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ABSTRACT ARTICLE HISTORY

We consider the localization of eigenfunctions for the operator L = Received 28 September 2018
—div A grad + V on a Lipschitz domain Q and, more generally, on Accepted 20 January 2019
manifolds with and without boundary. In earlier work, two authors
of the present paper demonstrated the remarkable ability of the
landscape, c.Iefinec.I as the §o|ution to Lu=1, to predict. thg location Schrodinger equation:

of the localized elgenfunctlpns. Here,. we explal_n and Justlfy a new spectrum: the landscape of
framework that reveals a richly detailed portrait of the eigenfunc- localization

tions and eigenvalues. We show that the reciprocal of the landscape

function, 1/u, acts as an effective potential. Hence from the single

measurement of u, we obtain, via 1/u, explicit bounds on the expo-

nential decay of the eigenfunctions of the system and estimates on

the distribution of eigenvalues near the bottom of the spectrum.

KEYWORDS
Agmon distance;

1. Introduction

The term localization refers to a wide range of phenomena in mathematics and con-
densed matter physics in which eigenfunctions of an elliptic system concentrate on a
small portion of the original domain and nearly vanish in the remainder, hindering, or
preventing wave propagation. For many decades, its different manifestations have been
a source of wide interest, with an enormous array of applications. In addition to cele-
brated results concerning localization by disordered potentials [1-6], there is localization
by randomness in the coefficients of —div AV and of the Maxwell system [7, 8], local-
ization by a quasiperiodic potential [9], and localization by fractal boundaries [10], to
mention only a few examples. However, with the notable exception of the recent work
[9] for a 1D almost Matthieu operator, these results do not address detailed, determinis-
tic geometric features of the localized eigenfunctions.

The present paper changes the point of view through the introduction of a new effect-
ive potential, and applies it to establish the location, shape, and a detailed structure of
the exponential decay of the eigenfunctions of the operator L = —div A grad+ V on a
finite domain, as well as estimates on its spectrum.

CONTACT Svitlana Mayboroda @ svitlana@math.umn.edu @ School of Mathematics, University of Minnesota, 127
Vincent Hall, 206 Church St. SE, Minneapolis, MN 55455-2020, USA.
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In 2012, Filoche and Mayboroda introduced the concept of the landscape, namely the
solution u to Lu=1 for an elliptic operator L, and showed that this single function has
remarkable power to predict the shape and location of localized low energy eigenfunc-
tions of L, whether the localization is triggered by the disorder of the potential, the
geometry of the domain, or both (see [11]). These ideas led to beautiful new results in
mathematics [12, 13], as well as theoretical and experimental physics [14].

In this paper and its companion papers [15] in physics and [16] in computational
mathematics, we propose a new framework that greatly extends the predictive power of
the landscape function u. We show that the reciprocal 1/u of the landscape function
should be viewed as an effective quantum potential revealing detailed structure of the
eigenfunctions. The eigenfunctions of L reside in the wells of 1/u and decay exponen-
tially across the barriers of 1/u. Under hypotheses on the behavior of u that can be con-
firmed easily and efficiently numerically, the original domain splits into independently
vibrating regions, and the global eigenfunctions are exponentially close to eigenfunc-
tions of subregions. As a corollary, we prove an approximate diagonalization of the
operator and confirm that localization according to 1/u gives an accurate eigenvalue
count up to exponential errors.

Predicting the eigenvalue count or “density of states” is an important goal linking
this paper to the other two. The proposal in [15] to use 1/u to estimate the density of
states, starting from the very bottom of the spectrum, has provoked a burst of applica-
tions beyond the scope of the single-particle Schrodinger equation. In particular, in the
context of the Poisson-Schrodinger system, the paper [17] finds an iterative algorithm
that speeds up the time it takes to compute the performance of the type of semicon-
ductor used in LED devices from one year to one day. The key to this acceleration is
that at each step of the iteration, a new potential is computed as a function of the dens-
ity of states. This modifies in turn the operator L and therefore the effective potential 1/
u from which the next density of states is derived, without ever solving the Schrodinger
equation. In the companion article [16] in computational mathematics, we explore sys-
tematically efficient shortcuts leading from the effective potential to the density
of states.

Although some of our applications are to random regimes, the effective potential 1/u
is a deterministic tool. It is not designed to replace probabilistic methods, but to com-
plement and enhance them by providing a new way to detect the quantum geometry of
disordered materials. Statistical mechanics often treats the source of disorder as a black
box, whereas this mechanism allows us to enter the box and identify detailed determin-
istic features of the disorder.

Put another way, this paper does not aim to prove localization, but rather to describe
a new mechanism to measure it. The results are conditional on the separation of the
potential wells of the effective potential, but this separation can be confirmed efficiently
numerically. As a result, for many families of random potentials V, one can learn from
the effective potential 1/u what the eigenfunctions look like. Finally, the paper does not
address wave interference, another suggested cause of localization. It does, however,
capture quantitatively effects of quantum tunneling.

The paper is organized as follows. In Section 2, we state our results in a special case
and illustrate their numerical significance. In Section 3, we give our main definitions
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and state some preliminary estimates on the landscape function and eigenfunctions. In
Section 4, we derive our exponential decay estimates, known as Agmon estimates, in
the setting of bounded domains in R”. In Section 5, we deduce the approximate diago-
nalization into localized eigenfunctions and estimates on the eigenvalue distribution.
Finally, in Section 6, we describe how to generalize our theorems to manifolds and
prove the boundary regularity theorems stated in Section 3. We also address the diffi-
culty that Agmon metrics are only defined for continuous coefficient matrices A;
because our estimates are independent of the modulus of continuity, we are able to use
a fairly straightforward procedure to approximate bounded measurable coefficient
matrices by continuous ones.

We thank the referees for a careful reading of the manuscript and valuable expository
suggestions.

2. Outline of results and comparison with numerical examples

To describe our results we consider the very special case in which the operator is
(minus) the ordinary Laplace operator plus a nonnegative, bounded potential,

L=-A+V (0<V(x)<V; V:=supV)

acting on periodic functions, that is, on the manifold M =R"/TZ". It is crucial to
applications that the estimates be independent of the “size” T of the manifold M as
T — oo. What makes them even more valuable is that they are essentially universal, as
we shall discuss later in this section."

Assume that V is positive on a set of positive measure. Then the landscape function
u, the solution to Lu=1 on M, exists and is unique. Moreover, u >0 by the maximum
principle. Our starting point is the conjugation of the operator L by multiplication by u:

1 | 1
Lg = ;L(gu) = —;dlv (u*Vyg) +;g.

The operator L has a similar form to L but with the new potential 1/u replacing V.
Writing the quadratic form associated with the operator L in terms of L, we find the
identity (Lemma 4.1)

JM[|Vf|2 + VP dx = JM <L42|v(f/u)|2 +i f2> dx, 2.1)

which holds for all f € W'?(M). In particular,
[ o v = | g a 22)
M M

Inequality (2.2) suggests that we can replace V with a new effective potential function
1/u. In fact, we will need the full identity (2.1) to demonstrate this. The identity reflects
a trade in kinetic and potential energy, enabling 1/u to capture effects of both the kin-
etic term |Vf]> and the potential term V£ rather than only the potential energy.

"Furthermore, in the body of the paper, we will treat operators with bounded measurable coefficients on Lipschitz and
more general domains and on compact C' manifolds with and without boundary; see Sections 3 and 6.



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS e 1189

=5

)
3o Fna ey

Figure 1. Bernoulli potential (left) and the fifth eigenfunction (right).

An example of the localization we are trying to predict and control is shown in
Figure 1, which depicts a potential V on R?/TZ* with T=80 and constant values on
unit squares, V=0 on white squares and V=4 on black squares. The values were
chosen independently, with probability 30% for V=4 and 70% for V=0. In other
words, V is a Bernoulli random variable on unit squares. At the right is the graph of
fifth eigenfunction. In spite of the fact that the zero set of V percolates everywhere, this
eigenfunction and dozens of others are highly localized.

2.1. Exponential decay

The first main result of this paper is the rigorous proof that the steep decay in
Figure 1 comes from the barriers of the effective potential. We do this by formulat-
ing and proving appropriate exponential decay estimates of Agmon type (see [I8,
19]). Roughly speaking, these theorems say that if (2.2) holds, then eigenfunctions of
eigenvalue 4 have “most” of their mass in the region

E(A4+6)={xeM:1/u(x) < i+d}

for a suitable small 6 >0, and exponential decay in the complementary region.
To formulate our estimate precisely, consider the weights

1
wy(x) :=max[———4, 0.
0 = mex{ Gy = )

Exponential decay is expressed in terms of the so-called Agmon distance, traditionally
built from V, but for our purposes arising from 1/u. We define our version of Agmon
distance, which we will refer to loosely as the effective distance, as the degenerate metric
on M given by

piy) = inf | wi(0)' 150

with the infimum taken over absolutely continuous paths y : [0,1] — M from y(0) = x
to y(1) = y.
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Figure 2. E(As +0) = {1/u(x) < As + 0} (left) with fifth eigenfunction superimposed in gray
scale (right).

Theorem 2.1. (see Corollary 4.5) Let  be an eigenfunction: Ly = Ay on M. Let
h(x) = his(x) = inf{ p; (x.y) 1y € B+ ) |

be the effective distance from x to E(A+ ). Then
J M (|Vy)* 4+ Vy?) dx < so(V/a)J Vy? dx. (2.3)
{h>1} M

The theorem says that the square density and energy of the eigenfunction are at most
of size e™" with h the effective distance from E(A + &). The theorem only guarantees
decay insofar as the function h grows. But in numerical examples, the growth of 4 and
the way it matches the decay of eigenfunctions is very evident, as we will illustrate
shortly using the eigenfunction in Figure 1. Later in this section, we will discuss the typ-
ical behavior as T — oo0.

The main difficulty of the proof is to compensate for the price we paid for replacing V
with 1/u, namely that the gradient term |Vf|* has been replaced by «2|V(f/u)|* in (2.1).
We can’t afford this dependence on u, and a crucial feature of the estimate we obtain in
(2.3) is that this part of the dependence on u disappears, leaving only the effects of 1/u.

Remarkably, we get a uniform bound, independent of the dimension #n and the size T
of the manifold. It is universal in that it depends only on the effective distance and the
scale-invariant ratio §/V. The parameter J is at our disposal, but a natural choice is to
take 0 less than the distance between successive eigenvalues, in which case ¢ should be
viewed as a spectral gap. Given that the dependence on parameters is so explicit and
scale-invariant, the estimates can be interpreted easily both numerically and physically
across a wide family of contexts.

To illustrate this exponential decay, we compute the effective potential 1/u(x) for the
Bernoulli potential in Figure 1. Figure 2 shows the contour of E(/4s + J) on the left with
As = 0.45508, the fifth eigenvalue. (The value é = 0.005 was chosen as the average spac-
ing between eigenvalues in the vicinity of the fifth.) Overlaid on the right in gray scale
are the values of fifth eigenfunction 5. Note that most of 5 occupies just one
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component of the set E(As + J). In fact, dozens of eigenfunctions coincide essentially
with single components or clusters of components.

2.2, Approximate diagonalization

So far, estimate (2.3) only guarantees that /5 is supported primarily in a union of wells,
that is, it is mostly a linear combination of highly localized functions, whereas Figures 1
and 2 show that the eigenfunction is primarily a single spike. We want to show that
eigenfunctions are single spikes or clusters of spikes and justify implicitly the numerical
procedure for finding the eigenfunctions in order by examining the wells separately,
starting from the deepest (see [16]).

To prove that eigenfunctions localize to a single well or a cluster, we establish an
approximate diagonalization. This will require an extra assumption on spectral gaps.
For the purposes of localization and diagonalization, near multiplicity, or resonance, is
the enemy. Eigenfunctions with nearly the same eigenvalue can, in fact, share wells.

We introduce a space of localized eigenfunctions as follows. Consider a threshold
that will be used to handle eigenvalues 4 < fi—3. Choose any subdivision® of E =
E(n + ¢) into a finite collection of disjoint closed subsets

E=UE,.
l

Let S denote the smallest effective distance p; between distinct pairs of sets E, and
Ey. Let Q, be the S/2 neighborhood® of E; in the effective distance Pu- Let @y, =
1, ..., be the orthonormal basis of L?(€)) of eigenfunctions of L satisfying the Dirichlet
condition ¢ = 0 on M \ Q. By results analogous to the exponential bounds for , these
functions ¢,; are concentrated near E; and decay exponentially in the larger region €,
provided the corresponding eigenvalue satisfies 1,; < i In other words, such functions
are localized to a single well or cluster E; in M.

Denote by ®,;) the orthogonal projection onto the subspace of L?*(M) spanned by
¢y; with eigenvalues between a and b, and ¥, ) the corresponding spectral projection
for eigenfunctions of L. Denote by ||-|| the norm of L?*(M). Our main result is
the following.

Theorem 2.2. (see Theorem 5.1) If \ is an eigenfunction of L with eigenvalue A on M
and A < i—90, then

_\3
V -
-0 snalP < 300( L) oSy @)

If ¢ = @y is a localized eigenfunction with eigenvalue p = p,; < i—0, then

3
V 3
||(P_\P(;¢75,;¢+5)(p||2 S 300 <g> € S/2||(/)||2

2The E; are typically connected components of E, but since the theorem is stronger when the minimum separation S is
larger, it is sometimes useful to merge nearby wells into one set ;.

3The sets Q; can also be chosen to be somewhat larger, provided each Q, is separated by at least pji distance S/2
from E, for every ¢’ # ¢. They are roughly in the spirit of Voronoi cells.
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The interpretation is that the eigenfunctions i/ are linear combinations of localized
¢y associated with the spectral band 4A%4. In particular, if the projection has rank one,
then  lives primarily in one well or cluster E,. This is the kind of localization we see
in numerical simulation.

Let us make the spectral gap condition required for the projection to have rank one
more explicit. If we choose J so that

§/V > 30e 56, (2.5)

then the constant on the R.H.S. of (2.4) is < 1/90. If there is only one eigenvalue y,; in
the range (41—9,4+ ), then the projection has rank one, and the eigenfunction y is
localized. Up to the factor 1/6 in the exponent, this is the best result of its kind that
one can hope for. If the spectral gap J between eigenvalues i, ; in adjacent E; is smaller
than Ve for some sufficiently large c, then the eigenfunction may be a linear combin-
ation with significant contributions from more than one E,.

Finally, we describe the correspondence between actual eigenvalues and localized
eigenvalues f,; up to exponential errors. This, combined with Theorem 2.2, gives the
full picture of the correspondence between actual eigenfunctions and localized eigen-
functions ¢, ; up to exponential errors for low eigenvalues. Denote by No(4) the cumu-
lative eigenvalue counting function for the union of the ¢,; and by N(4) the counting
function for the original operator L.

Corollary 2.3. (see Corollary 5.2) Suppose that 6, i and N are chosen so that
AP
<< <Ay <=5, 300N (5) e S <. (2.6)

Then
No(A—8) < N(A) < No(A+8), for i< u—0.

The corollary follows readily from Theorem 2.2. It says that the two eigenvalue
counts coincide up to & with 5~V N'?¢=5/6 parallel to (2.5).

The constants in our estimates depend only on the spectral ratio 6/V, so we can eas-
ily see the exponential take control as T increases with the help of numerical experi-
ments on R/TZ. For each of T =25 2° .. 2! we carried out 200 realizations of a
potential V with constant values on unit intervals, chosen independently and uniformly
distributed between 0 and V = 4. We found that the gap 1,—/, is typically* greater
than 1/T. (This is nearly the same, by (2.6), as the spectral gap between the first two
localized eigenvalues ji;;.) The minimum separation S between consecutive connected
components of E(4; + 1/T) conforms very well to the power law median(S)~.69 T-.
For T = 2", the values §; = 1/T,V = 4, and the median S, = .69 T-°, we have

“Lower bounds on spectral gaps are called Wegner type estimates. In [6], Frohlich and Spencer showed that for large
disorder, the gap is bounded below by a multiple of 1/T" with high probability in the discrete Anderson model on Z"
with uniformly distributed V. A similar conclusion holds with a larger power of T in many cases in which V has a
singular continuous distribution (see [20]).
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7\
300(——) e S1/2 <« 107,
01

Thus, (2.4) typically shows that the ground state i, is extremely close to a sin-
gle spike.

Theorem 2.2 is motivated by work of Helffer and Sjostrand [21, 22] and Simon [23,
24] on resonance for smooth potentials V in the semi-classical regime, —h?A + V as
h — 0, but our potentials are much more irregular and our eigenfunctions have a dif-
ferent shape. A new feature of our methods is that we use weak eigenfunction equations
and derive error estimates in the dual space to the standard Sobolev space W'?(M) (see
(5.2)). By relying only on dual space estimates, we can eliminate all dependence on
smoothness, and express our results explicitly in terms of the spectral gap ratio 6/V.
The dual estimates are just barely strong enough to yield estimates for the spectral pro-
jection and eigenvalue distribution.

Because our exponential decay result is relative to distance to all of E(4+ ) rather
than to a single well, it does not address directly the further decay we see numerically
as we pass through the second and third effective barrier, etc. Our subsequent estimates
show that resonance is the main issue. The natural conjecture is that the interaction of
pairs of eigenfunctions depends primarily on the effective distance between the wells or
cluster to which they belong, rather than the minimum distance S between all pairs of
wells. The proof can be expected to depend on multi-scale analysis and a more detailed
spectral gap hypothesis like the condition (2.5) above, localized to pairs or groupings of
wells. Showing that such a hypothesis is satisfied with high probability should employ
tools associated with so-called Wegner estimates in the theory of Anderson localization.

3. Main assumptions and preliminary estimates

Let Q be a bounded, connected, open subset of R"” such that at each boundary point
the domain is locally equivalent to a half space via a bi-Lipschitz mapping. (In Section
5, we will replace the ambient space R” with a compact C' manifold M.)

Set M = Q, and let m € L*°(Q) be a real-valued density satisfying uniform upper and
lower bounds

1
ESM@SQ

for some positive constant C. Let A = (a;(x));;_, be a bounded measurable, real sym-

metric matrix-valued function, satisfying the uniform ellipticity condition
1 n
cldP <D a(0)&G < ClEf, xeQ CeR" (3.1)
ij=1
for some C < co. We define the elliptic operator L acting formally on real-valued func-
tions ¢ by

1 1.0 dp
Lo = ——div (mA Vo=—-S"2 (ma; 22) +vo.
10 —div (mAV o)+ Vo mijzlaXi (m ajj ax,->+ Q
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The operator L will always be used in the weak sense, defined as follows.

Definition 3.1. A function ¢ € W'?(Q) satisfies Ly = f weakly on Q (respectively, on
M=Q)if

J [(AVe)-Vn+ Veon m dx = J fn m dx (3.2)
Q Q

for every n € Wy*(Q) (respectively, for every n € W2(Q)).
Here the space W!?(Q) = W!2(M) is the usual Sobolev space, namely the closure of
C'(M) in the function space with square norm given by

J (IVol + ¢?) dx.
Q

The space W,”(Q) is the closure in the same norm of the subspace C}(Q) of con-
tinuously differentiable functions that are compactly supported in Q.

The weak equation on M = Q imposes, in addition to the interior condition, a
weak form of the Neumann boundary condition on ¢. If there is sufficient smooth-
ness to justify integration by parts, then the Neumann condition can be written

v(x)-A(x)Vep(x) =0, x¢€ 0Q,

with v the normal to 0Q. In fact, in the case of Lipschitz boundaries, the Neumann
condition is valid almost everywhere with respect to surface measure on JQ for suitable
right hand sides f. But, we will only need the weak form, not this strong version of the
boundary condition. (For now we confine ourselves to Neumann boundary conditions;
we will say a few words about Dirichlet and mixed boundary conditions later.)

We assume further that V is non-degenerate in the sense that it is strictly positive on
a subset of positive measure of Q. By ellipticity of A and the fact that Q is a connected,
bounded bi-Lipschitz domain, we have the coercivity inequality

J [(AV@) - Vo + Ve?| m dx > cJ (Vo + ¢?) dx,
M M

for some ¢>0. In other words, the formal L*(M,m dx) inner product (L¢, @) is com-
parable to the square of the W!?(Q) = W!?(M) norm of ¢. By the Fréchet-Riesz the-
orem (identifying a Hilbert space with its dual), this implies that for every
f € L*(M, m dx), there is a unique solution v € W!?(M) to the weak equation Lv = f
on M. The landscape function u is defined as the solution to

Lu=1 weakly on M.

In other words, u is the unique weak solution to the inhomogeneous Neumann prob-
lem with R.H.S. the constant 1.

Proposition 3.2. Let V be nondegenerate and satisfy 0 <V <V for some constant V.
Then the landscape function u satisfies u>1/V on M. Moreover u € C*(M) for
some o> 0.

Proof. Consider the weak solution to Lv = f on M for bounded measurable f. Holder
regularity of v at interior points of M follows from a version of the theorem of De
Giorgi, Nash, and Moser (see Theorem 8.24, [25]). Near each boundary point, one can
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define an “even” reflection of v that satisfies a uniformly elliptic equation in a full
neighborhood; hence v is C* up to the boundary for some o> 0. This reflection argu-
ment is presented in the last section in the more general context of manifolds (see
Proposition 6.1). In particular, u € C*(M).

Next, we prove a version of the maximum principle, namely that v > 0 provided f >
0. Since v is continuous, the set Q~ = {x € Q: v(x) <0} is open. Since v minimizes

JQ((AVQJ) Vo + Vo* — quo) m dx

among all ¢ € W'2(M), we have
Jo ((AVY) - Vv + V2 —2fv) m dx
< Jo((AVvy) - Vvg + VW2 —2fv,) m dx

for v; (x) = max(v(x),0). Consequently,
J ((AVY) - Vv + W —2fv) m dx <.

Because V > 0 and f > 0, we have Vv*—2fv > 0 on Q. Therefore,

J (AVv) - Vv m dx <0.

Since A is coercive, Vv =0 a.e. on Q7 and v is a strictly negative constant on each
connected component of Q7. If any such component is a proper subset of €, then the
continuity of v contradicts the fact that v > 0 on Q\ Q™. On the other hand, if Q™ =
Q, then v = —a, for some constant a>0. But in that case, Lv = —aV, which cannot
equal f > 0. Thus, the only possibility is that Q™ is empty.

Finally, to conclude proof of the proposition, consider u, the weak solution to Lu=1
on M. Then

<l <

y = u—i solves Lv=1—=>0.
|4

Therefore, by the maximum principle, v > 0, and u > 1/V. O

By the bi-Lipschitz assumption on Q and the Rellich-Kondrachov lemma, the inclu-
sion mapping W'*(M) < L?(M) is compact. Thus, by the spectral theorem for com-
pact operators, there is a complete orthonormal system of eigenfunctions to the
Neumann problem for L, that is, an orthonormal basis \; of L*(M) such that Y €
W'2(M), and

Lyy; = Zp; weakly on M.

The non-degeneracy of V implies that the eigenvalues /; are strictly positive,

We will compare these eigenfunctions to localized eigenfunctions of Dirichlet or
mixed boundary value problems. Let K be a compact subset of M. Let U be a connected
component of M\ K. We say that Loy = f weakly on U if Eq. (3.2) holds for all test
functions # € C'(M) such that the support of # is contained in U. We will denote the
closure of this set of test functions in the usual W"(R") norm by Wy?*(U). Formally,
solutions to Lo = f on U satisfy mixed boundary conditions
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p(x) =0, x€KnNoU; v(x) -Ax)Ve(x)=0, xecdQnaU.

In the special case K D 0, the problem is no longer mixed because we only have
Dirichlet boundary conditions. We won’t need the Neumann boundary equations in
strong form, only the weak, integrated form. On the other hand, we will use continuity
of the solutions up to the boundary. In fact, we will obtain C* regularity.

To ensure the Holder regularity of solutions we make an additional assumption on
the compact set K C M. We will say that K satisfies the bi-Lipschitz cone condition if
there are r>0 and &¢>0 such that at every point x, € 0K there is a mapping F:
B,(x9) — R" with F(xo) =0, bi-Lipschitz bounds &|x—y| < |F(x)—F(y)| < (1/¢)|x—y/,
and such that

F(K) D {x = (x1,x) €ERx R": || <ex; <&}

The constants in our main theorems do not depend on r, ¢ or the bi-Lipschitz con-
stants of (2 because continuity of the solutions is only used in a qualitative way.

Proposition 3.3. Suppose that K is a non-empty compact subset of M satisfying the bi-
Lipschitz cone condition. Let U be a connected component of M\ K. Then there is an
orthonormal basis ¢; of L*(U,m dx) of eigenfunctions solving Lo; = p;p; weakly on U,
1> 0. After extending the functions ¢; from U to the rest of M by ¢; =0 on M\ U,
they satisfy ¢; € C*(M) N W'*(M) for some o> 0.

The proof of the existence of the complete orthonormal basis of eigenfunctions is the
same as in the case of K = (), that is, the case of ; above. See Proposition 6.1 for the
proof C* regularity. (At interior points the proof is similar to the case of Lv = f above.
The boundary regularity is proved by reducing to a Dirichlet problem using an
even reflection.)

4. Agmon estimates
We will frequently write
Va =AYV

in which A'/2 = A'/2(x) is the positive definite square root of the matrix A(x) and V is
a column vector. Thus, we have

Vi@ - Van = (AVe) - (Vn); |Vae|' = (AVe)- V.

Lemma 4.1. Assume that f and u belong to W'2(M), that V, f, and 1/u belong to
L>°(M), and that u satisfies Lu = 1 weakly on M. Then

(VAP + V) mdx= | (@(Va(f/w)P + 7 ) m d.
, I )

Proof. The function f?/u belongs to W'2(M), so we may use it as a test function in the
weak form of Lu=1 to obtain
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JM[(vAu.vA(fz/u)) Va2 /u)] m dx = JM(fz/u) m dx.

Substituting the identity Vau - Va(f2/u) = |Vaf|"’—1?|Va(f/u)|* (from the product
rule), this becomes

[ (9w —atgra + v) m = [ () m

which, after moving a term from the left to the right, is the desired result. O
Given the importance of Lemma 4.1 to this paper, we wish to elaborate on it, recapit-
ulating the introduction with more details. Recall that

1
Lf = ——div (mAVf) + Vf
m
in the weak sense. Define the operator L by
~ 1
Lg:=—-L .
g =, Lgw)

In other words, L is the conjugation of L by the operator multiplication by u. If the func-
tions m and A are differentiable, then one can use equation Lu = 1 to compute that

~ | 1
Lg=— ﬁdlv (mu2AVg) + 28

Note that the operator L is of the same form as L but with a different density and poten-
tial. The key point is that the potential V in L has been replaced by the potential 1/u in L.
Mechanisms of this type are familiar in the theory of second order differential equations.
Conjugation of operators of the form —A + V using an auxiliary solution is a standard
device leading to the generalized maximum principle (see Theorem 10, p. 73 [26]). A simi-
lar device appears even earlier in work of Jacobi on conjugate points and work of Sturm
on oscillation of eigenfunctions. In all of these cases, the multipliers are eigenfunctions or
closely related supersolutions rather than solutions to the equation Lu = 1.

Consider the space L?(M,m dx) with inner product ( -, - ). The operators L and
u?L are self adjoint in this inner product. Using the formula for L above, one could
derive the lower bound (Lf,f) > ((1/u)f,f) formally by substituting f = gu:

(Lf.f) = (Lg.g) > (u(1/u)g,g) = ((1/u)f.f)-

Lemma 4.1 implies that the identity (Lf,f) = (u’Lg,g) is valid in weak form. Indeed,
it says that

W50 = | (9P ve) moas= [ [@9a(p)+ 1] moas
and so, since g = f/u,
w5 =] 2|1Vasl + 1| m b= (Tgg)

Although conjugation and the calculation of L leads to our identity, the weak form
has considerable advantages. It is easier to check the weak formula than the differential
formula for L because it only involves first derivatives. Moreover, because we only
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differentiated once and didn’t integrate by parts, our proof of Lemma 4.1 was not only
shorter but also more general in that it applied to bounded measurable m and A.
We will now derive estimates of Agmon type from Lemma 4.1.

Lemma 4.2. Suppose ¢ belongs to W'*(M) N C(M), ¢ =0 on a compact subset K of M
and Lo = pp weakly on M\ K. Let u be as in Lemma 4.1 and let g be a Lipschitz func-
tion on M. Then

1
J {u2|VA(g(p/u)|2 + (a—u> (g(p)z} m dx —J |Vagl’@® m dx. (4.1)
M
Furthermore, setting g = ye" with h and y Lipschitz functions on M, we have
2 ze" 1 2 AT
Syt VA<”u“’) mdx+ [, SR \Vah* ) (ze"@)” m dx

= 1,1V ah + VazP = [2VahP) (¢"0)* m dx.

2

(4.2)

Proof. Since g?¢p € W'?(M) and g*p = 0 on K, it can be used as a test function for the
equation Ly = pe, yielding

JM(V — gt m dx = —JMVA(p Valg?p) m dx. (4.3)
Substituting f = g in Lemma 4.1, gives
Ju [WA(ch)l2 + (V—u)gzqoz} m dx
= Ju [MZVA (go/u)l* + G —u)ngpz} m dx.
On the other hand, (4.3) implies that
Ju [WA(gﬁD)lz + (V—u)gzq)z] m dx
= Ju [|VA(g€0)|2—VA<P -Va (gzqo)} m dx = [,,0*|Vag|> m dx.

This proves (4.1). The second formula, (4.2), follows from the first, by setting g =
ye", and using the formula

Vagl? = [Va(xe) P = (")’ |Vahl? + (|3 ah + Vaz~ |2V ah]*)
[

Let w be a nonnegative, continuous function on M. Assume the elliptic matrix A is con-
tinuous on M. Denote the entries of B = A~" by b;(x). We define the distance p(x,y)
on M for the degenerate Riemannian metric ds* = w(x) Y b;dx;dx; by

p(x,y) = me ( Zb,] (0)9,(t ))1/2 dt,

where the infimum is taken over all absolutely continuous paths 7 :[0,1] — M such
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that y(0) = x and y(1) = y. (Note that the distance between points in a connected com-
ponent of the set {w = 0} is zero.)
With these notations, we have the following lemma.

Lemma 4.3 ([[18], Theorem 4, p. 18]). If h is real-valued and |h(x)—h(y)| < p(x,y) for
all x,y € M, then h is a Lipschitz function, and

IVah(x))> < w(x) for all x € M.
In particular, this holds when

h(x) = ;ggp(xyy),

for any nonempty set E C M.

The lemma is stated in [18] for w strictly positive. Considering the case w(x) + € and
taking the limit as € \, 0 gives the result for non-negative w.

Recall that V is a measurable function on M such that 0 < V(x) < V, and V is non-
zero on a set of positive measure and u is the unique weak solution to Lu=1 on M,
the landscape function.

Fix p > 0, and set
wu(x) = qu = max Lf,u,o .
ux) "/, u(x)

With our additional assumption that the elliptic matrix A has continuous coefficients
on M, we can define p,(x, y) as the Agmon distance associated to the weight w,,(x). For
any E C M, denote

pu(x, E) = ;relgpﬂ(x,y).

Theorem 4.4. Let 0 < u < v < V be constants. With u the landscape function as above,
denote

E(V):{xelegy}.
u(x)
Let K be a compact subset of M. Denote
h(x) = p,(x,E(v)\K), x€M,
and

h(x), h(x)<1,
X(x):{l,(x) hggél

Suppose ¢ belongs to W'*(M)NC(M),p =0 on K, and Lo = pp weakly on M\ K.
Then for 0 <o <1,
kexh( 1 5, 2
[y #*(Va (/—up>_ m dx + (1-02) [, (E_ u>+(;(e hp)” m dx (4.4)
< (U +20)e(V—p) f1g oy o1y @° m dx.

2
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Furthermore, if v = u+ 6,06 >0, we have

J M (|Vagl* + Vo) m dx < <450+ﬂ> VJ o> m dx. (4.5)
h>1 (1—a)d) Ju

Proof. Using (4.2) with ah in place of A, the first term on the L.H.S. is the same as in
(4.4). Since y=0 on E,\ K and ¢ =0 on K, we have yp =0 on E,. Moreover, by
Lemma 4.3 |Vh|* < w,(x). Thus,

1
S (Z —p- “2|vAh2> (xep)” m dx

1 2
— jM\E,, <; —u— o(2|VAh|2> (Xeah(p) m dx

1
> (l—ozz)J"M\Eu (; — ,u) (Xe“hq))z m dx
+

= (1-02)[, (%— ,u>+(}(e“hgo)2 m dx.

The R.H.S. integrand of (4.2) is zero almost everywhere on the set V4 = 0, so we may
restrict the integral to the set {0 < h < 1}. There we have y = h, so

|7V ah 4+ Vay)*—[xoaVah|* = [(Xoc + l)z—xzaz] |Vah|* < (2004 1)|V k]

Finally, |V4h|* < w,(x) < V—u, by Lemma 4.3 and Proposition 3.2. This concludes
the proof of (4.5).

It remains to prove (4.5). For convenience, normalize ¢ so that its L*(M,m dx)
norm is 1:

e
M
Let f = ye** . Since f=0 on E(v),(1/u—p) >3 on M\ E(v), and u>0, (4.4)
implies

J u2|VA(f/u)|2 m dx + (1—0(2)5J 12 mdx < (14 20)e*V. (4.6)
M M

Since Vf and Vu belong to L*(M), and 1/u and f belong to L>°(M), f*/u is a permis-
sible test function. Thus, using Lu=1, 1/u(x) < V,V(x) > 0, and (4.6), we have

[, Vau-Va(f2/u) m dx= [,,(1 - Vu)(f2/u) m dx
(1+2a)e* _, 32, (4.7)
(1—02)d v S2(1—06)5V '

S V[ f* mdx <
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Next,

JMVAu|2(f/u)2 m dx = —JMz(f/u)(vAu) (uVa(f/u)) m dx

+J Vau-Va(f?/u) m dx
M

< JM B (f/u)2|VAu|2 +2u*|V4 (f/u)|2 + Vau - VA(fz/u)} m dx.

Hence, after subtracting the term with factor 1/2 and multiplying by 2,

JM|VAu|2(f/u)2 m dx < JM [4u2|VA(f/u)|2 +2Vau- VA(fz/u)] m dx

< 4(1 4 2a)e**V + 362
< 4(1+2a)e +e(1—oc)5

72

< 1262V + 3¢ .
- (1—a)d

It follows that

Sl Vafl? m dx = [,,|uVa(f/u) + (f/u)Vaul* m dx

<2f, 2 |Valf/u)] m dx—|—2fM|VAu|2(f/u)2 m dx

<2(1+20)e**V +2

)
1262V + 3¢? (11/7&)51 m dx (4.8)

< 30e*V + 66*

(1—a)d

Finally, since e”¢ = f on {h > 1}, and |Vh|> < V, we have (by (4.7) and (4.8) in
particular)

j{hzl}ez“h Vaol> m dx = f{h21}|VA(e“h(p)—oc(VAh)e“hqo|2 m dx
2
< Zf{h21}|VA(e“h<p)|2 m dx+2f{h21}oc2|VAh|2(e“h<p) m dx

< Zj‘{th}WAﬂ2 m dx+2Vf{h21}f2 m dx

=2 =2
_ 174 vV
< 6062V + 1262 ——— + 3¢

(1—0)d (1—0)d"

(4.9)
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Thus, by (4.7) again,

2 2

+§ez v
1—a) 2 (1—a)d

130V \ -
< (450 + ——=|V.

J 62°‘h(|VA(p|2 + V(pz) m dx < 60e*V + 15¢°
{h>1}

(1—0)d
O

Theorem 4.4 displays the dependence of the constant as o — 1. We state next a variant
for o = 1/2 in the form we will use below.

Corollary 4.5. Let 0<u <t and 0< 3 < V/10 be constants. Suppose that i+ < V.
Let K be a compact subset of M, and set

hK(x):p(va(ﬁ+5)\K)v x e M,

with p = p, the Agmon metric associated to the weight w(x) = (1/u(x)—n),. Suppose ¢
belongs to W'2(M) N C(M), o =0 on K, and Lo = up weakly on M \ K. Then

J (Va0 + Ve?) m dx < 18e<%) VJ ¢©* m dx. (4.10)
h>1 M

In particular, in the case K = (), the corollary says that for eigenfunctions y satisfying
Ly = Ay weakly on all of M for which 4 < ji, we have

J M ([Vay* + V?) m dx < 18e<K> VJ ' m dx. (4.11)
h>1 0 M

with
h(x) =p(x,E(n+9)), xe€M.

Proof. Corollary 4.5 is not, strictly speaking, a corollary of Theorem 4.4, but rather the
specialization of the inequalities in the proof to the case & = 1/2. Note also the theorem
is proved for u =g, but the corollary is also valid for any larger value of pn. This
because increasing ji gives rise to a weaker conclusion: it decreases h.

Rather than repeat the proof, we indicate briefly the arithmetic that ensues from set-
ting « = 1/2 in the proof of Theorem 4.4. With f = ye"*/2¢ and the normalization
[lp|] = 1, we have

=2
J ehKV(pzmdeVJ fzmale%L7
{hk>1} M 39
as in the second line of (4.7),

J IVAf|? m dx < (20+%>e‘7,
M

by the proof of (4.8), and (as for (4.9))
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34V -
J e |VapF m dx < (40+—)eV.
{he>1} 39

Therefore, again with the normalization ||¢|| = 1,

7 Vi o A
J & ([Vagl” + Vo?) m dx < <40 + 143>ev < 18e (g) v,
{hx>1}

where we have used 6 < V/10 to obtain the last inequality. O

5. Localized approximate eigenfunctions

We have already proved a theorem about exponential decay of the eigenfunctions .
We will now show, roughly speaking, that if the landscape function predicts localization,
then an eigenfunction with eigenvalue 2 is localized in the components of {1/u < i}
where an appropriate localized problem has an eigenvalue in the range A=J.

Let it and 6 be as in Corollary 4.5. Consider any finite decomposition of the sublevel
set E(it + 0) into subsets:

R
U Ey.

1

E(H+5)={xEM:$§u+5}:é

We regard the sets E; as potential wells. It is easiest to visualize E, as the (closed)
connected components of E(ft + 0). In practice, such connected wells often yield the
optimal result. But there is no requirement that E, be connected. Rather each E, should
be chosen to consist of a collection of “nearby” wells. It is occasionally useful to merge
nearby wells because what is important is to choose the sets E; so as to have a large
separation between them, where the separation S is defined by

S = mf{p(x,y) x€Eny€Eyl+ E’},

that is, the smallest effective distance between wells. Here, as before, p = Pu denotes the
Agmon metric associated to the weight w(x) = (1/u(x)—fi),. Whether or not a decom-
position into small, well-separated wells exists depends on the level set structure of
1/u(x) and the size of i + o.

Let S; < S (as near to S as we like). We claim that there is a compact set K, C M = Q sat-
isfying the hypothesis of Proposition 3.3 and such that

{xeM:p(x,E)>S/2} ¢ K {xeM:p(x,E)>S/2}. (5.1)

In fact, as we will show in Lemma 6.2, for any compact K C M and any neighbor-
hood U D K (that is, U is relatively open in M) there is an intermediate set K C K’ C
U such that K’ satisfies the bi-Lipschitz cone condition.

Define € as the connected component of M \ K; containing E,. Because the sets E,
are at least distance S apart, the sets Q, are disjoint.

Denote by Wy?(Q) the closure in W'2(M) norm of the space of smooth functions
that are compactly supported on Q. Note that these functions can be extended by zero
on M \ € and regarded as belonging to W'2(M). But the notation is slightly mislead-
ing, because € is not necessarily open, and may contain parts of M that do not lie in
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Ky. On those parts, functions of W,*(Q) do not need to vanish. In other words, our
definition of Wé’z(Q/:) includes a Dirichlet condition on K, N 0€, only.

The operator L is self-adjoint with our mixture of Dirichlet and Neumann conditions,
and for each ( there a complete system of orthonormal eigenfunctions ¢,; € Wy ()
satisfying

J [Vage; - VIi+ Ve l] m dx = Wg,jj @i m dx
M M

for all test functions ( in Wé’z(Qk). We have Dirichlet conditions on K, N 0Q,. If 9Q, N
OM is non-empty, then on that portion of the boundary, the weak equation is inter-
preted as a Neumann condition. But we will never have to use normal derivatives, only
the weak equation. The purpose of inserting the somewhat nicer domain €, is so that
the eigenfunctions ¢, j are continuous (in fact Holder continuous) on M. We do this so
that the integrals in the lemmas above are well defined. None of our inequalities with
exponential weights depend on the Lipschitz constant of Qy, just as they don’t depend
on the ellipticity constant or modulus of continuity of A.

Let ; denote the complete system of orthonormal eigenfunctions of L on M with
eigenvalues ;. Let W(,;) denote the orthogonal projection in L*(M,m dx) onto the
span of eigenvectors ; with eigenvalue /; € (a,b). Let ®(,;) be the orthogonal projec-
tion onto the span of the eigenvectors ¢, ; with eigenvalue i, ; € (a,b). Thus the range
of ®(g ) is the subspace of L*(M,m dx) of functions supported on U,Q.

Theorem 5.1. Let 0<d < V/10. If ¢ is one of the ®y; with eigenvalue p = p,; and
w < =03, and S is the effective distance separating wells, defined above, then

=\ 3
V _
2 — 2
lo-¥us,enol? < 300( L) ol

where here and below, || - || denotes the norm in L*(M,m dx). If Y is one of the \; with
eigenvalue A = ; < 1—9, then

3
Vv e
||IP—(D(;.—57A+5)¢||Z < 300(5> e 2|y .

Note that this theorem only has content if S is sufficiently large that
Y <3005,
0
The separation S increases as Ji decreases. Recall, also, that we have the flexibility to
choose the sets E;, so as to merge nearby wells that are not sufficiently separated.
Numerical experiments show that the partition into well-separated wells does occur
with high probability for many classes of random potentials V.

Proof. Here and in the remainder of the paper all eigenfunctions are normalized to have
L*(m dx) norm 1. Consider ¢ such that Lo = u¢ in the weak sense on €. Let

n(x) = f(p(x, Er))
be defined by
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Sy
1, r<2
S s S
=02 Zoa<i<?
f(1) Sh S olstso
N
0, A<t
2

Let r be the distribution satisfying the equation
L(ng) = e +r

in the weak sense on M. In other words, r is defined by
r(0) ::J [Vame) - Val+ (V—u)nel] m dx
M

for all { smooth functions on M. Since #{ is a suitable test function for Lo = p¢ in €y,
we have

jM [Va(9) - Va(nl) + (V—i)nol] m dx=o.
Subtracting this formula from the previous one for r, we find that
r(Q) = J [@Van - Va(=L{Vap - Van] m dx.
M

Observe that if Van(x) # 0, then 3 —1 < p(x,E;) <. Furthermore, since the dis-

tance from E, to Ey, ¢ # {, is greater than S, p(x, Ey) > S;/2. Thus, since E(fi + 6) =
UR_E;, we have p(x,E(i+0)) > S;/2—1. In particular, for any set K, Van(x) # 0
implies

S
hi(x) = p (%, Egys \ K) > ?1—1.

We use this, (4.10) with K = M \ Q,, and |VA17|2 < V to obtain (recall the normalization

loll =1)
1/2
o> m dx)

1/2
IVaol* m dx)

{Van#0}

O < (suplVanl)IVall <J

{Van#0}

1/2
< IVad| j Vot mdx| + V2 j Vagl m dx
{Van#0} {Van#0}

2 — 2 1/2 1862‘72 1/2
< (VAP + 71iIP) (222

+ (sup| VDIl (j

1/2
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We will abbreviate this inequality by
2 7 2, 2 2V o s /2
r(0)? < eV[||Vall + VI[C|IP], &:=18e e (5.2)

Since V(x) > 0,
IVay|P + VI < JM[vijlz +(V+ V)wf] mdx=)+V.

Let ] be any finite list of indices j such that |;—u| > 6 and let

(= Zl’jlﬁj

i€l

be any linear combination of the ;. By density considerations, such a { is admissible.
Then, since V > 0,

VALl + VI < j (VAP + (V+V)C] modx =" (4+ V)y}
M jel
Consequently, it follows from (5.2) that
r(O < eVI[IValP + VI < eV (4 + V)

j€l

Denote by
= | oy m dx= G0y
the coefficients of n¢ in the basis. Because (L—4;)y/; = 0 in the weak sense,

r({) = ZV]‘J [VAt//jVA(mp) + (V—/lj)l//jn(p} m dx
je M
-l—J yj(ij—,u)tpjngo m dx
M
= 2_1(s=n)b;
jel
Thus,

S|

jel

= ()’ < SVZ (4 + V)yf.

jel

Setting y; = B;(4; + V)fl/zsgn(/l-—u) we find that

<8VZﬁ2

jel

|/LJ |

ﬁZ
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Since 4; > 0 and |4;—u| > 0,
14—ul
i+ V

>

S

Therefore,
2

Zﬁ?gg .
j€l ’ 0

Since the set ] is an arbitrary finite subset of j such that |1;—u| > J, we have
VZ
<ée—.

62
Next, it follows from (4.11) and 1—#(x) = 0 on {p(x,E;) < S;/2—1} that

J 5

| |’7g0_lP(,u—5,,u+5) (17(:0) | |2

7]1(1-n)elf < Vj o mdx<eV (K=M\Q),

he>S-1

which, since the projection I—¥(,_s s has operator norm 1, implies that
(1= =¥ (s e0) (1=m)9)[|* < &

Finally, adding the bounds for ¢ = (1—1)¢ + n¢ and using 6 < V /10, we get
& Vo
lo=¥ sl < 205+ 20300552

This is the first claim of the theorem (recall the normalization ||p|| = 1).

The second claim has a similar proof with the roles of ¢ and y reversed. We will
sketch each step, but the reader will need to refer regularly to the previous proof. Let
be a normalized eigenfunction of L on M with eigenvalue 4 < fi. We use the same cut-
off functions

ne(x) = f(p(x, Er));
introducing the subscript ¢ since ¢ is no longer fixed. Then define
n= Z He-
¢

Note that 7y is compactly supported in the union of the Q,, and the Q, are disjoint.
Define the distribution 7 by the equation

L(ipp) = 2 + 7.
By similar reasoning to the proof of the first claim, using (4.11) we have the analog of
(5.2), that for all { € W'?(M),

v o 1%
O <eV{[VallP + VIIEP], =188 e
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Take any finite set J of indices (/,7) and denote

52 Z YejPoj-
(

LH)el

In the same way as before, we deduce

(N2 o _
O <V Y (g + V)i
J
Moreover, as before, if we define

ﬁej _J ﬁWWj m dx.
M

We claim that

?(Z) = Z Ve (Mj—i)ﬂzj-
]

This last identity is the only place where the proof is slightly different. Observe that
because (L—p;)@;; =0 in the weak sense on €, and 7, has support disjoint from €
for all ¢/ # ¢,

| [Va0)90,+ (v-s)ioy) m ax
M

= L) [VA(W‘P)VAQ%‘ + (V—Wj)wlpwj} m dx = 0.
4
This is the only aspect of the proof of the formula for #({) that differs from the one

for r({) above. )
Now suppose that for every (¢,j) € J, |u;—4| > 0. Then, setting

_\1/2 .
75 = By (wj + V) sgn(u;—4),

we obtain

=2

14

2
D by<eg
J
Since 7y is supported in the union Uy € and the ¢,; are an orthonormal basis for L’
on that set, and L is an arbitrary finite subset of indices such that [u;—4| > J, we have
=2

- - \%4
i —® 5115 ()] < e

Next, it follows from the fact that (1—#(x)) = 0 on the set where h(x) = p(x, E(u +
0)) < 8;1/2—1 and (4.11) that
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Vil < V] mde<er.
h>So1
The rest of the proof is similar. O

Theorem 5.1 shows that when the landscape potential 1/u(x) defines wells that are
separated by a large number S, then the eigenfunctions are located in these wells (with
a single eigenfunction possibly occupying several wells). An easy consequence is the fol-
lowing corollary saying that the graphs of the two counting functions enumerating
eigenvalues of L and eigenvalues localized to wells agree (modulo a shift =J) up to a
number N defined below.

Corollary 5.2. Consider the counting functions
N(2) = #{2: 25 < A}; No(w) = #{py; : oy < p}-
Recall that [i and & are used to specify S. Suppose that u < ji and choose N such that
300N <%> 3 <2,

Then
min (N, No(u—0)) < N(u) and min(N,N(u—5)) < No(p).

Proof. Let
p = min(N,N(u—9))

Consider the first p eigenvectors y;, ...%, of L on M. Then p < N(u—d) implies
4j < p—9, and therefore

A
[[Wr—®o,%;]I” < 300 ((33>e Sz,

For any nonzero linear combination y = Zle aj;, we have

=PIl < D 1ol 1= Do |
7

. 1/2
< (300 <§> es/z) > oyl
j
. 1/2
< (300 <53> e‘S“) 1[[p*> <[],

by the Cauchy-Schwarz inequality and because p < N. Denote by Q the span of the y/;,
j=1, ..., p. The inequality implies the restriction of @, to Q is injective and the
dimension Ny(u) of @ ,)(Q) is at least p. In other words, No(u) > p. The proof of the
lower bound for N(u) is similar. O
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6. Manifolds and approximation

In this section, we discuss two generalizations of the results of Section 3: the extension
to manifolds and the removal of the continuity assumption on the coefficients of A. We
also prove the boundary regularity for mixed data referred to in Section 3 and construct
the intermediate sets Ky of (5.1) with the bi-Lipschitz cone condition.

Let us first see how to replace R" with an ambient space M defined as a compact,
connected C' manifold. Let V be a bounded measurable function satisfying 0 < V(x) <
V on M. Let A be a symmetric two-tensor and let m be a density on M. In a coordin-
ate chart, x, A is represented locally by a symmetric matrix-valued function (which we
shall still denote by A) and m is represented by a scalar function. Given a test function
n = n(x) compactly supported in the coordinate chart, and a function ¢ = @(x), we
write

(AV,Vn) := J(AVQ)) -V mdx, {(@,n):= Jq) n m dx.

We extend these definitions to test functions on all of M by using a partition of
unity. The covariance property that makes this definition independent of the choice of
coordinate charts is that in a new coordinate system y with x = x(y), the expression for
the corresponding matrix A(y) and density 7 (y) is

T
Ay) = Bp) " Ax)(Bp)) s () = Idet Blm(x(y)).
where B is the Jacobian matrix

Bj(y) = %, B = (Bjj).
Ay

For 1 supported in the intersection (in the x variable) of the two coordinate charts,

denoting 7i(y) = n(x(»)), #(3) = p(x(y)), and V(y) = V(x(y)), we have
J[(AW) V4 Von) m dx= J (AV§) - Vi + Vpii] i dy.

Thus we obtain globally defined quantities (AV ¢, Vi) and (Vo,n).

We will assume that in some family of coordinate charts covering all of M, A is rep-
resented by bounded measurable, uniformly elliptic matrices and that m is bounded
above and below by positive constants. The constant of ellipticity and the constants
bounding m from above and below depend on the coordinate charts. But since our esti-
mates won’t depend on these constants, this does not matter to us.

Let Q be an open, connected subset of M such that near each point of dQ, Q is
locally bi-Lipschitz equivalent to a half space. This includes as a special case, bi-
Lipschitz images of Lipschitz domains in R” (for instance, bounded chord-arc domains
in R?). It also includes the case Q = M in which the boundary is empty. Set M = Q.
Denote the inner product associated to L*(M) with density m by ( -, - ). Let K be a
compact subset of M and let Wy*(M \ K) denote the closure in W'? norm of the set of
functions in C'(M) that vanish on K. For ¢ € W,*(M \ K) and f € L*(M \ K), the
weak equation Loy = f on M \ K is defined by
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(AVo,Vn) + (Vo,n) = {f,n)

for every n € Wy*(M \ K).
We will now prove Holder regularity of solutions up to the boundary for suitable K

and f.

Proposition 6.1. Suppose that Q C M is locally bi-Lipschitz equivalent to a half space at
each boundary point. Suppose that K satisfies the bi-Lipschitz cone condition as defined
above Proposition 3.3. There is a>0 such that if f € L°(M) and ¢ € W'(M), with
@ =0 on K, solves (L—p)p = f in the weak sense on M \ K, then ¢ € C*(M).

Proof. Without loss of generality, we can replace V by V—u and assume the constant
u=0. As we have already observed, the interior Holder regularity follows from the the-
orem of De Giorgi-Nash-Moser. We handle the Neumann boundary conditions by per-
forming an even reflection at the boundary of Q.

It will suffice to consider a single coordinate chart denoted here by y. Let

Br:{yeR” : |y|<r}, Q={yeR":y; >0}.
and let K be a compact subset of B; N Q satisfying the bi-Lipschitz cone condition. Let
WH2((B; N Q) \ K) be the closure in W2 norm of functions of C'(B; N Q) with sup-
port disjoint from K. If ¢ € W'?((B; N Q) \ K), then the extension of ¢ by 0 on K

belongs to W'2(B, N Q). For f € L*((B;NQ)) we say ¢ solves Ly =f weakly on
(BiNQ)\ K if

L QQ[(AW)'VH Von] m dy:J fn mdy

BiNQ

for all n € C'(B; N Q) with support disjoint from K. (The fact that # need not vanish
on y; = 0 is what imposes the Neumann condition in the weak sense.) Here, as usual,
A is a bounded measurable symmetric matrix, f, V and m bounded measurable func-
tions defined in B; N Q. Moreover, A is elliptic (see (3.1)) and 1/C < m(y) < C.

We extend m, V, ¢ and f to B; by reflection as follows. Let R be the reflection,

R(y1, 92, s ¥n) = (V1,92 s Yn)-
Set m(y) = m(y), V(y) = V(y), (y) = ¢(y), f(y) = f(¢), for y € By N Q, and
m(y)=mRy), V() =VR®Ry), o) =0Ry), f)=F(Ry).
Define K = K URK, then » =0 on K. We extend A to B; by

A(y) = RA(Ry)R.
Note that this is just the appropriate covariance for the changes of variable R since
R=R" =R In this way, we extend the definition of L to an operator L on B.
We claim that Ly = f weakly on B; \ K. To prove this, let n € C'(B;) be such that
the support of # is disjoint from K U 9B;. Denote

1.0) =3 (1) +1(R), Y€ By

Observe that the * operation symmetrizes 1, whereas ¢ andf are defined so that
they have this symmetry already: ¢, = @ and f, =f.
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Denote the inner products on L?(By,m dx) and L*(By N Q,m dx) by ( -, - )5 and
(-, - )q» respectively. Since ¢ = ¢,

<Av¢7 Vn>Bl = <AV¢*, v’//>Bl = <Av¢7 v’//*>Bl = 2<AV(p, V”*>Q

Furthermore, using the fact that 1,(y) =0 on K and the weak equation for ¢ on
B; N Q, we have

2<AV(p7 V’?QQ = 2<fa ’7*>Q_2<Vq)7 ’7*>Q = (fv 77>Bl_<V(b7 '7>Bl'
Combining these two equations,
(AVG, Vg, + (V)5 = (f 1),

In other words, L :f weakly on B; \ K, which was what we claimed.
We are now in a position to quote local boundary regularity theorems of Gilbarg and
Trudinger. Theorems 8.25 and 8.26 of [25] imply that

sup o] < C(llellm, + 1lli~in,) )
By
with a constant C depending only on the ellipticity constants. (Note that the appropriate
notion of supremum for W'? functions, based on truncation, is defined just before
Theorem 8.25.)

Next, the local Dirichlet boundary regularity theorem, Theorem 8.27 [25], implies
that since K satisfies the bi-Lipschitz cone condition,” there is o >0 such that for
r < 1/47

oscp < C r*sup |p|.
B, B

This proves Holder continuity up to the boundary. O

Lemma 6.2. Let K be a compact subset of M. Let U be a (relatively) open set in M such
that K C U. Then there is a compact set K', such that K C K' C U, K' satisfies the bi-
Lipschitz cone condition.

Proof. To find K’ given K, cover M with a finite number of coordinate charts each of
which is the bi-Lipschitz image of a closed cube, some of them interior to Q and others
with a boundary face on 0Q. Fix ¢ >0, and subdivide each closed cube of the covering
dyadically to get a finite covering by cubes of diameter less than ¢. Note that although
this is not a disjoint covering because of the overlap of the coordinate charts, it is a
finite covering. Define K’ as the union of cubes in the subdivision that intersect K.

For ¢ sufficiently small K’ C U. Each individual bi-Lipschitz cube satisfies the bi-
Lipschitz cone condition, so this finite union also satisfies the condition O

The last difficulty that we wish to address is that the Agmon length of paths is not
defined for discontinuous A. Suppose that A is bounded and measurable (and symmet-
ric and uniformly elliptic as in (3.1)). Using convolution on coordinate charts and a

*To apply the theorem as stated one has to make a bi-Lipschitz change of variables to produce an actual cone. This
changes the ellipticity constant by a fixed factor. There is an additional term in the estimate in Theorem 8.27, namely,
the oscillation of ¢ over KN B\ﬁ. But in our case, this is zero.
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partition of unity, we find a sequence of A® of continuous uniformly elliptic two-tensors
such that A® tends pointwise to A as ¢ — 0. Denote by L and L, the operators on M
corresponding  formally in  local coordinates to —(1/m)div (mAV)+V
and —(1/m)div (mA*V) 4+ V.

Proposition 6.3. Let A, be a bounded sequence, and suppose that L.y, = Ay, in the
weak sense on M, and normalize the eigenfunctions by ||y,|| = 1 in L>(M). Then there is
a subsequence &; — 0 such that

a. Y, has a limit y in W'(M) norm and in C*(M) norm for some o> 0.
b. A has a limit 2 and Ly = Ay in the weak sense on M.

Proof. By the nondegeneracy of V, the sequence y, is uniformly bounded in W'?(M)
norm. Moreover by de Giorgi-Nash-Moser regularity the sequence is bounded in
CP(M) norm for some f>0. Note that f can be chosen independently of ¢ because
ellipticity constants of A® are uniformly controlled. By the compactness of C#(M) in
C*(M) for o< 8 and the weak compactness of the unit ball of W!?(M), there is a sub-
sequence & — 0 such that y, converges in C*(M) norm to a function ¥ € C*(M) N
W'2(M). Moreover, Vi, — Vi) weakly in L*(M) and 4; — Z as j — co. Hence, tak-
ing the weak limit in the equation L.\, = A/, we obtain, Ly = Ay.

It remains to show that Vi, tends to V{ in L*(M) norm. Indeed, by the dominated
convergence theorem,

|‘(Asf—A)Vl,D|| — 0 asj— oo. (6.1)

From now on, we will omit the subscript j from & with the understanding that we
have passed to a subsequence of the A® and the . It follows that, along this subse-
quence,

((A—A*)V, Viy) — 0 and (A°Vir, Vy) — (AVY, V).

Furthermore, since ||V,|| is uniformly bounded and by (6.1),

((A=A*) Vi, Vi) — 0.
This combined with the weak limit (AVY, Viy,) — (AVY, V) yields
(A, Vi) — (AVY, V).
Using the identity L.\, = A.\),, we write
(AN, Vi) = A= (Vi b)) — A=(Vil, ).

Finally,

(AN (=), V(=) = (A°VY,, Vib,) =2(AVY, Vi) + (AVY, Vip).

The first term of this last expression, (A*V,, Vi) — A—(V, ). The second term
tends to —2(AVy, V) and the third term to (AVY,Vy). But Ly = 2 implies
(AVY, V) = 2—(V, ). Thus

AV, =), V(=) — 0

along the subsequence and Vi, tends in L*(M) norm to V. O
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Let A have bounded measurable coefficients and let A® be a continuous approxima-
tion as above. Then the compactness argument in the proposition also shows that the
landscape function u, tends uniformly to the landscape function u along a suitable sub-
sequence. Because the Agmon distance functions are uniformly Lipschitz, at the expense
of a further subsequence, one can ensure that this distance also converges uniformly.
Notice that different sequences could, in principle, yield different limiting Agmon dis-
tances. For any of the limits we can now deduce estimates analogous to the ones in the
previous sections.

We illustrate with (4.11) and discuss the subsequent theorems later. Fix u and let W, be
the subspace of L*(M) spanned by the eigenfunctions of L with eigenvalue < u, and let N be
the dimension of W,. Denote

‘ yew, <l//7 l,b>
Let tﬁj, j=1, ..., N be the first N eigenfunctions of L, and let AJL be the correspond-

ing eigenvalues. It follows from the min/max principle and the fact that W, has dimen-
sion N that Z; < fj < N.
We claim that

lim sup p, < p. (6.2)
e—0
In fact, if y; satistying Ly; = 4;);,j =1, ..., N, is an orthonormal basis of W), then

by the dominated convergence theorem, for every 6 >0 there is & >0 such that for
& <&,

(LaWj, i) — 0| < 0.

Representing  as a linear combination of the y;, we deduce from 4; < u that u, <
u+ N%5. Hence (6.2) holds.

By Proposition 6.3, for a suitable subsequence of values of ¢ the orthonormal basis
¥,j <N, tends in C*(M) and W'2(M) norm to an orthonormal set of eigenfunctions
of L with eigenvalues < u. Since W, has dimension N, this limiting set must be a basis
for W,. Moreover, these eigenfunctions inherit the inequality (4.11).

There is a difference between this statement and the preceding one, applicable to con-
tinuous A. Here we only claim that there exists a basis of the eigenfunctions that satis-
fies (4.11). If an eigenvalue has multiplicity then the estimate may not apply to all
linear combinations of the particular eigenbasis we obtain by taking limits. Thus, we
have not ruled out the possibility that there has to be an extra factor of the multiplicity
of the eigenspace in inequality (4.11). Similarly, in the comparisons with localized eigen-
functions in Theorem 5.1, we can only deduce that they are valid for some basis of
eigenfunctions ¥; and ¢ ;.

We leave open whether in the case of discontinuous A, it is possible to recover the
full theorem for continuous coefficients for eigenfunctions with multiplicity. Another
question that we are leaving open in the discontinuous case is whether the limiting
Agmon distance is unique, that is, does not depend on the choice of the sequence A°®.
Even if the limit is not unique, there could be an optimal (largest) choice of h satisfying
the Agmon bound |V4h|* < w,(x).
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