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Abstract

Transcription factors (TFs) play a central role in regulating molecular level responses of
plants to external stresses such as water limiting conditions, but identification of such
TFs in the genome remains a challenge. Here, we describe a network-based supervised
machine learning framework that accurately predicts and ranks all TFs in the genome
according to their potential association with drought tolerance. We show that top ranked
regulators fall mainly into two ‘age’ groups; genes that appeared first in land plants and
genes that emerged later in the Oryza clade. TFs predicted to be high in the ranking
belong to specific gene families, have relatively simple intron/exon and protein
structures, and functionally converge to regulate primary and secondary metabolism
pathways. Repeated trials of nested cross-validation tests showed that models trained
only on regulatory network patterns, inferred from large transcriptome datasets,
outperform models trained on heterogenous genomic features in the prediction of
known drought response regulators. A new R/Shiny based web application, called the
DroughtApp, provides a primer for generation of new testable hypotheses related to
regulation of drought stress response. Furthermore, to test the system we
experimentally validated predictions on the functional role of the rice transcription factor
OsbHLH148, using RNA sequencing of knockout mutants in response to drought stress
and protein-DNA interaction assays. Our study exemplifies the integration of domain
knowledge for prioritization of regulatory genes in biological pathways of well-studied

agricultural traits.

The drastic reduction in soil water content negatively regulates growth and development
of crop plants such as rice (Oryza sativa), causing substantial loss in yield and quality
(Boyer, 1982; Bray, 1997; Yamaguchi-Shinozaki and Shinozaki, 2006; Palanog et al.,
2014). Plants and specific genotypes within a plant species that can withstand reduced
soil water content would be identified as ‘drought tolerant’, and offer examples to study
the mechanisms involved in their survival and productivity in terms of yield. While
conventional breeding has been the preferred method of improving drought tolerance in
rice and other crop plants, modern genomics and genetic engineering strategies have

become integral part of trait enhancement programs (Umezawa et al., 2006; Ashraf,
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2010; Gaj et al., 2013). A prerequisite for effective use of genetic engineering tools in
trait improvement is the prior knowledge about candidate genes that are likely to
produce a desirable phenotype when genetically intervened. Although transcriptome
analysis of rice under water limited conditions has identified thousands of differentially
expressed genes, it is difficult to narrow down the selection of candidate genes for
testing function and genetic modification. This lack of candidate genes will be a major
bottleneck in future, as it impedes our ability to set up targeted genetic screens to select
leads for further crop improvement (Gutterson and Zhang, 2004; Century et al., 2008;
Jansing et al., 2019; Baxter, 2020). Therefore, new versatile computational methods
and data-driven approaches capable of discovering key genes regulating complex traits

like drought tolerance are needed.

Gene regulatory networks (GRN) play a central role in mediating plant responses to
environmental stresses (Chen and Zhu, 2004; Clauw et al., 2016; Lovell et al., 2018).
Transcription Factors (TFs) are key nodes (genes) in these networks as they regulate
the expression of several downstream genes involved in many stress responsive
pathways and biological processes (Yang et al., 2011). Therefore, TFs remain the most
appealing candidates for genetic engineering of stress tolerance due to their regulatory
nature (Tran et al., 2010; Rabara et al., 2014; Krannich et al., 2015; Wang et al., 2016;
Hoang et al., 2017). Computational modeling of genome-scale regulatory networks
inferred from large-scale transcriptomic datasets is a feasible approach (Razaghi-
Moghadam and Nikoloski, 2020), and has shown great promise in accelerating the
process of in silico gene discovery to in planta gene validation. Some good examples of
recent plant studies that used large-scale GRNs to discover novel gene functions are
outlined in recent review articles (Li et al., 2015; Gupta and Pereira, 2019; Haque et al.,
2019).

There are several limitations of most of the popular approaches currently used to mine
relevant biological signals from network data. For example, function interpretation of
network neighborhoods (modules, clusters etc.) in terms of known biological processes

and pathways is only secondary knowledge, which does not directly allow either module
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116  or gene prioritization, that can also be objectively tested. Also, gene groups that remain
117  unannotated cannot simply be used in interpretation of the inferred network model.

118  Furthermore, the concept of ‘hub’ genes in a context-specific network has limited

119 interpretation and cannot be generalized across network-types (Langfelder et al., 2013;
120 Walley et al., 2016; Vandereyken et al., 2018). Newer computational approaches for
121 candidate gene prioritization are needed (Liseron-Monfils et al., 2018; Dursun et al.,
122 2019), including methods that allow gene prioritization informed by integrating networks
123 with new experimental data such as GWAS results (Schaefer et al., 2018). We also

124  need to develop methods that can leverage on prior documented knowledge about

125 gene-phenotype and gene-trait links to make genome-wide predictions, for example,
126  when a dedicated GWAS study for the trait is unavailable.

127

128 Inrice, the function of a few TFs involved in multiple responses to water-deficit

129  conditions have been identified by overexpression or loss-of-function analysis. These
130 experimentally validated ‘gold-standard’ examples of drought regulators provide an

131 opportunity to test the feasibility of generating machine learning models predictive of
132 other untested drought TFs. Recently, supervised machine learning has been very

133  useful in generation of predictive models for various aspects of research in plant and
134  crop biology (Ma et al., 2014; Sperschneider, 2019). For trait-gene predictions, binary
135 classifiers — algorithms that classify genes into two classes based on their discriminative
136  attributes— seem to be very popular among plant biologists. For example, thousands of
137  genomic and evolutionary features that characterize known essential genes were used
138  to train models predictive of other lethal-phenotype genes (Lloyd et al., 2015). Similarly,
139  several distinguishing features of genes currently annotated in secondary or primary
140  metabolism pathways were used to train models capable of predicting new specialized
141 metabolism genes (Moore et al., 2019). Putative cis-regulatory elements (CRESs)

142  involved in general abiotic and biotic stress responses (Zou et al., 2011), and CREs
143  involved in regulation of root cell type responses to high salinity stress (Uygun et al.,
144 2019) have also been identified by training supervised learning models. Particularly
145 interesting are the studies that used an inferred genome-scale network, instead of

146  heterogenous genomic features, as input to the learning algorithm to make reliable
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genome-wide predictions on disease-gene associations in human (Guan et al., 2010;
Guan et al., 2012; Krishnan et al., 2016; Liu et al., 2019). However, whether this
network-based supervised machine learning approach can be applied to predict TFs

associated with certain traits of interest still remains to be tested.

To determine the feasibility of predicting TFs likely involved in drought tolerance (DT)
mechanisms in rice, we first inferred the consensus GRN in response to abiotic-stress
response using an ensemble of reverse-engineering algorithms. We leveraged on
documented phenotypes associated with rice TFs listed in multiple databases, and
trained machine learning models that learnt regulatory network patterns characteristic of
drought response. Application of the trained model resulted in predictions where all TFs
in the genome were scored along a continuous spectrum according to their potential
association to DT. We then described the phylostratigraphic, structural and functional
features of TFs at both ends of this spectrum. Finally, we tested the effect of using 1)
only the consensus GRN, 2) only newly inferred genomic features and 3) integration of
the network and genomic features on overall accuracy of the models in predicting
known drought response TFs kept hidden (hold-out set) in the training process (Fig. 1).
These features of TFs that likely regulate drought stress responses will be important in
gene prioritization for experimental validation and genetic enhancement of drought

tolerance in rice.

Results and Discussion

Inference of the consensus modular gene regulatory network in response to

global abiotic stress response

We started with inference of the global gene regulatory network (GRN), from a large
collection of publicly available gene expression datasets conditioned on abiotic stress
responses. Instead of relying on any one of the several competing algorithms frequently
used for inference of GRNs, we created an ensemble of five complementary methods
and statistically aggregated the outputs of these methods to create a consensus GRN

(Marbach et al., 2012). The aggregation of networks inferred from different algorithms
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was necessary as they individually showed very little overlap between inferred TF-gene
links (Fig. 2A; Supplemental Data S1).

We evaluated the performance of each algorithm in our ensemble, based on their ability
in correctly predicting 1) genes linked with position weight matrices of rice TFs listed in
the CIS-BP database (Weirauch et al., 2014), and 2) co-annotated TF-gene pairs from
specific biological process categories from the latest version of rice Gene Ontology
(GO) (Ashburner et al., 2000) as well as pathway annotation bins in rice from MapMan
(Thimm et al., 2004). Both these evaluations showed that aggregating outputs from
different network prediction algorithms was generally better in terms of accuracy
(estimated as an F-score; Supplemental Table 1). This evaluation also showed that
methods that use mutual information as a base measure to capture direct functional
relationships between TFs and potential target genes performed better than the simple
correlation-based methods (Fig. 2B). Therefore, the aggregate of three mutual

information methods was chosen as the consensus GRN and used in further analysis.

We next computed the level of ‘coregulation’ between functional genes in the inferred
GRN (see Methods), and applied a network clustering algorithm to group genes into
modules of highly coregulated genes (van Dongen and Abreu-Goodger, 2012)
(Supplemental Data S2). Out of the 740 modules thus obtained, the biological
relevance of 31% could be verified using enrichment analysis of function annotation
data from various sources. Additionally, ~41% of all modules were found preserved in
an independent coexpression network built earlier (Krishnan et al., 2017). Interestingly,
22% of these preserved modules were found amongst the ones that could not be
annotated by gleaning function annotation databases, indicating that these are
biologically relevant gene groupings that fill large gaps that still exist in the current state
of functional annotations in rice (Supplemental Data S3). In addition to function
enrichment to annotate modules, we also performed a de novo analysis of cis regulatory
elements (CREs) in the promoter regions of the module genes (Elemento et al., 2007).

We expected this de novo analysis to recover known and novel abiotic stress related
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207 CREs (AS-CRE), given the context of the underlying network. The analysis detected a
208 total of 84 AS-CREs distributed across modules, and 81 of these AS-CREs matched to
209 putative CREs listed in multiple plant databases (Fig. S1A and S1B; Supplemental
210 Data S4; see Additional notes). Interestingly, network analysis of these CREs indicated
211 that two of the three unmatched novel DNA motifs could likely be binding sites of TFs
212 from the same families (Fig. 2C).

213

214  Because function enrichment analysis and the analysis of AS-CREs showed that most
215  predicted modules constitute biologically relevant gene groupings, we assigned TFs as
216  potential regulators of modules based on the overlap (estimated using Jaccard’s

217  similarity) between genes within each module and the predicted targets of each TF in
218 the consensus GRN (see Additional notes). As illustrated in Figure 3A, the inferred
219 relationships between TFs and modules of coregulated genes is structured like a

220 weighted matrix - with several layers of annotations on modules to allow biological

221 interpretation - representing a global transcriptional regulatory map of abiotic stress
222  responses in rice. An R/shiny-based application was also developed to allow browsing
223 the network with a gene of interest though a web browser

224  (http://rrn.uark.edu/shiny/apps/rrn/).

225

226 Network-based supervised machine learning enables prediction of transcription

227 factors involved in drought tolerance

228  While the consensus GRN we described above can potentially benefit gene function
229 predictions using typical ‘gene-neighborhood’ analysis, we next demonstrate that this
230 network can also be used in a machine learning framework for systematic genome-wide
231  prioritization of TFs that likely regulate drought stress responses in rice. To generate the
232  training data for supervised modeling, we surveyed the functional rice gene database
233 (Yao et al., 2018), the rice mutant database (Zhang et al., 2006) and the Oryzabase

234  (Kurata and Yamazaki, 2006), and retrieved all rice genes with documented phenotypes
235 under drought or water-limiting conditions on the basis of experiments on loss-of-

236  function mutants or transgenic overexpression lines. Because of the complex genetic
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basis of drought responses, this list of ‘drought associated’ genes do not represent any
particular physiological, morphological or biochemical phenotype typically measured in
the analysis of drought stress tolerance response. Therefore, we use ‘drought tolerance’
(DT) as a term to broadly encapsulate various definitions of ‘drought stress response’,
representing global molecular mechanisms by which plants adapt, escape or otherwise
respond to water limiting conditions (Basu et al., 2016). As of May 2019, we found 165
TFs amongst all the DT genes obtained from database mining. We labeled these TFs
as the ‘drought positive’ class, and 682 TFs that did not respond to drought stress in
reanalysis of a number of published gene expression datasets (and other public
resources) as the ‘drought negative’ class (see Methods). The remaining TFs not found

in any of these two classes were left unlabeled (Supplemental Data S5).

The problem of DT TF prediction was then formulated as a two-class classification
problem, where the goal was to predict the class label of each unlabeled TF. To achieve
this, the support vector machine (SVM), a binary classification algorithm, was used to
train models that learnt regulatory network patterns discriminative of the drought
positive and negative classes of TFs. The accuracy of trained models was evaluated
using five-fold cross validation tests. This test splits all training examples (drought
positive and negative TFs) into five equal parts. The model is trained on four of the five
splits and tested on the remaining split kept hidden in training, ensuring that each split is
used as the test-set only once. The accuracy of the model was evaluated using area
under the receiver-operator curve (AUC) statistics. The AUC ranges between 0 and 1,
with values closer to 1 indicating superior performance in classifying test-set TFs in their
respective class. In 10 independent runs of five-fold cross validation tests, our network-
based DT classifier achieved an average AUC of 0.91, which is significantly larger than
the model trained using randomly picked TFs from the genome (Fig. 3B). The observed
AUC of the DT classifier was also found to be significantly better than the model trained
using randomly picked positives, while maintaining family memberships and class size

distributions similar to that of the real positive examples (Fig. 3B). This indicated that
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even if TFs within the same family are more likely to be functionally similar, this cannot

be the only deterministic feature for classification.

Application of the validated model to the whole dataset (including other unlabeled TFs)
resulted in a rank for each TF. To ease interpretation, we scaled these ranks between 0
and 1 such that a threshold of 0.9 meant TFs in the top 10% predictions, 0.8 meant top
20% predictions and so forth. Therefore, this technique placed 2160 TFs (> 93% of all
known TFs in rice) along a continuous spectrum of drought scores (DS) representing

their potential association to DT (Supplemental Data S5).

Occurrence of drought can be accurately inferred from the expression levels of

TFs with high drought scores

We next evaluated the DS produced by the network-based classifier described above
by reanalyzing a recently published RNA-seq dataset of rice seedlings exposed to
drought (Wilkins et al., 2016). We hypothesized that if TFs with larger DS are true
regulators of drought, their expression levels should be indicative of whether the plant
has sensed drought or not. To test this, we first divided all TFs into 100 bins based on
decreasing DS, with each bin consisting of ~21 TFs (total 2160 TFs). Therefore bin #1
consisted of top 1% predictions, bin #2 consisted of top 2-3% predictions, bin #3
consisted of top 3-4% predictions, and so forth. We then evaluated whether expression
levels of TFs in each bin can correctly classify a sample in the seedling RNA-seq as
drought or control. We observed that bins with larger DS scores are generally more
accurate in this classification as compared to bins containing TFs with smaller DS (Fig.
3C). This indicated that the network-based classifier placed potentially true regulators of
DT toward the top of the rankings. Hence, the prioritization is correct and TFs at the
very top of the rankings are reliable candidates for characterization of regulatory

mechanisms involved in DT.
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The drought score correlates with known expression patterns and high scores

are indicative of conserved responses

Because these evaluations suggested that our approach of prioritizing TFs involved in
DT is reliable, we asked if the TFs that are at the top of the rankings have specific
characteristics that can distinguish them from TFs at the bottom of the rankings. We
began our initial investigations by first examining relationships between predicted DS of
TFs and their expression patterns in various contexts. Using the spatial and temporal
drought response dataset (Wang et al., 2011), and our previous developmental stage
drought response dataset (Krishnan et al., 2017), we found that differentially expressed
(t-test g value < 0.05) TFs in both these datasets have significantly larger (Welch’s t-test
p value < 0.001) mean DS compared to the mean DS of the background of remaining
TFs that did not differentially express (Fig. 4A and 4B). Next, since phytohormones are
known to mediate drought stress responses (Kazan, 2015; Muller and Munne-Bosch,
2015; Sah et al., 2016; Ullah et al., 2018) and also modulate activities of TFs (Liu et al.,
2012; Banerjee and Roychoudhury, 2017), we examined the hormone-exposed
seedling dataset (Garg et al., 2012). TFs that differentially expressed in response to six
phytohormones in this hormone dataset have significantly larger mean DS (range 0.62-
0.79) than that of TFs that did not respond (Fig. 4C) (p values < 1.12e-06). These
datasets established a positive relationship between predicted DS and known

expression patterns of rice TFs.

To examine whether TFs with high DS also have conserved expression patterns, we
examined the drought response of orthologous rice genes in datasets from other plants.
Along with a set of differentially expressed Arabidopsis genes that responded to mild
and severe drought assays we reported previously (Harb et al., 2010), we included a set
of drought genes with experimental evidence listed in the Arabidopsis phenotype
database (Lloyd and Meinke, 2012), and a set of Arabidopsis genes recently predicted
to be involved in mild drought responses (Clauw et al., 2016). As illustrated in Figure
4D, the distributions of rice TFs with orthologs in these three sets were found skewed

toward larger values of DS. The mean DS of these orthologous rice TF ranges between
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0.57-0.68, which is significantly larger than the mean DS of 0.49 of the background of
remaining 2106 TFs (p value = 0.00068). This indicated that rice TFs with larger DS

have conserved drought responses in Arabidopsis.

Furthermore, such skewed distributions were also observed in reanalysis of drought
response datasets from other cereal crops (Fig. 4E); rice TFs with orthologs that
differentially expressed in response to application of drought stress in 1) cobs and 2)
leaves of maize (Kakumanu et al., 2012), 3) leaves of leaves of barley (Cantalapiedra et
al., 2017), and 4) leaves of sorghum have significantly larger mean DS (p values < 0.05)
than the mean of the background in all cases (Fig. 4E). Interestingly, the distribution of
DS was observed to be bimodal and fell more towards the middle in the leaves of maize
and sorghum, although the mean DS was weakly but significantly larger than the
background (p value=0.02). These differences specifically in the leaves of maize and
sorghum could be due to differences in their mode of photosynthesis compared to rice
and barely. Further testing with data from drought exposed leaves and non-
photosynthetic tissues of other C3 and C4 crops is needed to build testable hypotheses
around predictable drought-photosynthesis relationships from the network. Overall,
these datasets suggest that predicted DT TFs could be functionally conserved for

responses to drought stress in other plants and crops.

We next asked if the predicted DS and evolutionary age of a TF are related. Using
phylostratigraphic profiles of rice genes (Wang et al., 2018), we observed two peaks in
DS within the 13 phylostratum (PS) age groups rice genes fall into. The first peak in
PS5, which corresponds with the Embryophytes (land plants) clade and the second
peak in PS12, which coincides with Oryza clade, both mirror major events in
evolutionary history of rice (Fig. 4F). To examine the distribution of DS of TFs that arose
in the terminal clade (O. sativa, closely related rice varieties), we examined the
available pan genome of rice (Sun et al., 2017), but did not find any significant
differences in DS between core and distributed TFs, or TFs that are indica- or japonica-

dominant (Fig. S2A-C). This analysis indicated that most of the top ranked TFs are

10
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354  conserved across land plants, while the youngest TFs with high DS could have evolved

355 specifically during adaptation of rice to drought. While the functions of relatively younger
356 genes still remains difficult to predict from expression data alone (Ruprecht et al., 2017;

357 Hansen et al., 2018), it would be interesting to explore their roles in drought response

358 from the lens of our analysis.
359
360 Structural characteristics of predicted drought tolerance transcription factors

361 Recent studies in rice and other organisms suggest that younger genes have relatively
362 simple exon/intron and protein structure (Neme and Tautz, 2013; Cui et al., 2015; Wang
363 etal., 2018). Other studies have showed that simple genes, for example those that lack
364 introns, are rapidly regulated (Jeffares et al., 2008; Speth et al., 2018), and such genes
365 represent an important component of the possibly conserved stress response

366 machinery in land plants (Jeffares et al., 2008; Zhu et al., 2016; Morozov and Solovyev,
367 2019). Since most of the TFs strongly predicted to be associated with DT in our analysis
368 are also the ones that first emerged in land plants, we next investigated if the structural
369 features of TFs at the top of our rankings also have simple gene-body structure and

370 protein domain features. Indeed, the top ranked TFs were found to be generally intron-
371  poor genes, and a significantly large proportion (chi-square test p value=0.0058) of

372 them are intronless (Fig. 5A). However, the coding sequence length of TFs at the top of
373 the rankings was not different from the background of all remaining TFs, but significantly
374  larger than TFs at the bottom of the rankings (p value=5.616e-11) (Fig. 5B). In addition,
375 ~75% of top ranked TFs were predicted to encode small proteins with either one or two
376 InterPro domain annotations (Fig. 5C). We also confirmed that the classifier did not

377 assign high DS to known pseudogenes in rice (Karro et al.; Karro et al., 2006; Thibaud-
378 Nissen et al., 2009), indicating that even if they emerged due to loss of protein

379 domain(s) in a parent gene, their function was either retained or altered to benefit the
380 species (Fig. S3).

381

11
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In terms of gene families, the top ranked drought TFs were found enriched with WRKY,
Tify, NAC, MYB and AP2/ERF families (FDR corrected hypergeometric test p values <
0.1) (Fig. 5D). These gene families are well-known to associate with drought stress in
multiple crops (Yu et al., 2012; Gahlaut et al., 2016; Hoang et al., 2017). In contrast,
TFs at the bottom of the rankings were found enriched in growth and development
associated gene families such as the MADS, FAR1 and TRAF (Smaczniak et al., 2012;
Tedeschi et al., 2017; Ma and Li, 2018). We also observed that the TFs at the top and
bottom of the rankings likely bind to distinct groups of DNA binding sites (Fig. 5E), and
the de novo predicted AS-CREs from network modules occur more frequently within the
promoters of top ranked TFs (Fig. 5F), indicating presence of a hierarchical response
system. Overall, this analysis indicated that the drought classifier clearly discriminated
between features of stress and development-related gene families, although this
information was not explicitly encoded in the input set of features used to train the

model.

Network-based learning outperforms learning from genomic features

The network-based machine learning model described above revealed several
interesting features of TFs that are likely involved in drought response mechanisms, and
these inferred features generally agree with our current understanding about abiotic
stress responses in plants. Therefore, we next tested the feasibility of training the DT
classifier using only these inferred genomic features. We reasoned that if these features
are truly discriminative, they should be predictive of known DT TFs. To perform an
unbiased evaluation, 50% of all training labels (~422 TFs) were randomly selected as a
hold-out evaluation set, and the model was trained and cross-validated on the
remaining 50%. We observed that at any given true positive rate threshold, the model
trained using only the inferred genomic features, although better than random,
consistently attained higher false positive rates compared to the model trained using
only regulatory network patterns of TFs (Fig. 5G, left). In 100 repeated trials, the
average AUC score of the network-based model was found to be significantly higher

than the genomic model (p value < 2.2e-16), as well as the model trained by fusing
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genomic features with the network. The network-based model was also more robust to

variation in training labels relative to the other two models (Fig. 5G, right).

Predicted drought tolerance transcription factors are involved in hormone-

mediated responses

Because the network-based machine learning model outperformed the model trained on
genomic features, we finally investigated the network modules that served as best
predictors of this classification to gain functional insights on predicted drought
regulators. Using ‘feature importance' scores from the model output, we found that 22%
of all modules predicted DT positively (Supplemental Data S6). We connected these
drought modules with their predicted regulators, linked the AS-CREs to modules as well
as TFs (using FDR corrected hypergeometric test p value threshold < 0.01), and
explored this interconnected multi-node network in Cytoscape (Shannon et al., 2003)
(Fig. 6A).

It is important to note that predicted DS did not simply reflect on ‘hubness’ of TFs in the
GRN (Fig. 6A inset). Instead, the predicted DT TFs appear to be involved in the
regulation of a small number of key drought modules. These drought modules comprise
a total of 6968 genes which form core communities enriched in several stress response
pathways and biological processes (Fig. 6B). Interestingly, ‘hormonal signal
transduction’ and related pathways such as ‘phenylpropanoid biosynthesis’ and
‘jasmonic acid biosynthesis’ were found most strongly enriched in this network. Because
most TFs with large DS in our predictions arose in land plants (linked to vascular
development), this functional enrichment pattern is in strong agreement with a recent
study that showed evolution of abscisic acid and salicylic acid pathways, along with
jasmonate signaling pathways, in land plants (Wang et al., 2015). Interestingly, the most
prominent de novo predicted AS-CREs in this network are also related to the abscisic
acid response complex ABRE3HVA22 (Shen et al., 1996) and the vascular-specific
motif ACIIPVPAL2 (Hatton et al., 1995), along with the light responsive GT-1 motif (Lam
and Chua, 1990), the anerobic-responsive motif GCBP2ZMGAPC4 (Geffers et al.,

13



bioRxiv preprint doi: https://doi.org/10.1101/2020.04.29.068379. this version posted April 30, 2020. The copyright holder for this preprint (which

442
443
444
445
446

447

448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465

466
467
468
469
470
471

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

2000) and the dehydration responsive DREB1A motif (Maruyama et al., 2004)
(Supplemental Data S4). Other relevant GO biological process terms such as
‘response to water’, ‘response to abscisic acid stimulus’, ‘cellulose biosynthesis’,
‘flavonol biosynthesis’ and ‘trehalose biosynthesis’ were also correctly recovered in this

drought network.

As mentioned previously, TFs at the top of our rankings are enriched in known stress
related gene families. We next investigated the extent to which TFs liaise with other TFs
in different families by estimating mutual information between their network connectivity
profiles (Fig. S4; see Supplemental methods). We observed that the members of AP2-
EREBP, bHLH, NAC, MYB and bZIP families have the largest number of cross-family
interactions (Fig 6C). Surprisingly, the seemingly under-studied CPP (cysteine-rich
polycomb-like protein) family showed strong connections to these hub families,
suggesting their important role in drought response. A previous study reported on the
classification of CPP genes from multiple plant species into two distinct groups, based
on their protein domain features (Lu et al., 2013). The authors suggested that TFs in
these two groups could likely be independently involved in distinct cellular functions. We
confirm this hypothesis, and suggest that group 1 members of the CPP family are
possibly involved in stress response pathways; 4 of the 5 members of group 1 were
predicted positive by our drought classifier, while all members of group 2 were predicted
negative. The one mis-classified TF (LOC_0s04g09560) from group 1 could likely be
due to a different domain architecture compared to rest of the members of the same
group (Lu et al., 2013).

Overall, network analysis showed that TFs predicted to be involved in DT mechanisms
are more likely to bind to CREs commonly implicated under abiotic stress, functionally
cooperate with other TFs from same and other families, and function in regulation of

network communities involved in hormonal signaling.
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DroughtApp allows functional characterization of rice genes

We developed a user-friendly webserver called DroughtApp with the intention to provide
an easy interactive access to the consensus GRN and drought predictions we described
here. The DroughtApp is built using R/Shiny framework and allows users to browse the
network neighborhood of genes of interest. We chose the rice transcription factor
bHLH148 (LOC_0s03g53020) TF to demonstrate how the DroughtApp could be
integrated in systems biology projects to generate new testable hypothesis. It shows
that bHLH148 was strongly predicted for its association with DT, and its predicted target
genes in the consensus GRN are other TFs from the WRKY and AP2-EREBP families
(Fig. S5). To experimentally validate these predictions, we first verified the association
of bHLH148 with drought stress at different stages using a homozygous loss-of-function
knockout mutant line designated as ‘bhlh148' (S6 A-C). We tested the drought stress
response of bhlh148 plants under controlled drought stress. Under well-watered
condition, there were no significant phenotypic difference between the mutant and WT
plants. But under controlled drought stress treatment at 40% field capacity (FC), the
mutant plants showed higher sensitivity with leaves rolled and collapsed compared to
the WT plants (Fig. 7A). Under drought, the bh/h148 mutant plants showed significant
reduction in net photosynthetic rate, instantaneous water use efficiency (WUEI),
efficiency of Photosystem Il measured in light adapted leaves (Fv'/Fm’), relative water
content (RWC) and the above ground biomass compared to WT (Fig 7B-F). Further,
yield parameters for drought stress response quantified by number of panicles (Fig.
8A), number of spikelets (Fig. 8B), percent spikelet sterility (Fig. 8C) and grain yield per
panicle (Fig. 8D) testify that bHLH148 is involved in grain yield under drought stress

(see Additional notes).

To verify whether bHLH148 targets the WRKY and AP2/EREBP family of TFs as
predicted by the DroughtApp, we performed gene expression profiling of bhih148 and
WT plants under well-watered and controlled drought stress conditions using RNA-
sequencing (see Supplemental Methods). Leaf tissue from plants maintained at 100%
and 40% field capacity for 10 days, were used as well-watered and controlled drought

stress samples, respectively. Analyses of differential expression was performed to
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503 identify genes that 1) responded to the knockout, 2) responded to drought in WT plants,
504 and 3) respond specifically to the interaction of mutant with drought (subtracting the

505 baseline effect of drought from mutant) (Supplemental Data S7). Subsequently,

506 functional enrichment tests using MapMan terms were performed using fold change
507 values as a parameter to evaluate significantly up- and down-regulated pathways (Kim
508 and Volsky, 2005). These analyses showed that transcripts annotated to ‘regulation of
509 AP2/EREBP element binding protein family’ and ‘regulation of WRKY domain TF family’
510  were strongly downregulated, specifically in the drought treated mutant plants (Fig. 9A;
511  Supplemental Table 2). We found that 67% (55/81) of TFs predicted as targets of

512  bHLH148 were significantly differentially expressed in the WT plants exposed to drought
513 (g < 0.01), confirming their predicted high DS (Fig. S7).

514

515 We next tested whether bHLH148 can directly bind to the E-box elements on the

516  promoters of a few differentially expressed AP2/ERF genes that were also predicted as
517  targets of bHLH148 by the DroughtApp (Supplemental Data S8). To do this, we

518 performed an electrophoretic mobility shift assay (EMSA) and confirmed that bHLH148
519  binds to the promoters of OsRAP2.6 (LOC_0Os08g36920) and OsDREB1B

520 (LOC_0s09g35010) genes (Fig. 9B; see Additional notes). To further verify whether
521  bHLH148 can directly activate the expression of AP2/ERF genes that were identified by
522 EMSA, we used the steroid receptor-based inducible system, and confirmed that

523 bHLH148 directly activates expression of OsRAP2.6 (Fig. 9C), while activation of

524 OsDREB1B by bHLH148 requires additional factors (Fig. 9D). Among these two

525 AP2/ERF TFs, the role of OsDREB1B in imparting drought stress tolerance to rice

526  plants has been shown through activation of several stress responsive genes (Ito et al.,
527  2006). The role of OsRAP2.6 (ERF101) in regulation of drought in reproductive tissues
528 has been recently revealed (Jin et al., 2018), which also supports the observed grain-
529 yield phenotype of bhih148.

530

531 Conclusion

532  Our survey of the literature and mining of phenotype databases show that currently only

533 ~2% (1098 at the time of this study) of all known rice genes have been linked to various
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abiotic stresses experimentally, but more than 15% of these 1098 stress genes are TFs
linked with drought or water deficit related responses. This suggests that genetic
selection of favorable alleles of the stress inducible TFs has been widely and
inadvertently used as a tool to improve/select for drought tolerance. We leveraged on
regulatory network patterns of these experimentally validated examples of drought
regulators to train machine learning models for genome-wide prediction of TFs and
associated physiological pathways involved in various drought tolerance (DT)
mechanisms of rice. Unlike traditional coexpression analysis, our supervised approach
allowed us to rank each TF in the rice genome according to its predicted association to
DT, and these rankings could be objectively tested. We anticipate that our predictions
will be a valuable resource for exploring the transcriptional regulatory code of plant

responses to drought stress.

The strategy described ultimately led to the characterization of TFs most likely to be
involved in DT mechanisms. A strong enrichment of intron-poor TFs among the top of
the genome-wide ranking suggests that drought regulators are more likely to be rapidly
regulated in response to drought stress (Jeffares et al., 2008). Widespread upstream
regulation of these TFs was also suggested by the large presence of de novo predicted
stress-relevant cis regulatory elements within their promoters relative to other TFs. The
strongest enrichment of their predicted target genes was found with modules involved in
hormone-mediated signaling, along with the phenylpropanoid pathway and other
smaller pathways that depend on it (Fig. 6B). It is important to note that most of the top
ranked TFs in our analysis emerged in land plants (Fig. 4F). Thus, the functional
enrichment patterns indicate that the phenylpropanoid pathway, which is also implicated
in lignin biosynthesis (Fraser Cm Fau - Chapple and Chapple), played an important role
in adaption of plants to water limiting environments, as also suggested in recent reports
(Wang et al., 2015; Ahammed et al., 2016; Verma et al., 2016). Even the most strongly
enriched CREs involved in regulation of in the drought modules agree with these
functional roles of predicted drought response regulators. The rankings estimated here
provide a primer to experimentally explore functional features of drought TFs by

recording their phenotypes conditioned on drought stress. The network-based machine
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565 learning approach presented here, in conjunction with resources like the KitaakeX

566  Mutant Database (Li et al., 2017), can support targeted screens to narrow down the

567 search for TFs involved in specific physiological, morphological and biochemical

568 phenotypes of drought response. This will in turn enable classification for a specific

569  phenotype in future studies.

570

571  Nested cross-validation tests suggested that models trained using network connectivity
572  patterns as features are generally more accurate and robust to variation in training

573 labels (Fig. 5G). The approach we present here can potentially be applied across

574  transcriptomes within many biological contexts for which enough training labels are also
575 available. However, the generalizability of trained models will depend upon the quality of
576  training examples, standard of validation data and feature engineering. The observed
577  drop in accuracy of the model trained with integrated genomic and network features was
578 expected due to the increase in model complexity. Nevertheless, it also suggests that
579 this technique of integrating different data-types is feasible, and opens new avenues for
580 development of more mechanistically informed models. Integration of the

581  transcriptional-level regulatory code of drought response we present here with other
582  diverse sources of information — representing different layers of TF mediated gene

583 regulation — into a single model predictive of drought response genetics will allow

584 candidate gene selection in a truly holistic manner. These new datasets should be

585 inclusive of tissue-specific network models, epigenetic profiles, frequency of alternative
586  splicing, post-transcriptional regulation by microRNAs and post-translational

587  modifications (PTM) such as phosphorylation. Some excellent resources, such as the
588 Plant PTM Viewer (Willems et al., 2019) and the database of phospho-sites in plants
589 (Cheng et al., 2014) currently allow such data mining for a few plant TFs. Perhaps, such
590 an integration could also help achieve a better classification of functional alleles in

591 indica and japonica sub-types of rice, which remains a limitation of our study.

592

593

594
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Methods
Creating the consensus gene regulatory network

A set of 35 Affymetrix microarray datasets comprising of 266 individual samples
pertaining to gene expression profiling of rice plants under the context of abiotic stress
were identified in GEO (Supplemental Data S9). The raw data was downloaded,
individually normalized and processed into an integrated expression matrix as
previously described (Krishnan et al., 2017). A comprehensive list of 2304 known rice
genes annotated as TFs in several public databases was curated over years (Yilmaz et
al., 2009; Jung et al., 2010; Priya and Jain, 2013; Jin et al., 2014). This list of TFs, along
with the normalized gene expression matrix was supplied to five reverse-engineering
algorithms. ARACNE was downloaded from the web link in the original publication.
GENIE3 (Huynh-Thu et al., 2010) and CLR (Faith et al., 2007) runs were performed
using the R package minet (Meyer et al., 2008). Each of these algorithms required
calculation of mutual information (MI) between every possible TF- gene pair.
Bootstrapping was avoided because genome-wide calculations of Ml in rice is
computationally intensive. Top 500,000 edges were selected from the output of each of
these three algorithms and from the two correlation-based methods. The union of all
edges from all methods was used to create an edge matrix E, with edges i in rows of E
and algorithms j in columns of E. Each cell in the E; was populated by the rank given to i
by j. Missing edges were substituted with the lowest rank of that column plus one
(Marbach et al., 2012). The average rank for each row was then computed and ranked.
Hence, edges with small values indicated greater confidence by all five methods. Top
500,000 edges from this aggregate were selected as the consensus gene regulatory
network (GRN) of rice. Estimation of coregulation amongst gene-pairs and network
modules were identified using the technique described previously (Vermeirssen et al.,

2014) (see supplemental methods).
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625 Creation of validation networks

626 The Position Weight Matrices (PWM) of ~588 rice TFs listed in the CIS-BP database
627  (Weirauch et al., 2014) were obtained in April 2019. PWMs indicate DNA sequence
628 preferences of TFs and can be used to infer DNA motifs in the promoter regions of

629 functional genes. The 1000bp upstream promoters were scanned for at least one or
630 more occurrence of the PWM motifs using the FIMO tool in the MEME suite (Bailey et
631 al., 2015). Motifs that were found in more than 50% of all the genes were treated as
632  ‘constitutive elements’ and removed. Genes harboring all the remaining motifs with a p-
633 value < 1E-10 were linked to the corresponding TFs and used for evaluations. The

634  functional evaluation network was created by using evidence of functional relationships
635 between TFs and putative target genes co-annotated in the rice biological process (BP)
636 ontologies and MapMan pathways. Only those annotation labels consisting of less than
637 200 genes were chosen for this. We assumed that TF within each of these specific BP
638 terms and pathways are more likely to be direct regulators of all other genes within the
639 same term or pathway, and at least these links should be predicted with greater

640 confidence even if they are indirect. Excluding large BPs and pathways, we ensured
641  that minimally related genes (in processes such as ‘translation’, ‘DNA repair’, ‘signal
642 transduction’ etc.) did not become part of the validation network. A total of 242 TFs were
643 found co-annotated with 4670 functional genes in GO BP, and 1520 TFs were found co-
644  annotated with 4021 functional genes in the MapMan database. Both these validation
645 networks were used to calculate the precision and recall statistics and the F-score (see
646  Additional notes).

647
648 Generating training labels for machine learning
649 To identify drought positive labels, the gene keyword file from the funcricegenes server

650 was obtained https://funricegenes.qgithub.io/ in May 2019. Gene lists available in the

651  Oryzabase database was obtained from

652  https://shigen.nig.ac.jp/rice/oryzabase/download/gene on the same day. The rice mutant

653 database were obtained from the published article (Zhang et al., 2006). Using a word

654 cloud analysis (not shown), most prominent keywords in these databases were
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visualized. Genes linked with keywords related to abiotic stress such as “drought”,

tE 11 tE 11 LE 11 tE 11

“‘water-deficit”’, “salt”, “cold”, “heat”, “temperature” and “disease” were then extracted.
The retrieved locus IDs and publication records of genes were manually scanned for
consistency by expert stress biologists, and TFs linked with drought (and related
keywords) were labeled as positives. Note that OsbHLH148 was originally present in
our dataset as a drought positive TF (Seo et al., 2011), but it was removed from the
positive list prior to training the models as a hidden example on which wet-lab
experiments were performed later. From the remaining TFs, we listed negatives
examples as those that were not positive for any abiotic stress in database mining,
since many genes are multi-stress responsive. Also, those TFs that did not differentially
expressed in reanalysis of seven published gene expression datasets covering drought
stress responses in various organs and tissues of rice plants across multiple genotypes
were also counted as drought negatives. In addition to this, the rice stress TF database

was downloaded (Priya and Jain, 2013) from http://www.nipgr.ac.in/RiceSRTFDB.html

and TFs not listed as responsive to drought and salt in this database was also included
as negative TFs. Altogether, we created a pool of 752 TFs that are most likely not
regulators of drought stress responses. To build an unbiased model, we randomly
selected ‘hold-out set’ of 422 TFs (~ 50% of the combined list of all positive and
negative TFs). This hold-out set was later used to evaluate the performance of the final
model. The remaining 50% of labeled TFs were used in the training dataset for the

network-based classifier.

Network-based classifier

The modular core of the consensus GRN we inferred was structured as a matrix G, with
each entry in Gj corresponding to the Jaccard coefficient (JC) of TF i in row with module
J in the column. 590 modules that were found to be functionally enriched, coregulated by
the same sets of abiotic stress CREs or preserved in an independent coexpression
network were considered biologically relevant and used in G. The subset of G with JC
values of training labels was supplied to a linear kernel support vector machine (SVM)
classifier. The vector of JC values of each labeled TF across all modules in G

represented its feature vector. The objective of an SVM function is to identify the best
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686 hyperplane that separates two classes of training data (drought positive and negative
687  TFs) using their feature vectors. The width of the margin that separates the two classes
688 was controlled by optimizing the classification trade-off parameter (C; a penalty for a
689 miss-classified example). An optimal C was chosen by testing a range of values from
690 0.001 to 10 in increments of 0.1 and five-fold cross validation tests. Classifier training
691  runs were performed using the libSVM package (Chang and Lin, 2011). Cross validation
692 splits and performance evaluation was performed using the ROCR package in R (Sing
693 et al., 2005). The distance from the hyperplane for each TF returned from the final SVM
694  run was averaged over four values from five-fold cross validation runs. The entire range
695 of these average distances were scaled to the range 0 to 1. The resulting value of each
696 TF was treated as its drought score (DS).

697

698 Feature engineering for the integrated model

699 TF-DNA binding sites: The binding motifs of rice TFs was obtained from the CIS-BP
700 database (Weirauch et al., 2014). These motifs were first matched with de novo

701  predicted motifs (from FIRE) using the TomTom tool in MEME (Bailey et al., 2015).

702  Matching motifs with a g value < 0.1 were then removed from the CIS-BP group of

703  motifs, as FIRE predicted motifs were considered stress-specific. TFs were linked to
704  FIRE motifs by overlap analysis with predicted targets of TFs in the GRN

705 (hypergeometric tests g value < 0.01). All TF-motif links from CIS-BP and FIRE

706 analyses were then combined to create a non-redundant set of putative CREs,

707  represented as a matrix C with TFs jin rows and motifs j in columns. Each cell C; was
708 populated with 1 if a link between row TF and column motif was observed, 0 otherwise.
709

710  TF families: TF family annotations were downloaded from the Plant TF database

711 (http://pIntfdb.bio.uni-potsdam.de/v3.0/downloads.php?sp id=0SAJ). Gene-family

712  relationships were represented as a matrix F with TF jin the row and family name j in

713  the column. Each cell in F; was populated with 1 if the j is a member of j, 0 otherwise.
714
715  Response to hormones: The dataset GSE37557 was downloaded from GEO and

716  differential expression quantified using method previously described (Krishnan et al.,
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2017). The cells of a matrix H with TFs j in rows and six hormone treatments j in
columns was filled with 1 if i had a positive fold change in the treatment represented by

J, 0 otherwise.

Network degrees: Outdegrees of all TFs from the TF-TF mutual information network
was divided into quantiles, and a TF was assigned to one of the four quantiles. The
matrix D; with TFs i in rows and each of the quantile j in columns was accordingly

populated with either 1 or 0.

Gene age was obtained from the gene feature file obtained from rice pan genome

server (http://cgm.sjtu.edu.cn/3kricedb/data/GeneFeature.txt). In this feature file, the

age column had 13 NCBI taxonomic classes labeled as PS1 to PS13 (Phylostratum 1-
13). The matrix A with TFs jin rows and each of the 13 phylostrata in the column j was

filled with 1 if i was found assigned to the age group represented in j, 0 otherwise.

Structural features: Number of protein domains per TF was obtained from the
‘all.interpro’ file available in the download section of the rice genome annotation project

website (http://rice.plantbiology.msu.edu/). TFs were grouped according to the number

of interpro domain annotations. The matrix P with TFs i in rows and five groups in
columns j was filled with 1 if i was found to have that many numbers of protein
domain(s) represented in j (e.g. TFs in group 1 have 1 domain, group 2 have 2
domains, and so forth). Number of introns per TF was calculated from the GFF file of
rice reference genome. The matrix / with TFs i in rows and number of introns j was

populated with 1 if i had that many introns indicated in j, 0 otherwise.

Finally, the matrices C, H, F, A, D, P and | were integrated with the GRN matrix G to
create the integrated feature matrix for 2160 TFs and 4597 features. All missing values

in the integrated matrix were substituted with 0.
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Analysis of RNA-seq data and estimation of differential expression

Raw fastq files of individual samples from all external datasets were downloaded from
the SRA. The Nipponbare RefSeq (MSU version 7) was obtained from the rice genome
annotation project website (Kawahara et al., 2013). The barley and sorghum genomes
and annotations were downloaded from the Phytozome web portal (Goodstein et al.,
2012). The following procedure was applied across all RNA-seq samples, including
samples from mutant experiments generated in the study described here. Reads were
mapped to the respective reference genomes using STAR version 2.7 (Dobin et al.,
2013). The bam files obtained from STAR runs we sorted using samtools and used as
input to the HTseq software version 0.11.2 (Anders et al., 2015) with its default
parameters for counting reads per gene per sample. Count of reads obtained from
HTseq runs were then integrated as a count matrix (one for each experiment) with
columns representing individual samples and rows representing genes, and each cell of
the matrix presenting raw counts of the gene in the corresponding sample. The count of
each gene in the count matrix was first scaled by its length to give reads per kilobase
(RPK). The sum of all RPK values per sample divided by 1 million gave us a scaling
factor, and dividing each RPK value by the scaling factor computed gene expression as
transcripts per million (TPM) units. The effective gene length to be used in calculations
of RPK values was computed as the sum of non-overlapping exon lengths using the
genomic features package in R (Lawrence et al., 2013). The GFF3 files of all genomes
were converted to GTF format using GFF utilities (gffread) of the cufflinks software
(Trapnell et al., 2010). The resulting GTF file was used as input to genomic features for
effective gene length calculation. Note that the rice GFF3 file on rice MSU reference has
mis-annotations of ~1000 gene isoforms, which hampered gene length calculations.
Conversion of GFF3 to GTF ensured proper grouping of individual transcripts to parent
gene ID. For test of differential expression, the raw count data was normalized using
voom (Law et al., 2014) and differential expression of genes between control and
treatment samples was estimated from linear models using the limma package in R
(Ritchie et al., 2015). Differential expression from microarray datasets (Fig. 4A-E) was

estimated using the procedures described previously (Ambavaram et al., 2014).
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779 Controlled drought stress at vegetative stage and physiological measurements in
780 rice

781  To test the drought stress response of mutant plants at the vegetative stage, we applied
782  controlled drought stress on 45-d-old plants using a gravimetric approach. One-week
783  old equal sized individual seedlings were transplanted into 4 square inch plastic pots
784  filled with Redi-earth potting mix of known weight and water holding capacity. Thirty-five
785 days after transplanting, controlled drought stress (DR) was initiated on 10 pots and
786  monitored gravimetrically. The soil water content was brought down to 40% FC over a
787  period of 3 to 4 d and plants were maintained at that level for 10 d by weighing the pots
788 daily at a fixed time of the day and replenishing the water lost through

789  evapotranspiration. Another 10 pots were maintained at 100% FC and treated as well-
790 watered (WW) condition (Ramegowda et al., 2014). At the end of the stress period, gas
791  exchange and light adapted fluorescence measurements (Fv'/Fm’) were taken on the
792 2" fully expanded leaves from the top, using a portable photosynthesis meter, LI-

793 6400XT (LI-COR Inc., NE, USA) at CO, concentration of 370 pmolmol™, light intensity of
794 1000 pmolm2s™ and RH of 55-60%. Instantaneous water use efficiency (WUEI) was
795 calculated using net photosynthetic rate (A) and transpiration rate (T) as WUEi = (A/T).
796 Leaf RWC was measured as described (Barr and Weatherley, 1962) in the leaves used
797  for gas exchange measurements. The leaf fragments of same length were excised and
798 fresh weight (FW) measured immediately. Leaf fragments were hydrated to full turgidity
799 Dby floating them on deionized water for 6 h, then blotted on paper towel and the fully
800 turgid weight (TW) taken. The leaf samples were then oven dried at 80°C for 72 h and
801  weighed to determine dry weight (DW). The percent RWC was calculated as RWC (%)
802 = (FW-DW)/(TW - DW) x 100. To determine biomass, shoots were harvested, oven
803 dried at 80°C for 72 h and weighed.

804

805 Grain yield analysis under reproductive drought in rice

806 The effect of drought stress on grain yield of the rice genotypes was tested by applying
807  drought stress to plants at R3 stage (Counce et al., 2000). Individual plants in 4 square
808 inch plastic pots were grown at well-watered conditions until R3 stage. Drought stress

809 was applied by withholding water at R3 stage for 4 to 8 d until all of the leaves wilted

11
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followed by re-watering. Panicles exposed to drought stress during the 4 to 8 d window
were marked and used for yield component analysis. A set of well-watered plants were
also maintained as controls. Plants were further grown in well-watered condition until
physiological maturity. Drought exposed panicles were harvested and number of filled
and unfilled spikelets counted to determine spikelet sterility (%). The filled spikelets

were dried at 37°C for 5 d and weighed to determine grain yield/plant.

Electrophoretic mobility shift assay (EMSA)

The total RNA isolated from drought stressed rice plants was used to amplify full-length
cDNA encoding bHLH148 and cloned into pET28(a) vector at BamHI and EcoRl sites.
The bHLH148-6xHis recombinant fusion protein expression was induced with 1 mM
IPTG for 4 h and purified using Ni-NTA resin, and the identity of the purified protein was
confirmed by western blotting (data not shown) using the His-tag antibody. The binding
reaction and EMSA were carried out using a standard protocol according to the
manufacturer’s instructions (LightShift Chemiluminescent EMSA Kit). Promoter
sequences (2 kb upstream of transcription start site) of AP2/ERF TFs were identified
using PlantPAN database (http://plantpan.mbc.nctu.edu.tw/) (Chang et al., 2008) and

searched for the presence of E-box elements in the PLACE database

(http://www.dna.affrc.go.jp/PLACE/) (Higo et al., 1999). Specific sets of primers were

used to amplify 200 bp E-box flanking regions of each of the putative bHLH148-
regulated gene promoters using rice genomic DNA as a template. The amplified
promoter fragments were biotin labelled at the 3’ end using the Biotin 3' End DNA
Labelling Kit (Pierce). The binding reactions were carried out in a buffer containing 10
mM Tris (pH 7.5), 50 mM KCI, 1 mM dithiothreitol, 2.5% glycerol, 5 mM MgCl, 0.05%
Nonidet P-40, and 50 ng/pl of poly(dI-dC). For competition analysis, the binding
reactions were incubated for 10 min on ice before adding 100-fold excess of unlabelled
competitor DNA, and the reaction mixture was further incubated for 20 min at room

temperature before loading onto a 5% native polyacrylamide gel. The resolved DNA-

12
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protein complexes were electro-blotted onto nylon membranes and subsequently

detected using the chemiluminescence detection Kit.

Steroid-inducible system for testing direct activation of genes by bHLH148

The bHLH148-HER expression construct was generated by ligating the PCR-amplified
full-length cDNA of bHLH148 at the Kpnl site fused with the regulatory region of HER at
the C terminus between the CaMV 35S promoter and the NOS terminator in pUC19
vector. The construct was transfected into rice protoplasts by electroporation and
incubated with 2 uM estradiol for 6 h to release cytoplasmic bound bHLH148. For the
control reactions, the same concentration of ethanol used to dissolve estradiol was
used. To inhibit new protein synthesis, protoplasts were treated with cycloheximide (2
puM) for 30 min before addition of estradiol. Total RNA was isolated from the treated
protoplasts and used for gPCR analysis. The data presented are the averages of three

biological replicates.

Figure legends

Figure 1: Workflow of the network-based machine learning approach used in this
study. A consensus modular gene regulatory network (GRN), representing
relationships between TFs and functional modules, was predicted from expression data
using an ensemble of network prediction algorithms. Rice knowledgebases were mined
to identify TFs that are already reported as regulators of drought tolerance (labeled as
drought positive class), and a set of TFs that did not respond to drought in published
gene expression studies (labeled as drought negative class). These benchmark drought
TFs, along with their network connectivity patterns in the consensus GRN, were used as
input training data for a binary classification algorithm (support vector machine) to
identify patterns that can discriminate between the two classes of benchmark TFs. The
identified patterns were subsequently used to classify the remaining unlabeled TFs. The
final output of this supervised network-based model was the representation of each TF
in the rice genome along a continuous spectrum representing its association to drought
tolerance. Discriminative genomic features of TFs at both the ends of this spectrum
were identified and described. These newly inferred genomic features were then
integrated with the network-based features and evaluated for accuracy using nested
cross-validation tests, where the outer loop was a two-fold split and the inner loop was a
five-fold split. The GRN and predictions can be accessed online at
http://rrn.uark.edu/shiny/apps/rrn/.
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Figure 2: Inference, evaluation and functional annotation of the rice gene
regulatory network. A) An upset plot showing the overlap between edges predicted by
different network prediction algorithms and their aggregate. The bars on the top indicate
the size of overlap between methods connected by dots in the center matrix. Each
intersection is color coded uniquely. Red: Unique edges, Blue: Overlap between two
methods, Black: three methods, Orange: four methods, Green: all five methods. B) The
boxplots show the distribution of ranks given to ‘reference’ edges derived from the Gene
Ontology (GO) and MapMan pathways by each network prediction method in the
ensemble. Consensus-all indicates an aggregate solution of all five methods and
consensus-MI indicates an aggregate solution of only mutual-information-based
methods. C) Besides recovering several known plant CREs, the de novo CRE analysis
identified three novel motifs that did not match to any known plant CRE listed in multiple
databases. The heatmap shows that these novel motifs could potentially be direct or
‘associative’ binding sites of members from seven TF families, based on significant
overlaps of the predicted targets of TFs from the families on the x axis within the genes
that harbor the three novel CREs on the y axis (hypergeometric tests g value < 0.01).
Color gradient indicates the network score, calculated as the average ranks of edges
from the consensus gene regulatory network. Darker color indicates stronger
association between the CRE and the TF family, as indicated in the key.

Figure 3: Evaluation of the network-based classifier. A) An annotated heatmap
(bottom center) depicting modules (columns) along with their potential regulators (rows).
The cells of the heatmap are colored red if an overlap of at least one gene was found
between the predicted targets of the TF and genes in the module. Other cells are
colored white. TFs reported to be involved in drought, salt and cold stress response are
indicated by grey horizontal bars (bottom left). Outdegree 1 and 2 bar plots (bottom
right) indicate number of genes and number of modules predicted to be targeted by
each TF in the corresponding row. Module annotations are illustrated on the top of the
heatmap. Indegree and size bar plots indicate the number of incoming edges and the
size of each module, respectively. Modules significantly enriched with functional
categories from four function annotation databases, preserved network modules and
CREs are indicated by vertical grey bars (top). B) Boxplots showing the distribution of
area under the receiver operator curve (AUC; x axis) of the classifier trained using
reported drought tolerance genes (shaded green; top), the classifier trained using
randomly picked TFs (bottom), and the classifier trained using randomly picked TFs with
distribution of families equal to that of the drought classifier (center). C) TFs were sorted
according to their decreasing drought scores and grouped into 100 equal-sized bins.
Expression levels (transcript per million units) of TFs in each bin was used as features
to classify a set of labeled RNA-seq samples as drought or control (GSE74793). Each
boxplot shows distribution of AUC scores (x axis) from three-fold cross validation tests
in groups of 10 bins, with lower numbered bins (y axis) indicating TFs with higher
drought scores.

Figure 4: Relationships between drought scores, ortholog gene expression and
phylostratigraphic profiles of rice TFs. TFs that differentially expressed in A) spatial
and temporal drought response dataset (GSE26280), B) three different stages of
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development in the reference genome (Nipponbare; MSU7) and C) response to
hormone treatments have significantly higher drought scores (DS) compared with DS of
the background of all remaining TFs in each case. (YPBS: young panicle booting stage,
RTS: root at tillering stage, RPES: roots at panicle elongation stage, LTS: leaves at
tillering stage, LPES: leaves at panicle elongation stage, LBS: leaves at booting stage;
IAA: Indole-3-acetic acid (auxin), BAP: benzyl aminopurine (cytokinin), ABA: abscisic
acid, ACC: 1-aminocyclopropane-1-carboxylic acid (ethylene derivative), SA: salicylic
acid, JA: jasmonic acid). D) Rice TFs with orthologs in Arabidopsis genes that
differentially express under drought stress (center), or are known by experimental
validation (top) or predicted for drought tolerance (bottom) have significantly higher DS
compared with the background. E) Similarly, DS of TFs (x axis) with orthologs in genes
that differentially expressed in different crop datasets (y axis) is also skewed toward
larger DS values. F) Box plot showing the distribution of DS in different age groups
according to NCBI taxonomic classification. PS5 and PS12 represent Embryophytes
and Oryza clades, respectively.

Figure 5: Structural features of predicted drought tolerance transcription factors
and their evaluation. The first decile TFs (top 10% predictions) are A) intron poor
compared to background of remaining 90% TFs, and this pattern continues till top 40%
predictions. B) However, no significant differences between the coding sequence length
of TFs at the top and bottom of the rankings was observed. C) Top 20% predictions
contain fewer protein domains compared to the background. D) A dumbbell plot
showing enrichment of TF families within the top decile (green dots) and bottom decile
(grey dots). The -log of Storey’s q values resulting from hypergeometric tests is
represented along the x axis and the families indicated along the y axis. E) Venn
diagrams showing low overlaps between DNA binding motifs linked with top and bottom
decile TFs. Left panel shows motifs identified from de novo analysis (using FIRE; see
supplemental methods) and the right panel shows motifs listed in the CIS-BP database.
F) Top decile predictions have a larger number of CREs present within 1000 bp
upstream promoters compared to the background. G) All these genomic features alone
are less accurate in correctly predicting known regulators of drought, as shown by the
receiver operator curve (grey line, left panel) compared to the classifier that used only
network-based features (green line), and the classifier trained by integrating genomic
and network features (blue line). The network-based (NB) model performed with highest
average accuracy in 100 random trails of nested cross-validation tests (bar plot right
panel).

Figure 6. Functional characterization of predicted drought tolerance transcription
factors. A) A subset of modules with highest feature importance scores from the
drought classifier were connected to cis-regulatory elements (CREs; predicted by de
novo analysis) found enriched within them, as well as to their predicted regulators (TFs).
The regulators were in turn connected to the CREs based on enrichment analysis (FDR
corrected hypergeometric test p value < 0.01). This interconnected network with three
node types (modules, CREs, TFs) was visualized in Cytoscape. Modules are indicated
in rounded rectangles, CREs in ellipses and TFs in triangles colored according to the
family membership. Inset shows relationships between drought score and network
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degrees of TFs. B) The drought modules consist of a total of ~6000 genes. The network
shows top 5% edges induced between them. Every grey circle is a functional gene,
green circle is a TF and blue circle is a kinase. Size of green circles is proportional to
the drought score. Border of nodes that co-occur in the same module are given the
same color, and the module function is indicated in the key below. C) TFs were
connected to each other based on mutual information between their network profiles to
create a global TF-TF network. In the global TF-TF network, the sum of cross-family
edge-scores were summarized as Z scores. Pairs of TF families with high Z scores
were visualized as a graph. Each ellipse represents a TF family, with node size
proportional to the total number of members within the family and border color set along
a yellow to red gradient indicating to the total number of connections with TFs in other
families. Colors closer to dark red indicate larger number of connections and colors
closer to yellow indicate fewer connections. Edge thickness is proportional to the Z
score of connection between the two families linked.

Figure 7: Drought induced expression of bHLH148. A) Increased sensitivity of
bhlh148 mutant plants under controlled drought stress conditions. Forty-five-day old
plants were maintained at 100% (well-watered — WW) and 40% (drought — DR) FC (field
capacity) for 10 days by a gravimetric approach and performance was measured at the
end of stress period. B-F) Phenotype of the WT and bhlh148 mutant plants under
drought stress. B), Assimilation rate C), instantaneous water use efficiency (WUEi) D),
efficiency of Photosystem Il in light adapted leaves E), and relative water content
(RWC) F) and above ground biomass (dry weight). Gas exchange measurements were
taken using portable photosynthesis system LI-6400XT at CO, concentration of 370
umol/mol and light intensity of 1000 pmol/m?/s. The data are the means + s.e. (n=10)
and significance using t-test (**P < 0.01). K-N)

Figure 8: Reduced grain yield of bhlh148 plants under well-watered as well as
drought stress conditions. Drought stress was applied by withholding irrigation at R3
stage for 4-8 days until the leaves roll and wilt followed by re-watering and maintaining
under well-watered condition until physiological maturity. Yield components were
measured under well-watered and drought stress conditions at physiologically maturity.
A) Number of panicles, B) number of spikelets, C) percent spikelet sterility and, D) grain
yield. The data are means % s.e. (n=6) and significance using t-test (*P < 0.05 and **P <
0.01).

Figure 9. Experimental validation of DroughtApp predictions. A) Heatmap
summarizing results from differential gene expression analysis of the rice bhlh148
mutant exposed to drought. The heatmap shows the average differential expression of
gene transcripts annotated to various pathways listed in the rice MapMan database.
The color gradient indicates mean fold change (summarized as Z scores) of the
pathway listed in the row and sample in the column. The color gradient represents up
and downregulation, as indicated in the color key above. B) Electrophoretic mobility shift
assay (EMSA) was performed with bHLH148 protein and biotin labeled promoter
elements of potential bHLH148 regulated genes. bHLH148-6xHis recombinant protein
was incubated with promoter elements at room temperature for 20 min. For competition
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analysis, the binding reaction was incubated for 10 min on ice before adding 100-fold
excess of unlabeled promoter elements followed by incubation at room temperature for
20 min. The samples were subjected to EMSA by PAGE and subsequent
chemiluminescence detection. + and - indicate the presence and absence of the
respective component in the binding reaction. The labeled “free probe” and DNA-protein
complex “bound probe” positions are indicated by arrows. C-D) Direct activation of
OsRAP2.6 and OsDREB1B by bHLH148. Rice protoplasts were transfected with a
bHLH148-HER fusion construct driven by the CaMV35S promoter. Transfected
protoplasts were treated with estradiol (EST), cycloheximide (CHX), or EST and CHX
together. The expression levels of OsRAP2.6 and OsDREB1B in control and treated
protoplast was analyzed by gPCR and shown for (C) RAP2.6 and (D) OsDREB1B. Each
data point are mean values * s.e. of three biological replicates.

Supplemental Datasets

Supplemental Data S1: Top 500,000 edges inferred by the ensemble and their
aggregate.

Supplemental Data S2: Gene-module memberships

Supplemental Data S3: Module function annotations

Supplemental Data S4: Module CREs annotations

Supplemental Data S5: Drought Scores

Supplemental Data S6: Feature importance scores

Supplemental Data S7: Differential expression test results from all three analyses
Supplemental Data S8: Predicted targets of bHLH148 from DroughtApp
Supplemental Data S9: GEO datasets

Data availability
All RNA-seq datasets published with this study are deposited to the NCBI repositories
and can be accessed through GEO accession GSE65024.
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Figure 1: Workflow of the network-based
machine learning approach used in this
study. A consensus modular gene regulatory
network (GRN), representing relationships
between TFs and functional modules, was
predicted from expression data usingan
ensemble of network prediction algorithms. Rice
knowledgebases were mined to identify TFs that
are already reported as regulators of drought
tolerance (labeled as droughtpositive class),and
a set of TFs that did not respond to droughtin
published gene expression studies (labeled as
droughtnegative class). These benchmark
drought TFs, along with their network
connectivity patterns in the consensus GRN,
were used as inputtraining data for a binary
classification algorithm (support vector machine)
to identify patterns that can discriminate between
the two classes of benchmark TFs. The identified
patterns were subsequently used to classify the
remaining unlabeled TFs. The final outputof this
supervised network-based model was the
representation ofeach TF in the rice genome
along a continuous spectrumrepresenting its
association to droughttolerance. Discriminative
genomicfeatures of TFs at both the ends of this
spectrum were identified and described. These
newly inferred genomicfeatures were then
integrated with the network-based features and
evaluated for accuracy using nested cross-
validation tests, where the outerloop was a two-
fold splitand the innerloop was a five-fold split.
The GRN and predictions can be accessed
online at http://rrn.uark.edu/shiny/apps/rrn/.
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Figure 2: Inference, evaluation and functional annotation of the rice
gene regulatory network. A) An upsetplot showing the overlap between
edges predicted by different network prediction algorithms and their
aggregate. The barson the top indicate the size of overlap between
methods connected by dots in the center matrix. Each intersectionis color
coded uniquely. Red: Unique edges, Blue: Overlap between two methods,
Black: three methods, Orange: four methods, Green: all five methods. B)
The boxplots show the distribution of ranks given to ‘reference’ edges
derived from the Gene Ontology (GO) and MapMan pathways by each
network prediction method in the ensemble. Consensus-all indicates an
aggregate solution ofall five methods and consensus-Mlindicates an
aggregate solution of only mutual-information-based methods. C) Besides
recovering several known plant CREs, the de novo CRE analysisidentified
three novel motifs that did not match to any known plant CRE listed in
multiple databases. The heatmap shows that these novel motifs could
potentially be director ‘associative’ binding sites of members from seven
TF families, based on significantoverlaps ofthe predicted targets of TFs
from the families on the x axis within the genesthat harborthe three novel
CREs onthe y axis (hypergeometrictests q value < 0.01). Colorgradient
indicates the network score, calculated as the average ranks of edges from
the consensus gene regulatory network. Darker colorindicates stronger
association between the CRE and the TF family, as indicated in the key.
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Figure 4: Relationships between drought scores, ortholog gene expression and
phylostratigraphic profiles of rice TFs. TFs that differentially expressedin A) spatial
and temporal droughtresponse dataset (GSE26280), B) three different stages of
developmentin the reference genome (Nipponbare; MSU7)and C) response to
hormone treatments have significantly higher droughtscores (DS) compared with DS of
the background ofall remaining TFs in each case. (YPBS: young panicle booting stage,
RTS: root at tillering stage, RPES: roots at panicle elongation stage, LTS: leaves at
tillering stage, LPES: leaves at panicle elongation stage, LBS: leaves at booting stage;
IAA: Indole-3-aceticacid (auxin), BAP: benzyl aminopurine (cytokinin), ABA: abscisic
acid, ACC: 1-aminocyclopropane-1-carboxylic acid (ethylene derivative), SA: salicylic
acid, JA: jasmonicacid). D) Rice TFs with orthologs in Arabidopsis genes that
differentially express underdroughtstress (center), or are known by experimental
validation (top) or predicted for droughttolerance (bottom) have significantly higher DS
compared with the background. E) Similarly, DS of TFs (x axis) with orthologsin genes
that differentially expressed in different crop datasets (y axis) is also skewed toward
larger DS values. F) Box plot showing the distribution of DS in differentage groups
according to NCBI taxonomic classification. PS5 and PS12 represent Embryophytes
and Oryza clades, respectively.
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Figure 5: Structural features of predicted drought
tolerance transcription factors and their evaluation.
The first decile TFs (top 10% predictions)are A) intron
poor compared to background ofremaining 90% TFs, and
this pattern continuestill top 40% predictions. B) However,
no significantdifferences between the coding sequence
length of TFs at the top and bottom of the rankings was
observed. C) Top 20% predictions contain fewer protein
domains compared to the background. D) A dumbbell plot
showing enrichmentof TF families within the top decile
(green dots) and bottom decile (grey dots). The -log of
Storey’s q values resulting from hypergeometric tests is
represented along the x axis and the families indicated
along the y axis. E) Venn diagrams showing low overlaps
between DNA binding motifs linked with top and bottom
decile TFs. Left panel shows motifs identified from de novo
analysis (using FIRE; see supplemental methods)and the
right panel shows motifs listed in the CIS-BP database.F)
Top decile predictions have alargernumber of CREs
presentwithin 1000 bp upstream promoters compared to
the background. G) All these genomicfeatures alone are
less accurate in correctly predicting known regulators of
drought, as shown by the receiver operator curve (grey
line, left panel) compared to the classifierthat used only
network-based features (green line), and the classifier
trained by integrating genomic and network features (blue
line). The network-based (NB) model performed with
highestaverage accuracyin 100 random trails of nested
cross-validation tests (bar plotright panel).



A
cis
Regulatory
Elements

Gene family

AAP2-EREBP
ANAC
AWRKY
AbHLH
AbZIP
AMYB

HSF
AMYB-related
AC2H2

Tify

Others

Transcription Factors

o Modules
DD
ae"”
oo
DDDD
DDDU
DDD Y
o 1.00
(c/)? 0.75
+= 0.50
20.25
o
Ao 0.00
o mn o o
O N WO DMNMN~O
O o oo«
Degree
BB oTF ".
. .. .
HB ®Kinase oty o
AUX/IAA
1 8 o, © : o ° o . °
Jumonii $. & . g "
° e K Ociogooooo *“%o0 g'ile
' L]
.o ) 0, © . '.°°o o... '
o°°.°oo. e 8.8..)8
: '@ .é °.°.° oo o [} f s:’ og
175 T BES1
MY‘ted OPhenylpropanoid Biosynthesis

Orphans

C3H OHormone Signal Transduction

Embryo development/Response

to water

OFalvonol biosynthesis



Figure 6. Functional characterization of predicted drought tolerance transcription
factors. A) A subset of modules with highest feature importance scores from the drought
classifier were connected to cis-regulatory elements (CREs; predicted by de novo analysis)
found enriched within them, as well as to their predicted regulators (TFs). The regulators
were in turn connected to the CREs based on enrichment analysis (FDR corrected
hypergeometric test p value < 0.01). This interconnected network with three node types
(modules, CREs, TFs) was visualized in Cytoscape. Modules are indicated in rounded
rectangles, CREs in ellipses and TFs in triangles colored according to the family
membership. Inset shows relationships between drought score and network degrees of TFs.
B) The drought modules consist of a total of ~6000 genes. The network shows top 5% edges
induced between them. Every grey circle is a functional gene, green circle is a TF and blue
circle is a kinase. Size of green circles is proportional to the drought score. Border of nodes
that co-occur in the same module are given the same color, and the module function is
indicated in the key below. C) TFs were connected to each other based on mutual
information between their network profiles to create a global TF-TF network. In the global TF-
TF network, the sum of cross-family edge-scores were summarized as Z scores. Pairs of TF
families with high Z scores were visualized as a graph. Each ellipse represents a TF family,
with node size proportional to the total number of members within the family and border color
set along a yellow to red gradient indicating to the total number of connections with TFs in
other families. Colors closer to dark red indicate larger number of connections and colors
closer to yellow indicate fewer connections. Edge thickness is proportional to the Z score of
connection between the two families linked.
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Figure 7: Drought induced
expression of bHLH148. A)
Increased sensitivity of bhlh148
mutant plants under controlled
droughtstress conditions. Forty-five-
day old plants were maintained at
100% (well-watered — WW) and 40%
(drought— DR) FC (field capacity) for
10 days by a gravimetricapproach
and performance was measured at
the end of stress period. B-F)
Phenotype of the WT and bhlh148
mutant plants underdroughtstress.
B), Assimilation rate C),
instantaneous water use efficiency
(WUEiI) D), efficiency of Photosystem
Il in lightadapted leavesE), and
relative water content(RWC) F) and
above ground biomass (dry weight).
Gas exchange measurements were
taken using portable photosynthesis
system LI-6400XT at CO,
concentration of 370 ymol/mol and
lightintensity of 1000 umol/m?/s. The
data are the means + s.e. (h=10) and
significance using t-test (**P< 0.01).
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Figure 8: Reduced grain yield of bhlh148 plants
under well-watered as well as drought stress
conditions. Droughtstress was applied by
withholding irrigation atR3 stage for 4-8 days until
the leavesroll and wilt followed by re-watering and
maintaining under well-watered condition until
physiological maturity. Yield components were
measured under well-watered and drought stress
conditions at physiologically maturity. A) Number of
panicles, B) number of spikelets, C) percent
spikeletsterility and, D) grain yield. The data are
means t s.e. (n=6) and significance using t-test (*P
<0.05and**P<0.01).
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