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Figure 1: Staged animated transition for conveying the arithmetic mean (average). Individual data points shift and transform to lines to
convey residual values. The residual lines then collapse synchronously, such that the upper and lower parts cancel out to form the average.

Abstract
Data can be aggregated in many ways before being visualized in charts, profoundly affecting what a chart conveys. Despite this
importance, the type of aggregation is often communicated only via axis titles. In this paper, we investigate the use of animation
to disambiguate different types of aggregation and communicate the meaning of aggregate operations. We present design ra-
tionales for animated transitions depicting aggregate operations and present the results of an experiment assessing the impact
of these different transitions on identification tasks. We find that judiciously staged animated transitions can improve subjects’
accuracy at identifying the aggregation performed, though sometimes with longer response times than with static transitions.
Through an analysis of participants’ rankings and qualitative responses, we find a consistent preference for animation over
static transitions and highlight visual features subjects report relying on to make their judgments. We conclude by extending
our animation designs to more complex charts of aggregated data such as box plots and bootstrapped confidence intervals.

CCS Concepts
• Human-centered computing → Visualization design and evaluation methods; Information visualization;

1. Introduction

Animation can help viewers track changes and stay oriented across
transitions between related statistical graphics [RMC91, Gon96,
BB99, HR07], with research to-date primarily focused on tran-
sitions in response to filtering, time steps, changing variables,
or adjusting visual encodings [HR07, RFF∗08, CDF14, DBJ∗11,
WASQ18]. However, visual analysis regularly involves summariz-
ing groups of data using aggregation operations such as count, sum,
and average. Sarikaya et al. [SGS18] find that aggregation is ap-
plied in 74% of the summary visualizations in their survey. Though
prior work has depicted count aggregation using a metaphor of sed-
imentation [HVF13], we lack a more comprehensive treatment of
statistical aggregates common to visualization practice.

Visualizations of aggregated data typically indicate the opera-
tions performed via axis titles (e.g., “Sum of Profit” or “Average
Delay”). While helpful, viewers might overlook such titles or may
be unfamiliar with the operations being performed. In this work,
we seek to design and evaluate animated transitions that convey
aggregation operations, with the goal of reducing ambiguity and
imparting a better intuition for the semantics of each operation. To-
wards this aim, we consider eight common aggregation operations,
including both point estimates and measures of spread: count, sum,
maximum (max), minimum (min), arithmetic mean (average), me-
dian, standard deviation (stdev), and interquartile range (iqr).

We first contribute novel animation designs for aggregation op-
erations over univariate distributions, transitioning from unaggre-
gated to aggregated dot plots. For each operation we present our
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design rationale, considering factors of the target concept, stag-
ing, axis scale changes, and staggering. We discuss design choices
according to these factors and arrive at two staged animation de-
signs for each operation: an elaborate design intended to provide a
complete impression of the operation, and a simplified basic design
with fewer animation stages.

Next, we present results from a controlled experiment evaluating
these animation designs. We compare against two baseline condi-
tions: static (non-animated) transitions and interpolated transitions
that linearly interpolate between start and end states. Through an
initial pilot study on Mechanical Turk, we identify which aggrega-
tion operations are most likely to be confused with each other. We
then evaluate the four transition conditions with undergraduate stu-
dents from a visualization course, ensuring subject familiarity with
visual analysis tools such as Tableau. We ask subjects to perform
binary identification tasks in which they indicate whether or not a
presented transition matches a provided operation name.

Our study results indicate that staged animated transitions can
improve subject’s ability to correctly identify aggregation oper-
ations, though sometimes with longer response times than with
static transitions. We highlight operations that benefit from elab-
orate staged transitions (such as disambiguating among average
and median, or stdev and iqr) as well as those that do not (max
and min). Through an analysis of participants’ rankings, we find a
consistent preference for staged animation designs over the base-
line static and interpolated transitions. From participants’ textual
responses, we identify the visual features that subjects report using
to make their judgments and how they vary across transition types.

Informed by our findings, we describe extensions of our design
rationales to more complex charts, such as transitions to depict the
construction of box plots, histograms, and means and confidence
intervals calculated via bootstrapping. We conclude with a discus-
sion of implications and areas for future work.

2. Related Work

The present work extends prior research on animated transitions in
information visualization, focusing on aggregate transitions. Ani-
mation is a promising, though sometimes controversial, technique
for conveying changes or processes in visualizations. Prior re-
search has found that animation can aid the reconstruction of men-
tal maps [BB99], decision making [Gon96], and staying oriented
across transitions [RMC91]. In addition, Jessica el al. [HAS11]
identify the condition under which the animation is beneficial.
More recently, researchers found that animated transitions can out-
perform small multiple encodings in a comparison task [OJEF19].

We seek to craft animated transitions of aggregation operations
that are uniquely identifiable by depicting the logic of the specific
operation performed. In this regard, our design goal is similar to
that of algorithm visualization, which conveys logical processes to
aid understanding. A meta-analysis of algorithm visualization in
educational contexts [HDS02] finds that they are “effective insofar
as they enable students to construct their own understandings of
algorithms through a process of active learning.” Though we do
not test educational benefits in this work, we allow subjects to play
a transition as many times as they like to review what is presented.

However, there are also skeptical views of animation effective-
ness, particularly for conveying processes rather than transitions.
Tversky et al. [TMB02] criticize studies which show benefits for
animation over static graphics, but in which the animated and static
versions were not informationally equivalent. They suggest two
high-level principles, Congruence and Apprehension, to promote
effective animation designs.

Researchers have investigated animated transitions for statistical
data graphics (e.g., bar charts, line charts, and scatter plots). Heer &
Robertson [HR07] contribute design guidelines for animated tran-
sitions that provide strategies for achieving Tversky et al.’s princi-
ples [TMB02]. They evaluate animated transitions using both ob-
ject tracking and value estimation tasks, finding significant bene-
fits for animated transitions. Robertson et al. [RFF∗08] found that,
though preferred by participants, animation was less effective than
static small multiples for analyzing time-series data. Participants in
their experiment preferred animations and in a presentation condi-
tion completed tasks faster when using animation. However, they
also exhibited more errors when using animation, both in presenta-
tion and analysis scenarios. Here we extend prior work by consid-
ering the design of transitions for aggregation operations, similarly
comparing with both static and simple interpolation conditions.

Other aspects of animated transition design include trajectory
paths, staging, and timing. For example, the multi-stage animations
evaluated by Heer & Robinson [HR07] were typically preferred by
participants but did not significantly outperform single-stage an-
imations. Chevalier et al. [CDF14] studied staggering strategies
which use different delays per visual element to reduce occlu-
sion, but found no effect on an object tracking task. Dragicevic et
al. [DBJ∗11] compared time distortion methods, such as slow-in /
slow-out and fast-in / fast-out, and found that slow-in / slow-out
enabled users to better track visual objects. Other studies concern
improving data point trajectory paths using bundling [DCZL15]
or vector field [WASQ18] techniques. Taking this prior work into
account, here we develop both elaborate multi-stage transitions and
simpler variants for comparison.

In addition to effectiveness questions, transitions induced by
aggregation operations may require more complicated designs.
For unit visualizations, animated transitions conserve a one-to-one
mapping between data and visual elements [PDFE17]. In contrast,
aggregation transitions require visual conventions to convey many-
to-one mappings of data points to an aggregate value.

Some prior projects have used animation to depict numerical ag-
gregation. Gapminder Trendalyzer [Gap] uses bubble charts to rep-
resenting the aggregated values (averages and sums) for geograph-
ical regions such as continents and countries. When drilling down
to a more fine-grained level of detail (e.g., from continent to coun-
try), each bubble is subdivided into smaller units. In a related vein,
visual sedimentation [HVF13] depicts incoming data streams and
their accumulated values by employing the metaphor of a physical
sedimentation process. Over time, marks representing individual
data points become part of aggregate “strata” of accumulated data.
Seeing Theory [DJTD] presents interactive visualizations for basic
probability and statistics concepts, including animated calculations
of the mean and variance of sampled numbers. In this work, we
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design and evaluate animated transitions for eight common aggre-
gation functions to transition a 1D dot plot to an aggregate value.

3. Animated Transition Design

We consider eight aggregation operations common to visual data
analysis: count, sum, maximum (max), minimum (min), arithmetic
mean (average), median, sample standard deviation (stdev), and in-
terquartile range (iqr). In the case of stdev, we focus on showing
the range of [-1, +1] standard deviation from the average, rather
than a point estimate. For iqr, we calculate the quartiles using the
R7 method (as used by R and Excel) [R7]. Our primary goal is to
design transitions for which viewers can accurately identify which
aggregation operation is being performed.

We relied on Heer & Robertson [HR07]’s guidelines for adher-
ing to Tversky et al.’s [TMB02] Congruence and Apprehension
principles when designing our animations. We also considered four
high-level design factors along which our designs might vary: tar-
get concept, staging, axis scale, and staggering. We explain our
design choices for each of these factors below. Our design process
began by prototyping a number of candidate designs and gather-
ing informal feedback from members of our laboratory to inform
iterative design. The candidate designs with brief comments are
available in our supplement material. With the exception of max
and min — which lend themselves to simpler designs — we arrived
at two staged animations per operation: a staged elaborate version,
corresponding to our full original design, and a staged basic ver-
sion, which collapses some of the stages of the elaborate version.

3.1. Guiding Design Factors

Target Concept. The animations should concretely represent the
concept we wish to convey. While one could imagine animations
with arbitrary signifiers that would accomplish the task of disam-
biguation (for instance, points could turn green only when averag-
ing, or blue only when summing), such designs would fail to convey
the semantic content of the operation being undertaken. Instead, we
wanted our transitions to convey at least some of the mathematical
character of the operation being conveyed.

Staging. Rather than a single, complex transition, animations
can be divided into a sequence of simpler sub-transitions. Both the
choice of sub-transition keyframes and timing — including pauses
between stages — are important considerations. Given a short dura-
tion, an excessive number of stages may result in too many changes
in rapid succession for viewers to reliably follow [HR07]. On the
other hand, if there are insufficient stages and one simply interpo-
lates from start to end, the target concept may not be adequately
conveyed. Appropriate pauses can add emphasis and prompt con-
sideration of keyframes, while helping avoid an overwhelming ex-
perience. Following Heer & Robertson [HR07], we separate major
visual changes (e.g., axis transitions or the rearrangement of the
data points) into stages with pauses. We combine minor adjust-
ments to color and position into single stages to reduce the total
number of stages and so the complexity of the final animation.

Axis Scales. Animations should minimize disruptive changes
to the axis scale. Previous research has found that changes of

scale can complicate perception of animated transitions, particu-
larly when both axis scales and data points are changing simulta-
neously [HR07]. Accordingly, in our designs we seek to minimize
or, if possible, avoid changes of axis scale and always use sepa-
rate stages for changes to axis scale and changes to the visualized
data. To ensure fair comparisons in our evaluation, we also apply
this consideration to our baseline condition that otherwise performs
simple linear interpolation.

Staggering. An animation should limit the number of objects that
are moving simultaneously. With the exception of min and max, ag-
gregate operations involve the simultaneous combination of multi-
ple data points. Animations for a single output aggregate value can
thus involve the movement of many input points. A natural ques-
tion, then, is how to stagger or stage such movements, while still
ensuring sufficient similarity of movement to give rise to percep-
tual grouping (the Gestalt principle of “common fate” [Pal99]). We
employ different strategies for different aggregation operations, as
described below. In addition, aggregates may be calculated sepa-
rately over multiple groups. With group-by aggregation, we might
animate all the groups at once or animate a single group first to
ensure a single focus of attention, then synchronously animate the
other groups to complete the transition.

3.2. Designs

We now describe our rationales and animation designs for each ag-
gregation operation. Our descriptions focus first on the staged elab-
orate transition, then discuss how we simplify it to produce a staged
basic version. All transition designs are intended to be comfortably
presented over a duration of 2 seconds. Illustrations and specific
details on keyframes and relative timing are depicted in Figure 2.

Count. The count operation tallies the number of data records
in a group. To convey this, we consecutively stack the data points,
such that the final height of the stack reflects the result. The points
are spaced uniformly to emphasize that each point makes an equal
contribution. We separate changes to the axis and to the points by
stages: the axis fades out first, the data points are accumulated with-
out the axis, then the new axis fade in. The goal here is to avoid mis-
interpretation of the point positions. We subdivide the incremental
stacking into three sub-stages, such that groups with more points
take longer to stack, reinforcing the larger count. For the basic ver-
sion, we instead stack all the points in one stage.

Sum. A sum aggregate adds up the values of the data points. To
convey an accumulation, our animation design stacks up the val-
ues. To emphasize the specific values and differentiate from count,
we first horizontally offset the points and augment them with line
segments whose length encodes the data value. We then stack the
lines and grow the axis scale incrementally. We do not fade out the
axis, as the final axis represents the same semantic unit, just on a
different scale. We also display a supplemental tick that appears at
the bottom point and moves to the top as a guide. The basic version
reduces the visual changes by skipping the horizontal offset.

Max & Min. Maximum and minimum operations have arguably
the simplest target concept: they filter the data to only the highest or
lowest value. Accordingly, it is sufficient for the animation to con-
vey which extremal point is being selected and fade out the others.
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Figure 2: Designs of animated transitions for 8 aggregate operations with captured frames. Frames with border lines are key frames so that
changes happen between them. Each grey line under each series of the frames is a timeline of the animation. The dark grey spans indicate
the moves or changes of the graphic objects, and the light grey spans indicate pauses.
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Doing so does not require axis scale changes or staggering. As a re-
sult of this simplicity, there is no difference between the basic and
elaborate versions for these operations. We perform only minimal
staging: we first introduce a tick element to annotate the extremal
value, fade out the non-extremal points, then remove the tick.

Average. The arithmetic mean or average is a common measure
of central tendency for a distribution. One option for depicting an
average could be to show how it is calculated, for example, by first
animating the sum of all values followed by division by the num-
ber of records. However, this is not the only means of calculating
averages (c.f., online methods) and would induce potentially jar-
ring changes of the axis scale. Instead, we convey the property that
an average is the value at which the residuals (deviations from the
mean) sum to zero. Movements are staggered to arrive at the aver-
age from above and below simultaneously to signify this symmetry.
The basic design, in contrast, does not illustrate the residuals.

Median. The median is a value that bisects a distribution, such
that half the values lie below the median and half lie above, pro-
viding a more robust measure of central tendency. Our animation
depicts this process by visually segmenting a distribution into lower
and upper halves, and then highlighting the median value between
the two. The difference between elaborate and basic designs is the
staggering when bisecting. The elaborate transition counts each
point from the top and bottom synchronously with incremental
speed to find the median; the basic transition divides them at once.

Stdev. The standard deviation is a measure showing the degree
of the dispersion. Its mathematical definition involves the square
root of the sum of squared residual values. This calculation can be
depicted geometrically using square shapes to convey variance, as
done in Seeing Theory [DJTD]. Nevertheless, we abandoned this
method as the two consecutive conversions (points to residual lines
to variance components) was too involved and distracting. Instead,
we abstract these details by starting with residual lines (initially
the same as for the average transition) and then collapse them to
form the upper range [µ,µ+ σ]. We then fade in the lower range
([µ−σ,µ]) to signify that these two spans are symmetric. The basic
version skips illustrating the residuals.

IQR. The interquartile range is the interval from the 25th per-
centile to the 75th percentile (i.e., spanning the two inner quartiles),
indicating where the central half of the data values are distributed.
To emphasize the quartile boundaries, we use a similar animation as
for median, but dividing into four groups instead of the two. After
the separation into quartiles, the points fade out and a range grows
from the median to inner quartile boundaries. The basic transition
collapses stages to visualize the quartile separation all at once.

4. Evaluation: Identifying Operations from Transitions

To evaluate our animation designs, we conduct two controlled ex-
periments. The first, a pilot study on Mechanical Turk, was de-
signed to assess the parameters of our identification task, and de-
termine which aggregate measures were difficult to disambiguate.
The second, a study with undergraduate computer science stu-
dents in a visualization tasks, assesses both the quantitative per-
formance and subjective preference of students for using differ-
ent transition designs to identify aggregate operations. Materials,

including stimuli and data tables, are available in the supplemen-
tal material and online at https://github.com/uwdata/
aggregate-animation-data.

4.1. Stimuli

We compare our staged animation designs with two baseline condi-
tions: static and interpolated transitions. Static transitions are com-
posed of two static graphics without any animation. Interpolated
transitions linearly interpolate marks in the unaggregated charts to
their final values. The data points move to the positions of their ag-
gregated values in count, sum, and average operations, and simply
fade out in the other operations. Axes fade out and in for count,
while axis scales change incrementally for sum.

All transitions are implemented using D3.js [BOH11] and ini-
tiated by clicking a "play" button. For static transitions, the unag-
gregated chart simply replaces the aggregated chart. Otherwise, the
transition plays for 2 seconds. Upon completion, the play button
changes to a "reset" button that, if clicked, swaps back to the unag-
gregated chart and allows subjects to replay the transition.

Each stimulus includes two groups of one dimensional quantita-
tive values, randomly sampled from two different log normal dis-
tributions with distinct average and median values:

X1 ∼ exp(N (µ = 5,σ = 3))

X2 ∼ exp(N (µ = 5,σ = 4))

We sample differing numbers of data points (N1 ∈ {6,7,8,9},
N2 ∈ {12,13, ...,17}) to ensure distinct count values. We also con-
strain the sampled distributions such that µsample > σsample, ensur-
ing the stdev range does not cross zero.

4.2. Pilot Study

To inform subsequent evaluation, we first conducted a pilot study
using Amazon Mechanical Turk. While Mechanical Turk provides
a convenient platform, we were concerned that this subject pop-
ulation was unlikely to match the expertise of people who regu-
larly conduct analyses or consume analysis results. Nevertheless,
we wanted to get an initial sense of subjects’ familiarity with and
confusion among aggregation operations. To do so, we employed
both comprehension and identification tasks.

In a comprehension task, we first show an example transition of
an aggregate operation and then show an unaggregated chart along-
side four aggregated charts. The subject is asked to select the ag-
gregated chart that correctly depicts the result of applying the ag-
gregation operation to the unaggregated data. The three incorrect
choices show aggregate values that differ by 10%, 20%, or 30%
from the correct value. The primary purpose of this task is to in-
troduce the aggregation operations and spur critical engagement
from participants. After a block of comprehension tasks, partici-
pants completed a block of identification tasks, in which they are
shown an aggregate transition and asked to identify which opera-
tion was performed. For both task types, participants are required
to play a transition at least once before responding, but are then free
to replay it as much as they like.

After completing an initial survey, participants completed 32
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Figure 3: Confusion matrices for pilot study judgments of transition / operation correspondences. Values along the diagonal indicate correct
responses, all others are incorrect. For each transition style, we consistently find three groups of aggregate operations that are confused with
each other as shown in orange squares; {count,sum,max},{average,median},and{stdev, iqr}.

comprehension tasks followed by 32 identification tasks. In each
case, participants saw four replications for each of eight aggrega-
tion operations, presented in randomized order. The transition style
was assigned as a between-subjects variable, so a single participant
saw a consistent style throughout their session.

We recruited roughly 30 participants per transition style (31 for
elaborate) on Amazon Mechanical Turk. Based on participant self-
reports, we filtered out subjects who reported color vision deficien-
cies or unfamiliarity with the concept of an average. Participants
were paid $1.45 US dollars. This amount was selected using inter-
nal pre-tests indicating a 12 minute session. However, the actual
average completion time was 22 minutes (for $3.95 per hour).

Figure 3 shows the collected responses for the eight-way iden-
tification task. From the responses we see a consistent pattern of
confusion across the transition styles, with three recurring groups
prone to misidentification: {count,sum,max}, {average,median},
and {stdev, iqr}. These groups correspond to commonalities among
the operations: the count, sum, and max operations all visually se-
lect a “high” value (though in some cases only after initial transi-
tions); the average and median both involve central tendencies; and
stdev and iqr both depict ranges rather than point estimates.

4.3. Main Experiment

Based on our pilot study, we developed a modified identification
task, shown in Figure 4. To simplify the task and streamline the
analysis, we adopt a two-alternative forced choice variant: given
a transition and the name of an aggregation operation, the subject
must indicate whether or not the presented transition matches the
purported aggregate operation. Following the confusion matrix in
Figure 3, we choose our alternatives (actual vs. purported oper-
ation) from among four clusters of “similar” operations: {count,
sum, max}, {min}, {average, median}, and {stdev, iqr}, resulting
in (3×3)+(1×1)+(2×2)+(2×2) = 18 questions. The aggre-
gate operation is a within-subjects factor, while the transition type
is between-subjects — each participant saw a consistent transition
style. Subjects completed four replications for each transition / op-
eration pair, presented in randomized order, for a total of 72 stimuli.

In addition, subjects performed a ranking task (Figure 5) that

presents all transition styles for each aggregate operation and asks
subjects to rank them in order of subjective preference. We then
ask subjects to provide the rationale for their rank judgments using
a free-form textbox and require they write more than ten words.
For each of the eight ranking questions, participants could play the
transitions as many times as they liked, but were required to play
each transition at least once before assigning ranks.

To ensure sufficient familiarity with aggregate operations and
visual analysis, we recruited computer science undergraduate stu-
dents in a visualization course. All students were familiar with
common visual encodings and aggregate statistics, and had expe-
rience using visualization tools including Tableau and D3. Partici-
pants were compensated with extra credit in their course.

We recruited a total of 84 subjects, and they participated through
a website remotely. We filtered out four who reported color vision
deficiencies and another three whose identification accuracy was
below 50% (worse than chance). We also excluded two responses
with completion times of more than an hour. In total, we analyzed
data from 77 participants (33 female, 42 male, 2 other) distributed
nearly uniformly over transition styles (20 static, 19 interpolated,
18 staged basic, and 20 elaborate).

4.4. Experiment Results

We analyze accuracy, completion time, and transition play count
as performance measures for our identification task. We then ex-
amine participants’ transition rankings and text rationales to assess
user preference and visual strategies. We first investigate overall
differences across transition styles and aggregate operations, then
examine results for each operation in detail.

We use hierarchical Bayesian models to analyze the three perfor-
mance metrics. We use weakly-regularizing priors (default choices
by the brms library in R) and use Bernoulli, shifted log, and Pois-
son functions as response distributions for accuracy, completion
time, and play count, respectively. Each model takes the form:

response∼ transition∗operation+mismatch

+order+(1|sub ject)

That is, we include the transition type, the named aggregation

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



Y. Kim et al. / Designing Animated Transitions to Convey Aggregate Operations

Figure 4: Identification task interface. Subjects view a chart tran-
sition and then indicate whether or not it matches the named ag-
gregation operation.

Figure 5: Rank task interface. Subjects view each transition type
for a given aggregation operation, rank order them by preference,
and provide a textual rationale for their choices.

operation, and their interaction as fixed effects. In addition, the
term mismatch is a binary indicator that is true when the transition
and purported operation do not match, which we empirically ob-
serve leads to higher error — that is, accuracy was higher when the
transition did in fact signify the aggregate operation being asked
about. The order term is the index of the stimulus presentation or-
der and accounts for a mild learning effect. Finally, the (1|sub ject)
term indicates a hierarchical (or random effects) term to capture
varying performance intercepts per subject.

Qualitative responses from the ranking task were independently
coded by two authors. The authors confirmed each others’ codes
and resolved conflicts via discussion.

4.4.1. Overall Performance

Across transition types, static transitions unsurprisingly exhibit
higher play count rates across all aggregation operations (see Fig-
ure 6), though the strength of this effect diminishes for the sim-
pler max and min operations. On average, subjects viewed animated
transitions only once, but tended to replay static transitions one or
more times. In terms of rankings (Figure 7), participants consis-
tently prefer the staged (basic and elaborate) transitions, followed
by interpolated, and finally static transitions.

Across aggregate operations, max and min exhibit the highest
identification accuracy, followed by the two accumulations (count,
sum), then the two central tendencies (average, median), and finally
the two measures of variability (standard deviation, interquartile
range) (Figure 6).

Comparisons of accuracy and completion times for transition
styles pooled across aggregation operations should be cautious be-
cause there is the strong effect of aggregation operation type, and
transition designs are very different across the operations. Instead,
we compare these performance measures for transition types sepa-
rately for each aggregation operation below. Figures 6 and 7 present
performance and ranking results by aggregation operation.

4.4.2. Count Performance

For count aggregation, all transition styles perform similarly in
terms of accuracy. In terms of completion time, the static and elab-
orate transitions are faster (∆µ ∼ 1), but with 95% credible inter-
vals that overlap those of the interpolated and basic transitions. As
shown in Figure 7, subjects prefer the basic transition, followed by
the elaborate transition. Participants who selected the staged basic
transition specifically praise the visual metaphor of stacked points:
“we can see the number of dots lined up nicely making it obvious
there was a count”, “really conveys the idea of counting obects[sic]
by placing points equidistant from each other signifying that we
don’t care about their actual value.” The elaborate transition is the
next most preferred, though its complexity is mentioned as detract-
ing from its effect: “similar to the [basic], but has some useless and
meaningless animation”; “Staged animation is confusing when all
the dots look the same and move along the same line.”

4.4.3. Sum Performance

For the sum aggregation, all transitions perform similarly in terms
of accuracy and completion time. The staged elaborate transition
is the most preferred, followed by the interpolated transition. Par-
ticipants note that the horizontal offset followed by the accumula-
tion of lines in the staged elaborate transition clearly conveyed the
notion of sum: “The lines in the transition I ranked first were im-
portant in my mind because it showed that it wasn’t just a count,
it was summing the individual distances from 0.”; “The way each
data point had a line made it easy to see they all had contribution
to the ending point. This made it clear that it was a sum.”

However, those who prefer the interpolated transition thought
that the collapse of the points to the aggregate value was a good
visual metaphor for summation: “the collapsing transition... made
it obvious to me that it was summing”; “it seems to be merging the
values which is how I usually visualize the summation.”

4.4.4. Max and Min Performance

For the max and min operations, participants in the elaborate and
basic condition saw the same staged animation. Since these two
populations saw different animations for all other operations, the
comparisons were slightly different, explaining the differing pos-
terior distributions of identification task performance in Figure 6.
Subjects were only asked to rank three animations for these oper-
ations, hence the three options in Figure 7. Completion time was
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Figure 6: Posterior probability distributions of expected accuracy, completion time, and play count of each transition style within each
aggregate operation. Overlaid points indicate means, and horizontal lines indicate 95% quantile credible intervals.
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Figure 7: Rankings of participants’ preferred transition style across aggregate operation.

faster for the static transitions (∆µ > 1.3), with 95% credible inter-
vals that do not overlap any of the other transitions. Accuracy was
high (mean of greater than 95%) across all conditions, although for
max, the staged transition outperformed the interpolated transition.

While participants prefer the staged transition most often, many
prefer the interpolated transition. The rationales reveal two con-
flicting opinions. Those who favor the staged transition find the
tick annotations helpful: “Showing the line as a new feature draws
your eye to the maximum before getting rid of the data which makes
it first place.”; “Clear selection of top value by using a thick line
while all points were visible”. Those who favor the interpolated
transition were skeptical of the utility of the animated elements in
the staged transition, and feel that the aggregate operation is easy
enough to identify without additional aids: “I felt that no animation
was necessary to show that the topmost element is the maximum of

each set.”, “Same rationale as the maximum, minimum is an easy
concept to present and doesn’t need that much animation.”

4.5. Average and Median Performance

For average and median operations, the staged elaborate transition
meets or exceeds the others in terms of accuracy and completion
time. For the median operation, the 95% credible interval for the
accuracy of the elaborate transition is fully separated from that of
the static transition (∆µ = 0.19). The staged elaborate transition
is the most preferred for the average operation, whereas the basic
version is most preferred for median. For participants who prefer
the staged elaborate transition for the average specifically mention
the gray residuals as matching their conception of the target con-
cept, helping with explainability and interpretability: “for average,
it really helps to see the ’area under the curve’, to emphasize that
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selected line really is an average, supported by equal shaded area
(by lines)”; “The explicit vertical lines show the different weight-
ings by value, which is quite compelling.”

For the median operation, participants who prefer the staged ba-
sic transition like the use of color, but felt that the additional el-
ements in the elaborate transition (such as the removal of points
one by one), are distracting: “The colors were incredible helpful.
Of the two colored ones, the simpler one was easier to understand
at a glance.”, “The use of color to delineate elements on either
side of the median is really helpful, but in this case the additional
animations don’t provide additional clarity. Perhaps here, color is
*so* useful, that the additional steps seem a superfluous distrac-
tion.” That said, others did appreciate the per-element animation in
the staged elaborate transition for the median operation, as it lined
up with their internal conception of the target concept: “The first
place one is great here – does median the way i think about me-
dian, taking off values from each end of the sorted values.”, “I like
the counting motion in [the staged elaborate transition] which is
how I usually visualize finding a median.”

4.6. Standard Deviation and Interquartile Range Performance

For stdev and iqr, the staged elaborate transition performs best in
terms of accuracy and completion time. It has overlapping 95%
credible intervals with the other conditions, with an exception for
the iqr operation, where it exhibits higher, non-overlapping accu-
racy relative to the static transition (∆µ = 0.26). The staged elabo-
rate transition is the most preferred for the stdev operation. Partici-
pants note that its depiction of the residuals of the average matches
their internal target concept: “they were more clearly calculating
an average and then showing the same size range on either side
of the average line.”; “The fourth graphic’s discretization makes
average very clear, and the standard deviation logically follows.”

The staged basic transition is more often preferred for the iqr
operation, with the staged elaborate as the second most preferred.
People who favor the basic transition appreciate the use of color
to identify quartiles in both staged animations as a way of clearly
communicating the inter-quartile range, but find the elaborate tran-
sition needlessly ornate: “The 4 colors made it really easy to un-
derstand that it was splitting it into 4 quarters”; “I thought the
[staged elaborate transition] added too much animation without
it being helpful.”; “[the staged elaborate transition] just was con-
stant movement and made the transition a little more confusing.”

5. Discussion

We now discuss the effectiveness of animated transitions for aggre-
gation operations, emphasize the importance of conveying a target
concept, and extend our transition designs to additional operations.

5.1. Transition Effectiveness varies by Aggregation Operation

The observed effectiveness of the tested transitions strongly de-
pends on the particular aggregation operation. The max and min
operations are accurately and quickly identified regardless of tran-
sition type: while animation is preferred, it does not appear to pro-
vide performance benefits. For count and sum operations the perfor-

mance distributions for each transition type overlap, but with elabo-
rate and static exhibiting slightly shorter response times (∼ 1 sec.).
Participants’ text responses express appreciation for design differ-
ences that disambiguate the two: equidistant stacking for count and
summation lines for sum. Meanwhile, staged elaborate transitions
exhibit benefits for conveying central tendencies (average, median)
and measures of spread (stdev, iqr). In these cases, participants
value the depiction of residuals (for average and stdev) and quantile
segmentation (for median and iqr) to convey the target concepts.

5.2. Static Transitions Benefit from Replay

Unlike the animated transitions, static transitions were typically
played more than once. This result suggests that participants used
the replay feature to aid identification, for example by further com-
paring start and end states. However, in some real-world scenarios
(such as presentations) it may not be feasible for viewers to replay
a transition. Our results in favor of animation may thus be con-
servative, showing static transitions in a stronger light than may
actually apply. In addition, we intentionally cue participants atten-
tion up front. In more realistic solutions, viewers may not attend
to features of the start and end states in sufficient detail prior to a
change of view. These observations, in conjunction with the equiv-
alent or better performance of animated transitions, strengthen the
argument for the use of appropriately-designed animations.

5.3. Target Concept Congruence Drives Preferences?

Our results provide evidence that user preferences are impacted by
how the concept depicted by an animation relates to participants’
understanding. As seen in the results and quotes above, subject
rationales explain differences among ranking choices in terms of
how well the animation aligns with their mental model of the ag-
gregation operation. For the sum operation, the interpolated transi-
tion is ranked highly by some participants, who report interpreting
the (upward) coalescing of points as a summation. For the stdev
operation, multiple participants state that they prefer the interpo-
lated transition because it introduces the lower and upper ranges
simultaneously, whereas the staged animations show the construc-
tion for one side first, then extend it to the other. Echoing Tversky
et al. [TMB02], it appears that congruence between prior mental
models and the animation design correlates with user preference.

5.4. Preferences and Potential Novelty Effects

For the most part, subject preferences either align with the per-
formance results or at least do not contradict them. We observe
a consistent preference for the staged animated transitions, then
interpolated transitions, and lastly static transitions. However, we
acknowledge that our results may also suffer from a novelty ef-
fect. For example, with prolonged use, viewers might prefer shorter
or less elaborate transitions. Some rationales specifically acknowl-
edge potential novelty issues: “I like the last one with the fancy an-
imation, but I do think the second from the left is enough for most
cases”; “I am not sure what interquartile range with median is, but
the 1st one I choose looks [like the] more complicated animation
so I like it more.”; “I like more [feature-]packed animations.”
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Figure 8: Animated transition designs for more complex aggregate
operations, from a univariate dot plot to a box plot, histogram, or
bootstrapped mean and confidence interval.

5.5. Reusing Animation Designs for Additional Operations

We focused on our eight aggregation operations because they are
commonly used and address ambiguities that we believe are likely
to arise in practice. That said, we also look upon our animations as
reusable “component” designs that can be combined with other an-
imations to convey more complex operations. As shown in the top
of Figure 8, we can animate the construction of a box plot by ex-
tending our iqr animation. A histogram can be created by applying
a count animation, where the histogram bins define the groups (Fig-
ure 8, middle). As a more complex example, bootstrapped means
and confidence intervals can be depicted using average and stdev
animations: a sampling plus average animation can be applied re-
peatedly, followed by a stdev animation to form a parametric con-
fidence interval over the bootstrapped means (Figure 8, bottom).

5.6. Limitations

Of course, our work also exhibits a number of limitations. Our ex-
amples focus on relatively small datasets, involving aggregation of
only a dozen or so points per class. The designs we propose may
fail to be comprehensible or suffer rendering performance degra-
dation as the number of points increases. That said, we note that
this critique is also applicable to existing animation techniques in
the literature. Sub-sampling may be one means to address scalabil-
ity issues, but requires future study and potential refinement. We
also focus only on transitions that aggregate univariate data in the

form of dot plots. As such we do not explicitly address animation
designs concerning other mark types, multivariate plots, or deag-
gregation (e.g., drill-down). Nevertheless, variants of our presented
techniques are applicable in other cases; for instance stacking ani-
mations for count or sum can be applied to other mark types.

This work primarily seeks to support unambiguous identification
of aggregation operations, assuming basic statistical literacy on the
part of the viewer. To be clear, we do not make any claims regarding
the educational value of our animation designs for learning about
aggregation operations. We leave investigation of potential peda-
gogical uses to future work. We expect that additional concerns,
including longer playback, pauses with descriptive annotations, as
well as accompanying text and graphics, might play a role. More-
over, for such cases animation itself may not be particularly valu-
able (c.f. Tversky et al. [TMB02]), but the choice of keyframes un-
derlying our elaborate designs might prove a useful starting point
for either animations or static multi-panel explanations.

6. Conclusion & Future Work

We presented animation designs for eight common aggregate op-
erations and conducted a controlled experiment to assess their ef-
fectiveness for identifying what operation is being performed. We
found that our staged animated transition designs were able to meet
or exceed the accuracy of static and simpler interpolated transi-
tions for identifying measures of central tendency (average, me-
dian) and spread (standard deviation, interquartile range). In other
cases (count, sum, maximum, minimum) static and animated tran-
sitions fared similarly. Participants generally prefer our staged an-
imation designs, but in particular prefer those transitions that are
congruent with their individual mental model of the operation. Our
results extend existing design treatments of animated transitions
and provide new evidence of animation effectiveness and how it
varies with the specific operation depicted.

Still, many challenges remain. Our proposed animation designs
only concern aggregate operations for position encodings of uni-
variate data. Future work might consider techniques for other visual
variables and multi-dimensional displays. In addition, techniques
and effectiveness studies for large data volumes remain an open
problem. For example, our count and sum animations are not effec-
tive with many data points, leading to overplotting when stacked.
Regarding evaluation, we focus on using animation to better iden-
tify which operation is being performed, and measured accuracy,
completion time, and play count alongside subject-reported rank-
ings and rationales. Eye-tracking or other physiological measures
might enable a more detailed account of participants’ strategies
and experienced difficulties. Moreover, future design and evalua-
tion work is needed to consider other measures, such as memora-
bility, and other uses of animation, such as helping to teach aggre-
gation operations to an unfamiliar audience.
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