043195
http://dx.doi.org/10.1145/1842993.1843029
http://dl.acm.org/citation.cfm?id=1971622.1971623
http://dx.doi.org/10.1073/pnas.1807184115
http://dx.doi.org/10.1145/3025453.3025866
http://dx.doi.org/10.1145/22949.22950
http://dx.doi.org/10.1109/TVCG.2007.70594
http://dx.doi.org/10.1109/TVCG.2018.2865240
http://dx.doi.org/10.1145/2993901.2993910
http://dx.doi.org/10.1109/TVCG.2017.2744198
http://dx.doi.org/10.1111/cgf.13408
http://dx.doi.org/10.1109/TVCG.2016.2599030
http://dx.doi.org/10.14778/3025111.3025126
https://research.tableau.com/paper/intent-VAST
http://dx.doi.org/10.21105/joss.01057

CHI 2020 Paper

Automatically Generating Query Visualizations. PVLDB
7 (2014), 1581-1584. DOI:
http://dx.doi.org/10.14778/2733004.2733035

[23] Vega-Lite AP12019. (2019).
https://github.com/vega/vega-lite-api Accessed:
2019-09-19.

[24] Hadley Wickham. 2016. ggplot2: Elegant Graphics for
Data Analysis. Springer-Verlag New York.
https://ggplot2.tidyverse.org

[25] Leland Wilkinson. 2005. The Grammar of Graphics
(Statistics and Computing). Springer-Verlag, Berlin,
Heidelberg.

[26] Kanit Wongsuphasawat, Dominik Moritz, Anushka
Anand, Jock Mackinlay, Bill Howe, and Jeffrey Heer.
2016a. Towards a general-purpose query language for
visualization recommendation. In Proceedings of the
Workshop on Human-In-the-Loop Data Analytics -
HILDA ’16. 1-6. DOI:
http://dx.doi.org/10.1145/2939502.2939506

Paper 751

CHI 2020, April 25-30, 2020, Honolulu, HI, USA

[27] Kanit Wongsuphasawat, Dominik Moritz, Anushka
Anand, Jock Mackinlay, Bill Howe, and Jeffrey Heer.
2016b. Voyager: Exploratory Analysis via Faceted
Browsing of Visualization Recommendations. IEEE
Transactions on Visualization and Computer Graphics
22,1 (Jan. 2016), 649-658. DOI:
http://dx.doi.org/10.1109/tvcg.2015.2467191

[28] Kanit Wongsuphasawat, Zening Qu, Dominik Moritz,
Riley Chang, Felix Ouk, Anushka Anand, Jock
Mackinlay, Bill Howe, and Jeffrey Heer. 2017. Voyager
2. In Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems - CHI '17. ACM
Press. DOT :http://dx.doi.org/10.1145/3025453.3025768

Page 12

http://dx.doi.org/10.14778/2733004.2733035
https://github.com/vega/vega-lite-api
https://ggplot2.tidyverse.org
http://dx.doi.org/10.1145/2939502.2939506
http://dx.doi.org/10.1109/tvcg.2015.2467191
http://dx.doi.org/10.1145/3025453.3025768

	Introduction
	Background & Related Work
	Visualization Specification
	Automated Visualization Design
	Draco
	Multi-View Consistency and Visualization Sequencing
	GraphScape

	Design Considerations
	C1. Facilitate iterative development of visualizations.
	C2. Guide recommendations towards user goals.
	C3. Flexibly apply automation, but uphold user agency.

	The Dziban API
	Query Construction
	Editing a Query
	Rendering
	Cold and Anchored Recommendations

	Dziban Implementation Details
	Knowledge Representation
	Multi-View Reasoning
	GraphScape for View Similarity Logic

	Recommendation Execution
	Compiling a Draco Specification
	Retrieving Cold Recommendations
	Retrieving Anchored Recommendations

	Anchored Recommendation Use Cases
	Drilling Down
	Pivoting a Hypothesis
	Edits for Effectiveness
	Fine-Tuning
	Towards a specific visualization
	To Be Extra Sure...

	Benchmarking Anchored Recommendations
	Benchmark Design
	Benchmark Results

	Discussion
	Takeaways from Use Cases and Benchmark
	Improving Dziban
	Applications of Dziban and Anchored Recommendations

	Conclusion
	Achnowledgements
	References

